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This study presents a new multivariate resampling method to improve the performance of multiple 
regression with small samples. The kernel resamping technique (KRT) is utilized in the multivariate 
resampling procedure to draw random resamples with random noises, which facilitates obtaining more 
accurate parameter estimates and their standard errors in multiple regression. The findings from an 
empirical example suggest that the statistical performance of multiple regression is improved through the 
KRT technique. 

ultiple regression is one of the popular statistical methods; however, when it is applied to small 
samples, it encounters problems related to the accuracy of statistical estimation (Allison, 1999). 
Resampling method has been implemented to solve the small sample problems (Bai & Pan, 
2008; Davison & Hinkley, 1997; Efron & Tibshirani, 1998). The bootstrap as the most popular 

resampling method has been applied in regression analysis since Efron’s pioneer work in 1979. The 
bootstrap is an effective tool to solve the small sample problems, and comprehensive applications of the 
bootstrap to regression models have also been developed by researchers (e.g., Bickel & Freedman, 1981, 
1983; Freedman, 1981; Peters & Freedman, 1984; Shao, 1988; Weber, 1984; Wu, 1986); however, the 
bootstrap standard errors tend to be biased downward in regression analysis when applying to a small 
sample (Peters & Freedman, 1984). Therefore, managing small sample problems in regression still 
remains a pertinent issue. A study on improving the statistical performance of multiple regression with 
small samples would significantly contribute to the literature in both methodological research of small 
sample issues and applied research using multiple regression with small samples. 
  The purpose of this present study is to introduce a new multivariate resampling method, the kernel 
resampling technique (KRT), to tackle the problems in multiple regression with small samples. 
Specifically, the present study (a) introduces the procedure of KRT, (b) examines the performance of 
KRT in multiple regression through an empirical example, and (c) compares the performance of KRT in 
multiple regression with that of the bootstrap in terms of estimation bias and standard errors. 
 

Kernel Resampling Technique 
  Kernel Resampling Technique (KRT) is a new resampling method which uses kernel smoothing 
technique to capture the shape of the empirical sample distributions and sampling from the neighborhoods 
of the original sample. The kernel technique uses kernel probability density estimation to map the original 
linear or non-linear observations into a higher-dimensional space, where the linear classifier is 
subsequently used to solve problems (Aizerman, Braverman, & Rozonoer, 1964). The kernel probability 
density estimation has gained popularity, especially for dealing with nonparametric issues (Towers, 
2002).  
  The kernel technique has been used in the bootstrap for smoothing the bootstrap distribution (Efron & 
Tibshirini, 1998; Silverman & Young, 1987). However, it is worth noting that there are two key points 
when using the kernel technique in the smooth bootstrap: (1) kernels are used after the bootstrap 
resampling to smooth the bootstrap distribution, and (2) the bandwidths of the kernels are not specifically 
defined for different data in the smooth bootstrap. With regards to the second point, finding an optimal 
bandwidth for the bootstrap smoothing procedure is a statistically and technically challenging task for 
many researchers and statisticians (Silverman & Young, 1987). 
  Regarding the issues of the basic and smooth bootstrap, this present study presents a new multivariate 
kernel resampling technique for improving the performance of multiple regression with small samples 
because kernel technique has been proved remarkably successful for standard classification and 
regression problems (Schölkopf & Smola, 2002). KRT is a new resampling method where the overall 
procedure seems similar to that of the bootstrap, but KRT, by design, radically differs from the bootstrap 
in three-fold: (a) The bootstrap samples are randomly drawn from the exact original small sample data 
with replacement in the basic bootstrap, whereas the KRT samples are each randomly drawn from a 
neighborhood of a data point in the original small sample; (b) The kernel technique is used to select 
resamples with random noises instead of being used to smooth the resampling distributions as does the 
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smooth bootstrap; and (c) KRT has a fixed bandwidth for the kernel used in the resampling procedures 
whereas the smooth bootstrap does not.  
  KRT utilizes Gaussian kernels (Silverman, 1986; Simonoff, 1996), the most commonly-used kernel 
technique (Yip, Ahmad, & Pong, 1999), to capture the underlying distribution of the given multivariate 
small sample data. The Gaussian kernel bandwidth is determined to produce an asymptotically optimal 
bandwidth minimizing the mean integrated square error (MISE; Silverman, 1986).  
Specifically, let X1, …, Xn be the given multivariate small sample data or n vectors from a d-dimensional 
space Rd, where d is the number of variables and n is the sample size. The KRT procedure is as follows: 
 

Step 1. Define n multivariate Gaussian kernels as Ki(x) ~ Nd(Xi, H0
2), i = 1, …, n, where the mean 

vector Xi is the ith multivariate observation in the multivariate small sample and the random 
noise H0 can be determined by the optimal bandwidth MISE (Silverman, 1986, p. 87; 
Simonoff, 1996, p. 105): 
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where Σ is the population covariance matrix and it can be estimated by S, a sample covariance 
matrix of X1, …, Xn. 

Step 2. Draw n multivariate random observations, X*1, …, X*n, each from one multivariate 
Gaussian kernel Ki(x) (i = 1, …, n). The n multivariate random observations are defined as a 
multivariate KRT sample.  According to Silverman (1986, eq. 4.7, p. 78) and Simonoff (1996, 
eq. 4.5, p. 102), the multivariate KRT sample has an estimated multivariate density function as 
follows: 
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where kd(u) ~ Nd(0, I) and has the following distributional relationship with the multivariate 
Gaussian kernel Ki(x), i = 1, …, n: 
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Step 3. Conduct multiple regression over the multivariate KRT sample, X*1, …, X*n, to obtain an 

estimate of a parameter of interest.  
Step 4. Repeat Steps 2 to 3 k times, where k is called the KRT resampling parameter, to obtain k 

parameter estimates that comprise a sampling distribution of the parameter of interest. 
Step 5. Evaluate the performance of KRT in regression analysis based on the sampling distribution 

such as estimation bias and standard errors. 
  
  The above procedure has been written into a SAS macro program and is available through the author. 
The “plug-in principle” (Efron & Tibshirani, 1998, p.35) makes the application of KRT very simple and 
straightforward because the above procedure does not require researchers to modify the bandwidth of the 
kernel to obtain KRT samples. Therefore, KRT is methodologically comparable to the bootstrap but the 
application of KRT is simpler than that of the bootstrap. 
  In the next section, an empirical example is presented for illustrating the application of the KRT 
procedure to multiple regression and evaluating the statistical performance of KRT in multiple regression 
with a small sample.  
 

An Empirical Study of KRT in Multiple Regression Analysis 
The Cement Hardening Data and Regression Model 
  The famous small sample of the Cement Hardening Data (CH) (Hjorth, 1994, p. 31) was used to 
study the performance of the application of the KRT procedure in multiple regression while comparing  
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Table 1. The Cement Hardening Data 
x1 x2 x3 x4 y
7 26 6 60 78.5 
1 29 15 52 74.3 

11 56 8 20 104.3 
11 31 8 47 87.6 

7 52 6 33 95.9 
11 55 9 22 109.2 

3 71 17 6 102.7 
1 31 22 44 72.5 
2 54 18 22 93.1 

21 47 4 26 115.9 
1 40 23 34 83.8 

11 66 9 12 113.3 
10 68 8 12 109.4 

Note. x1 = amount of tricalcium aluminate, 3CaOAL2O3; x2 = amount of tricalcium silicate, 3CaOSiO2;  x3 
= amount of calcium aluminum ferrate, 4CaOAl2O3Fe2O3; x1 = amount of dicalcium silicate, 2CaOSiO2; y 
(response) = heat evolved in calories per gram of cement. 
 
 The CH data (Table 1) with 13 observations depict the hardening of the cement and the heat evolved 
during the first 180 days after addition of water.  x1, x2, x3, and x4 were linearly dependent predictors of 
the amounts of different components of chemicals, and the response variable y was the heat produced. 
Because Hjorth’s (1994) linear regression model (4) was proven to have a good fit with inclusion of all 
the four predictors presented, it was used for both the KRT samples and the bootstrapping observations. 
 

       iiiiii xxxxy εβββββ +++++= 443322110 , i = 1, 2, ..., n.    (4)  
 

Comparisons of Estimation Accuracy for the Empirical data 
  Table 2 shows the ordinary least-squares (OLS) estimates ( 0β̂ , 1̂β , 2β̂ , 3β̂ , 4β̂ ) from the original 
small sample, the estimates from 200 KRT samples and 200 bootstrap samples and their estimated 
standard errors se ( iβ̂ ), i = 1, …, 4, from the regression model (4).  
 From Table 2 we can see that the estimates from KRT were systematically closer to the estimates 
from OLS than the estimates from the bootstrap; and the standard errors estimated from KRT were also 
systematically smaller than those from both the bootstrap and OLS. In addition, it is clear that the 
approximate biases of the KRT estimates were systematically smaller than the biases of the bootstrap 
estimates.  
  Table 3 shows the model fit indices from all the methods. We can see from Table 3 that the root mean 
squared error (RMSE) estimate from the KRT procedure was also close to the estimate from the OLS 
method, but the RMSE estimate from the bootstrap was still downward biased for the analysis on the 
empirical data. The multiple correlation R2 from the KRT procedure is also comparable to that from both 
the bootstrap and OLS method (see Table 3).  
 

Results and Discussions 
  The present study presents the new multivariate resampling method, KRT, for obtaining more 
accurate estimates with reasonable standard errors in multiple regression analysis with small samples. 
Unlike the smooth bootstrap, which draws resamples from the smoothed distribution of the bootstrap data, 
KRT draws the resamples from the neighborhoods of the original data with a fixed but optimal 
bandwidth. As such, of KRT has the following advantages: (a) the resample distribution strictly follows 
the original sample distribution, (b) the sampling distribution is not artificially modified, and (c) there is 
no need for researchers to consider the kernel bandwidth. 
  The findings from the applications of KRT in multiple regression to the empirical data suggest that 
the KRT procedure outperformed other methods in terms of the accuracy of the estimation of regression 
coefficients, estimation bias, and standard errors, comparing with the OLS method on the original small  
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Table 2. Estimates of Regression Analysis on the Cement Hardening Data 

Note. Est. = Estimate. Approx = Approximate. 
 
Table 3. Model Fit Summary for the Cement Hardening Data 

Note. Est. = Estimate. Approx = Approximate. 
 
sample and the bootstrap results. The results from this study also support the use of KRT as a viable 
alternative to improving the performance of multiple regression analysis with small samples. This current 
study suggests that KRT can be a useful tool for researchers to conduct multiple regression analysis when 
only small samples are available. It will help researchers draw more valid statistical inference than using 
the original small sample.  
  The advantage of KRT concerns the resampling procedure’s simplicity and efficiency. Compared to 
the bootstrap, KRT obtains comparable or more accurate estimates, but does not require researchers to 
modify the complicated resampling procedures. The results from this study indicated that the KRT 
procedure has overcome the two major limitations that the bootstrap method encountered. First, KRT 
obtains independent resamples through sampling from the neighborhoods of the data points, which solves 
the lack of independent observations of the basic bootstrap resamples. Secondly, the KRT procedure 
practically advances the smooth bootstrap by using fixed optimal bandwidth for the kernel procedure 
instead of requiring researchers to customize the optimal bandwidth to their data. The simplicity of KRT 
will help improve the practical applications of resampling method in the real research and promote the use 
of resampling method in the computer age.   
  In the present study, we only explored the statistical performance of the application of the KRT 
procedure to the multiple regression in terms of the estimation of regression coefficients and model fit 
indices. Even though we have used the population parameters to verify the smaller biases for the 
estimations from the KRT procedure for the both estimates and standard errors, significance tests and the 
confidence intervals are desirable for further research.   
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