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When multiple linear regression is used to develop prediction models, sample size must be large enough 

to ensure stable coefficients. If derivation sample sizes are inadequate, the models may not generalize 

well beyond the current sample. The precision efficacy analysis for regression (PEAR) method uses a 

cross-validity approach to select sample sizes such that models will predict as well as possible in future 

samples. The purposes of this study are (a) to verify further the PEAR method for regression sample sizes 

and (b) to extend the analysis to include an investigation of the effects of multicollinearity on coefficient 

estimates. 

 have so heavily emphasized the desirability of working with few variables and large sample 

sizes that some of my students have spread the rumor that my idea of the perfect study is one 

with 10,000 cases and no variables. They go too far.” (Cohen, 1990, p. 1305). Although 

Darlington (1990), among others, has noted that the best rule for choosing sample sizes is simply that 

more is better, 10,000 may be just a few more than typically necessary. Indeed, for both statistical and 

practical reasons, researchers should choose for their sample size “the smallest number of cases that has a 

decent chance of revealing a relationship of a specified size” (Tabachnick & Fidell, 2001, p. 117). When 

generalizability of a regression model is the concern, as it is when regression is used to develop prediction 

models; however, this concept translates as the smallest sample that will provide the reliability of results 

required across multiple samples. Especially in multiple linear regression, which is used for many 

purposes, necessary sample size depends heavily on the goals and design of the analysis. For example, “at 

one extreme, the null hypothesis ρ = 0 can often be tested powerfully with only a few dozen cases. At the 

other extreme, hundreds or thousands of cases might be needed to accurately estimate the sizes of higher-

order collinear interactions” (Darlington, 1990, p. 380). Consequently, the selection of adequate and 

appropriate sample sizes is not always an easy matter in regression. 

  The purpose of this study was to examine further the efficiency of the precision efficacy analysis for 

regression (PEAR) method for calculating appropriate sample sizes in regression studies where 

generalizability is a concern. Even though several methods currently exist to help researchers choose 

regression sample sizes, none use the straightforward approach taken here by the PEAR method that 

essentially uses an effect size within a single formula to determine the subject-to-variable ratio 

appropriate for the squared multiple correlation expected in a given study. The PEAR method, which is 

based on the algebraic manipulation of an accepted cross-validation formula, uses a cross-validity 

approach to sample size selection that limits the amount of expected shrinkage in R
2
 so that regression 

models will predict as well as possible for future subjects. 
 

Background 

 Unfortunately, many researchers apparently hold erroneous beliefs that smaller calculated probability 

values mean that “increasingly greater confidence can be vested in a conclusion that sample results are 

replicable” (Thompson, 1996, p. 27). Statistical significance indicates neither the magnitude nor the 

importance of a result (Shafer, 1993). Indeed, with a large enough sample size, a statistically significant 

result may be obtained even though there is very little relationship between the criterion and the predictor 

variables (Asher, 1993). 

 In particular, ordinary least squares multiple linear regression can result in a model being statistically 

significant, but with that model providing unrealistic estimates for the relationships under investigation. 

The process of maximizing the correlation between the observed and predicted criterion scores involves 

mathematical capitalization on chance sampling error variation. When the regression equation is used 

with a second sample, or future cases from the same population, it is most likely that the model will not 

perform as well as it did in the original sample; consequently, the estimate of the population multiple 

correlation will decrease in the second sample. 

Sample sizes for multiple regression, particularly when used to develop prediction models, must be 

chosen so as to provide adequate power both for statistical significance and also for generalizability of the 
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model. From a statistical power perspective, a study with insufficient sample size stands a large chance of 

committing a Type II error. From a generalizability viewpoint, an insufficient sample leads to results that 

may apply only to the current sample and will not be useful for application to other samples. In either 

case, time, effort, and money would have been spent arriving at results that are inconclusive or useless. 

Probably most unfortunate are the cases where researchers use what they think is a good sample size rule 

when, in fact, it is nothing more than a groundless convention that ignores effect size completely or a 

statistical power approach that will not provide the sample sizes necessary for generalization. 
 

Existing Sample Size Methods for Regression 

 Historically, there are three primary types of sample size methods available for multiple linear 

regression: conventional rules, statistical power approaches, and cross-validation approaches. The 

following sections describe each briefly, with emphasis on problems associated with each. 
 

 Conventional Rules. Because cross-validity formula estimates are primarily functions of sample size 

and the number of predictors, conventions have evolved that are based on the premise that with a large 

enough ratio of subjects to predictors, the sample regression coefficients will be reliable and will closely 

estimate the true population values (Miller & Kunce, 1973; Pedhazur & Schmelkin, 1991; Tabachnick & 

Fidell, 2001). For example, Stevens (2002) suggested a ratio of 15 subjects for each predictor (e.g., with 3 

predictors 45 subjects are required) and Pedhazur and Schmelkin (1991) recommended      , where k 

is the number of predictors. Others have provided rules that combine some minimum value with a 

subject-to-predictor ratio, including          (Knapp & Campbell-Heider, 1989),        

(Harris, 1985), and         (Green, 1991). Sawyer (1982) developed a formula where setting an 

inflation factor to a constant of 5% results in a sample size recommendation of             . 

 Unfortunately, because most of these rules lack any measure of effect size, they can only be effective 

at specific—usually unknown—effect sizes. For example, a      subject-to-predictor ratio is acceptable 

only if the population squared multiple correlation is moderately large (i.e., over .40); otherwise, as the 

true squared multiple correlation decreases, expected cross-validity shrinks so much as to make the 

prediction model worthless (Brooks, 1998). For example, Stevens (2002) is explicit in describing how he 

derived his recommendation of a      ratio based on Park and Dudycha’s (1974) tables, but others are 

not so clear. Over time, the evolution of these rules causes their origins and rationales to become fuzzy. 

For example, someone who recommended a      rule may have analyzed datasets that coincidentally all 

had an    near .50. 
 

 Statistical Power Methods. Statistical power is the probability of rejecting the null hypothesis when 

the null hypothesis is indeed false. Several scholars have proposed regression sample size methods based 

on statistical power (e.g., Cohen, 1988; Cohen & Cohen, 1983; Green, 1991; Kraemer & Thiemann, 

1987; Milton, 1986). From a statistical power perspective, multiple linear regression provides several 

alternative statistical significance tests that can be the basis for sample size selection. Two statistical tests 

are most common in practice: (a) the test of the full model (i.e., the overall or omnibus test), and (b) the 

test of the individual regression coefficients in the model. 

 Unfortunately, sample sizes that provide adequate statistical power to reject a regression null 

hypothesis may not provide the stable regression coefficients required for prediction and model-building. 

Therefore, choosing a sample size based on statistical power may not ensure that a regression function 

will generalize to other samples from the target population, which is the crucial factor in determining the 

validity of regression models used for prediction. That is, adequate sample sizes for statistical power tell 

us nothing about the number of subjects needed to obtain precise estimates of stable, meaningful 

regression weights (Cascio, Valenzi, & Silbey, 1978; Darlington, 1990). Although Gatsonis and Sampson 

(1989), Darlington (1990), and Maxwell (2000) have proposed methods for cross-validation using a 

random model approach, their methods are also based on a statistical power approach to sample size 

determination rather than a cross-validity approach. 
 

 Cross-Validity Methods. From a random model perspective, both the predictors and the criterion are 

sampled together from what is usually assumed to be a joint multivariate normal distribution. The random 

model of regression recognizes and accounts for extra variability because, in another replication, different 

values for the independent variables will be obtained (Gatsonis & Sampson, 1989). The random model is 
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usually more appropriate for social scientists because they typically measure random subjects on 

predictors and a criterion simultaneously and; therefore, are not able to fix the values for the independent 

variables (Darlington, 1990; Drasgow, Dorans, & Tucker, 1979; Herzberg, 1969; Park & Dudycha, 1974). 

Park and Dudycha (1974) noted that such a cross-validation approach is applicable to both the random 

and the fixed models of multiple linear regression; however, they emphasized the random model, cross-

validation approach. Unfortunately, they published tables that were limited to only a few possible 

combinations of squared correlation and number of predictors. Additionally, there is no clear rationale for 

how to determine the best choice of either tolerance or the probability to use when consulting the tables 

(although Stevens, 2002, implied through example that .05 and .90, respectively, are acceptable values). 

More recently, Algina and Keselman (2000) used Monte Carlo methods to develop tables that list the 

sample sizes required to ensure that cross-validity estimates maintain a desired level relative to sample    
statistics. Their theoretical development of the study appears to be similar to the work done by Park and 

Dudycha and; indeed, their tables provide essentially the same sample sizes as those created by Park and 

Dudycha. The PEAR method follows a similar theoretical approach as both these methods. 
 

  Other Methods. Darlington (1990) has provided a method to calculate the sample size necessary for a 

validation sample; that is, Darlington’s Fisher z method provides recommendations for the second sample 

used to verify the regression model derived from the original sample rather than for the initial, derivation 

sample. Although several scholars have proposed methods to determine sample sizes for better estimation 

of the population squared multiple correlation or change in squared multiple correlation (Algina & 

Keselman, 2000; Algina, Keselman, & Penfield, 2007; Algina & Moulder, 2001; Algina & Olejnik, 2000, 

2003; Darlington, 1990; Knofczynski & Mundfrom, 2008) or squared semi-partial correlations (Algina, 

Keselman, & Penfield, 2008; Algina, Moulder, & Moser, 2002), this type of approach is not useful for 

determining sample sizes needed for better estimation of cross-validity coefficients. Kelley and Maxwell 

(2003) have developed a sample size method based on obtaining regression coefficients based on what 

they have called accuracy in parameter estimation (AIPE). Although it relies on precision of parameter 

estimates rather than statistical power, the AIPE approach does not address cross-validity directly.  
 

Development of the PEAR Method 

  The primary goal of the PEAR method is to reduce the upward bias in   , thereby enhancing the 

cross-validity potential of the regression model so that results are less likely to be sample specific. That is, 

the PEAR method answers the question: “What is the minimum sample size that will yield a regression 

equation that will cross-validate with minimal shrinkage in another sample and thereby assure more stable 

regression coefficients?” 

  In a sense, the PEAR method can be viewed as cross-validation in reverse. That is, instead of 

determining by how much the sample    will shrink due to the sample size, the PEAR method determines 

how large a sample is required to keep    from shrinking too much. Like the work done by Park and 

Dudycha (1974), the theory underlying the PEAR method for sample size selection is that the researcher, 

knowing that cross-validation    values are typically lower than the sample    statistics (the difference is 

typically called shrinkage), can set a tolerance limit as to the amount of shrinkage expected to occur. The 

concepts of cross-validity, precision efficacy, effect size, and shrinkage tolerance serve as the foundation 

for using the PEAR method to, in Stevens’ (2002) terms, “keep the shrinkage fairly small” (p. 146). 
 

Cross-Validity Shrinkage 

  “Although we may determine from a sample    that the population    is not likely to be zero, it is 

nevertheless not true that the sample    is a good estimate of the population   ” (Cohen & Cohen, 1983, 

p. 105). Population   , or   , is the unknowable squared multiple correlation that would be obtained 

between the criterion variable and the specified linear combination of predictors if both were measured in 

the population. Because this parameter is useful in estimating the strength of the relationship between the 

criterion variable and a set of regressors in the population, it is of particular interest in descriptive and 

explanatory research (Kromrey & Hines, 1995). Sample    is a positively biased estimator of   ; 

however, such that the expected value of    given by Herzberg (1969) is: 
 

             (  )     
 

   
(    ) ,       (1) 
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where k is the number of predictors and N is the sample size. For example, if the null hypothesis is true 

and therefore      with 5 predictors and     , we would expect a sample    to be near .50 rather 

than near 0; if        with 5 predictors and     , we would expect a sample    close to .75. To 

account for this bias, most computer packages report an adjusted    calculated using a formula most 

frequently attributed to Wherry: 

             
    (

   

     
) (    )         (2) 

 

where k is the number of predictors and N is the sample size. For example, a researcher who computed 

sample        with 60 subjects and 4 predictors might use the adjusted    formula to conclude that, in 

the population, the proportion of variation accounted for in the criterion by the predictors is actually 

closer to   
       . 

 Although   
  is usually appropriate and frequently reported for questions concerning explanation and 

description, most problems of prediction and generalizability require a different type of correction 

formula, commonly called cross-validity formulas (Darlington, 1990). Herzberg (1969) noted that for 

application “one is more interested in how effective the sample regression function is in other samples” 

(p. 4). Indeed, the development of prediction models that are useful in future samples is one of the most 

common and most important uses of regression equations in the social sciences (Huberty, 1989; 

Weisberg, 1985). From this perspective of generalizability, an insufficient sample may lead to results that, 

even though statistically significant, apply only to the current sample and will not be useful for 

application to other samples. Mosteller and Tukey (1968) wrote that “users have often been disappointed 

by procedures, such as multiple regression equations, that ‘forecast’ quite well for the data on which they 

were built. When tried on fresh data, the predictive power of these procedures fell dismally” (p. 110). 

Researchers, therefore, should use and report strategies that evaluate the replicability of their results, 

which is necessary to provide confidence in the results; one way to gauge this generalizability is through 

an estimate of cross-validity. 

  Cross-validity shrinkage is the size of the decrease in the sample    when an appropriate cross-

validity formula is applied. Cross-validity shrinkage, ε, is defined as the difference between sample    
and the cross-validity estimate,   

 : 

                   
             (3) 

 

Darlington (1990) has defined shrinkage as the difference between a regression model’s apparent validity, 

as measured by   , and its actual predictive cross-validity. Essentially, shrinkage is what some authors 

(e.g., Cattin, 1980; Mosteller & Tukey, 1968; Stevens, 2002) call the loss in predictive power that occurs 

when small samples cause a reduction in    such that  (  )       
  (Herzberg, 1969). The squared 

cross-validity coefficient,   
 , is considered to be the squared multiple correlation between the actual 

population criterion values and the scores predicted by the sample regression equation when applied 

either to the population or to another sample (Huberty & Mourad, 1980; Schmitt, Coyle, & 

Rauschenberger, 1977). 

 Cross-validity formulas, which are symbolized by   
  and based on estimates of the mean squared 

error of prediction (Darlington, 1968; Herzberg, 1969), provide more accurate estimates of   
  than do the 

sample    values. A number of cross-validity formulas have been proposed (e.g., Browne, 1975; 

Darlington, 1968; Herzberg, 1969; Lord, 1950; Nicholson, 1960; Rozeboom, 1978; Stein, 1960). 

Formula-based methods of cross-validity estimation are often preferred to empirical cross-validation (e.g., 

data splitting) so that the entire sample may be used for model-building. Indeed, several formula estimates 

have been shown to be at least as accurate as empirical cross-validation techniques (Cattin, 1980; 

Drasgow et al., 1978; Morris, 1981; Rozeboom, 1978; Schmitt et al., 1977). When cross-validity is 

estimated using a formula, any finite sample size will result in a cross-validity estimate,   
 , smaller than 

the sample   . 
For example, using the random model cross-validity formula developed independently by Stein (1960) 

and Darlington (1968), 

          
    (

   

     
) (

   

     
) (

   

 
) (    ) ,      (4) 
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where k is the number of predictors and N is the sample size, a researcher who computed sample    
    with 60 subjects and 4 predictors would calculate a shrunken   

        (note that   
        for 

these conditions). Although the researcher might explain 40% of the dependent variable variance in the 

current sample, or perhaps 36% in the population, the cross-validity estimate suggests that less than 30% 

of the variance will be explained when the same regression model is applied to future samples, which is 

shrinkage of 10%. The cross-validity estimates result in more shrinkage because they must correct for the 

sampling error present not only in the derivation sample but also in some future sample (Snyder & 

Lawson, 1993). 

 It should be noted that researchers are often interested in both prediction and description; that is, they 

would like to know not only how well the regression model will work in future samples, but also would 

like a relatively accurate estimate of the population    value. In such cases, researchers should report both 

a cross-validity estimate and an adjusted    estimate. These formulas estimate different parameters and 

are not interchangeable. In large normally distributed samples, the mean, median, and mode converge—

but no one would argue that these are equivalent measures of central tendency. Similarly,   ,   
 , and   

  

converge with large samples, but   
  provides better estimates of the true population    than does any 

cross-validity estimate (e.g., Carter, 1979). As Stevens (2002) indicated, however, “use of the Wherry 

formula would give a misleadingly positive impression of the cross validity predictive power of the 

[regression] equation” (p. 118). 

 Finally, because researchers have these cross-validity formulas available to correct for inadequate 

sample sizes, the importance of sample size for generalizability of regression results is not immediately 

obvious. By limiting the upward bias of sample    values; however, a regression model produced using a 

larger, more adequate sample size will better estimate both    and   
 . For example, the true population 

  
  in the example cited above is probably larger than .2972; indeed, the true    may be larger than .3564 

because the small sample size limited the accuracy of these estimates. 
 

Precision Efficacy 

 The term precision efficacy (PE) is proposed to describe how well a regression model is expected to 

perform when applied to future subjects relative to its effectiveness in the derivation sample. The formal 

definition of precision efficacy proposed here is: 

                
  
 

  
 ,           (5) 

 

where    is the sample proportion of variation accounted for and   
  is the sample cross-validity estimate. 

Precision efficacy can be considered a measure of the cross-validitional power of a regression model: 

higher precision efficacy indicates more efficiency in term of cross-validity. 

  Because they desire regression models that generalize well to other samples, researchers who develop 

prediction models should hope to limit shrinkage as much as possible relative to the sample    they 

obtained. Using an example from Stevens (2002, p. 118), 62% shrinkage from a sample        to 

  
       occurs based on Formula 4 with a sample size of 50; but if the sample size had been 150, there 

would only have been 16% shrinkage to   
      . Precision efficacy in the first case would be    

     and in the second case,        . Consequently, even if the    value were statistically significant 

in the former case, the results may not be expected to perform well enough for the model to be useful with 

future samples. Larger precision efficacy values imply that a regression model is expected to generalize 

better for future samples; that is, high PE values indicate that the regression model will work in other 

samples nearly as well as it did in the derivation sample. 
 

Effect Size 

 In multiple regression research, perhaps the most common effect size is the squared multiple 

correlation,   . Effect size enables a researcher to decide a priori not only what size relationship will be 

necessary for statistical significance, but also what relationship should be considered for practical 

significance (Hinkle & Oliver, 1983). For example, because under 10% explained variance may not 

provide any new, useful knowledge in a field, a researcher may choose a minimum practical effect size of 

20%. In multiple regression; however, the researcher must remember the effects of shrinkage. That is, if a 

researcher chooses 20% explained variance (i.e.,       ) as an effect size worthy of study, that 
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researcher does not want a corrected sample estimate (e.g.,   
  or   

 ) to be .05. No matter how it is 

chosen, an expected effect size must be determined a priori. In many cases, the researcher may have some 

basis for deciding the smallest correlation that would be interesting to find, based perhaps on experience, 

previous research, pilot studies, or practical significance. Researchers should remember, though, that 

“meta-analyses often reveal a sobering fact: effect sizes are not nearly as large as we all might hope” 

(Light, Singer, & Willett, 1990, p. 195). 

 Stevens (2002) emphasized that the magnitude of the population squared multiple correlation 

“strongly affects how many subjects will be needed for a reliable regression equation” (p. 146). Stevens 

demonstrated that 15 subjects per predictor are needed to keep shrinkage small if .40 is used as    in the 

Stein cross-validity formula, but that fewer are needed if       . Similarly, Huberty (1994) noted that 

“the magnitude of    should be considered in addition to     ratios when assessing the percent of 

shrinkage of    that would result in the estimation process. That is, a general rule of thumb for a desirable 

    ratio (say,     ) may not be applicable across many areas of study” (p. 356). Indeed, all sample size 

methods that account for effect size agree: as effect size decreases, sample size must increase 

proportionately (e.g., Cohen, 1988; Darlington, 1990; Milton, 1986; Park & Dudycha, 1974; Gatsonis & 

Sampson, 1989). Therefore, the first task in a sample size analysis for regression must be the 

identification of the magnitude of the multiple correlation expected in the population. Unfortunately, as 

Schafer (1993) noted, “if one knew the answer to that question one would not need to do the study, but a 

value is needed anyway” (p. 387).  

When researchers have no empirical basis for deciding on an effect size, Light et al. (1990) offered as a 

starting point that effect size should be “the minimum effect size you consider worthy of your time” (p. 

194). Stevens (2002) has suggested that        is a reasonable guess for social science research; 

Rozeboom (1981), however, believed that        is an upper limit for reasonable effect sizes. Cohen 

(1988) suggested that        is a large regression effect size (       and        are Cohen’s 

medium and small effect sizes, respectively). Indeed, because an effect of        seemed unreasonably 

large to Schafer (1993), he recommended that it serve as an upper limit only as a last resort, when no 

other rationale is available. 
 

Shrinkage Tolerance 

 Simply put, shrinkage is the size of the decrease in the sample    when an appropriate cross-validity 

formula is applied. Shrinkage tolerance, an a priori definition of acceptable shrinkage, can also be 

calculated using Equation 3, but using a priori estimates of effect size rather than estimates calculated 

from the sample. Here, shrinkage tolerance (ε, but set a priori) can be considered either absolute or 

relative. In an absolute sense,   can be set to a specific value regardless of the effect size expected in a 

given study. That is, no matter what    is to be used as an effect size, the researcher may wish that the 

expected shrinkage stay within a given distance from the sample    value. For example, if    turns out to 

be .50 and the researcher has chosen      ,   
  is desired to be near .40; but if       , the researcher 

is willing to accept an   
  of .15 when      . Algina and Keselman (2000) and Park and Dudycha 

(1974) used this idea of absolute shrinkage tolerance as an accuracy criterion. Although useful in some 

contexts, the absolute loss in predictive power does not provide any sense of the magnitude of loss as 

compared to the original sample   . For example, a loss in predictive power of .10 suggests drastically 

different implications for generalizability if       , where   
  would be .40 (a proportional decrease of 

20%), than if       , where   
      (a proportional decrease of 40%). Therefore, in a relative sense, 

shrinkage tolerance can be set a priori to some proportional decrease in the sample   . For example, if 

sample        with a priori       ,   
  will be expected to shrink only by 20% to   

      (i.e.,   
  

will be 80% as large as   ), or        will shrink only to   
     . 

 

  Proportional Shrinkage. Proportional shrinkage (PS) is defined as the amount of shrinkage relative 

to    that occurs after a cross-validity estimate is calculated from the data. Proportional shrinkage is 

calculated as 

    
     

 

  
       (6) 
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For example, if sample        and   
     , the proportional shrinkage would be calculated to be .48, 

suggesting limited generalizability for the regression model because    shrank by almost half. Lower 

proportional shrinkage values imply better generalizability. 

 Employing Equation 3, the formula for calculating precision efficacy, Equation 5, can be written as 

    , or 

      (
 

  
)      (7) 

 

For example, setting the predetermined acceptable shrinkage level at        provides       . 

Solving Equation 7 for   and replacing the actual sample    with   , which is the estimated a priori 

effect size chosen by the researcher, results in the formula 

      (  )(  )       (8) 

Using this formula, when an effect size has been chosen along with a desired level of precision efficacy, 

the acceptable shrinkage tolerance can be determined. For example, if the researcher wishes to obtain a 

cross-validity estimate expected to be not less than 80% of the sample   , a priori precision efficacy 

would be .80. If the effect size is chosen to be       , then shrinkage tolerance for this example would 

be calculated to be      . 

 

The PEAR Formula 

 The formula used in the PEAR sample size method was developed based on a cross-validity formula 

by Lord (as cited in Uhl & Eisenberg, 1970): 

   
    (

     

     
) (    )       (9) 

 

where N is sample size and k is the number of predictors. Uhl and Eisenberg (1970, p. 489) found this 

“relatively unknown formula” (their interpretation of Lord’s 1950 paper differs from others) to give 

accurate estimates of “cross-sample” shrinkage, regardless of sample size and number of predictors. 

Algebraic manipulation of Equation 9 to solve for sample size yields the formula at the foundation of the 

PEAR method: 

   (
       

 
) (   )      (10) 

 

where   is the a priori shrinkage tolerance, k is the number of predictors, and    is the a priori effect 

size. Shrinkage tolerance allows researchers to decide how closely to estimate   
 , whether absolutely 

(e.g.,      ) or relatively (e.g.,       ). The level of precision efficacy itself is embedded within the 

shrinkage tolerance value in Equation 10 (through Equations 7 and 8). Note that when a proportional 

definition of shrinkage tolerance is used, Equation 10 simplifies slightly; for example, if        is used 

for desired       , then Equation 10 simplifies to 

   (
       

     
)(   )      (11) 

 

 Examples. If a researcher has three predictors and wants to ensure that   
  is within .05 of the 

expected sample    value of .50 (i.e., the effect size is       ),   would be set at .05 and Equation 10 

will provide a recommended sample size of 84. The implied precision efficacy of this result is based on 

the shrinkage tolerance value; using Equation 7,       . If the researcher wishes to maintain shrinkage 

of about 20% with six predictors and an effect size of .40, Equation 11 provides a recommended sample 

size of 112. Finally, if a researcher wants an   
  estimate to be at least 87% of the expected effect size of 

      
 
with four predictors, precision efficacy should be set to .87 and, based on Equation 8,       . 

Substituting these values into Equation 10 calculates a necessary sample size of 73.12. Therefore, at least 

74 subjects should provide a large enough sample so that   
  is expected to be at least .46, which is 87% 

of the expected    of .53. 

 It is worth noting that the PEAR method formula essentially results in subject-to-variable ratios 

appropriate for given effect sizes (i.e., the PEAR method results in a subject-to-variable ratio rather than 

the more commonly used subject-to-predictor conventional rules). For example, using the criteria in Table 

1, where      (       )    and PS=1-PE, at an effect size of expected       , the PEAR 
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method suggests a subject-to-variable ratio of approximately      for PE = .80. With the same criteria at 

an expected       , however, the number of cases required per variable increases to      (see the 

       column in Table 1). 

 Because previous work (Brooks, 1998; Brooks & Barcikowski, 1994, 1995, 1999) has found the 

PEAR method to be superior to a number of regression sample size methods (e.g., Cohen, 1988; Gatsonis 

& Sampson, 1989; Green, 1991; Park & Dudycha, 1974; Pedhazur & Schmelkin, 1991; Sawyer, 1982; 

Stevens, 1996) in limiting cross-validity shrinkage to given acceptable a priori levels of PE, the current 

study examines impact of the PEAR method sample sizes on the variance of the regression coefficients. 

First, does the PEAR method recommend sample sizes that enable the derivation of reliable regression 

coefficients (that is, coefficients with small standard errors)? In order to examine the stability of the 

coefficients, the standard errors of the coefficients are of primary interest. One would expect that a model 

based on a proper sample size will provide more reliable regression weights and; therefore, predict better 

for future subjects. Second, the impact of multicollinearity is investigated as it relates to sample sizes 

recommended by the PEAR method. 

Method 

 A Monte Carlo analysis of precision efficacy rates was performed. The three PEAR method a priori 

precision efficacy levels of .60, .70, and .80 (which correspond to squared cross-validity estimates 

expected to be at least 60%, 70%, and 80% of the sample    values, respectively) were considered to be 

individual methods for the analysis. That is, sample sizes were calculated using these PE levels with the 

PEAR method. Comparisons of the varying precision efficacy levels of the PEAR method helped to 

determine the effects of larger and smaller sample sizes on the regression coefficients. 

 Three factors were manipulated to comprise the testing situations for the study. First, three effect 

sizes that represent simultaneously the estimated population squared multiple correlation    and the true 

population    were set at: .10, .25, and .40. The numbers of predictors used to define the models in this 

study were 3 predictors (i.e., 4 variables including the criterion), 7, 11, and 15 predictors. Finally, four 

multicollinearity conditions were explored in the study: (1) extensive multicollinearity was defined as 

over one-half of the predictors with         , (2) moderate multicollinearity was defined as one-quarter 

of the predictors involved in such a multicollinear relationship, (3) for all predictors in the trivial 

multicollinearity condition,         , and (4) the correlation matrix for the orthogonal condition 

contained zero correlations among all predictors. 
 

Table 1. Subjects per Variable
a
 Sample Size Ratios from the PEAR Method and the 15:1 Ratio 

            Precision Efficacy (PE) 

ρ
2
 .60 .70 .80 15:1 ratio 

 

.05 87.4 116.2 173.7 15.0 

.10 41.9 55.5 82.8 15.0 

.15 26.8 35.3 52.5 15.0 

.20 19.2 25.2 37.4 15.0 

.25 14.6 19.2 28.3 15.0 

.30 11.6 15.1 22.2 15.0 

.35 9.4 12.3 17.9 15.0 

.40 7.8 10.1 14.6 15.0 

.45 6.6 8.4 12.1 15.0 

.50 5.5 7.1 10.1 15.0 

.55 4.7 6.0 8.4 15.0 

.60 4.0 5.0 7.1 15.0 

.65 3.4 4.3 5.9 15.0 

.70 2.9 3.6 4.9 15.0 

.75 2.5 3.0 4.0 15.0 

Note. Here, ε=ρ
2
-(PE-.1PS)ρ

2
, where PS=1-PE and ρ

2
 is the estimated population value. To calculate N, 

multiply the number of variables by the tabled value and round to the next larger integer if necessary. 
a
 number of variables is (k+1), where k is the number of predictors.  
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 A Delphi Pascal program was created for an original algorithm used to create 48 population 

correlation matrices (i.e., 3x4x4) to meet the above criteria required by this study. These correlation 

matrices were treated as population correlation matrices from which joint multivariate normal data from a 

random model perspective were generated for each sample in the study. Delphi Pascal procedures were 

developed to generate sample data through a process that converted uniformly distributed pseudorandom 

numbers created by the L’Ecuyer (1988) combined multiplicative congruential generator (translated from 

Press, Teukolsky, Vetterling, & Flannery, 1992) into multivariate-normally distributed data using the 

Box-Muller transformation (adapted from Press, Flannery, Teukolsky, and Vetterling, 1989) and the 

Cholesky decomposition (adapted from Nash, 1990; recommended by several scholars including Bratley, 

Fox, & Schrage, 1987; Chambers, 1977; Kennedy & Gentle, 1980; Morgan, 1984; Ripley, 1987; 

Rubinstein, 1981). Finally, these procedures were incorporated into a Delphi Pascal program that 

performed the Monte Carlo simulation with 10,000 iterations. 

 During program execution, several statistics were computed and recorded. For each sample, the 

program performed a standard multiple linear regression analysis. The program first calculated the 

necessary information from the full-model regression with all predictors entered simultaneously for each 

sample (e.g., PE,   , Wherry   
 , Stein   

 ,   ,     ). Both   
  and   

  were set equal to zero when they 

were negative, as recommended by Cohen and Cohen (1983) and Darlington (1990). These data were 

averaged over the number of iterations for each condition. Finally, counts were made for several statistics 

regarding their significance or accuracy. For example, statistical significance at       was tested for 

both the full regression model and the regression coefficients, as was the accuracy of PE and   
 . 

 In addition to these raw statistics, the appropriate calculations were made and data were collected as 

required for bias, root mean squared error (RMSE), Relative Efficiency, and the standard deviations of 

several key estimates. Statistical bias is defined as  

       ( ̂)        (12) 

 where θ is the known population parameter and  ( ̂) is the expected value of the sample statistic, which 

is the average of the statistic over infinite samples (Drasgow et al., 1979; Kromrey & Hines, 1995; 

Mooney, 1997). RMSE provides an indication of the statistic’s variability: 

     ( ̂)  √∑
(  ̂   )

 

 
      (13) 

where θ is the known population parameter (as set in the computer algorithm),    is the estimate of that 

parameter obtained in sample i of the Monte Carlo simulation, and N is the total number of samples taken 

in the Monte Carlo study (Darlington, 1996; Drasgow et al., 1979; Mooney, 1997). Mooney defined 

Relative Efficiency as the ratio of two RMSE values, multiplied by 100 to convert it to a percentage: 

                         (
    (  ̂)

    (  ̂)
)      (14) 

where   ̂ and   ̂ are two different estimates the same parameter. Values under 100 would indicate the 

superiority of estimator   ̂ (i.e.,   ̂ with smaller RMSE). 
 

Results 

 The PEAR method recommended sample sizes that provided reliable regression coefficients. More 

specifically, higher PE levels provided more stable coefficients. For the conditions with three predictors, 

Table 2 provides the standard errors of the coefficients for the four sample size methods; similarly, Table 

3 provides this information for seven predictor models. These tables show that the PE levels that 

recommended larger samples consistently resulted in smaller standard errors of the coefficients, 

regardless of the number of predictors or effect size. Although the problem of multicollinearity was not 

cured by the PEAR method, higher levels of PE do indeed help to alleviate the effects. The results not 

presented showed similar patterns for the 11 and 15 predictor cases as well. That is, across all studied 

conditions, multicollinearity did increase standard errors as expected, but larger sample sizes tended to 

mitigate the impact. 

 Table 4 provides the relative efficiency of the methods compared for all numbers of predictors, all 

multicollinearity levels, and all effect sizes. For this table, the standard errors for the individual predictors 

were used for comparison because, for unbiased estimates such as the regression coefficients, RMSE   
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Table 2. Average Standard Errors of the Standardized Coefficients (SEBj) for Three Predictors 

Multicollinearity  ρ
2
  Method N SEB1 SEB2 SEB3 

Orthogonal .40 PE = .80  59 .102 .103 .094 

  PE = .70 40 .126 .126 .118 

  PE = .60 31 .147 .147 .136 

 .25 PE = .80 113 .080 .080 .079 

  PE = .70 77 .098 .099 .097 

  PE = .60 59 .114 .113 .111 

 .10 PE = .80 331 .052 .052 .050 

  PE = .70 222 .064 .064 .062 

  PE = .60 168 .074 .073 .071 

Trivial .40 PE = .80 59 .108 .108 .096 

  PE = .70 40 .134 .135 .120 

  PE = .60 31 .155 .155 .139 

 .25 PE = .80 113 .139 .082 .136 

  PE = .70 77 .170 .100 .166 

  PE = .60 59 .195 .115 .193 

 .10 PE = .80 331 .071 .066 .055 

  PE = .70 222 .089 .083 .068 

  PE = .60 168 .101 .095 .079 

Moderate .40 PE = .80 59 .202 .254
 a
 .140 

  PE = .70 40 .254 .312
 a
 .173 

  PE = .60 31 .295 .365
 a
 .201 

 .25 PE = .80 113 .154 .213
 a
 .146 

  PE = .70 77 .189 .260
 a
 .177 

  PE = .60 59 .218 .302
 a
 .210 

 .10 PE = .80 331 .114 .151
 a
 .090 

  PE = .70 222 .140 .187
 a
 .113 

  PE = .60 168 .160 .213
 a
 .128 

Extensive .40 PE = .80 59 .183 .264
 a
 .308

 a
 

  PE = .70 40 .228 .327
 a
 .382

 a
 

  PE = .60 31 .264 .387
 a
 .453

 a
 

 .25 PE = .80 113 .129 .381
 a
 .407

 a
 

  PE = .70 77 .158 .466
 a
 .499

 a
 

  PE = .60 59 .179 .537
 a
 .573

 a
 

 .10 PE = .80 331 .128
 a
 .124

 a
 .065 

  PE = .70 222 .156
 a
 .152

 a
 .080 

  PE = .60 168 .180
 a
 .176

 a
 .093 

 a
 indicates predictors with VIF> 5.0 (i.e., predictors involved in multicollinearity). 

 

approximates the standard error. To create Table 4, the relative efficiency of each predictor was 

calculated and then those values were averaged for the predictor set. It would not have been appropriate to 

average the results for Table 4 across predictors if the relative efficiency results had not been so 

consistent (as can be calculated from Table 2). 

 There is a striking similarity between the relative efficiency statistics in Table 4 and those found by 

Brooks (1998) for the correlation statistics. Specifically, the relative efficiency statistics show that, 

regardless of multicollinearity level, the magnitude of the standard errors of the coefficients from the 

       level were, on average, about 19% smaller than those from the        level. Similarly, 

Relative Efficiency comparisons of the        and        levels showed        to be 

approximately 13% more efficient in terms of standard errors.  
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Table 3. Average Standard Errors of the Standardized Coefficients (SEBj) for Seven Predictors 

Multicollinearity ρ
2
  Method     N      SEB1      SEB2     SEB3     SEB4      SEB5      SEB6      SEB7  

 

Orthogonal .40 PE = .80 117 .074 .073 .073 .068 .073 .074 .074 

  PE = .70 81 .091 .089 .089 .083 .089 .091 .091 

  PE = .60 63 .105 .103 .102 .098 .105 .104 .105 

 .25 PE = .80 226 .058 .058 .056 .056 .058 .058 .058 

  PE = .70 153 .071 .072 .069 .069 .071 .072 .071 

  PE = .60 117 .084 .083 .080 .080 .082 .083 .082 

 .10 PE = .80 663 .036 .037 .037 .036 .037 .037 .037 

  PE = .70 444 .044 .044 .045 .045 .046 .046 .045 

  PE = .60 335 .051 .052 .053 .052 .052 .053 .052 

Trivial .40 PE = .80 117 .100 .102 .100 .097 .109 .091 .081 

  PE = .70 81 .123 .124 .123 .119 .135 .111 .099 

  PE = .60 63 .142 .144 .141 .138 .156 .126 .116 

 .25 PE = .80 226 .070 .085 .070 .064 .090 .071 .079 

  PE = .70 153 .087 .105 .086 .078 .109 .086 .098 

  PE = .60 117 .099 .121 .098 .089 .127 .099 .113 

 .10 PE = .80 663 .043 .042 .050 .061 .052 .057 .054 

  PE = .70 444 .053 .052 .060 .075 .065 .069 .066 

  PE = .60 335 .060 .061 .071 .086 .075 .080 .076 

Moderate .40 PE = .80 117 .192
 a
 .137 .141 .177

 a
 .154 .094 .130 

  PE = .70 81 .236
 a
 .170 .174 .219

 a
 .188 .116 .158 

  PE = .60 63 .270
 a
 .191 .200 .249

 a
 .215 .132 .182 

 .25 PE = .80 226 .129 .089 .130
 a
 .079 .080 .074 .180

 a
 

  PE = .70 153 .159 .109 .160
 a
 .097 .099 .092 .220

 a
 

  PE = .60 117 .184 .126 .187
 a
 .113 .114 .107 .258

 a
 

 .10 PE = .80 663 .086
 a
 .043 .098

 a
 .083 .060 .047 .041 

  PE = .70 444 .103
 a
 .052 .120

 a
 .101 .072 .058 .051 

  PE = .60 335 .121
 a
 .061 .139

 a
 .118 .084 .066 .059 

Extensive .40 PE = .80 117 .118 .131 .166
 a
 .168

 a
 .256

 a
 .228

 a
 .132 

  PE = .70 81 .143 .161 .199
 a
 .204

 a
 .306

 a
 .273

 a
 .158  

  PE = .60 63 .167 .187 .233
 a
 .236

 a
 .359

 a
 .318

 a
 .184 

 .25 PE = .80 452 .093 .168
 a
 .147

 a
 .150

 a
 .097 .121 .147

 a
 

  PE = .70 307 .113 .207
 a
 .181

 a
 .184

 a
 .118 .150 .179

 a
 

  PE = .60 234 .131 .237
 a
 .207

 a
 .213

 a
 .139 .173 .205

 a
 

 .10 PE = .80 663 .153
 a
 .136

 a
 .083 .106

 a
 .063 .047 .207

 a
 

  PE = .70 444 .185
 a
 .164

 a
 .101 .129

 a
 .076 .058 .250

 a
 

  PE = .60 335 .213
 a
 .187

 a
 .114 .150

 a
 .087 .066 .287

 a
  

 a
 indicates  predictors with VIF> 5.0 (i.e., predictors involved in multicollinearity). 

 

Conclusions 

 The primary goal of precision efficacy analysis for regression is to provide a means by which the 

researcher can assess the predictive power potential (i.e., generalizability) of a regression model relative 

to its performance in the derivation sample. As Cohen (1990) stated, “the investigator is not interested in 

making predictions for that sample---he or she knows the criterion values for those cases. The idea is to 

combine the predictors for maximal prediction for future samples” (p. 1306). The PEAR method has been 

shown through a line of research (Brooks, 1998; Brooks & Barcikowski, 1994, 1995, 1996, 1999) to be a 

viable method for this generalizability analysis. 

 The PEAR method appears to fill an important gap in the regression literature in that it recommends 

sample sizes for prediction based not only on the number of predictors in a study, but also on the size of 

the effect expected. Indeed, most sample size methods in other areas of statistics, including fixed model 

regression, consider effect size to be an essential part of the calculation. The PEAR method provides a 

means by which researchers can use a straightforward formula to choose samples by setting a priori effect   
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Table 4. Average Relative Efficiency of the Standardized Coefficients Across Predictors 

  ρ
2
      k  Method Comparison    Orthogonal Trivial     Moderate  Extensive 

.40 3 RMSE(.80) / RMSE(.70) 80.8 80.2 80.6 80.5 

  RMSE(.80) / RMSE(.60) 69.5 69.5 69.2 68.5 

  RMSE(.70) / RMSE(.60) 86.1 86.6 85.9 85.1 

 7 RMSE(.80) / RMSE(.70) 81.7 81.6 81.3 82.9 

  RMSE(.80) / RMSE(.60) 70.5 70.6 71.2 71.1 

  RMSE(.70) / RMSE(.60) 86.3 86.6 87.6 85.8 

 11 RMSE(.80) / RMSE(.70) 81.4 81.8 81.6 80.5 

  RMSE(.80) / RMSE(.60) 70.7 70.4 70.8 70.5 

  RMSE(.70) / RMSE(.60) 86.8 86.1 86.7 87.6 

 15 RMSE(.80) / RMSE(.70) 81.7 81.5 80.4 81.9 

  RMSE(.80) / RMSE(.60) 70.7 70.6 69.8 70.7 

  RMSE(.70) / RMSE(.60) 86.5 86.7 86.9 86.3 

.25 3 RMSE(.80) / RMSE(.70) 81.3 81.9 82.0 81.7 

  RMSE(.80) / RMSE(.60) 70.7 71.0 70.2 71.3 

  RMSE(.70) / RMSE(.60) 87.0 86.7 85.7 87.4 

 7 RMSE(.80) / RMSE(.70) 81.2 81.5 81.2 81.6 

  RMSE(.80) / RMSE(.60) 70.0 71.0 69.9 70.7 

  RMSE(.70) / RMSE(.60) 86.2 87.1 86.1 86.6 

 11 RMSE(.80) / RMSE(.70) 81.4 81.6 81.6 81.4 

  RMSE(.80) / RMSE(.60) 70.5 70.8 70.6 71.1 

  RMSE(.70) / RMSE(.60) 86.6 86.8 86.5 87.3 

 15 RMSE(.80) / RMSE(.70) 81.8 81.2 81.0 81.4 

  RMSE(.80) / RMSE(.60) 71.2 70.6 70.2 70.5 

  RMSE(.70) / RMSE(.60) 87.0 86.9 86.8 86.5 

.10 3 RMSE(.80) / RMSE(.70) 81.0 80.1 80.6 81.6 

  RMSE(.80) / RMSE(.60) 70.6 69.8 70.8 70.5 

  RMSE(.70) / RMSE(.60) 87.2 87.2 87.9 86.4 

 7 RMSE(.80) / RMSE(.70) 81.9 81.6 82.1 82.4 

  RMSE(.80) / RMSE(.60) 70.4 70.5 70.6 72.0 

  RMSE(.70) / RMSE(.60) 86.0 86.4 86.0 87.4 

 11 RMSE(.80) / RMSE(.70) 81.1 81.9 81.8 81.7 

  RMSE(.80) / RMSE(.60) 70.4 70.9 71.2 70.6 

  RMSE(.70) / RMSE(.60) 86.8 86.6 87.1 86.5 

 15 RMSE(.80) / RMSE(.70) 81.0 80.9 81.7 81.1 

  RMSE(.80) / RMSE(.60) 70.2 70.4 70.7 70.7 

  RMSE(.70) / RMSE(.60) 86.6 87.1 86.5 87.2 
 

sizes, shrinkage tolerance, and precision efficacy levels. Brooks (1998) and Brooks and Barcikowski 

(1995) have shown that prediction models produced using appropriately large sample sizes will better 

estimate   
  and will also provide necessary statistical power. The most important argument for the PEAR 

method is that a model based on a proper sample size, as suggested by the PEAR method, will provide 

more reliable regression weights. Therefore, these models will predict better for future subjects because, 

ultimately, the efficiency of a prediction model depends not only on correlation statistics such as    and 

  
 , but also on the stability of the regression coefficients used to calculate predicted scores. 

 From the relative efficiency statistics, it would seem that the        level used with the PEAR 

method usually would be most desirable. However, rather than rely on such a generalization, researchers 

must consider the needs of each project. For example, at lower population    effect sizes, the statistics 

based on the methods become rather close in absolute value. For example, at        with three 

predictors,   
  was .088 and      averaged 0.05 for the        level, but   

       with average 

          for       . The        level required 331 subjects to obtain its larger   
 , whereas the 

       level only required 168 subjects to obtain a value that many researchers might find acceptable 
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(Brooks, 1998). Other researchers may determine; however, that the additional subjects recommended by 

the        level are well worth the added precision efficacy. These dramatic differences in sample 

sizes must be balanced against the expected gain in precision and   
 , particularly at lower effect sizes. 

The sample size differences are not quite so striking at higher effect sizes, but still must be considered. 

For example, at        and three predictors, the extra 28 subjects recommended by the        

(    ) level as compared to the        level (    ) resulted in the more noticeable difference in 

average   
  of .350 versus .294, respectively, and      of 0.10 and 0.14, also respectively. Indeed, higher 

PE (e.g., .90) might be desirable under certain circumstances. Fortunately, thoughtful adjustments to the a 

priori precision efficacy or shrinkage tolerance enable researchers to use the PEAR method to make such 

choices. 

 Some may argue that effect sizes required by the PEAR method are too difficult to determine---“if 

one knew the answer to that question one would not need to do the study. . .” (Schafer, 1993, p. 387)---

but blind adherence to conventional subject-to-predictor ratios certainly cannot be better research 

practice. Further, research in the evolution of the PEAR method has determined that when expected    
overestimates the actual    value by too much (e.g., based on an effect size too large or due to an 

inappropriate conventional rule), no regression sample size method will recommend appropriate sample 

sizes for generalizability. For example, Brooks and Barcikowski (1995) found that when expected 

      , but actual       , precision efficacy rates were in the .47 to .50 range even for desired 

      . This reinforces the need for carefully chosen effect sizes in regression---as Schafer (1993) 

continued, “. . . but a value is needed anyway” (p. 387). When effect sizes are difficult to determine, pilot 

studies, meta-analyses, and careful interpretation of previous research play a critical role in the research 

process. Fortunately, because the PEAR method has performed well at a variety of effect sizes, numbers 

of predictors, shrinkage tolerance levels, and levels of multicollinearity, it seems to be well-suited to a 

variety of research situations. 

 Developing a model with good precision efficacy should be considered only a first step in the model 

validation process. The use of mathematical cross-validity formulas does not supersede the need for the 

validation of regression models in other samples. The cross-validity formulas suggest how well a model 

should perform in other samples, assuming that the sample from which it was derived was reasonably 

representative of the population; however, any given sample can deviate from what would be expected or 

representative. Further, no matter what the precision efficacy, a model that does not predict well in a 

derivation sample also probably will not predict well in any other samples. Finally, empirical cross-

validation does not depend upon the assumptions required for use of the cross-validity equations, thus 

providing a possible substitute when the assumptions are not met (Darlington, 1990; Wherry, 1975). 

 Therefore, the safest way to determine that a model will generalize to future subjects is to test it with 

new data. Indeed, replication is basic to all science and is essential to confidence in both the stability and 

the generalizability of results. Additionally, Darlington (1990) and Montgomery and Peck (1992) have 

reminded us of the importance not only of model validation, but also of model adequacy, which requires 

residual analyses for violations of assumptions, searching for high leverage or overly influential 

observations, and other analyses that test the fit of the regression model to the available data. Darlington 

noted, however, that robustness to certain violations of assumptions continues to increase as sample size 

increases. 

 It is hoped that both the evidence presented and the relative simplicity of the PEAR method will 

encourage researchers to consider more carefully the issues of sample size, effect size, and 

generalizability for regression research. Because generalizability may be an even more important issue 

than statistical power in much regression research, an assessment technique such as precision efficacy 

analysis for regression appears beneficial to a more complete understanding of regression results. 
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