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Statistical prediction of an outcome variable using multiple independent variables is a common practice in 
the social and behavioral sciences. For example, neuropsychologists are sometimes called upon to provide 
predictions of pre-injury cognitive functioning for individuals who have suffered a traumatic brain injury. 
Typically these predictions are made using standard multiple linear regression models with several 
demographic variables (e.g., gender, ethnicity, education level) as predictors. Prior research has found 
conflicting evidence regarding the ability of such models to provide accurate predictions of outcome 
variables such as full-scale intelligence (FSIQ) test scores. The current study had two goals: 1) to 
demonstrate the utility of a set of alternative prediction methods that have been applied extensively in the 
natural sciences and business but which have not been frequently explored in the social sciences and 2) to 
develop models that can be used to predict premorbid cognitive functioning in preschool children.  
Prediction of Stanford Binet 5 FSIQ scores for preschool aged children is used to compare the 
performance of a multiple regression model with several of these alternative methods. Results 
demonstrate that classification and regression trees (CART) provided more accurate prediction of FSIQ 
scores than the more traditional regression approach.  Implications of these results are discussed. 

linical neuropsychologists are frequently required to determine if an individual has experienced 
changes in intellectual functioning resulting from a neurological insult such as a traumatic brain 
injury (TBI) or stroke. Accurate diagnosis and the determination of functional decline relies 

largely on a clinician’s ability to compare current test performance to an estimate of premorbid (i.e., prior 
to injury) performance. It is common in clinical practice for neuropsychologists to use a discrepancy 
between a predicted and an obtained test score to assist in the determination of whether organic 
impairment or a progressive disease is present. Thus, an accurate estimation of premorbid intelligence is 
necessary to prevent errors such as under or overestimation of a patient’s level of cognitive decline 
(Griffin, Mindt, Rankin, Ritchie, & Scott, 2002) and the availability of techniques demonstrating good 
validity and reliability for predicting premorbid intellectual functioning is a central concern of clinicians. 
When premorbid ability levels can be reasonably estimated, a diagnosis can be made with confidence and 
cognitive rehabilitation programs can be properly designed, monitored, and modified (Reynolds, 1997). 
 

Traditional Methods of Prediction 
  A variety of approaches have been proposed and developed for the estimation of premorbid ability 
estimation (PAE), including (a) historical achievement-based and standardized group assessment data 
(e.g., Baade & Schoenberg, 2004; Schinka & Vanderploeg, 2000); (b) “hold/don’t hold tests” estimates 
(Blair & Spreen, 1989; Lezak, Howieson, Loring, Hannay, & Fischer, 2004); (c) best current performance 
estimates (Lezak, 1995); (d) demographic-based regression formulas (e.g., Barona, Reynolds, & Chastain, 
1984); (e) combinations of demographic and actual performance data (e.g., Schoenberg, Lange, & 
Saklofske, 2007a; Schoenberg, Lange, & Saklofske, 2007b; Schoenberg, Lange, Saklofske, Suarez, & 
Brickell, 2008; Schoenberg, Scott, Duff, & Adams, 2002; Vanderploeg, Schinka, & Axelrod, 1996); and 
(f) current word reading ability tests (e.g., Blair & Spreen; Wechsler, 2003). However, each approach has 
been shown to have some limitations in application.  
 

Using Multiple Linear Regression to Predict Premorbid IQ 
  An alternative to these more ad hoc approaches to predicting premorbid IQ involves the use of multiple 
linear regression (MLR) to estimate IQ. Researchers in the field have developed models based on 
demographic variables in conjunction with performance on a task such as word reading or some 
comparable measure (Sellers, Burns, & Guyrke, 2002; Vanderploeg, Schinka, Baum, Tremont, & 
Mittenberg, 1998; Yeates & Taylor, 1997), while in other cases, only demographic variables were used. 
Crawford, Millar, and Milne (2001) found that for adults, the correlation between actual and predicted IQ, 
based on the demographic variables of education, socio-economic status and age, was 0.76, which was 
higher than that obtained through clinical judgment. A study focusing on predicting IQ for adolescents 
included variables such as gender, ethnicity, region of the U.S. in which the subject lived, age, and 
parental education level (Schoenberg et al., 2007a) and was found to provide predictions of FSIQ. Powell, 

C



CART, Neural Networks, & Generalized Additive Models 

Multiple Linear Regression Viewpoints, 2011, Vol. 37(1)                                                                                           9 

Brossart and Reynolds (2003) compared the performance of two regression models of the demographic 
information estimation formula index (DI) (Barona et al., 1984) and the Oklahoma Premorbid Intelligence 
Estimate (OPIE) (Krull, Sherer,  & Adams, 1995) for estimating premorbid cognitive functioning in 
adults.  Both models are based on linear equations that predict cognitive functioning using demographic 
variables (age, gender, race, education, occupation, urban/rural residence and current performance) on 
Wechsler Adult Intelligence Scale-Revised (WAIS-R; Wechsler, 1983) Vocabulary and Picture 
Completion subtests.  Their results demonstrated that the DI approach provided more accurate estimates 
of cognitive decline but were not as accurate when predicting FSIQ for individuals who did not suffer any 
brain injury. One issue with either of these approaches is that researchers must have access to all of the 
variables that serve as inputs to the standardized equations. Another issue is that regression-based 
estimates of premorbid IQ have been shown susceptible to error, particularly in outer ranges of 
intellectual function (Veiel & Koopman, 2001). In addition, the MLR model assumes a linear relationship 
exists between the outcome of interest and the predictors, unless the researcher explicitly includes a non-
linear term. However, in many instances, it may be unclear whether a non-linear term should be included, 
and more importantly what type would be most appropriate.   
  Much of the focus in the prediction of premorbid IQ has been on adults with relatively little research 
devoted to predicting cognitive functioning in school-aged and younger children (Schoenberg et al., 
2007a). However, some research has been conducted on the use of prediction equations based on only 
demographic variables with school-aged children (Pungello, Iruka, Dotterer, Koonce-Mills, & Reznick, 
2009; Schoenberg et al., 2008; Schoenberg, Lange, Brickell, & Saklofske, 2007; Roberts, Bornstein, 
Slater, & Barrett, 1999; Sellers, Burns, & Guyrke, 1996). These studies included variables such as 
parental level of education, ethnicity, gender, age, region of the U.S. in which the child resided and 
parental occupation, and generally found that they could achieve an R2 generally around 0.4 when 
predicting Full Scale IQ (FSIQ).  Despite the publication of several studies, the problem of accurately 
predicting premorbid IQ, particularly in young children, has not been completely solved (Schoenberg et 
al., 2007b).  Furthermore, prior work with adult populations has not definitively demonstrated linear 
models to be the universally most effective tool for predicting premorbid IQ scores, as was discussed 
previously.  Therefore, alternative methods for prediction should be investigated in order to find the 
optimal tool(s) for the important task of obtaining reliable estimates of premorbid intellectual functioning 
for young children who have undergone a neurological insult and suffered from cognitive impairment.   
  It should be noted that while the focus of this research was on predicting IQ scores for young children 
using demographic variables, other recent examples using prediction in the social science literature 
include predicting school counselor evaluations of student performance (Granello, 2010), college student 
dropout (Nistor & Neubauer, 2010), impact of character education on social competence (Cheung & Lee, 
2010) and parent training effectiveness (Lavigne, LeBailly, & Gouze, 2010) to name but a few.  In the 
vast majority of this research some variant of linear regression was used to obtain predictions.  However, 
because it is limited to linear or relatively simple non-linear forms, regression may not always be the 
optimal choice for this type of research (Berk, 2008). 
  The goals of this study were to describe some alternative methods of prediction that could be employed 
in the context of obtaining estimates of premorbid IQ in preschool-aged children.  These methods, 
including Classification and Regression Trees, Neural Networks and Generalized Additive Models, have 
all been shown to be effective tools for prediction in simulation research, particularly in the presence of 
non-linear relationships between outcome and predictor variables (Chang, Finch, & Davis, 2011; Finch & 
Holden, 2010).  Given their positive record of performance, and their relative novelty in the social science 
literature, it was hoped that a manuscript demonstrating how each could be used to solve a real world 
prediction problem would add to the quantitative methods literature. In addition, each of these alternative 
models presents the user with great flexibility in terms of model settings and the like, which can have 
tremendous impact on the final results of the analysis.  Thus, in addition to demonstrating how these tools 
can be used in practice, a second goal of this manuscript is to discuss these various model settings and 
provide some guidance for their implementation.  It should be noted that this paper is not intended to be a 
comprehensive review of these methods, but rather an introduction that should provide the interested 
researcher with the basic tools to conduct analyses with these modeling techniques. A number of more 
comprehensive works are referenced below for those who want to delve deeper (which we encourage 
wholeheartedly). 
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Alternative Methods of Prediction 
 The following is discussion of a number of alternative approaches for prediction that may prove useful 
when a relationship between variables is not strictly linear.  Given some of the problems discussed earlier 
in the traditional approach of using MLR for predicting premorbid IQ and because very little work has 
been done examining the prediction of IQ in very young children, these alternative methods may prove to 
be interesting tools for this task.  After a description of these approaches, the results of a study 
demonstrating how to use these techniques for the task of predicting IQ will be presented.   
 

Classification and Regression Trees (CART) 
  CART (Breiman, Friedman, Olshen & Stone, 1984) arrives at predicted values for an outcome variable, 
Y, given a set of predictors by iteratively dividing individual members of the sample into ever more 
homogeneous groups, or nodes, based on values of the predictor variables.  It can be thought of as a 
nonparametric approach because there are no assumptions regarding the underlying population from 
which the sample is drawn nor the form of the model linking the outcome and predictor variables.  CART 
begins by placing all subjects into one node, or group, and then searches the set of predictors to find the 
value of one of those by which it can divide the observations into two new nodes, whose values on Y are 
as homogeneous as possible.  For each of these new nodes, the predictors are once again searched for the 
optimal split by which the subjects can be further divided into ever more homogeneous nodes, where 
homogeneity is always based on the similarity of values of Y. This division of the data continues until a 
predetermined stopping point is reached, when further splits do not appreciably reduce the heterogeneity 
of the resulting nodes. At this point, the tree is complete and values of Y for new individuals can be 
obtained using the decision tree developed with this original training sample.  The data for the new 
subject are fed into the tree, following the branches from node to node based on the values of the 
predictor variables until the individual is placed in one of the final, or terminal nodes.  The predicted 
value for Y for each individual is then the mean for the training sample in this terminal node. 
  CART has a tendency to overfit the training data when developing the initial prediction tree (Berk, 
2008), meaning that the final model may be too closely associated with the training sample to generalize 
well to other samples from the same population.  In addition, trees produced by CART can sometimes 
contain terminal nodes with few individuals or terminal nodes that are very heterogeneous, which is 
characteristic of tree instability and an inability to generalize to the broader population (Hothorn, Hornik, 
& Zeileis, 2006).  One commonly used method for ameliorating overfitting is the practice of pruning 
trees.  This process, which is demonstrated in the results section below, involves the removal of terminal 
nodes that appear to provide little predictive power, and when included in the final model might lead to 
overfitting of the training sample.  Pruning is not an automated process, and requires the direct 
involvement of the researcher, typically through an examination of results for multiple pruned trees, as is 
discussed below. In order to ascertain how much pruning is necessary, the researcher typically refers to a 
plot of the number of nodes by total model deviance.  Total deviance for a tree corresponds to the sum of 
the sum of squared residuals within the terminal nodes (i.e., the sum of squared differences between the 
predicted and actual IQ scores in this example). The larger the deviance value, the greater the 
heterogeneity of scores within the terminal nodes, and the worse the CART solution.  As terminal nodes 
are removed from the tree, the deviance will increase because more heterogeneous individuals are 
grouped together in the new, larger terminal node. The decision regarding the number of terminal nodes 
to retain in the pruned tree is based upon balancing this increased heterogeneity with a desire to have a 
more parsimonious tree, and one that generalizes better to other samples. 
 

Neural Networks (NNET) 
  Another prediction method examined in this study is Neural Networks (NNET) (e.g., Marshall & 
English, 2000; see Garson, 1998 for a more technical description of the method). NNETs create a 
prediction model for Y by using a search algorithm that examines a large number of subsets of the 
predictors, as well as interactions among them.  Interactions and powers of the predictors (referred to as 
hidden layers) are computed in conjunction with weights that are akin to regression slopes.  Main effects 
and hidden layers to be included in the final model are selected by the algorithm so as to minimize the 
least squares criterion used in standard linear regression (i.e., minimizing the sum of squared differences 
between the observed and predicted values).  The hidden layers are generally much more complex than 
the two and three way interactions common in regression, involving several predictors and higher order 
versions of the predictors in a single interaction (Schumacher, Robner, & Vach, 1996).  In addition, they 
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are not specified a priori by the researcher, but instead are identified by the NNET algorithm based on 
their contribution to reducing the sum of squared residuals. In order to reduce the likelihood of finding 
locally optimal results that will not generalize beyond the training sample, random changes to the subset 
of predictors and interactions, not based on model fit, are also made.  This method of obtaining optimal 
model fit is known as back-propagation, where the difference between actual and predicted outputs is 
used to find optimal weights for main effects and hidden layers.  It is one of the most commonly used 
approaches in NNET applications (Garson, 1998).   
  A primary strength of NNET models is that they can identify complex interactions among the predictor 
variables in the hidden layer that other approaches may ignore (Marshall & English, 2000).  For example, 
whereas in regression it is common to express the interaction of two predictors as their product, or to 
square or cube a single variable if the relationship with the response is believed not to be linear, a NNET 
will create hidden layers as weighted products of perhaps several variables, thus allowing the model to be 
influenced by the predictors to varying degrees.  The result is that fairly obscure relationships between the 
outcome and predictors will be automatically identified without the researcher having to explicitly include 
them in the model.   
  Conversely, this ability to identify extremely specific models to fit the data presents a potential problem 
in that NNETs can substantially overfit the training data used to estimate the model (Schumacher et al., 
1996). In order to combat this problem, most NNET models apply what is called weight decay, which 
penalizes (i.e., reduces) the largest weights found in the original NNET analysis, in effect assuming that 
very large weights are at least partially driven by random variation unique to the training data. The 
researcher typically sets the value of the decay parameter, λ with larger values shrinking the weights for 
non-linear terms to a greater degree, and thus reducing their impact on the final model, hopefully 
ameliorating problems of overfitting.  Generally speaking, the value of λ for a given problem is selected 
by examining the ability of the model to correctly predict the outcome variable for a cross-validation 
sample (Hastie, Tibshirani, & Friedman, 2001). In other words, the decay parameter value associated with 
the most accurate prediction in the cross-validation sample is the one that is selected.  
  Another choice that the researcher must make when using NNETs is the number of hidden layers that 
will be allowed in the final model.  The larger the number of hidden layers that are permitted in the 
model, the more complex the model could become by incorporating higher order non-linear terms.  
Including more hidden layers has both positive and negative aspects.  On the one hand, such models are 
better able to identify complex relationships among the variables, but on the other, they may lead to 
overfitting of the training sample.  Thus, the researcher is advised to try multiple settings for the number 
of hidden layers and decide on the optimal setting for this parameter based on the accuracy of predictions 
for a cross-validation sample (Garson, 1998).   
  Researchers using NNETs also have control over the range of random starting values for the hidden 
layer weights that will be used in the model.  The algorithm selects initial weight values randomly within 
a predefined range.  The weights are then updated based upon the minimization of the least squares 
criterion.  When the weights are near 0, hidden layers are deemphasized and the model becomes 
essentially linear in form.  As these weights increase, the hidden layers play a greater role in determining 
predicted values for the outcome variable.  In the initial model setup, the randomly selected starting 
values are typically drawn from a fairly restricted range near 0; e.g. -0.5 to 0.5 in the case of R.  However, 
the researcher can change the range of these starting values and attempt to find the optimal setting based 
upon prediction accuracy for a cross-validation sample, if (s)he believes that hidden layers will play a 
more (or less) important role in the final model.  It is important to note that if starting values for the 
weights are too large, the final model performance may be compromised due to overfitting (Hastie et al., 
2001).  Examples of manipulation of each of these settings are provided in the results section. 
 

Generalized Additive Models (GAM) 

 GAMs are a class of very flexible models that allow for the linking of Y with one or more predictor 
variables, using a wide variety of smoothing functions common in statistics. Each function is fit using a 
smoothing technique such as a thin plate spline (default in R), cubic spline or a P spline, with the goal of 
minimizing the penalized sum of squares criterion (Simonoff, 1996). For an excellent discussion of 
smoothing and splines, the reader is encouraged to refer to Keele (2008), and the aforementioned 
Simonoff .  The penalized sum of squares (PSS) is based on the standard sum of squared residuals with a 
penalty applied for model complexity (i.e., the number of main effects and interactions included).  The 
GAM algorithm works in an iterative fashion, beginning with the setting of the model intercept to the 
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mean of Y.  Subsequently, the smoothing function of choice is applied to each of the independent 
variables in turn, selecting the smoothed predictor that minimizes the PSS.  This iterative process 
continues until the smoothing functions stabilize (i.e., the PSS cannot be appreciably reduced further), at 
which point final model parameter estimates are obtained.  The optimal model is typically selected so as 
to minimize the Generalized Cross Validation (GCV) score, which is based on an approximation of a 
jackknifed cross validation check of the training data. Essentially, the GCV score is a measure of 
prediction accuracy based on a sum of squares value when jackknifing (leave one out) is used.  However, 
it is constructed such that actual jackknifing, which can be quite laborious for large datasets, is not 
necessary.  Smaller values of GCV are associated with more accurate and generalizable models.  In 
addition to the GCV, selection of optimal GAMs is also aided by the popular Akaike Information 
Criterion (AIC), for which smaller values indicate better model fit. 
  As was the case for CART and NNET, overfitting of the data can also be a problem with GAMs.  In 
order to avoid overfitting, the researcher using GAM can change the smoothing parameter, γ, which 
appears in the equation for the GCV score. By default γ is set to 1, where larger values correspond to 
identifying a smoother model as optimal for the data.  Kim and Gu (2004) found that γ of approximately 
1.4 was effective at correcting the overfitting problem while not compromising model fit.  The researcher 
also has control over the actual smoothing spline to be used in developing the GAM, a selection of which 
was mentioned above.  Indeed, different smoothing splines could be used with different predictor 
variables, or combinations of these variables.  Finally, the researcher has the option of selecting what is 
essentially the complexity of the smoothing function through the dimension of the function used by the 
smoothing algorithm. Larger values of this parameter, k, allow for more degrees of freedom in the 
smoother, which corresponds to a potentially more complex smoothing function.  Typically, this value is 
not set extremely high in order to avoid the possibility of overfitting.  It should also be noted that in 
practice, the value of k frequently has a minor impact on the final performance of the model in terms of 
prediction accuracy (Wood, 2006).  
 

Current Study 
  As mentioned above, of particular interest in the current study is the investigation of how manipulating 
tuning parameters impacts each of the alternative methods (i.e., CART, NNET, and GAM).  In much prior 
work, these methods have been studied using either default or generally recommended settings for these 
parameters.  However, in actual practice analysis results can change with different values for these tuning 
parameters.  Given that the general recommendation for these methods is to, in fact, try several values for 
these settings in order to find the optimal model (Hastie et al., 2001), the current study seeks to add to the 
literature regarding the most effective use of each approach by demonstrating how these settings can be 
manipulated in a common software package (R).  It should be noted, however, that this work is not 
intended to represent a complete training in the use of these alternative prediction methods.  Indeed, for 
each of them complete books are available to walk the researcher through planning, conducting and 
interpreting analyses.  Rather, this study is intended to introduce interested readers to the basic sequence 
of using these methods for prediction, and to encourage further investigation of those methods that appear 
to be most appropriate for a given research scenario.  There are many fine texts available for each 
approach, several of which are included in the references to this manuscript, and we encourage the 
interested reader to peruse these for a more complete discussion of the fine details of conducting each 
analysis.  We are hopeful, however, that this paper will serve as a strong starting point from which a 
researcher interested in using one or more of these methods can begin their analysis with some 
confidence. 

Methodology 
Participants and Procedures 
  Participants for this study included 200 (n = 103 females; n = 97 males) preschool children. The sample 
was obtained from preschool facilities near a mid-sized city in the Midwest Demographic information for 
the total sample appears in Table 1. Only children who did not receive special education or related 
services, and whose parental consent was obtained, were included as participants.  Once a signed parental 
permission form was obtained, the children were administered the Stanford-Binet Intelligence Scales – 
Fifth Edition (SB5; Roid, 2003) under standardized conditions by trained examiners.  In addition, selected 
demographic data were also collected for all study participants. 
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Instrumentation 
  The SB5 (Roid, 2003) is 
an individually administered 
assessment of IQ ap-
propriate for people between 
the ages of 2 and 85 years.  
It is theoretically grounded 
in the Cattell-Horn-Cattell 
(CHC) theory and intends to 
represent 5 CHC factors, 
including Fluid Intelligence 
(Gf), Crystallized Know-
ledge (Gc), Quantitative 
Knowledge (Gq), Visual 
Processing (Gv), and Short-
Term Memory (Gsm). The 
entire SB5 (5 verbal and 5 
nonverbal subtests) was 
administered to the par-
ticipants, and generated a 
Full Scale IQ (FSIQ). In 
relation to this study, the 
SB5 FSIQ score was used to 
indicate the children’s 
comprehensive cognitive 
abilities.  The SB5 was 
selected for use in this study 
because it is strongly 
grounded in CHC theory, has been normed for children as young as those used in this study, and has been 
shown to be a valid and reliable tool for such assessments. 
 

Prediction Models 
 The outcome variable of interest was the FSIQ from the SB5, while the predictors included years of 
education each for mother and father, and the child’s age. These predictors were selected because they are 
typically available for any subject for who predicted IQ is required, and will not be impacted by a CNS 
injury. They have also been used in prior IQ prediction studies (Sellers et al., 1996).  The models used to 
predict FSIQ with these demographic variables included MLR as well as CART, NNET, and GAM. All 
analyses were carried out using the R software package (R Development Core Team, 2007).  These 
prediction methods were selected because they have been demonstrated in prior research to be effective 
tools in predicting continuous outcome variables (Chang et al., 2011; Finch &Holden, 2010).   
  In order to assess the predictive accuracy of the models, the original sample of 200 subjects was 
randomly divided into training (N=150) and cross-validation samples (N=50).  For each method, the 
training sample was used to estimate a predictive model, which was in turn applied to the cross-validation 
sample to obtain predicted values for FSIQ.  Prediction accuracy for the cross-validated sample was 
assessed through the bias of the predicted IQ: Bias = θActual – θPredicted and the Root Mean Square Error 
(RMSE) of the predictions for the cross-validation sample:  

RMSE = 
( )

n

2
PredictedActual∑ −θθ

. 

 
Bias serves as a measure of the estimation accuracy, while RMSE reflects both accuracy and precision of 
the predicted values.  In general, results with lower bias and lower RMSE can be viewed as better fitting. 

 

 Table 1. Descriptive Statistics for Total, Training and Cross-Validation Samples 
 

Variable 
 

Total Sample 
 

Training 
Cross-

Validation 
Gender    
Male   97 (48.5%) 73 (48.7%) 24 (48%) 
Female 103 (51.5%) 77 (51.3%) 26 (52%) 
Ethnicity    
Caucasian 124 (62%) 93 (62%) 31 (62%) 
African-American   49 (24.5%) 38 (25.3%) 11 (22%) 
Hispanic/Latino     2 (1%)   2 (1.3%)   0 (0%) 
Bi-racial   20 (10%) 15 (10%)   5 (10%) 
Other     3 (1.5%)   0 (0%)   3 (6%) 
No report     2 (1%)   2 (1.3%)   0 (0%) 
Father’s education    
Less than High school   30 (15%) 24 (16%)   6 (12%) 
High school/GED   78 (39%) 56 (37.3%) 22 (44%) 
1-3 years of college   44 (22%) 35 (23.3%)   9 (18%) 
4+ years of college   29 (14.5%) 21 (14%)   8 (16%) 
No report   19 (9.5%) 14 (9.4%)   5 (10%) 
Mother’s education    
Less than High school   16 (8%) 13 (8.7%)   3 (6%) 
High school/GED   48 (24%) 35 (23.3%) 13 (26%) 
1-3 years of college   89 (49.5%) 65 (43.3%) 24 (48%) 
4+ years of college   39 (19.5%) 31 (20.7%)   8 (16%) 
No report     8 (4%)   6 (4%)   2 (4%) 
Age (months) Mean   58.86 (5.38) 59.73 (5.50) 60.28 (5.04) 
FSIQ               (SD)   98.10 (11.81) 98.29 (11.17) 97.54 (13.67)
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Results 

 Following is a description of FSIQ prediction results for the cross-validation sample using CART, 
NNET, and GAM, along with ordinary least 
squares (OLS) regression, which will serve as the 
baseline for comparison with the alternative 
methods.  The R commands necessary to run these 
analyses appear in italics in the text. Table 2 
contains the bias and RMSE results for each 
model. 
 
CART 
 CART found a tree with 13 terminal nodes, and 
underestimated FSIQ in the model was 15.29.  In 
terms of conducting analysis in R, the library 
command loads the tree library (which we would 
have previously installed in our version of R), and 
the iq.cart<-tree(IQ~age+fathered+mothered) 
command creates the prediction tree and saves it in 
the R object iq.cart.  The descriptive output, 
produced by the summary command, appears 
below. This output shows us the deviance value 
for the tree (Residual mean deviance), where 
larger values indicate a greater difference in 
observed and predicted FSIQ for the training 
sample.  
 

   library(tree) 
  iq.cart<-tree(IQ~age+fathered+mothered) 
  summary(iq.cart) 
 
  Regression tree: 
  tree(formula = IQ ~ age + fathered + mothered) 
  Number of terminal nodes:  13  
  Residual mean deviance:  83.15 = 11390 / 137  
  Distribution of residuals: 
 
  Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
  -34.330  -6.375   1.255   0.000   6.176  20.860 
 

  In order to determine how much pruning should 
be done, we used the following set of commands 
to create the graph in Figure 1, showing the 
relationship between the deviance and the number 
of terminal nodes.   
 

  iq.cart.prune<-prune.tree(fsiqtrain.cart) 
  plot(iq.cart.prune) 
 
 

Moving right to left on the x-axis, we can see that 
the first big increase in deviance occurs between 
10 and 9 terminal nodes. Thus, we may elect to fit 
a tree with only 10 terminal nodes rather than the 
original 13, using the following commands in R.  
Note that the subcommand best=10 requests that 
the 10 terminal node tree with the smallest 
deviance be selected.  The deviance for this tree 

Table 2. RMSE and Bias Values for Cross-Validation  
Sample: OLS, CART, GAM and NNET Models 
Model RMSE Bias 
OLS 
 

15.0567 -6.13 

CART, 13 nodes 
 

15.2883 -6.24 

CART, 10 nodes 
 

15.46269 -6.43 

CART, 8 nodes 
 

15.19276 -6.51 

NNET, 2 hidden layers 
 

15.05665 -6.13 

NNET, 5 hidden layers 
 

15.05665 -6.13 

NNET, 10 hidden layers 
 

16.16655 -6.11 

NNET, 20 hidden layers 
 

14.71749 -5.2 

NNET, 2 hidden layers,  
decay=0.5 

16.43546 -6.08 

NNET, 5 hidden layers,  
decay=0.5 

15.48161 -6.35 

NNET, 10 hidden layers, 
decay=0.5 

15.08878 -5.18 

NNET, 20 hidden layers, 
decay=0.5 

15.31007 -7.06 

NNET, 2 hidden layers, 
decay=0.75 

16.16945 -6.34 

NNET, 5 hidden layers, 
decay=0.75 

15.27232 -4.96 

NNET, 10 hidden layers, 
decay=0.75 

15.67306 -5.88 

NNET, 20 hidden layers, 
decay=0.75 

15.67511 -6.67 

NNET, 2 hidden layers,  
range=-1 to 1 

15.05665 -6.13 

NNET, 5 hidden layers, 
 range=-1 to 1 

15.05665 -6.13 

NNET, 10 hidden layers,  
range=-1 to 1 

15.27986 -6.59 

NNET, 20 hidden layers,  
range=-1 to 1 

15.05665 -6.13 

GAM, thin plate 
 

15.06799 -5.49 

GAM, cubic  
 

15.87559 -5.95 

GAM, thin plate, g=1.4 
 

15.06799 -5.49 

GAM, cubic, g=1.4 15.56384 -6.53 
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was 85.08, which is not much larger than the 83.15 for the original 13 node tree, suggesting that losing 
the three weakest terminal nodes did not substantially damage model fit for the training sample.  In 
addition, the mean bias and RMSE values in Table 2 for the 10 node tree were very similar to those for 
the full tree. 
 

  iq.cart.prune10<-prune.tree(iq.cart,best=10) 
  summary(iq.cart.prune10) 
 
  Regression tree: 
  snip.tree(tree = iq.cart, nodes = c(4, 22, 15)) 
  Number of terminal nodes:  10  
  Residual mean deviance:  85.08 = 11910/140  
  Distribution of residuals: 
 
  Min. 1st Qu.  Median    Mean 3rd Qu.   Max.  
 -34.330  -6.000   1.160   0.000   5.784  24.150 
 
Likewise, we produced a tree with 8 terminal 
nodes, which also had very similar bias and 
RMSE values to the other two trees.  
 

  iq.cart.prune8<-prune.tree(iq.cart,best=8) 
  summary(iq.cart.prune8) 
 
  Regression tree: 
  snip.tree(tree = iq.cart, nodes = c(4, 15, 11)) 
  Number of terminal nodes:  8  
  Residual mean deviance:  88.59 = 12580/142  
  Distribution of residuals: 
  Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
-34.330  -6.281   1.465   0.000   5.899  20.380 
 
Taken together, these results would suggest that for the purposes of predicting FSIQ for the cross-
validation sample, the 8 terminal node tree was just as effective as the full 13 node tree. Furthermore, all 
of the tree models produced generally comparable results to those for the other alternative models 
included in this study. 
 
 

NNET 
 Of the three alternative modeling techniques examined 
here, NNET has the largest number of potential settings that 
a researcher can change.  In this study, we estimated a large 
number of NNET models, results of which are presented in 
Table 2 with regard to prediction accuracy for the cross-
validation sample.  In addition, compared to the other two 
approaches featured here, the output from a NNET analysis 
is not particularly informative regarding either model fit or 
the actual nature of the model itself.  Indeed, the most 
useful information regarding the fit of a NNET model 
comes from its ability to accurately predict the outcome 
variable for the cross-validation sample. As an initial 
example, the following are the commands for running a 
basic NNET with 2 hidden layers, and default weight decay 
of 0 and range of random weight starting values from -0.5 
to 0.5. 
 

  
Figure 1.Total tree deviance by number of terminal nodes 

library(nnet) 
iq.nnet2<-
nnet(IQ~age+fathered+mothered,size=2,
linout=T,skip=T) 
 
# weights:  14 
initial  value 3088737.481193  
iter  10 value 28190.551478 
iter  20 value 21395.190892 
iter  30 value 21354.815727 
iter  40 value 21298.496237 
iter  50 value 21296.878978 
iter  50 value 21296.878961 
iter  50 value 21296.878961 
final  value 21296.878961  
converged 
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The library to be used in this case is nnet, which was previously installed in our version of R.  The 
linout=T command is necessary when the outcome variable is continuous, as is the case for FSIQ.  The 
default setting for NNET in R is a categorical outcome, leading to a model corresponding to logistic 
regression. The skip=T subcommand allows for the inclusion of main effects as well as hidden layers in 
the final model.  If this command is set to F, there 
will be no weights directly linking each of the main 
effects to the outcome variable. We can view the 
weights by typing the command to the right. 
In this table, b is the intercept, i1, i2, and i3 are the 
three independent variables, h1 and h2 are the 
hidden layers, and o is the outcome variable.  Thus, 
we can see that the weight for variable i1, age, to the 
first hidden layer is -0.52, while the weight of 
father’s education (i2) to this hidden layer is 0.55, 
and so on. Finally, looking at the last line, we can 
see that the variable with the largest direct weight to the outcome variable is mother’s education (i3), with 
a value of 1.69.  At the same time, neither age nor father’s education had a strong direct relationship with 
FSIQ. In addition, hidden layer 1 (h1), which was dominated primarily by an interaction of age and 
father’s education, had a somewhat stronger impact on FSIQ than did hidden layer 2. It should be noted 
that from this output, we do not have an indication of which of these weights could be statistically 
significant in the classic hypothesis testing sense, nor do we know how well this particular model fits the 
training data. We can, however, examine its fit to the cross-validation data in Table 2, and see that it 
performs similarly to the CART models described earlier. Finally, we can set the number of hidden layers 
with the size subcommand, as below for a NNET with 10 hidden layers. 

iq.nnet10<-nnet(IQ~age+fathered+mothered,size=10,linout=T,skip=T) 
 

  In order to change the value of the weight decay (λ) parameter to 0.5, we would use the following 
command in R. Remember that larger values of λ tend to shrink the size of the weights for the hidden 
layers.  To select the optimal λ value various values would be tried and their relative impact determined 
through an examination of the accuracy of results for the cross-validation sample (see Table 2). 
 

iq.nnet2.decay<-nnet(IQ~age+fathered+mothered,size=2,decay=.5,linout=T,skip=T) 
 

 In addition to manipulating the number of hidden nodes and the weight decay parameter, the researcher 
also has the option of changing the range of random starting values for the weights.  By default, R draws 
these weights randomly from between -0.5 and 0.5.  However, as discussed above, the range of starting 
values can be changed in order to reflect a priori beliefs regarding the importance of the hidden layers.  A 
larger range of starting values for the weights allows for the possibility that the hidden layers are more 
important than if the range of starting values is tightly clustered near 0.  As an example, the following R 
commands include 2 hidden layers, a λvalue of 0 and the range of starting values between -1 and 1. 
 

        iq.nnet2.range1<-nnet(IQ~age+fathered+mothered,size=2,linout=T,skip=T,rang=1) 
 

            # weights:  14 
            initial  value 2588587.290328  
            iter  10 value 15631.624853 
            final  value 15597.617140  
            converged 
 

      summary(iq.nnet2.range1) 
 

            a 3-2-1 network with 14 weights 
            options were - skip-layer connections  linear output units  
              b->h1  i1->h1  i2->h1  i3->h1  
              -0.36    0.40    0.68    0.81  
              b->h2  i1->h2  i2->h2  i3->h2  
              -2.38 -142.77   -6.38  -11.60  
               b->o   h1->o   h2->o   i1->o   i2->o   i3->o  
              47.02   46.02  -86.92   -0.01    0.12    1.69 

summary(iq.nnet2) 
a 3-2-1 network with 14 weights 
options were - skip-layer connections  linear output units 
 b->h1 i1->h1 i2->h1 i3->h1  
  0.55  -0.52   0.55  -0.26  
 b->h2 i1->h2 i2->h2 i3->h2  
 -0.69  -0.57  -0.61  -0.29  
 b->o h1->o h2->o i1->o i2->o i3->o  
93.04  0.37 -0.21 -0.01  0.12  1.69 
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We can see that the weights for the hidden layers in this model are generally larger those of the 2 hidden 
node with starting value range from -0.5 to 0.5 above.  Bias and RMSE results for a number of NNET 
models with the cross-validation data appear in Table 2.  It appears that the NNET model with 20 hidden 
layers provided the best fit to the cross-validation sample, across all of the models examined in this study. 
 
GAM 
 In order to build a GAM with the thin plate smoothing spline (the default in R), we would use the 
following command sequence.  GAM is included in the mgcv library of R functions that we would have 
previously installed in our version of R.  The actual gam command used here sets the dimensions of the 
basis function, k, equal to 6 for both mother’s and father’s education.  The reason for this is that the 
number of observed values for these variables was only 6, and there cannot be more dimensions to the 
basis function than there are values of the variable.  The default value in R is 10.  We will note the GCV 
score of 111.6503 and compare it with the GCV scores for alternative GAMs below. 
 
      library(mgcv) 
      iq.gam.tp<-gam(IQ~s(age, bs="tp")+s(fathered, k=6, bs="tp") 
      +s(mothered, k=6, bs="tp"),family=gaussian) 
      iq.gam.tp 
 
            Family: gaussian  
            Link function: identity  
 
            Formula: 
            IQ ~ s(age, bs = "tp") + s(fathered, k = 6, bs = "tp")  
            + s(mothered,     k = 6, bs = "tp") 
 
            Estimated degrees of freedom: 
            1 1 1  total = 6  
 
            GCV score: 111.6503 
  
 In order to use an alternative smoother, such as the cubic spline, we would change the previous 
commands as follows, replacing tp with cs.   
 
       iq.gam.cs<-gam(IQ~s(age, bs="cs")+s(fathered, k=6, bs="cs")+s(mothered,  
      k=6, bs="cs"),family=gaussian) 
      iq.gam.cs 
 
            Family: gaussian  
            Link function: identity  
 
            Formula: 
            IQ ~ s(age, bs = "cs") + s(fathered, k = 6, bs = "cs") + s(mothered,  
                k = 6, bs = "cs") 
 
            Estimated degrees of freedom: 
            4.4562e+00 3.0283e+00 6.7655e-10  total = 10.48453  
 
            GCV score: 105.3774 
 
Note that the GCV score for the cubic spline GAM is somewhat lower than that of the thin plate spline 
model, indicating that it provides a better fit to the data. 
 We can change the degree of smoothing itself by setting γ=1.4, for example here with the cubic spline 
smoother.  In this instance, the GCV actually increased from the cubic spline model with the default γ=1, 
suggesting that this latter model does not provide as good a fit to the data. 
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        iq.gam.cs.gamma14<-gam(IQ~s(age, bs="cs")+s(fathered, k=6, bs="cs") 
             +s(mothered, k=6, bs="cs"),family=gaussian,gamma=1.4) 
       iq.gam.cs.gamma14 
 
              Family: gaussian  
              Link function: identity  
 
              Formula: 
              IQ ~ s(age, bs = "cs") + s(fathered, k = 6, bs = "cs")  
                 + s(mothered,     k = 6, bs = "cs")  
 
              Estimated degrees of freedom: 
              4.8614e-03 6.6852e-03 7.6595e-06  total = 3.011554  
 
              GCV score: 107.4748 
 
 In addition to the GCV, it is also possible to compare the fit of GAMs 
using the AIC, which can be obtained with the R commands to the right. 
Remember that using this criterion, the optimal model is the one with the 
smallest AIC value, which in this case is the cubic spline model with γ =1, 
which was also the best fitting model based on the GCV score. 
 We estimated models for GAMs with cubic and thin plate splines and for 
both γ=1 and γ=1.4.  Results for these in terms of prediction of the cross-
validation sample appear in Table 2.  The GAMs with a thin plate spline and γ=1 or γ=1.4 provided the 
lowest bias and RMSE values of the GAMs, despite the fact that based on the GCV and AIC values, the 
cubic splines appeared to be slightly better.  In addition, the GAMs had slightly better RMSE and bias 
values than both OLS and the CART models, and performed comparably to the NNETs, though as noted 
above the NNET model with 20 hidden layers provided the best fit for the cross-validation sample.  While 
not at all dramatic, the small discrepancy in terms of which model appears to be best fitting for the 
training and cross-validation samples does suggest the need for extra care with regard to the problem of 
overfitting when using these complex modeling techniques.  In short, it appears that the cubic spline 
models may have overfit the training data somewhat, when compared with the thin plate splines. 
 

Discussion 
 Prediction is an important aspect of statistical practice in psychology and the other social sciences, 
which had traditionally been done using standard MLR.  For example, prior studies in the area of 
premorbid IQ prediction have generally been based on MLR models with adolescent and older 
populations.  However, it has been argued that the regression based approach may not always be optimal 
(Veiel & Koopman, 2001), nor has it been shown that such predictions can be accurately made for 
preschool age children. Problems with relying too completely on strictly linear model forms are not 
limited to the prediction of premorbid IQ.  In recent years, a number of alternative prediction modeling 
methods have become more widely available in popular software packages such as R. While offering the 
promise of greater prediction accuracy, however, these more complex models also present the researcher 
with a sometimes bewildering array of tuning parameters that must be set in order for them to perform 
optimally.  Thus, a primary goal of this study was to demonstrate how one might use these modern 
methods of prediction in practice with a real prediction problem. The methods featured here were selected 
because they have been shown to be effective in both simulation and applied research, as noted above.   
 To briefly summarize the results of this study, it appears that in terms of the outcome variables included 
here, bias and RMSE all of the methods provided generally comparable predictions of FSIQ, with the 
NNET model with 20 hidden nodes being somewhat more accurate than the others.  This approach 
demonstrated both the least bias and the lowest RMSE value. MLR, CART and GAM performed very 
similarly to one another. Given that prior Monte Carlo simulation work has shown that linear models such 
as MLR perform poorly for prediction when there are a number of interactions among predictor variables 
in the population (Garson, 1998), we may be able to infer from the relative success of MLR in this case 
that the relationships among these predictors and FSIQ are largely linear. 

AIC(iq.gam.tp) 
[1] 1129.699 
AIC(iq.gam.cs) 
[1] 1125.545 
AIC(iq.gam.cs.gamma14) 
[1] 1126.74 
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 In conclusion, we hope that this manuscript contributes to research practice by demonstrating three 
proven and effective methods of prediction that are available in situations where it is known or believed 
that the relationships between predictor and outcome variables is not linear in nature.  Furthermore, we 
have attempted to demonstrate how one can optimize these models through the judicious use of tuning 
parameters and/or pruning, in the case of CART. In the final analysis, the selection of optimal models and 
settings should be based on their accuracy with respect to a cross-validation sample.  In all three cases, 
there is a distinct risk of overfitting the training data, which results in models that are not generalizable to 
the broader population.  Therefore, simply assessing model fit for the training sample will likely leave the 
researcher with a less than optimal model for practice.  However, systematically altering the tuning 
parameters and examining their impact on prediction for the cross-validation sample can result in 
selection of a model that provides the most accurate predictions possible for samples from across the 
population.  
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