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This paper aims to introduce to applied researchers a new family of information model selection criteria 

in multiple linear regression models. These criteria are known as information complexity (ICOMP) 

criteria. The paper provides supportive evidence under the R language to show the effectiveness of 

ICOMP and its tendency to outperform some other traditional criteria: AIC, SBC, etc. This paper also 

creates a framework on which to base future work in applying ICOMP to more general regression 

modeling problems in R. 

he selection of an appropriate model from a potentially large class of candidate models is an issue 

that is central to regression, time series modeling, and generalized linear models (McQuarrie & 

Tsai, 1998). In multiple linear regression, statistical model evaluation and selection involves 

evaluating a pool of subsets of predictors and selecting the best subset that predicts the response with 

sufficient accuracy from predictor variables that can be measured cheaply (Miller, 2002). Given a large 

number of predictor variables, the hope is to identify a small subset of them that gives adequate prediction 

accuracy for a reasonable cost of measurement. On the other hand, it is well known that, for multiple 

linear regression models fitted using least squares, the variance of the predicted response values increases 

monotonically with the number of predictor variables used in the prediction equation, and this increased 

prediction variability is traded off against reduced prediction bias. The question of how this trade-off 

should be handled is a critical problem in this field of subset selection in multiple linear regression 

modeling. 

  The problem of selecting the best regression subset is not trivial particularly when there are a large 

number of potential predictors. This is so because, usually without a precise knowledge of the relationship 

between the response and the predictors, researchers have to find a way of developing, validating, 

evaluating and selecting regression models and the increase in the number of predictors complicates the 

process. In addition to theoretical considerations, researchers also rely on data-adaptive approaches to 

regression model selection. Hypothesis-test-based stepwise regression is one of many data-adaptive 

model selection techniques that are commonly used today, which adds and/or removes predictors based 

on partial F or t statistics with arbitrarily set probabilities of entry and removal after controlling the 

contributions of other predictors, if any, already in the model. However, hypothesis-test-based stepwise 

regression has known problems. First, there is no guarantee that the final model from stepwise regression 

is optimal in any specified sense (Tamhane & Dunlop, 1999). Stepwise procedures can sometimes err by 

identifying a suboptimal regression model as “best” (Kutner, Nachtsheim, & Neter, 2004). Second, the 

probabilities for entry and removal of predictors are arbitrarily set, so plenty of subjectivity exists in the 

model search process. 

  As an alternative to model selection via hypothesis testing, information model selection criteria are 

recommended for comparing and evaluating competing regression and other statistical models (Burnham 

& Anderson, 2002). As is compared with the usual methods of hypothesis testing, the use of information 

criteria in model selection has had a much shorter exposure in statistics. Information criteria belong to the 

group of relative fit criteria which select the best model from a pool of models that we have specified. 

Relying on information criteria, we can identify the model that appears to be the best among its 

competitors (Skrondal & Rabe-Hesketh, 2004), and the model is the best in the sense of optimizing 

information criteria. So, a critical task for users of information criteria is to set up more appropriate 

competing models by making use of knowledge regarding the object (Konishi & Kitagawa, 2010). 

Information criteria can be used with many data-adaptive automatic model selection algorithms including 

stepwise regression, all-possible-subset regression, and genetic algorithms (Bozdogan, 2004). 

There are two approaches to information model selection criteria: 1) Information- theoretic approach, and 

2) Bayesian approach (Ando, 2010; Konishi & Kitagawa, 2010). The former approach includes Akaike's 

Information Criterion or AIC (Akaike, 1973; 1987), Consistent Akaike's Information Criteria or CAIC 

(Bozdogan, 1987), etc. The latter approach includes Schwartz Bayesian Criterion or SBC (Schwartz, 

1978), etc. The AIC-type criteria and their variants are constructed as estimators of the Kullback-Leibler 
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(K-L) information (Kullback & Leibler, 1951) between a statistic’s model and the true distribution 

generating the data. In contrast, the Bayes approach for selecting a model is to choose the model with the 

largest posterior probability among a set of competing models. Information criteria usually assess how 

badly a model fits the data while adjusting for the level of complexity of a model (i.e., the number of free 

parameters, interdependency of parameter estimates, etc.) (Bozdogan, 2004), so the best approximating 

model is selected as the one that minimizes the criterion. Due to the availability of multiple criteria, 

matching appropriate selection criteria to a given problem or data set has received much attention in the 

literature (McQuarrie & Tsai, 1998). 

  Many information criteria appear similar in form to AIC because they all take the form of 1) a 

penalized log likelihood: a badness/lack of fit term, or a negative log likelihood term, plus 2) a penalty 

term (Sclove, 1987). For example, the formula for AIC is (-2) times the maximized log likelihood 

function plus 2 times the number of free parameters, with the former term describing lack of fit and the 

latter penalizing the number of free parameters in the model. In AIC, a measure of model complexity is 

comprised of the number of free parameters (Bozdogan, 2004). Like AIC, many other information criteria 

also contain two terms that serve similar purposes. They usually use the same lack of fit term as AIC, but 

differ in how to penalize model complexity. 

  Bozdogan's Information Complexity Criterion or ICOMP is a relatively new family of model 

selection criterion (Bozdogan, 2004). Like AIC and other criteria, ICOMP uses (-2) times the maximized 

log likelihood to measure the lack of fit of the model. On the other hand, the complexity of the model is 

measured based on a generalization of the covariance complexity index introduced by Van Emden (1971). 

Unlike AIC, which defines model complexity as number of free parameters, ICOMP measures this 

concept with both the number of free model parameters and the interdependency of parameter estimates. 

According to Bozdogan (2004), Konishi and Kitagawa (2010), and Mulaik (2009), a generic formula of 

ICOMP is:  

             ICOMP = -2logL( ̂) + 2C( ̂ ),  
 

where  ̂ is the maximum likelihood estimate of the parameter vector under the model whose covariance 

matrix is denoted by   ̂  = Est.Cov( ̂), and where C represents a real-valued complexity measure of  ̂ . 

Usually two types of C measures exist denoted by C1(*) and C1F(*), respectively. Both of them are 

designed to transform a covariance matrix into a scalar value, which is then used to measure model 

complexity. The covariance matrix inside the parenthesis of the two complexity measures is called the 

inverse Fisher Information Matrix (IFIM). Bozdogan (2004) developed several IFIMs to handle different 

modeling conditions (e.g., mis-specification resistant vs. otherwise). Loosely speaking, when applying a 

complexity measure (either by C1(*) or C1F(*)) to IFIM, the model complexity part of ICOMP is created, 

which is combined with the lack of fit part to construct an ICOMP criterion. 

 Although the use of AIC, CAIC, and SBC in regression analysis is well documented in the literature 

(Burnham & Anderson, 2002; Claeskens & Hjort, 2008; McQuarrie & Tsai, 1998; Miller 2002) partially 

because they have been made readily available by major statistics programs, the research on applying 

ICOMP to regression modeling is very limited. Bozdogan and Haughton (1998) examined the 

performance of six ICOMP criteria using only the C1(*) measure of complexity in its early stage of 

development. Since then, more ICOMP criteria have been created that have extended the way model 

complexity is measured. So, this paper revisits the topic of ICOMP-based regression model selection 

using more recent ICOMP criteria that approach model complexity from beyond the C1(*) perspective to 

include the C1F(*) measure. Also, prior implementations of ICOMP have used MATLAB
®
, a program 

preferred mainly by engineers/mathematicians. Coding ICOMP in R is desired because R is more readily 

available and is better accepted in non-engineering/non-math fields 

 In sum, this study aims to achieve the following: 1) familiarizing applied researchers using regression 

with ICOMP, 2) comparing the performance of ICOMP in regression with that of other criteria, and 3) 

creating ICOMP routines in R (available upon request from the authors) to present the criteria in a better 

accepted environment. 
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  Before continuing, some key general issues in model selection are briefly discussed: 

  Best approximating model: This is the model in the pool of candidate models that is “closet” 

to the true model (Bozdogan & Haughton, 1998). The objective of modeling is to obtain a 

“good” model, rather than the true model (Konishi & Kitagawa, 2010). This true model, which 

in the background generated the data, might be very complex and almost always unknown. For 

working with the data, it may be more practical to work instead with a simpler, but almost-as-

good model, and, hence, the best approximating model. A true model can be defined explicitly 

only in some special situations such as in computer simulations. In this paper, the good model 

and the best model are both used to refer to the best approximating model. 

  Consistency: A model selection criterion is considered to be consistent if the probability of 

selecting the best approximating model converges to one as the sample size goes to infinity. 

Because an infinitely large sample is impossible to obtain, the paper focuses on the behavior of 

ICOMP criteria as the sample size is finite and keeps increasing. If the performance of ICOMP 

improves as sample size increases, it provides supportive evidence of ICOMP being consistent. 

  Overfitting and underfitting: Statistical modeling has to balance simplicity (i.e., fewer 

parameters in a model, lower variability in the predicted response, but with more modeling bias) 

against complexity (i.e., more parameters in a model, higher variability in the predicted 

response, but with smaller modeling bias). Statistical model selection criteria have to seek a 

proper balance between overfitting (i.e., a model with too many parameters, more than actually 

needed) and underfitting (i.e., a model with too few parameters, not capturing the right signal) 

(Claeskens & Hjort, 2008). A criterion underfits/overfits a model when it selects a model that 

contains fewer/more parameters than does the best approximating model (Bozdogan & 

Haughton, 1998). 
 

Theoretical Framework 

A multiple linear regression model under normality is defined by: 
 

                                      (1) 
                                  
 

where y is an (nx1) vector of observed values of the response variable, X is an (nxq) full rank matrix 

representing n observations with each one measured on k variables and q = k + 1, β is a (qx1) matrix of 

unknown regression coefficients, and ε is an (nx1) vector of i.i.d. random errors. Further, suppose y ~ 

Nn(Xβ, σ
2
I) and ε ~ Nn(0, σ

2
I) with σ

2
 being the unknown variance of random errors.  

  To evaluate how well an estimated regression model under Equation (1) fits the observed data, 

ICOMP criteria are presented below. ICOMP criteria share the same badness/lack of fit term as AIC, 

CAIC, etc., which equals (-2) times the maximized log likelihood function, but ICOMP criteria measure 

model complexity differently. 
 

Badness/Lack of Fit Term of ICOMP 

Given the multiple regression model in Equation (1) the maximum likelihood estimates or MLE’s of β
 

and σ
2
 are given by: 

            ̂ = (X′X)
-1

 X′y ,          (2) 

          ̂   = 
 

 
(y – X ̂)′ (y – X ̂)          (3) 

 

Hence, the maximized log likelihood function is 
 

       logL( ̂,  ̂  ) = - 
 

 
 n log(2π) -  

 

 
 log( ̂ ) - 

 

 
 n       (4) 

 

The badness/lack of fit part of ICOMP is thus: 
 

       -2logL( ̂,  ̂  ) = n log(2π) + n log( ̂ ) + n        (5) 
 

Model Complexity Term of ICOMP 

  The model complexity term of ICOMP takes various forms, so various versions of ICOMP can be 

defined. Basically, this term is defined as the complexity of inverse the Fisher Information Matrix or 

IFIM (Bozdogan, 2004). There are two ways to measure the complexity of a matrix, namely C1(*) and 
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C1F(*). There are also two different forms of IFIM, namely IFIM and mis-specified IFIM. Presented next 

are three approaches to model complexity in ICOMP with different combinations of 1) complexity 

measure (C1(*) vs. C1F(*)) and 2) IFIM (IFIM vs. mis-specified IFIM). 

  The first approach to ICOMP complexity takes the C1(*) complexity of F
-1

, denoted by C1(F
-1

), where 

F
-1

 is the estimated inverse Fisher Information Matrix of the regression model given by 
 

       F
-1

 = Est.Cov( ̂,σ
2
) =  [

 ̂          

  
  ̂  

 

] 

 

Now invoking the complexity measure the C1to F
-1

we have the scalar value of its complexity given by:  
 

       C1(F
-1

) = 
 

 

 
   [

       

 
]   

 

 
   |   | ,          (6) 

 

 where         s = dim(F
-1

) = rank(F
-1

)             (7) 
 

For the regression model in Equation (1), s = dim(F
-1

) = rank(F
-1

) = q. Further suppose the eigenvalues of 

Est.Cov( ̂,σ
2
) are λ1, λ2, . . ., λq. Therefore, 

 

      C1(F
-1

)  = 
 

 
   [

       

 
]   

 

 
   |   | 

 

        = 
 

 
   [

∑   
 
   

 
]   

 

 
   |∏   

 
   | 

 

        = 
 

 
   [

 ̅ 

 ̅ 
] 

where  ̅  = 
 

 
∑   

 
    is the arithmetic mean of the eigenvalues of F

-1
 and  ̅  = [∏   

 
   ]

 

 
 is the 

corresponding geometric mean. 

  The second approach to ICOMP complexity takes the C1F(*) complexity of F
-1

 denoted by C1F(F
-1

). 

This second complexity measure is used to avoid the problematic situation where C1(F
-1

) becomes zero; it 

measures the relative variation in the eigenvalues and is given by: 
 

       C1F(F
-1

) = 
 

  ̅ 
 ∑      ̅  

  
     .           (8) 

 

 The third approach to ICOMP complexity uses both F
-1

 and its outer product form R. For the 

regression model in Equation (1), the estimated outer product form of the Fisher Information Matrix is 

given by: 

        R =  [

 

  ̂  
       

  

  ̂ 

    
  

  ̂   
      

  ̂  

] ,           (9) 

 

where D
2
 = diag[  ̂

 ,   ̂
 , , . . .,   ̂

 ] with  , i = 1,2, . . ., n, being squared residuals from the fitted regression 

model, Sk is the estimated residual skewness, Kt the estimated residual kurtosis, and 1 is an (nx1) vector 

of ones. Formulas for Sk and Kt are respectively given by: 
 

      Sk = 

 

 
∑  ̂ 

  
   

 ̂   ,   and     Kt = 

 

 
∑  ̂ 

  
   

 ̂    
 

With F
-1

 and R, the mis-specified version of the estimated IFIM can be defined: 
 

              Est.Cov( ̂,σ
2
)Mis = F

-1
RF

-1
 

 

 Therefore, the third approach to ICOMP complexity takes the C1(*) complexity of F
-1

RF
-1

 denoted by 

C1(F
-1

RF
-1

). This version of ICOMP provides a protection against model mis-specification (Bozdogan, 

2004).  
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ICOMP and Non-ICOMP Criteria 

  Based on the information presented previously, formulas for several ICOMP criteria are given below, 

along with formulas for several non-ICOMP criteria. 
 

     AIC  =                ̂                    (10) 
 

     AICC  =                ̂      [
      

     
]         (11) 

 

     CAIC  =                ̂     [        ]         (12) 
 

     SBC  =                ̂     [      ]          (13) 
 

     ICOMPC1  =                ̂          
     

                        (14) 

         =                ̂      [
 

 
   (

 ̅ 

 ̅ 
)]  

 

      ICOMPC1F =                ̂           
     

                        (15) 

         =                ̂      [
 

  ̅ 
 ∑      ̅  

  
   ]  

 

Finally, according to the mis-specified IFIM or Est.Cov( ̂,σ
2
)Mis, the mis-specified ICOMP can be defined 

by: 

     ICOMPMis =                ̂        [         ̂  ̂
     ]  

                        (16) 

        =                ̂        [ 
      ]  

 

  Further analyses are based on the seven criteria presented above. Data sources and the simulation 

protocol are detailed in the next section. 

 

Monte Carlo Simulation Examples 

Simulation Protocol 

Determining the effectiveness of an information criterion involves evaluating cumulative model selection 

results from repeated random sampling: running the simulation repeatedly and finding the number of 

times that the best approximating model is identified by each criterion. Data sets used in the study are 

generated using Monte Carlo methods (Bozdogan & Haughton, 1998). The study simulates data sets 

where the true regression model has five predictors, namely x1, x2, x3, x4, and x5. And the analysis is 

performed respectively for three sample sizes, namely n = 50, 100, and 1000. 

Suppose zi ~ N(0,1), i = 1, 2, . . ., 6. The following simulation protocol is used: 
 

         xi = √    
 zi  + α1z6  when i = 1, 2, 3          

        xi = √    
 zi  + α2z6  when i = 4, 5.          

 

α1 and α2  are parameters controlling the degree of multicollinearity, and   
  = 0.3 and   

  = 0.5 to yield a 

reasonable covariance structure for X = {x1,x2,x3,x4,x5}. Given X already generated using the above 

protocol, the focus is now on obtaining β. Here, β is generated from the eigenvectors of (X′X). Three β 

vectors are obtained from (X′X) and used to produce three sets of (Xβ) values having different degrees of 

variability, namely βmax, βmin, and βint. The eigenvector corresponding to the largest eigenvalue of (X′X) is 

denoted as βmax, that corresponding to the smallest eigenvalue as βmin, and that equal to ½(βmax+βmin) as 

βint. So, according to Johnson and Wichern (1992), (Xβmax) possesses the largest variability, (Xβmin) the 

smallest variability, and (Xβint) the intermediate variability. Given X and β, y = Xβ + ε. Here, ε is 

simulated from a normal distribution with a mean of 0 and a user-specified variance, σ
2
. 

 

Two Modeling Conditions 

Given X and y, the performance of information criteria is examined under two conditions. One condition 

has the true model included in the pool of candidate models, whereas the other one does not. The good 
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model is to be identified in both conditions. When the true model is in the pool, the good model is just the 

true model. Otherwise, the good model is the one that is “closest” to the true model. 

 

When the True Model is Included  

  This part of the analysis assesses the number of times that ICOMP criteria successfully identify the 

true model, which ICOMP criteria overfit a model, and that ICOMP criteria underfit a model. To add 

more competing models to the pool, two additional variables x6 and x7 are added to X with both of them 

generated from an exponential distribution Exp (0.1). A total of seven models are evaluated and compared 

using information criteria, namely {x1}, {x1,x2 },  …, and {x1,x2, ..., xK}, K = 3, 4, …, 7. The true model is 

the one with five predictors: {x1,x2,x3,x4,x5}. 

 

When the True Model is Not Included  

  This part of the analysis assesses the number of times that ICOMP criteria select the good model 

minimizing the K-L distance between the true model and each estimated model. Here, x1, x2, x3, and x4 

are used to create the pool of candidate models. A total of four models are created, evaluated, and 

compared using information criteria, namely {x1}, {x1,x2 }, {x1,x2,x3}, and {x1,x2,x3,x4}. The true model 

is still the one with five predictors: {x1,x2,x3,x4,x5}, although it is not in the pool of competing models. 

The model in the pool that minimizes the K-L distance from the true model is the one with four 

predictors: {x1,x2,x3,x4}. Hereafter, Models 1 through 7 refer to the regression models with 1 through 7 

predictor variables, respectively. For example, Model 3 is the regression model that contains just three 

predictors x1 through x3, or
 
{x1,x2,x3}. 

 

Simulation Results 

With the True Model Included 

  Tables 1, 2, and 3 present the model selection results from the case when the true model is included, 

with Table 1 corresponding to βmax, Table 2 to βint, and Table 3 to βmin. In each table, seven model 

selection criteria are scored to evaluate seven regression models: Models 1 to 7 described above under 

three sample sizes (i.e., small, medium, and large): nmin = 50, nint = 100, and nmax = 1000. Since it is Model 

5 that simulates the data, the goal of using model selection criteria is to identify this model as the best 

model. 

  Under each β by n combination, two sets of simulations are run. In the first set of simulations, a total 

of 100 runs are performed, whereas in the second set, as many as 10,000 runs are performed. So, cells in 

each table contain two integers separated by a forward slash sign which are frequencies of each 

competing model being selected under the two sets of simulations (100 runs/10,000 runs), respectively. 

Model selection results from the two sets of simulations are compared with each other in a few aspects: 

frequency and/or percentage of identifying the best approximating model, etc. Conclusions are drawn 

from the patterns found from both sets of simulations. Given any inconsistency in results between the two 

sets of simulations, those from the second set with a larger number of simulations prevail, because they 

explore a larger model space. 

 In addition to model selection frequencies in each of the tables, Figures 1 and 2 present the average 

percentage of the true model (Model 5) selection as a function of sample size and variability in (Xβ), 

respectively. Finally, Figure 3 compares all seven criteria in terms of the range of percentages of each of 

Models 1 through 7 being selected. 

The model selection results are examined in the following three aspects: 

(1) The increase in sample size tends to improve the performance of all seven criteria in 

identifying the true model, or Model 5, and this supports the consistency property of all seven 

criteria. This trend is indicated relatively clearly in all seven line graphs in Figure 1, particularly 

when the number of runs is larger. In that figure, when the number of runs is 10,000, with an 

increase in sample size (from 50 to 100, again to 1,000), each line graph keeps showing an 

upward trend, which indicates that the average percentage of successfully identifying the true 

model is increasing. When the number of runs is only 100, five of the seven information criteria 

present an upward trend with an increase in sample size. Two of them, AICC and ICOMPC1F,  
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Table 1. Frequency of Model Selection Given Maximum Variability with True Model (100/10,000 runs) 

Criterion n 1 2 3 4 5* 6 7 

AIC 50 0/0 0/0 0/6 2/143 72/7179 15/1506 11/1166 

 100 0/0 0/0 0/0 0/0 78/7582 12/1467 10/951 

 1000 0/0 0/0 0/0 0/0 73/7822 15/1337 12/841 

AICc 50 0/0 0/0 0/11 2/210 79/8112 12/1085 7/582 

 100 0/0 0/0 0/0 0/1 84/8052 9/1251 7/696 

 1000 0/0 0/0 0/0 0/0 73/7874 15/1313 12/813 

CAIC 50 0/0 0/1 0/52 6/526 89/8940 4/381 1/100 

 100 0/0 0/0 0/0 0/15 99/9698 1/252 0/35 

 1000 0/0 0/0 0/0 0/0 99/9947 1/49 0/4 

SBC 50 0/0 0/1 0/30 3/371 87/8751 7/613 3/234 

 100 0/0 0/0 0/0 0/9 97/9490 3/414 0/87 

 1000 0/0 0/0 0/0 0/0 99/9890 1/100 0/10 

ICOMPC1 50 0/0 0/0 0/0 0/41 95/9437 4/407 1/115 

 100 0/0 0/0 0/0 0/0 97/9532 3/387 0/81 

 1000 0/0 0/0 0/0 0/0 96/9615 4/331 0/54 

ICOMPC1F 50 0/0 0/0 0/0 0/22 50/5152 31/2849 19/1977 

 100 0/0 0/0 0/0 0/0 53/5041 26/2969 21/1990 

 1000 0/0 0/0 0/0 0/0 37/5007 39/3028 24/1965 

ICOMPMis 50 0/0 0/0 0/0 0/100 93/9236 6/532 1/132 

 100 0/0 0/0 0/0 0/2 97/9423 3/482 0/93 

 1000 0/0 0/0 0/0 0/0 94/9578 6/362 0/60 
 

Table 2. Frequency of Model Selection Given Intermediate Variability with True Model (100/10,000 runs) 

Criterion n 1 2 3 4 5* 6 7 

AIC 50 0/6 0/142 10/644 14/1696 54/5190 13/1282 9/1040 

 100 0/1 1/53 2/305 14/1204 61/6221 12/1334 10/882 

 1000 0/0 0/0 0/0 0/6 73/7818 15/1337 12/839 

AICc 50 0/9 0/198 12/854 17/2033 57/5541 8/877 6/488 

 100 0/2 1/62 2/343 15/1333 66/6510 9/1123 7/627 

 1000 0/0 0/0 0/0 0/6 73/7870 15/1313 12/811 

CAIC 50 1/111 2/602 21/1658 20/2459 51/4864 4/240 1/66 

 100 0/16 4/292 9/917 26/2144 60/6428 1/181 0/22 

 1000 0/0 0/0 0/0 0/25 99/9922 1/49 0/4 

SBC 50 1/51 1/412 18/1316 20/2318 54/5292 4/434 2/177 

 100 0/11 4/212 9/751 21/1954 63/6681 3/329 0/62 

 1000 0/0 0/0 0/0 0/23 99/9867 1/100 0/10 

ICOMPC1 50 0/0 0/5 0/99 10/831 85/8548 4/403 1/114 

 100 0/0 0/5 0/31 7/447 90/9051 3/386 0/80 

 1000 0/0 0/0 0/0 0/1 96/9614 4/331 0/54 

ICOMPC1F 50 0/0 0/1 0/42 5/411 45/4761 31/2822 19/1963 

 100 0/0 0/1 0/11 5/172 49/4863 25/2966 21/1987 

 1000 0/0 0/0 0/0 0/0 37/5007 39/3028 24/1965 

ICOMPMis 50 0/0 0/31 2/195 10/1232 81/7924 6/492 1/126 

 100 0/0 0/9 1/78 6/639 90/8719 3/467 0/88 

 1000 0/0 0/0 0/0 0/2 94/9576 6/362 0/60 

* The true model 
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Table 3. Frequency of Model Selection Given Minimum Variability with True Model (100/10,000 runs) 

Criterion n 1 2 3 4 5* 6 7 

AIC 50 0/0 3/133 4/755 13/1599 58/5205 14/1271 8/1037 

 100 0/0 1/67 6/647 15/1567 61/5608 8/1262 9/849 

 1000 0/0 0/19 10/504 13/1500 56/6059 13/1162 8/756 

AICc 50 0/0 3/184 5/969 15/1886 60/5616 12/867 5/478 

 100 0/0 1/77 6/735 17/1693 63/5832 6/1050 7/613 

 1000 0/0 0/19 11/509 12/1508 56/6098 13/1139 8/727 

CAIC 50 1/9 5/576 13/1854 21/2244 56/4977 3/263 1/77 

 100 0/0 4/331 19/1799 20/2252 56/5430 1/161 0/27 

 1000 0/0 1/106 20/2060 31/2344 47/5462 1/27 0/1 

SBC 50 0/2 4/405 7/1494 20/2149 61/5337 6/450 2/163 

 100 0/0 2/228 14/1507 21/2173 61/5741 2/283 0/68 

 1000 0/0 1/87 19/1832 23/2287 56/5734 1/56 0/4 

ICOMPC1 50 0/0 0/2 2/80 6/680 87/8719 4/404 1/115 

 100 0/0 0/2 0/50 6/564 91/8917 3/386 0/81 

 1000 0/0 0/0 1/30 2/458 93/9130 4/328 0/54 

ICOMPC1F 50 0/0 0/0 0/24 1/265 49/4894 31/2843 19/1974 

 100 0/0 0/0 0/6 3/183 50/4856 26/2967 21/1988 

 1000 0/0 0/0 0/0 1/83 36/4924 39/3028 24/1965 

ICOMPMis 50 0/0 0/16 2/194 10/1091 83/8080 4/493 1/126 

 100 0/0 0/6 0/123 8/889 89/8428 3/463 0/91 

 1000 0/0 0/0 2/52 4/543 88/8989 6/356 0/60 

* The true model 

 

have a turning point when the sample size is medium, indicating that they perform the best 

when the sample is neither largest nor smallest. This observation under only 100 simulations is 

not consistent with that when the number of runs is 10,000, thus we consider it to be 

untrustworthy due to the small number of simulations. Finally, the performance of ICOMPC1F 

does not seem to be very consistent with that of the rest. Its performance under 10,000 runs of 

simulations increases only slightly when the sample size jumps from 50 to as large as 1,000, 

whereas all other criteria show a marked increase in the average percentage of identifying the 

true model when increasing the sample size. 

(2) The increase in the variability of (Xβ)
 
tends to improve the performance of all seven criteria. 

This trend is clearly indicated in Figure 2 for both sets of simulations for six of the seven 

criteria (excluding ICOMPCIF); and, the two trend lines representing 100 and 10,000 simulations 

in each of the six graphs almost completely overlap, so that they are almost indistinguishable 

from each other. When sample size increases from 50 to 1,000, a marked increase in the average 

percentage of identifying the true model is observed for AIC (approximately from 60% to 78%), 

AICC (approximately from 60% to 80%), SBC (approximately from 60% to 96%), and CAIC 

(approximately from 58% to 98%). A relative moderate increase is observed for ICOMPC1 

(approximately from 90% to 99%) and ICOMPMis (approximately from 90% to 98%). These 

two ICOMP criteria are already successful at as high as 90% of the time when (Xβ) assumes the 

minimum variability, so there is not much room for improvement for the two of them given 

more variability in (Xβ). Finally, ICOMPC1F fails to meet our expectations again this time. 

When the other criteria are becoming more and more capable of identifying the true model with 

increasing variability in (Xβ), the increase in the performance of ICOMPC1F is negligible under 

the larger set of simulations. 

(3) An overall comparison of all seven criteria is found in Figures 1, 2, and 3. In Figures 1 and 

2, it can be seen that on average both ICOMPC1 and ICOMPMis tend to outperform non-ICOMP  
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Figure 1. Comparison of average percentage of true 

  model selection (Model 5) as a function of sample size 

  under 100 and 10000 runs of simulations. 

 
Figure 2. Comparison of average percentage of 

 true model selection (Model 5) as a function of 

 variability under 100 and 10000 runs  

of simulations. 

 
Figure 3. Comparison of range of percentages of model selection by 

all seven information criteria with true model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

criteria: AIC, AICC, SBC, and 

CAIC, and, in Figure 3, the range 

of percentages of successfully 

identifying the true model from 

each simulation condition tends 

to be higher for the two ICOMP 

criteria than for all other criteria. 

However, ICOMPC1F does not 

seem to perform as well as the 

other two ICOMP criteria, and is 

probably the worst of all seven 

criteria in terms of the likelihood 

of identifying the true model. 

The bad performance of this 

criterion is due to its tendency to 

select more complex models, 

either Model 6 or Model 7. In 

Figure 3, such an overfitting 

tendency of ICOMPC1F is clearly 

observed. This criterion is much 

more likely to select either 

Model 6 or Model 7 than all 

other criteria, thus causing it to 

be less successful in identifying 

the true model, or Model 5. 
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Table 4. Frequency of Model Selection Given Maximum Variability  

Without True Model (100/10,000 runs) 

Criterion n 1 2 3 4* 

AIC 50 0/0 1/1 2/278 97/9721 

 100 0/0 0/0 0/9 100/9991 
 1000 0/0 0/0 0/0 100/10000 

AICc 50 0/0 1/2 5/346 94/9652 
 100 0/0 0/0 0/14 100/9986 
 1000 0/0 0/0 0/0 100/10000 

CAIC 50 0/0 1/25 9/828 90/9147 
 100 0/0 0/0 1/76 99/9924 
 1000 0/0 0/0 0/0 100/10000 

SBC 50 0/0 1/12 7/611 92/9377 
 100 0/0 0/0 1/51 99/9949 
 1000 0/0 0/0 0/0 100/10000 

ICOMPC1 50 0/0 0/0 0/40 100/9960 
 100 0/0 0/0 0/0 100/10000 
 1000 0/0 0/0 0/0 100/10000 

ICOMPC1F 50 0/0 0/0 0/31 100/9969 
 100 0/0 0/0 0/0 100/10000 
 1000 0/0 0/0 0/0 100/10000 

ICOMPMis 50 0/0 0/0 1/153 99/9847 
 100 0/0 0/0 0/3 100/9997 
 1000 0/0 0/0 0/0 100/10000 

 

Table 5. Frequency of Model Selection Given Intermediate Variability  

Without True Model (100/10,000 runs) 

Criterion n 1 2 3 4* 

AIC 50 0/38 4/392 25/2023 71/7547 

 100 0/1 2/218 12/1226 86/8555 
 1000 0/0 0/0 0/3 100/9997 

AICc 50 0/45 5/481 27/2244 68/7230 
 100 0/2 3/234 12/1285 85/8479 
 1000 0/0 0/0 0/3 100/9997 

CAIC 50 1/238 7/1068 39/3041 53/5653 
 100 0/35 7/634 21/2133 72/7198 
 1000 0/0 0/2 0/10 100/9988 

SBC 50 1/145 6/828 33/2762 60/6265 
 100 0/23 5/513 20/1919 75/7545 
 1000 0/0 0/1 0/8 100/9991 

ICOMPC1 50 0/5 2/83 8/747 90/9165 
 100 0/0 0/39 4/380 96/9581 
 1000 0/0 0/0 0/0 100/10000 

ICOMPC1F 50 0/5 2/58 4/575 94/9362 
 100 0/0 0/25 3/266 97/9709 
 1000 0/0 0/0 0/0 100/10000 

ICOMPMis 50 0/6 1/159 13/1092 86/8743 
 100 0/0 0/57 7/579 93/9364 
 1000 0/0 0/0 0/0 100/10000 

* The best approximating model 

 

With the True Model Excluded  

  Tables 4, 5, and 6 present the 

model selection results from the 

case when the true model is 

excluded, with Table 4 

corresponding to βmax, Table 5 to 

βint, and Table 6 to βmin. In each 

figure, seven model selection 

criteria are scored to evaluate four 

regression models: Models 1 to 4 

described above, with Model 4 

being the best approximating 

model of the true model: Model 5. 

Three different sample sizes (i.e., 

small, medium, and large) are 

used, namely nmin = 50, nint = 100, 

and nmax = 1000.  

  Similar to the previous case 

with the true model included, 

under each β by n combination, 

two sets of simulations are 

performed for the purpose of cross-

validating model selection results. 

The first set contains 100 runs of 

simulations whereas the second set 

10,000 runs. So, cells in each of 

Tables 4, 5, and 6 also contain two 

integers separated by a forward 

slash sign which represent 

frequencies of each competing 

model being selected under the two 

sets of simulations (100 

runs/10,000 runs), respectively. 

  Besides, Figures 4 and 5 

present the average percentage of 

the best approximating model 

(Model 4) selection as a function 

of sample size and variability in 

(Xβ), respectively. Finally, Figure 

6 compares all seven criteria using 

the range of percentages of each of 

Models 1 through 4 being selected 

under each simulation condition. 

  Under the second case, where 

Model 4 is the best, similar 

patterns of criterion performance 

are found. In Figure 4, the two 

lines of 100 and 10,000 

simulations both show a continuing 

upward trend with an increase in 

sample size for all seven criteria 

(i.e., the ICOMPC1 line for the 

smaller number of simulations  
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Table 6. Frequency of Model Selection Given Minimum Variability  

Without True Model (100/10,000 runs) 

Criterion n 1 2 3 4* 

AIC 50 3/127 5/572 20/2720 72/6581 

 100 1/10 2/296 29/2533 68/7161 

 1000 0/0 0/58 22/2094 78/7848 

AICc 50 3/177 8/680 20/2921 69/6222 
 100 1/10 3/315 29/2665 67/7010 
 1000 0/0 0/58 23/2099 77/7843 

CAIC 50 8/604 14/1269 29/3513 49/4614 
 100 1/48 9/767 43/3765 47/5420 
 1000 0/0 1/196 39/4023 60/5781 

SBC 50 8/401 10/1042 26/3322 56/5235 
 100 1/31 8/618 39/3549 52/5802 
 1000 0/0 1/167 37/3821 62/6012 

ICOMPC1 50 1/3 1/76 6/883 92/9038 
 100 0/1 0/34 2/677 98/9288 
 1000 0/0 0/4 10/523 90/9473 

ICOMPC1F 50 1/3 0/32 6/582 93/9383 
 100 0/1 0/9 1/388 99/9602 
 1000 0/0 0/1 2/184 98/9815 

ICOMPMis 50 1/12 3/159 6/1509 90/8320 
 100 0/2 0/54 10/1077 90/8867 
 1000 0/0 0/8 10/616 90/9376 

* The best approximating model 

may deviate a little bit, though), thus 

supporting their property of 

consistency. In Figure 5, such a 

continuing upward trend is also 

observed for all seven criteria when 

the variability in (Xβ)
 

increases. 

Finally, the performance of ICOMP 

criteria is generally better than that of 

non-ICOMP criteria. This is true of 

all three ICOMP criteria. In Figures 4 

and 5, the average performance of 

each ICOMP criterion under smallest 

sample size or smallest (Xβ)
 

variability is generally the same as or 

even better than that of each non-

ICOMP criterion under largest sample 

size or largest (Xβ)
 

variability. In 

Figure 6, the range of percentages of 

successfully identifying the best 

approximating model under each 

simulation condition tends to be 

higher for the three ICOMP criteria 

than for the four non-ICOMP criteria. 

Although ICOMPC1F performs less 

satisfactorily in the previous case that 

includes the true model, it performs 

as well as the other two ICOMP 

criteria in this second case. Such an 

increase in performance is probably  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
Figure 4. Comparison of average percentage of  
 best approximating model selection (Model 4) as a  
function of sample size under 100 and 10000  

runs of simulations. 

 
Figure 5. Comparison of average percentage of best 

approximating model selection (Model 4) as a function 

of variability under 100 and 10000 runs of simulations. 
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Figure 6. Comparison of range of percentages of model selection by 

all seven information criteria without true model. 

because this criterion tends to 

overfit a model and the best 

approximating model in the 

second case is already the most 

complex model. In other words, in 

both cases, ICOMPC1F tends to 

select a more complex model and, 

in the second case only, the most 

complex model happens to be the 

best approximating model. 

 

Conclusion 

  The paper provides support 

for the use of two ICOMP criteria 

in multiple linear regression to 

supplement existing information 

criteria commonly found in major 

statistics programs: AIC, CAIC, 

SBC, etc. The two recommended 

ICOMP criteria are ICOMPC1 and 

ICOMPMis. However, this paper 

has some reservations for the third 

ICOMP criterion, or ICOMPC1F, 

because it is usually prone to 

overfitting. 

The two recommended ICOMP 

criteria are usually more capable of successfully identifying the best approximating model than other 

criteria under the simulations of multiple linear regression modeling in this study. And their effectiveness 

can generally be improved by either increasing sample size or increasing the variability in (Xβ). 

 

 

  Future research on ICOMP could focus on its application to linear and nonlinear mixed models, 

which are extensions of the type of linear models covered in this paper. Mixed models consist of both 

fixed and random components and are capable of analyzing grouped, nested, or hierarchical data 

structures that are more commonly seen in many fields of study. ICOMP would be used to select fixed 

and/or random components in mixed models. Special ICOMP formulas should be developed for mixed 

models that correspond to formulas for marginal and conditional AIC (Vaida & Blanchard, 2005)  .
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