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The present research contrasts the effectiveness of four predictor variable weighting algorithms with 
respect to cross-validated accuracies in classification problems. Ordinary Least Squares Regression 
(OLS), Ridge Regression (RR), Principle Components (PC), and Logistic Regression (LR), are the 
techniques that were contrasted on 24 real data sets in terms of optimizing cross-validated classification 
accuracies. LR was best in only 1 data set, PC was best overall in 16%, RR was best in 8%, and OLS was 
best in 8% of the data sets. 

his investigation contrasts four weighting algorithms for classifying subjects into a priori groups 
based upon classification accuracy. Ordinary Least Squares Regression (OLS), also the same as 
classification using a linear predictive discriminant analysis or in the case of two groups, Fisher’s 

(LDF); Ridge Regression (RR); Principle Components (PC); and Logistic Regression (LR), are the 
techniques that were compared with respect to their cross-validated classification accuracies in real data. 
  In a regression context, Darlington (1978) posited that cross validation accuracy is a function of R2, N, 
VC, where R2 represents the squared multiple correlation, N is the sample size, and VC is defined as the 
validity concentration. In Darlington’s formulation, validity concentration was used to describe a data 
condition in which the principal components of the predictors with large eigenvalues also have large 
correlations with the criterion. Thus, validity concentration requires some degree of collinearity. 
Darlington suggested that the most useful statistical techniques for practical prediction problems, as in 
personnel selection, may be ridge regression and Stein-type regression. These combine the sensitivity of 
multiple regression with the resistance to sampling error of other techniques—notably rational (clinical) 
weights and weights determined by simple correlations. Darlington stated that the new techniques are not 
recommended for theoretical modeling work because they yield biased estimates of the true least squares 
weights, typically have higher expected squared errors for estimating some weights, and do not allow the 
use of ordinary confidence bands or significance tests. Nevertheless, he recommended the use of ridge 
regression as best for most classification problems. 
  Morris (1982) re-examined the performance of ridge regression from a different methodological 
perspective using the same data structures on which Darlington (1978) demonstrated the technique's 
superiority. Contrary to Darlington's suggestions, Morris (1982) found that ridge regression was never the 
most accurate prediction technique, although least squares weights, as well as all of the other non-least-
squares techniques, were most accurate in some data configurations.  
  Further, Morris (1983) examined Darlington's (1978) suggestion to utilize a “shrunken inter-correlation 
matrix” as the input to an ordinary stepwise regression program to accomplish a stepwise ridge regression 
solution. The algorithm that Darlington suggested calculates the portions of predictable criterion variance 
attributable to ridge weighted variable subsets incorrectly, causing inappropriate predictor variable 
subsets to be selected. An alternate stepwise ridge regression procedure is suggested by Morris (1983).  
  Through simulation, Morris (1982) showed that as R2 decreases, N decreases, and the VC increases, 
Ridge Regression becomes better than Ordinary Least Squares but, as well, Reduced Rank, Equal 
Weighting, and other techniques become better than Ridge. In several studies, Morris (1982) and Morris 
and Huberty (1987) found that the performance of Ridge Regression was inferior to that of Ordinary 
Least Squares, Principal Components, Reduced Rank, and Equal Weighting in all but a few data 
structures. 
 In fact, there is some evidence that cross-validated R2 becomes better with increased VC, even better 
than the R2 of OLS at low VC. Because Validity Concentration requires collinearity, the interest might be 
in examining whether collinearity can, under some circumstances, be helpful to prediction. The present 
research seeks to contrast Logistic Regression, as a popular classification technique frequently proffered 
in the literature, with the prior three methods examined in Morris and Huberty (1987). 
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Method 
  A similar comparison (Morris & Huberty, 1987) examined only the OLS, RR, and PC methods. Logistic 
Regression will expand that coverage. Twenty four real data sets with varying degrees of group 
separation were analyzed using these four methods to ascertain differences in classification accuracies. 
All predictor weighting algorithms were cross validated using the Leave-One-Out technique. This 
algorithm is executed by alternately predicting each subject’s group membership from the equation 
generated from the predictor and criterion scores of all other subjects. The resulting hit-rate over all 
subjects serves as a criterion for cross-validation accuracy.  
 

Results 
  The present research seeks to expand upon prior work investigating the effects of three weighting 
algorithms on classification accuracies: OLS, Ridge, and PC. In those simulation studies, all methods 
performed better with increasing sample size, larger population multiple correlations, and large degrees of 
group separation. OLS performed better with smaller levels of validity concentration. As VC increased, 
the performance of Ridge Regression was superior, and, at very high levels of VC, Principal Components 
Regression was superior. It is salient to note that in larger samples, this trend was delayed (Morris & 
Huberty, 1987). Overall, non-OLS methods performed best, or with increased accuracy, in small samples. 
It should also be noted, however, that even at high levels of VC, and with significant differences in 
classification accuracies, the differences were often small (Morris & Huberty).  
  The finding with real data mirrored the simulation results, but with the focus on contrasting results for 
specific data sets; not a general contrast of methods. Table 1 reflects the results of the contrast in cross-
validated hit rates for 24 real data sets with varying degrees of group separation, numbers of subjects, 
variables, and data co-variance matrices. As can be seen, LR, the additional method being contrasted, is 
not present in the first 3 data sets. Overall, LR is best in only 1 data set (i.e., # 15 Block 3 & 4). It is tied 
with other methods in 6 (29%) of the data sets. It is second best in 7 (29%) of the data sets, third in 2 
(13%) of the data sets, and worst in 5 (21%) of the data sets. In two of these data sets (i.e., #6 Bisbey 1 & 
2 and # 10 Rulon 1 & 3), LR performed the worst of all four of the methods. All methods performed 
equally well at a 79% hit rate in the #9 Demographics #2 data set. PC was best overall in 4 (16%) of the 
data sets and tied for best in 3 (13%) of the data sets. RR was best overall in 2 data sets (8%) and tied for 
best in 8 (33%) of the data sets. Finally, OLS was best overall in 2 (8%) and tied for best in 8 (33%) of 
the data sets.  
 

Discussion 
 To summarize, the present research contrasted four predictor weighting algorithms: Ordinary Least 
Squares Regression, Ridge Regression, Principle Components, and Logistic Regression. The purpose of 
the study was to enhance researchers’ methodological toolbox with the most accurate methods for 
selecting predictor variable weights in a cross-validated context. Subsequently, the weights chosen should 
yield greater classification accuracy for specific real data sets under investigation.  
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Table 1. Prediction Methods' PRESS Performance: Proportion of Hits 
# Data Set Source    Method 
    D k N/p OLS Ridge PC LR 
1 Fisher 1 & 3 13.97 0.001 100/4 1.00 1.00 1.00  
2 Fisher 1 & 2 10.16 0.002 100/4 1.00 1.00 1.00  
3 Bisbey 1 & 3 5.12 0.033 72/13 0.97 0.97 0.92  
4 Fisher 2 & 3 3.77 0.012 100/4 0.97 0.97 0.81 0.97 
5 Rulon 1 & 3 2,93 0.010 152/3 0.93 0.93 0.91 0.91 
6 Bisbey 1 & 2 2.89 0.071 116/13 0.89 0.89 0.87 0.88 
7 Bisbey 2 & 3 2.41 0.099 118/13 0.89 0.87 0.87 0.89 
8 Talent 3 & 5 1.97 0.164 127/14 0.79 0.79 0.79 0.80 
9 Demographics #2  1.88 0.034 279/8 0.79 0.79 0.79 0.79 

10 Rulon 2 & 3 1.87 0.023 159/3 0.83 0.84 0.84 0.82 
11 Rulon 1 & 2 1.74 0.022 179/3 0.81 0.81 0.80 0.80 
12 Talent 1 & 5 1.72 0.116 177/14 0.75 0.75 0.72 0.73 
13 Demographics #3 1.36 0.064 279/8 0.73 0.72 0.66 0.74 
14 Talent 1 & 3 0.89 0.839 116/14 0.62 0.70 0.70 0.62 
15 Block 3 & 4 0.85 0.307 76/4 0.67 0.67 0.58 0.69 
16 Block 1 & 2 0.84 0.308 77/4 0.66 0.67 0.69 0.66 
17 Block 1 & 4 0.81 0.325 78/4 0.58 0.59 0.55 0.58 
18 Block 1 & 3 0.74 0.387 78/4 0.62 0.60 0.58 0.60 
19 Warncke 1 & 3 0.69 0.950 105/10 0.61 0.58 0.59 0.61 
20 Block 2 & 3 0.64 0.550 75/4 0.55 0.55 0.59 0.55 
21 Block 2 & 4 0.52 0.814 75/4 0.59 0.59 0.64 0.59 
22 Demographics #1 0.50 0.477 279/8 0.59 0.58 0.57 0.58 
23 Warncke 1 & 2 0.48 1.749 112/10 0.47 0.54 0.58 0.48 
24 Warncke 2 & 3 0.45 2.635 87/10 0.41 0.46 0.43 0.42 

 
 


