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A multiple regression example is used to illustrate advantages of a Bayesian approach that incorporates 
situation-specific substantive information over frequentist and Bayesian approaches that ignore such 
information. Frequentist and Bayesian analyses of a traditional regression model produced nearly 
identical results. A Bayesian analysis of a modified model yielded preferred estimates of parameters and 
quality of prediction. 

egression models are useful for characterizing patterns and quantifying the relationships that exist 
among observable variables. An important and widespread application of regression is to facilitate 
predictions for an outcome. In applied analyses, regression model parameters are estimated based 
on sample data; frequently the estimated parameters are then used to make predictions for future 

cases whose outcomes are not known. The utility of a regression model for making predictions for future 
cases is therefore limited by the information that is available when it is constructed. The current work 
illustrates how using a Bayesian approach allows the researcher to incorporate substantive information 
about the problem to augment the information available from sample data to obtain preferred estimates of 
the parameters and the quality of prediction. Specifically, it will be shown in the context of a regression 
model for educational achievement tests that incorporating boundary constraints via a Bayesian approach 
to regression modeling yields preferred estimates of parameters and measures of prediction accuracy 
compared to traditional approaches.  
  Comparisons of frequentist and Bayesian approaches typically highlight the presence of prior 
distributions in the Bayesian framework. A common criticism of the Bayesian approach is that it is “only 
as good as the priors”, meaning that if the prior distributions poorly match the structure of the data in the 
population, the Bayesian approach will suffer relative to a frequentist approach. On the other hand, as 
demonstrated in the current work, prior distributions can be a mechanism for incorporating substantive 
information into the model. While this is certainly one of the main ways that the two approaches differ, 
we will demonstrate that prior distributions are not the only way to incorporate characteristics of the 
substantive problem into the analysis. In the current example, it is argued that placing substantively 
motivated boundaries on the prior distribution and the likelihood—which are easily incorporated in a 
Bayesian approach with flexible estimation routines—yields preferred estimates of parameters and 
prediction quality. This is illustrated in the context of regression with small samples, where the 
substantive information that is brought to bear augments the information in the data. 
 

Context and Data 
 The data used in the analyses come from the first three end-of-chapter exams associated with the 
course Networking Basics, the first of a four-course curriculum in the Cisco Networking Academy 
Program. Students in this program come from a wide variety of educational backgrounds, and are 
typically progressing toward certification that will allow them to work as computer networking 
professionals servicing home or business settings. For researchers of the Cisco Networking Academy 
Program, operational work in this context frequently involves characterizing relationships between 
performance on early exams and performance on later exams using regression. Moreover, the 
complexities of the online administration of exams yields situations in which sample sizes for such 
analyses vary considerably. As such, the regression analyses in operational work may employ small 
samples. This work illustrates the usage of Bayesian approaches to modeling that allow for the 
incorporation of substantive knowledge to improve data analysis in such contexts. The primary data used 
in the analyses consist of total scores from 50 students on the three exams. For each exam, scores in the 
population had the potential to range from zero to the number of items on the exam. There were 16 items 
on the first exam; in this sample, total scores ranged from 4 to 16, (M = 14.10, SD = 2.02). There were 18 
items on the second exam; in the sample, total scores ranged from 3 to 18, (M = 14.34, SD = 3.29). The 
third exam had 15 items; in the sample, total scores ranged from 1 to 15 (M = 12.22, SD = 2.96). The 
zero-order correlations between the chapter exams are as follows: Chapters 1 and 2, 0.58; Chapters 1 and 
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3, 0.69; Chapters 2 and 3, 0.68. A second data set, consisting of test scores from 1950 students, was used 
in a follow-up analysis as described below.  
 

 Classical and Bayesian Analyses of a Traditional Regression Model 
 In each analysis, the scores on the first and second exams in the curriculum were used to predict 
scores on the third exam.  
 
  Classical Analysis.  A traditional model regressing the third exam on the first and second exams is 
given by  
          Yi = β0 + β1Xi1 + β2Xi2 + εi ,          (1) 
 
where Xi1, Xi2, and Yi denote the total scores on the first, second, and third exams, respectively, for subject 
i, and ),0(~ 2

εσε Ni . A classical approach to model estimation treats the parameters as fixed unknowns, 
commonly employing maximum likelihood (ML) or equivalently least squares estimation. Following the 
model in (1) and assumptions regarding errors, the likelihood function may be written as 
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where X and Y are the full collections of predictor and dependent variables, respectively. Straightforward 
differentiation and analysis yields well-known closed form solutions for ML estimators of the parameters 
(e.g., Rencher, 2000). 
 
  Bayesian Analysis. A Bayesian approach to modeling differs from the classical approach by treating 
each entity as a random variable that can be characterized via probability distributions (Gelman, Carlin, 
Stern, & Rubin, 1995). A prior distribution is specified for unknown model parameters and the posterior 
distribution is given by Bayes’ theorem: 
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where ),,,,|( 2
210 XY εσβββP  is the conditional distribution of the data or likelihood function 

given in (2) and ),,,( 2
210 εσβββP  is the prior distribution for the model parameters.  

  The prior distribution is constructed via specifying independent components. Frequently, diffuse prior 
distributions are employed in situations where prior knowledge is limited. The current analysis adopts this 
approach to highlight the comparability between the classical approach and the Bayesian approach to the 
traditional model under such specifications. We specify diffuse generalized prior distributions (Press, 
1989) in the form of normal distributions for the intercept and coefficients and an inverse-gamma 
distribution for the residual variance (for alternative specifications of prior distributions in regression and 
related contexts see Gelman et al., 1995; Gill, 2007; Lee, 2007) 
 
           P(β0) ~ N(0, 10,000); 
           P(β1) ~ N(0, 10,000);           (4) 
           P(β2) ~ N(0, 10,000); 
              ).01. ,01(.~)( 2 GInvP −εσ  
 
  Though analytical solutions to the model are available under certain choices of distributional forms 
(e.g., Gelman et al., 1995), they are frequently intractable for complex problems. The current work 
employs Markov chain Monte Carlo (MCMC; e.g. Gilks, Richardson, & Spiegelhalter, 1996) estimation 
to conduct the analyses, as MCMC algorithms capitalize on the proportionality relationship in (3) to 
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provide a flexible framework that allows for the estimation of complex models. MCMC consists of taking 
a series of draws to form a chain such that, in the limit, the chain converges to a stationary distribution 
such that subsequent draws may be viewed as draws from the stationary distribution (see Gilks et al., 
1996 for details and an overview of popular MCMC algorithms). In a Bayesian analysis, we construct the 
chain so that the stationary distribution is the posterior distribution of interest.  
  MCMC estimation was conducted in WinBUGS (Spiegelhalter, Thomas, Best, & Lunn, 2007) via the 
package R2WINBUGS (Sturtz, Ligges, & Gelman, 2005) in the R statistical environment (R Core 
Development Team, 2008). Annotated WinBUGS code for running this model and later models are 
contained in the Appendix. Steps in an MCMC analysis include monitoring the convergence of the 
chain(s), determining the number of iterations to discard as burn-in, and summarizing the remaining 
draws for the parameters. 
 

Bayesian Analysis of a Modified Model 
  The modified model incorporates existing knowledge about the range of actual outcome possibilities 
in a way that the traditional regression model neglects. Specifically, the values of the criterion variable 
necessarily fall between zero and 15, the lowest and highest possible scores, respectively, on the Chapter 
3 exam. A more thorough Bayesian analysis includes such substantive knowledge in the probability 
model (Gelman et al., 1995). The model modifications used here to incorporate that knowledge include 
changes to the prior distribution and changes to the likelihood.  
  The prior distribution for the intercept (β0) is changed from a normal distribution to a uniform 
distribution bounded by the potential response range on the outcome variable. The prior distributions for 
the remaining parameters are made less diffuse to facilitate convergence of the more complex modified 
model, though these priors are still quite diffuse:  
 
            P(β0) ~ U(0, 15); 
            P(β1) ~ N(0, 1000);          (5) 
            P(β2) ~ N(0, 1000); 
               2( ) ~ (1,  1).P Inv Gεσ −  
  The likelihood is altered by modifying the regression model, where the predicted values are adjusted 
to take into account the maximum possible score on the criterion. For students who would otherwise be 
predicted to score above 15 by the prediction equation (1), the out-of-bounds predicted score is changed 
to equal 15, which we designate to be the “adjusted predicted score”. Given the positive bivariate 
relationships, the prior distribution for β0 effectively serves to bound the predicted values below by 0. 
Estimation and convergence assessment were conducted using the same tools reported above for the 
original model.  
  We note that this modified model is similar in spirit to censored regression models (Tobin, 1958) for 
which ML and Bayesian approaches to estimation have been developed (Chib, 1992). However, censored 
regression models are limited in that they do not directly constrain the regression parameters and the 
proper interpretation of the parameters concerns the relationships between the predictors and the latent 
dependent variable. In the model adopted here, the use of the prior distribution in (5) directly constrains 
the intercept in accordance with substantive theory and yields parameters that concern the relationships 
between the predictors and the observed dependent variable. 
 

Results 
  Table 1 summarizes the results of the models. For the classical analysis, ML estimates, standard 
errors, and 95% confidence intervals are reported, as is R2. For the Bayesian analyses, history plots of the 
draws for each parameter and the Brooks-Gelman-Rubin diagnostic (Brooks & Gelman, 1998; Gelman & 
Rubin, 1992) were examined to determine that 1000 iterations were sufficient to burn-in the chains for 
both the traditional and modified regression model. For each model, the results in Table 1 were thus 
computed using iterations 1001 to 4000 for each of the three chains, for a total of 9000 iterations. 
Posterior means, standard deviations, and 95% credibility intervals are reported for the parameters and R2. 
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Table 1. Summary of Results of Classical and Bayesian Analyses for the primary dataset.          

 Classical Analysis of 
Traditional Model  

Bayesian Analysis of  
Traditional Model  

Bayesian Analysis of  
Modified Model 

 

Estimate SE 

95% 
Confidence 

Interval  
Posterior 

Mean 
Posterior 

SD 

95% 
Credibility 

Interval  
Posterior 

Mean 
Posterior 

SD 

95% 
Credibility 

Interval 
β0 -2.54 1.93 (-6.41, 1.34)  -2.54 1.96 (-6.32, 1.31)  1.07 0.93 (0.03, 3.47)
β1 0.66 0.17 (0.33, 0.99)  0.66 0.17 (0.33, 0.99)  0.40 0.12 (0.15, 0.63)
β2 0.38 0.10 (0.18, 0.59)  0.38 0.10 (0.17, 0.58)  0.39 0.10 (0.18, 0.59)
σε 1.95 0.28 (1.60, 2.37)  1.94 0.21 (1.59, 2.40)  1.98 0.21 (1.63, 2.43)
R2 0.60    0.59 0.06 (0.45, 0.68)  0.48 0.05 (0.35, 0.56)
 

Discussion 
  The results of the Bayesian analysis of the traditional model—in terms of point estimates and 
intervals—closely mirrored those of the classical analysis, as expected given the use of diffuse priors. By 
contrast, the results of the Bayesian analysis of the modified model differed from those of the other 
analyses. These differences are highlighted by the results for β1 and β0. In terms of the latter, whereas the 
classical and Bayesian analysis of the traditional model allows β0 to take on any real value, the use of the 
prior distribution in the modified model restricts the posterior distribution to be between zero and 15. This 
difference is summarized by the point estimates. The ML estimate and the posterior mean for β0 for the 
traditional model is –2.54 and the posterior mean for β0 for the modified model is 1.07. It is problematic 
to interpret the negative value for β0 in the traditional model, as it is impossible for a student to score less 
than zero on the third exam. By construction, this is precluded in the modified model via the prior 
distribution for β0. 
  Interestingly, the R2 values for each model make it appear at first glance that the modified model 
(posterior mean of R2 = 0.44) does not perform as well as the traditional models using ML or Bayesian 
analysis (R2 = 0.60 and 0.59, respectively). This is a necessary result, as the ML solution to the traditional 
model maximizes R2 in the sample on which the estimates are derived. However, to explore the difference 
in the quality of prediction, a second sample of 1950 students’ tests scores was employed. For each 
student, the point estimates (ML estimates or posterior means in Table 1) from each of the models were 
used to generate a prediction. The squared correlations between these predictions and the true values were 
then calculated as R2 statistics for this second dataset. When the regression model based on the original 50 
sample scores are used to predict the 1950 scores in this dataset, the R2 for each of the models is as 
follows: ML analysis of the traditional model, R2 = 0.43, Bayesian analysis of the traditional model, R2 = 
.43, Bayesian analysis of the modified model, R2 = 0.44. These three R2 values are not meaningfully 
different; the models performed equally well in predicting the outcome on the third exam in the larger 
sample. For all the models, using the prediction equation from the original sample to form predictions for 
new data naturally lowers each of these R2 values relative to the values in the original sample. However, 
the differences in the amount of the reduction in R2 when cross-validated with the second sample are 
revealing. The modified model displayed much less of this reduction than did the traditional models. This 
is interpreted as indicating that—in the original sample—the modified model provided the most realistic 
view of the predictive utility of the predictors in the population and future samples. Put another way, the 
traditional model capitalizes on variation in the sample data with which it is estimated and suffers when 
cross-validated on another dataset, whereas the modified model performs almost as well in estimating the 
cross-validating dataset as it does in the original sample. Note that using adjusted R2 for the analyses of 
the original model yielded 0.58 and 0.57 for the classical and Bayesian analyses, respectively. Though 
these values are smaller than the values of R2 reported in Table 1 (0.60 and 0.59), they still indicate 
considerably inflated predictive quality relative to the cross-validation. By incorporating existing 
substantive knowledge of the population, the modified model (necessarily) sacrifices predictive power in 
the original sample yet provides a more accurate estimate of the predictive accuracy for future samples.  
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  For comparative purposes the traditional model using 
ML was fit on this cross-validation dataset; the results are 
given in Table 2. Viewing the results from this larger 
dataset as more representative of the population, note that 
the estimates from this model are quite close to those from 
the results from the modified model of the original data set. 
Additionally, for β0, β1, and R2, the results are much closer 
to the modified model than the traditional model. From the 
perspective of the results from the second dataset, the 
estimates of the parameters (particularly β0 and β1) and the 
estimate of the quality of prediction (in terms of R2) of the modified model of the original dataset yield 
more accurate results than those from the traditional model. This is because the modified model augments 
the data by incorporating known properties of the substantive problem into the model. On a criterion that 
ranges from zero to 15 in the population, it is intellectually unsatisfying if not contradictory to allow a 
predicted value outside this range for the range of possible values of the predictors. In the current context, 
the intercept represents such a prediction. Substantively, as researchers knowledgeable about the context, 
we know that it is impossible for a student to have a negative total score on the third exam, regardless of 
performance on the first two exams. Yet the traditional models do not allow us to incorporate this 
substantive knowledge. The fact that the model-implied intercepts for the traditional models were 
negative in the original data emphasizes the point that those models capitalized on chance when fitting the 
best line for the observed data. A Bayesian approach—supported by the flexibility of MCMC 
estimation—allows this prior knowledge to be brought to bear in modeling.  
 In summary, this paper is intended to highlight an understudied advantage of a Bayesian approach to 
regression modeling, namely, the ease and flexibility with which substantive information may be 
incorporated to augment the information in the sample data when fitting models. We illustrate how that 
information can be modeled in the prior distribution (in the example, via the choice of the support of the 
prior distribution) and via the likelihood (in the example, by adjusting predicted values). The advantages 
manifest themselves in supporting inferences consistent with the population, which is particularly 
beneficial in the case of small sample analyses, in which sampling variability is more profound.  
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Table 2. Results of Classical Analysis for  
the cross-validation dataset. 
 

Estimate SE 
95%  

Confidence Interval
β0 1.39 0.32 (0.76, 2.02) 
β1 0.39 0.03 (0.33, 0.45) 
β2 0.38 0.02 (0.34, 0.42) 
σε 2.17 0.00 (2.17, 2.17) 
R2 0.44   
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Appendix 
Annotated WinBUGS code for running the traditional model 

 
model{ 
  
beta.0 ~ dnorm(0, .0001);   # prior for the intercept 
beta.1 ~ dnorm(0, .0001);   # prior for coefficient 1 
beta.2 ~ dnorm(0, .0001);   # prior for coefficient 2 
tau.e ~ dgamma(.01, .01);   # prior for the error precision 
sigma.e <- 1/sqrt(tau.e);   # standard deviation of the errors 
  
for(i in 1:N){ 
 y.prime[i] <- beta.0 + beta.1*x1[i] + beta.2*x2[i]; # predicted value  
 y[i] ~ dnorm(y.prime[i], tau.e);   # conditional distribution of y 
} 
 
} 

 

Annotated WinBUGS code for running the modified model 

 
model{ 
  
beta.0 ~ dunif(0, 15);   # prior for the intercept 
beta.1 ~ dnorm(0, .001);  # prior for coefficient 1 
beta.2 ~ dnorm(0, .001);  # prior for coefficient 2 
tau.e ~ dgamma(1, 1);   # prior for the error precision 
sigma.e <- 1/sqrt(tau.e);  # standard deviation of the errors 
  
for(i in 1:N){ 
 y.prime[i] <- beta.0 + beta.1*x1[i] + beta.2*x2[i]; # predicted value, adjusted next 
 y.prime.adj[i] <- step(y.prime[i] - 15)*15 + (1-step(y.prime[i] - 15))*y.prime[i]  
 y[i] ~ dnorm(y.prime.adj[i], tau.e);   # conditional distribution of y 
} 
 
} 
 


