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The effectiveness of 10 methods for estimating the number of factors were compared. These methods 

were the minimum average partial procedure, the likelihood ratio test, the Akaike information criteria 

(AIC), the Schwarz information criteria, the common factor and principal component versions of parallel 

analysis, the standard error scree test, and the eigenvalues greater than average criterion. Two simulation 

studies were conducted. In the first study, the true number of factors, variable-to-factor ratio, level of 

communality, and sample size were manipulated. The second study included factor correlations as an 

additional experimental variable. Common factor parallel analysis was the most consistently accurate 

method across conditions and studies. Neither eigenvalue rule performed well, but the common factor 

version was superior. Over almost all conditions, the AIC was either correct or overfactored by one and 

might; thus, be a reasonable alternative. 

 erhaps the most important step when conducting exploratory factor analysis (EFA) is deciding the 

number of factors to extract (Zwick & Velicer, 1986). Extracting an incorrect number of factors can 

have detrimental consequences on attempts to interpret a rotated factor solution (Fava & Velicer, 

1992, 1996; Gorsuch, 1983). Cattell and Vogelmann (1977) describe this step as one of two that can ruin 

factor analytic research (the other being inadequate rotation). Many methods have been proposed to 

estimate the correct number of factors. The purpose of this study was to expand upon previous research 

and examine the performance of several prominent methods under a wide variety of factor structures. 

 Let m represent the true number of common factors in a factor system. Guttman (1954) proved that 

three lower bounds for m can be obtained by examination of the population correlation matrix Σ. The 

weakest of these is the number of eigenvalues of Σ that are greater than unity. The strongest of the three 

lower bounds is the number of positive eigenvalues of the reduced correlation matrix ΣSMC which is 

obtained by replacing the diagonal elements of Σ with each variable’s squared multiple correlation. 

Guttman emphasized that the proofs only hold in absence of sampling error.  

 Kaiser (1960), ignoring Guttman’s emphasis that his bounds only hold in absence of sampling error, 

argued that the number of eigenvalues of the observed sample correlation matrix R that are greater than 

one (EV-F) should be considered as the number of factors. Kaiser contended that this criterion is 

necessary and sufficient for a factor to have positive reliability. Many authors have subsequently observed 

that the EV-F rule tends to overestimate the number of factors (Browne, 1968; Gorsuch, 1983, 1997; 

Zwick & Velicer, 1986), especially when communalities are small to moderate or the variable-to-factor 

ratio is large. In spite of the widespread criticism of its use, the EV-F rule has been and remains the de 

facto standard in applied research (Fabrigar, Wegener, MacCallum, & Strahan, 1999; Ford, MacCallum, 

& Tait, 1986; Henson & Roberts, 2006; Park, Dailey, & Lemus, 2002). Thompson and Daniel (1996) 

suggested that the prevalence of this rule results from it being the default in most statistical packages. A 

common factor variation on the EV-F rule is to count the number of eigenvalues of RSMC that are greater 

than the average, where RSMC is the sample analogue to ΣSMC. Let EV-R denote this common factor 

variant. 

 Cattell (1966) suggested the scree test, in which the ordered eigenvalues are plotted and m is chosen 

such that the final     points approximately fit a straight line, where p denotes the number of observed 

variables. Methodologists have found the scree test to work well (Cattell & Vogelmann, 1977; Tucker, 

Koopman, & Linn, 1969; Zwick & Velicer, 1982). Zwick and Velicer (1986) found the scree test to be 

more accurate and less variable than the EV-F rule or Bartlett’s test (discussed later). The traditional scree 

test is conducted visually and is; thus, subjective in its application. More recently, regression-based 

methods that approximate the tenets of the visual scree test have been developed for the intentions of 

objectifying and automating the procedure. Nasser, Benson, and Wisenbaker (2002) found the standard 

error scree test (SEscree), proposed by Zoski and Jurs (1996), performed best in a Monte Carlo 

comparison of several regression-based scree tests. The SEscree test is conducted by regressing the p 

eigenvalues on their ordinal numbers and computing the standard error of estimate. Then in sequence, the 
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largest eigenvalue is omitted and the standard error is computed similarly from the remaining eigenvalues 

until the standard error is less than some cutoff; for which Zoski and Jurs proposed    .  

 Horn (1965) argued that rather than comparing eigenvalues to unity as suggested by Kaiser (1960), a 

better criterion should take into account the degree of sampling variability expected in the elements of the 

sample correlation matrix. If an n x p data matrix X is generated such that every element is randomly 

generated from the standard normal, the off-diagonal entries of the resulting correlation matrix R = X′X 

will deviate from zero. Sampling theory suggests that those deviations will have a mean of zero and 

variance inversely related to n. Thus, the p eigenvalues of the random correlation matrix will not all have 

a value of unity; rather, half will be greater than one and the other half between 0 and 1 since they must 

sum to tr(R) = p. Horn suggested generating multiple random data matrices, each of the same dimensions 

as the observed dataset. Then the mean of the simulated first roots should be used as the criterion for the 

largest actual eigenvalue, the mean of the second simulated roots the criterion for the second actual 

eigenvalue, and so forth. Humphreys and Ilgen (1969) suggested performing this process on the reduced 

correlation matrix RSMC and christened the procedure parallel analysis. We will refer to the principal 

components and common factor variations of parallel analysis respectively as PA-F and PA-R. 

Humphreys and Montanelli (1975) found PA-R to perform quite well, while Zwick and Velicer (1986) in 

their seminal simulation study found PA-F to consistently outperform the EV-F rule, the visual scree test, 

the Bartlett’s likelihood ratio test, and the minimum average partial method. Rather than using the mean 

of the simulated eigenvalues, some authors have advocated using the more conservative 95
th
 percentile 

(Cota, Longman, Holden, & Fekken, 1993; Glorfeld, 1995).  

  Another class of methods for estimating the number of factors is focused on examining the matrix of 

residual correlations. Of these, perhaps the most prominent is Velicer’s (1976) minimum average partial 

(MAP) approach. He proposed computing the average squared partial correlation after fitting m 

components. This computation is done for all candidate models, and the one with the minimum average 

partial is retained. Zwick and Velicer (1986) found this method to be accurate under many conditions, 

particularly when the ratio of variables to factors is large. When this ratio is small, the MAP method 

tended to underestimate the number of components.  

  Finally, several methods for determining m have been derived for the maximum likelihood (ML) 

method of factor extraction. Let F denote the ML discrepancy function, then a likelihood ratio test (LRT) 

statistic can be used to test the null hypothesis that the population correlation matrix Σ is that which is 

implied by the model with m factors versus the alternative that Σ is any arbitrary positive definite matrix 

(sometimes called the saturated model). Bartlett’s statistic (1950, 1951), which uses a modification to the 

LRT statistic, approximately follows a chi-square distribution and a formal hypothesis test can thus be 

conducted. While the LRT test is statistically appealing, in practice it has been shown to frequently 

overfactor, especially when the sample size is large (Gorsuch, 1983; Hakstian, Rogers, & Cattell, 1982; 

Zwick & Velicer, 1986). In general, the susceptibility to the influence of sample size is the most 

commonly criticized aspect of the LRT method, especially given the formulation of the statistical 

hypotheses such that a researcher examining a particular model may perceive greater power as 

detrimental.  

  The maximum likelihood method also enables the use of descriptive measures of model fit. Akaike 

(1973) introduced an information criterion, known as AIC, for application to time series models. The 

general idea is to measure the fit of a statistical model to observed data via the maximum likelihood fit 

function and to incur a penalty for the number of estimated parameters, k. The AIC is thus computed 

as -2F + 2k and is a measure of the badness of the fit of a model. For a set of competing models estimated 

by maximum likelihood, the one with the smallest AIC is deemed best. The use of AIC specifically for 

factor analysis was discussed by Akaike (1987). Schwarz (1978) suggested a Bayesian information 

criterion (BIC), also known as Schwarz’s Bayesian criterion (SBC), which is computed in the same 

manner as the AIC but replaces the term 2k with the larger penalty of ln(k), the natural log of k.  

  Although there already exists a considerable amount of literature on methods for determining the 

number of factors, much of it is expository in nature (e.g., Fabrigar et al., 1999; Gorsuch, 1983, 1997; 

Preacher & MacCallum, 2003). The effectiveness of number-of-factor techniques has often been 

demonstrated by applying them to “classic” data sets such as the 24 ability variables of Holzinger and 

Swineford (1939) or Emmett’s (1949) nine variables, or deliberately designed “plasmodes” (Cattell & 
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Vogelmann, 1977). Monte Carlo simulation has been used to provide empirical evidence for the accuracy 

of decision methods, but these studies have been somewhat limited in terms of either the breadth of 

examined methods or the variety of conditions in which they were compared. Perhaps the most 

comprehensive published simulation to date was conducted by Zwick and Velicer (1986) in which they 

studied four PCA-based methods, MAP, parallel analysis, Kaiser’s rule, and the visual scree test, as well 

as Bartlett’s LRT chi-square test at three significance levels. They created 6x2x2x2 = 48 population 

correlation matrices by varying pattern complexity, number of factors, number of variables, and 

component saturation (size of major-component loadings). From every population matrix, five sample 

correlation matrices were generated using two sample sizes for a total of 480 sample matrices. Their focus 

on principal components methods is an important limitation since many factor analysts favor the common 

factor approach. Other empirical studies have often focused on a particular method or class of method. 

  The purpose of the current study was to provide applied researchers with empirically supported 

guidance on how to estimate the number of factors in the initial stages of exploratory factor analysis. To 

that end, we utilized Monte Carlo simulation methods to compare the accuracy of 10 decision methods 

from three prevalent factoring paradigms: principal components analysis, principal axis factoring, and 

maximum likelihood factoring. Data were generated from a wide variety of factor models with extensive 

replication. The 10 examined methods were:  

• the number of eigenvalues of the full correlation matrix R greater than unity (EV-F),  

• the number of eigenvalues of the reduced correlation matrix RSMC  that are greater than the mean 

eigenvalue (EV-R),  

• parallel analysis performed on R (PA-F) and on RSMC (PA-R) using the 95th percentile of 

eigenvalues from 100 simulated datasets,  

• the SEscree procedure performed on R (SES-F) and on RSMC (SES-R) and using the suggested 

cutoff of 1/p,  

• Velicer’s minimum average partial procedure (MAP),  

• the ML likelihood ratio test with Bartlett’s correction (LRT) using α=.05, and  

• the best model according to the information criteria suggested by Akaike (AIC) and Schwarz 

(BIC).  

Study One 

Methods 

Five experimental variables were varied in Study 1: the true number of factors (m), the variable-to-factor 

ratio (   ), the level of communality, the sample size, and the method used to estimate the number of 

factors. The number of factors was varied from 1 to 6 and the     ratio was varied from 4 to 12. 

Individual variable communalities were randomly selected with uniform probability from two levels: 

high, in which   
               , and wide, in which   

                   , (Tucker et al., 1969).  

For every combination of        and communality level, 20 population data matrices were created by 

randomly generating a correlation matrix using the Tucker-Koopman-Linn procedure and pre-multiplying 

its root by a           matrix of random normal deviates. Fifty random samples were taken from each 

data matrix using a sample size of either 200 or 500. In summary,           factor structure 

conditions were each replicated in             random samples of each size. Finally, all 10 number-

of-factor procedures were used on every sample.  
 

Results 

The primary outcome measure for the application of a procedure to a sample is the error of estimate, 

   ̂   . Table 1 presents a grand summary of d for the 10 decision methods over the 216,000 

samples. These summary statistics can only be interpreted with respect to the 216 examined conditions 

and are not estimates of any general characteristic of the procedures. In addition to the mean error, the 

standard deviation is also provided, which is a measure of the observed consistency of each procedure. 

Following the means and standard deviations are the percentages of samples that yielded specific values 

of d. Finally, the maximum value is provided to show the presence of gross overestimates. 

  In Tables 2 and 3, the mean error for each procedure are presented for combinations of sample size, 

variable-to-factor ratio, and number of factors. For the sake of space, only     ratios of 4, 8, and 12 are 

tabulated. These values can be viewed as respectively representing very low, moderate, and high levels of  
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Table 1. Errors by Method Summarized Over All Samples (Study 1) 

   Frequency Distribution  

Method Mean SD ≤ -3 -2 -1 0 +1 +2 ≥ +3 Max 

EV−F 0.37 1.18 0.00 0.01 4.05 78.64 7.42 3.81 6.07 11 

EV−R 0.09 0.72 0.00 0.10 5.62 87.68 2.79 1.60 2.21 9 

PA−F −0.21 0.45 0.07 1.48 17.81 80.64 0.00 0.00 0.00 0 

PA−R −0.06 0.24 0.00 0.08 5.66 94.25 0.01 0.00 0.00 1 

SES−F 2.52 5.37 0.00 0.05 2.26 64.30 5.66 3.81 23.92 64 

SES−R 1.44 3.74 0.00 0.01 1.70 72.20 5.70 3.78 16.61 64 

MAP −0.10 0.36 0.15 1.19 7.70 90.89 0.07 0.00 0.00 2 

LRT 0.04 0.31 0.00 0.02 2.02 92.94 4.34 0.57 0.11 4 

AIC 0.15 0.41 0.00 0.00 0.48 85.12 13.16 1.16 0.08 4 

BIC −0.07 0.28 0.02 0.42 6.28 93.28 0.00 0.00 0.00 1 
 

Table 2. Mean Error by n, p:m, & m - High Communalities (Study 1) 

n p:m m EV-F EV-R PA-F PA-R MAP LRT AIC BIC 

500 4 1  0.000  0.000  0.000  0.000  0.000  .  .  . 
  2  0.000 −0.002 −0.023  0.000 −0.049 0.019 0.043  0.000 
  3 −0.047 −0.052 −0.094  0.000 −0.065 0.055 0.192  0.000 
  4 −0.293 −0.320 −0.594 −0.027 −0.233 0.056 0.232 −0.006 
  5 −0.587 −0.640 −0.904 −0.096 −0.463 0.048 0.225 −0.009 
  6 −0.668 −0.716 −1.026 −0.209 −0.370  0.059 0.230 −0.080 

 8 1  0.000  0.000  0.000  0.000  0.000 0.056 0.171  0.000 
  2  0.000  0.000  0.000  0.000  0.000 0.043 0.202  0.000 
  3  0.000  0.000  0.000  0.000  0.000 0.063 0.195  0.000 
  4 −0.007 −0.006 −0.101  0.000  0.000 0.047 0.123  0.000 
  5  0.000  0.000 −0.082  0.000  0.000 0.049 0.128  0.000 
  6 −0.050 −0.080 −0.357 −0.009 −0.003 0.053 0.090  0.000 
 12 1  0.000  0.000  0.000  0.000  0.000 0.051 0.227  0.000 
  2  0.000  0.000  0.000  0.000  0.000 0.056 0.157  0.000 
  3  0.000  0.000  0.000  0.000  0.000 0.055 0.141  0.000 
  4  0.000  0.000  0.000  0.000  0.000 0.054 0.079  0.000 
  5  0.000  0.000  0.000  0.000  0.000 0.060 0.058  0.000 
  6  0.000  0.000 −0.025  0.000  0.000 0.069 0.041  0.000 
200 4 1  0.000  0.000  0.000  0.000  0.000  .  .  . 
  2 −0.004 −0.007 −0.051  0.000 −0.039 0.040 0.136  0.000 
  3 −0.102 −0.125 −0.298 −0.029 −0.155 0.039 0.229 −0.016 
  4 −0.189 −0.225 −0.645 −0.035 −0.122 0.071 0.302 −0.007 
  5 −0.555 −0.606 −1.040 −0.315 −0.461 −0.018 0.243 −0.204 

  6 −0.587 −0.630 −1.210 −0.417 −0.469 −0.147 0.195 −0.378 

 8 1  0.000  0.000  0.000  0.000  0.000 0.051 0.213  0.000 
  2  0.000  0.000 −0.008  0.000  0.000 0.053 0.218  0.000 
  3  0.000  0.000 −0.001  0.000  0.000 0.045 0.202  0.000 
  4  0.000  0.000 −0.026  0.000  0.003 0.059 0.119  0.000 
  5  0.000  0.000 −0.273 −0.019  0.001 0.050 0.106  0.000 
  6 −0.018 −0.014 −0.678 −0.149  0.004 0.053 0.099 −0.014 
 12 1  0.000  0.000  0.000  0.000  0.000 0.068 0.244  0.000 
  2  0.000  0.000  0.000  0.000  0.000 0.064 0.199  0.000 
  3  0.000  0.000  0.000  0.000  0.000 0.067 0.088  0.000 
  4  0.000  0.000 −0.002  0.000  0.000 0.087 0.059  0.000 
  5  0.000  0.000 −0.009  0.000  0.004 0.091 0.054  0.000 
  6  0.000  0.000 −0.231 −0.063 0.022 0.134 0.027 −0.001 
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Table 3. Mean Error by n, p:m, & m - Wide Communalities (Study 1) 

n p:m m EV-F EV-R PA-F PA-R MAP LRT AIC BIC 

500 4 1  0.000  0.000  0.000  0.000  0.000  .  .  . 
  2  0.000 −0.050 −0.070 −0.045 −0.528 0.031 0.147 −0.048 

  3 −0.068 −0.113 −0.233 −0.033 −0.541 0.055 0.230 −0.061 

  4 −0.186 −0.302 −0.631 −0.107 −0.999  0.024 0.229 −0.125 

  5 −0.431 −0.613 −0.923 −0.184 −1.238  0.027 0.244 −0.350 

  6 −0.690 −0.988 −1.453 −0.625 −1.752 −0.321  0.034 −0.837 

 8 1  0.000  0.000  0.000  0.000  0.000 0.039 0.183  0.000 
  2  0.000  0.000  0.000  0.000 −0.001 0.044 0.246  0.000 
  3 0.024  0.000  0.000  0.000  0.000 0.060 0.176  0.000 
  4 0.092  0.001 −0.039  0.000 −0.063 0.055 0.148 −0.002 
  5 0.240 −0.041 −0.230 −0.026 −0.054 0.068 0.125 −0.027 
  6 0.658 −0.121 −0.579 −0.224 −0.260  0.023 0.095 −0.291 

 12 1  0.001  0.000  0.000  0.000  0.000 0.064 0.244  0.000 
  2 0.018  0.000  0.000  0.000  0.000 0.051 0.169  0.000 
  3 0.296  0.000  0.000  0.000  0.000 0.053 0.109  0.000 
  4 0.779  0.000  0.000  0.000  0.000 0.053 0.086  0.000 
  5 1.836 0.035  0.000  0.000  0.000 0.064 0.060  0.000 
  6 2.591 0.066 −0.295 −0.057 −0.002 0.073 0.038 −0.076 

200 4 1  0.000  0.000  0.000  0.001  0.000  .  .  . 
  2  0.001 −0.029 −0.204 −0.030 −0.495 0.024 0.141 −0.075 

  3 −0.077 −0.206 −0.456 −0.205 −0.585 −0.079 0.156 −0.275 

  4 −0.219 −0.399 −1.017 −0.364 −1.052 −0.148 0.192 −0.518 

  5 −0.294 −0.591 −1.375 −0.671 −1.394 −0.350  0.011 −1.001 

  6 −0.196 −0.688 −1.773 −0.848 −1.526 −0.572 −0.046 −1.347 

 8 1 0.021  0.004  0.000  0.000  0.000 0.054 0.191  0.000 
  2 0.205  0.005  0.000  0.000  0.000 0.060 0.217  0.000 
  3 0.567 0.031 −0.005  0.000 −0.003 0.064 0.182 −0.002 
  4 1.090 0.146 −0.062  0.000 −0.001 0.059 0.133  0.000 
  5 1.995 0.603 −0.353 −0.087 −0.039 0.049 0.107 −0.158 

  6 2.876 1.137 −0.701 −0.331 −0.164 −0.064  0.035 −0.496 

 12 1 0.045  0.002  0.000  0.000  0.000 0.064 0.264  0.000 
  2 0.895 0.139  0.000  0.000  0.000 0.060 0.147  0.000 
  3 2.136 0.585  0.000  0.000  0.000 0.076 0.120  0.000 
  4 3.428 1.537 −0.010  0.000  0.001 0.065 0.059 −0.001 
  5 5.191 3.072 −0.086 −0.048 −0.014 0.084 0.046 −0.050 

  6 7.097 5.156 −0.433 −0.192 −0.006 0.067 0.029 −0.292 
 

factor overdetermination (see MacCallum et al., 1999). Because the SEscree procedure performed 

drastically worse than the others, as is evident in Table 1, it has been omitted from Tables 2 and 3. Note 

that the maximum likelihood procedures could not be used when     and     since there are no 

degrees of freedom. As a visual aid, boldface text has been used to indicate when, for a particular 

condition, the absolute mean error for a procedure is either minimum among the eight methods or within 

0.01 of the minimum. The value of 0.01 is arbitrary and used as a sort of tolerance for a virtual tie for 

best. Table 2 contains the results for the high communality condition while Table 3 contains those for the 

wide condition. In order to simplify language, the term “bias” will be used in reference to mean errors of 

estimate that deviate from 0; though, this use may not be strictly appropriate in the parameter estimation 

sense.  

  Two general observations can be made about the performance of most procedures in certain 

conditions. The first holds when communalities are all high and there is a small number of factors 

(perhaps three or fewer). In that situation, all but two procedures (AIC and LRT) identified the correct 

number of factors nearly 100% of the time. This outcome was true regardless of sample size. This 

condition might be considered an optimal scenario for factoring, so the result is not surprising. The 
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second general tendency is for most procedures to perform quite poorly when there are many factors and 

few variables per factor. In this case, they frequently underestimated the number of factors. This finding 

also is to be expected. 
 

  Eigenvalue Rules. The common factor eigenvalue rule was generally superior to Kaiser’s rule. The 

former was both less biased and more consistent than the latter. In approximately 10% of samples, the 

EV-F method overestimated m by two or more factors. In general, both procedures tended to overfactor 

more as the number of variables increased. 

  When all communalities were high, the two eigenvalue rules performed very similarly. This result is 

not surprising since RSMC is quite similar to R in that condition. In that case, they performed quite well in 

terms of identifying the correct number of factors when there were three or fewer factors. When more 

factors were present, these rules still performed very well when the     ratio was high but increasingly 

poorly as that ratio decreased to six or fewer variables per factor. As with most of the procedures, 

underfactoring was quite pronounced when      . When all communalities were high, the accuracy of 

the eigenvalue rules was largely unaffected by sample size. 

  In the wide communality condition, the EV rules had dissimilar bias for most combinations of    , 

m, and n. The common factor variant almost entirely outperformed Kaiser’s rule, with the exception that 

EV-F underfactored less badly than EV-R when there were five or six factors and the     ratio was very 

small. For example, the respective bias for EV-F and EV-R were −0.69 versus −0.99 when      , 

   , and      , and −0.20 versus −0.69 when      . In all other situations, both EV rules were 

quite likely to overfactor with EV-F doing so more often and by a greater margin. The miss rate for the 

Kaiser’s rule increased consistently to nearly 100% as the     ratio increased from about 7 to the 

maximum of 12. At the smaller sample size of 200, the EV-R rule was also negatively affected by greater 

    ratios for models with at least three factors, but not to the extent of EV-F. When p is large, both 

procedures were capable of gross overestimation. In the most extreme examined situation in which there 

were 6 factors and       , the mean error of estimate for EV-F was 7.10 and 2.59 for sample sizes of 

200 and 500, respectively. Thus, the average number of factors suggested by Kaiser’s rule was 13 (for n = 

200). In the same scenario, EV-R was nearly as bad when       ( ̅      ) but among the best 

methods when        ( ̅) =0.07. 
  

  Parallel Analysis. Comparing the two PA approaches, the common factor version was as accurate or 

better than the principal components version in all of the 216 conditions. For both PA-F and PA-R, the 

type of error they were susceptible to was underfactoring. The PA-F procedure was the most negatively 

biased procedure overall and consistently exhibited increasing likelihood of underfactoring as     

decreased. Note that PA-F never overestimated m. Parallel analysis of the reduced correlation matrix was 

perhaps the most consistently accurate of the 10 decision methods. In all, PA-R was correct 94.2% of the 

time and wrong by −1 in 5.7% of samples. When      , the error rate of PA-R was extremely low 

except in cases from the wide communality condition with six factors and      . At the smaller 

sample size, PA-R still was quite accurate except for large models with very few variables per factor. 

Even in the worst situation when      , though it was negatively biased, it was less so than the other 

procedures excluding LRT and AIC, which generally functioned “differently” from the rest. The PA-R 

method was also the most consistent with        . 
 

  SEscree and MAP. Overall, the standard error scree tests were the least accurate of the decision 

methods. Although they performed well in some circumstances, in almost every condition in which p was 

large (roughly     ), both procedures were likely to dramatically overfactor. In the worst condition 

(     , wide communalities,    ,       ), the average error for SES-R and SES-F were 22 and 

30, respectively. For the entire study, these procedures overestimated m by three or more roughly 20% of 

the time. In terms of the overall hit rate, the MAP procedure was fourth best at 90.9%. As with parallel 

analysis, MAP only showed susceptibility to underfactoring and was prone to this error in the same 

conditions as most of the other decision methods (several factors with low     ratio). However, the 

average magnitude of underestimation was substantially greater than procedures such as PA-R, BIC, and 

EV-R. MAP was much more accurate in the high communality level than the wide level. Sample size did 

not appear to have much of an impact on the success of the MAP method. 
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  Maximum Likelihood Methods. The likelihood ratio test with Bartlett’s correction had the smallest 

absolute mean error of estimate, was quite consistent ( ̅              ), and was correct in 93% of 

attempts. Generally, the LRT appeared to be an extremely robust statistical test; as it produced incorrect 

estimates (primarily     ) approximately 5% of the time in nearly every condition. It deviated from 

this nominal rate only when m was large and     was small, particularly under the smaller sample size of 

     . Other than the under-determined conditions, LRT was fairly consistent across the two sample 

sizes. The flip side of this consistency was that LRT maintained an error rate around 5% in cells where 

nearly all of the other procedures were virtually flawless (high communalities and few factors). LRT was 

within one factor of the correct value in over 99% of samples. 

  Both of the information criteria were accurate at estimating m, but BIC was the better of the two. The 

AIC approach showed only slight positive bias and was fairly consistent ( ̅            ). Other than 

the SEscree methods, AIC was most likely to overfactor (14%), even more than Kaiser’s rule. It was 

exactly correct 85% of the time, compared to 93% for BIC. Across most conditions, the AIC method 

overfactored by one in 10% to 20% of replications. As with LRT, this error rate was still observed in the 

conditions that yielded nearly perfect performance by the other eight procedures.  

  Using the BIC was a very effective procedure for estimating the number of factors. Only PA-R had a 

higher hit rate and, like PA-R, estimated either the correct number or one fewer in nearly every sample 

(99.5% for BIC and 99.9% for PA-R). The BIC method was slightly more prone to underfactoring by two 

than was PA-R. When communalities were wide, the BIC approach, like most other decision methods, 

exhibited negative bias when the variable-to-factor ratio was very small.  
 

Study Two 

Methods 

  A second, independent simulation study was conducted, which, again, compared the performance of 

the 10 decision methods. The primary motivation was to investigate the impact of correlation among 

factors since this was a key limitation of Study 1. The existence of correlated factors is commonly 

appreciated in the behavioral sciences (Fabrigar et al., 1999; Gorsuch, 1997; Preacher & MacCallum, 

2003) and it was thought quite possible that the presence of such correlation could have a bearing on these 

procedures. The imposition of interfactor correlations by way of: 

            R – U = LCL′              (1) 

Where R – U is the model-implied reduced correlation matrix, L is a matrix of input factor loadings, and 

C is a matrix of correlations among factors necessitated a different scheme for generating population 

correlation matrices. A random L matrix generated by the Tucker-Koopman-Linn procedure is prone to 

produce diagonal elements greater than unity after multiplication in equation 1. An additional concern 

about the Tucker-Koopman-Linn system is that it frequently produces L matrices that may be somewhat 

unrealistic in practice. An example of this is shown in Table 4 with loadings generated from the high 

communality condition. It is common for manifest variables to load on multiple factors; however, it is 

relatively rare in practice to observe for a variable multiple loadings that are greater than 0.5 or 0.6. This 

occurrence is fairly common when using this algorithm (under the orthogonal model).  

  With the above considerations in mind, a different data generation scheme was used in Study 2. 

Loading matrices were created to have perfect simple structure. For example, if     ratio was 6, the first 

6 variables loaded on factor 1, the next 6 on factor 2, and so forth. All non-major loadings were set to 

zero. Again, it was desired to randomly generate each loading in order to increase the generalizability of 

results. In this study, non-zero factor loadings were generated from the beta distribution on the interval 

(0.3, 0.9). Two different sets of parameters were used to achieve two levels of saturation termed “high” 

and “wide” to mimic the communality levels of Study 1. The specific parameter values were selected by 

trial-and-error. For the high saturation level,                   and for the wide level,              . 

Figure 1 shows the probability density of each distribution. Examples of loadings generated by this 

scheme for the high and wide saturation levels can be seen in Table 4. Once the input factor loadings were 

determined, the population correlation matrix R was created via equation 1and then placing ones on the 

diagonal. Finally, the Wijsman method (described by Hong, 1999) was then employed to generate a 

random sample correlation matrix directly from R without creating an observation-level data matrix.  
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Table 4. Example Factor Loadings Produced by Two Simulation Schemes 

Tucker et al. Study 2 (High) Study 2 (Wide) 

F1 F2 F1 F2 F1 F2 

0.39 0.67 0.86 0.00 0.45 0.00 

0.86 -0.25 0.78 0.00 0.42 0.00 

0.58 0.68 0.51 0.00 0.53 0.00 

0.89 0.06 0.64 0.00 0.49 0.00 

0.83 -0.09 0.80 0.00 0.43 0.00 

0.37 0.82 0.70 0.00 0.38 0.00 

0.62 0.64 0.00 0.76 0.00 0.51 

-0.03 0.89 0.00 0.83 0.00 0.53 

0.71 0.45 0.00 0.87 0.00 0.65 

0.48 0.69 0.00 0.68 0.00 0.49 

0.65 0.62 0.00 0.77 0.00 0.68 

-0.07 0.89 0.00 0.85 0.00 0.47 
 

 An adjunct benefit to using an entirely different simulation routine was the ability to assess the 

robustness of results observed in Study 1, particularly concerning the “best performers” and whether they 

maintained accuracy across different loading structures. The two simulation routines could perhaps be 

best differentiated by the simplicity of the structure of the resulting pattern matrices. The approach used 

in Study 2 yields perfect simple structure while the Tucker-Koopman-Linn procedure yields complex 

structure, sometimes excessively so (e.g., Table 4).  

  In summary, six experimental variables were varied in Study 2. Saturation level was varied according 

to the high and wide levels described above. Interfactor correlations (IFC) were set to all to be either 0.0 

or 0.4. Sample sizes of 200 and 500 were again used. Only variable-to-factor ratios of 4, 6, 8, 10, and 12 

were examined. The true number of factors was varied from 2 to 6. One-factor models were excluded 

since the effect of factor correlations was the primary interest in this study. For every combination of 

saturation level, IFC,  ,    , and  , 1,000 population correlation matrices were generated and from 

each, a single sample correlation matrix was generated. Thus, each of the 10 decision methods was 

applied to 1,000 replications of               conditions. 
 

Results 

  Table 5 presents a grand summary of   for the 10 decision methods over the 100,000 samples and is 

constructed in the same manner as Table 1. Detailed results for combinations of saturation level, sample 

size, IFC,     ratio, and m are presented in Tables 6, 7, 8, and 9 with separate tables pertaining to 

combinations of saturation level and sample size. Combinations of IFC, three     ratios, and   are 

tabulated within each table similarly to Tables 2 and 3. The SEscree results were, again, omitted from 

these tables and will not be discussed as the procedure demonstrated extreme positive bias. 

 Eigenvalue Rules. The EV-F and EV-R rules correctly identified the number of factors in only 44% 

and 57% of replications, respectively and overfactored when they were wrong. Roughly 30% of the time 

the rules overestimated by at least three factors. Both rules were seemingly invariant to the presence of 

correlation among factors.  

  As in Study 1, the common factor variant was the better of the two eigenvalue rules. The EV-R 

procedure was virtually perfect when saturation was high and      ; regardless of IFC,    , and  . 

This was also true of PA-F, PA-R, and BIC. In the same scenario, EV-F began to overfactor when the 

number of variables increased beyond about 40. When       or saturation was wide, both eigenvalue 

methods demonstrated increasing positive bias for models with more variables. The two rules both 

overfactored in most of the same conditions, but the magnitude of positive bias was always greater for 

EV-F. In the wide saturation condition, both eigenvalue methods were quite biased, and extremely so, 

when      .   

 
 Figure 1. Density plots for two levels of loading 

  saturation. 



Number of Factors 

Multiple Linear Regression Viewpoints, 2013, Vol. 39(1)                                                                                           9 

 

Table 5. Errors by Method Summarized Over All Samples (Study 2) 

   Frequency Distribution  

Method Mean SD ≤ -3 -2 -1 0 +1 +2 ≥ +3 Max 

EV−F 2.54 3.50 0.00 0.00 0.00 43.67 13.23 8.71 34.39 19 

EV−R 1.95 3.22 0.00 0.00 0.00 56.65 9.97 6.70 26.68 19 

PA−F −0.07 0.38 0.70 0.94 2.55 95.82 0.00 0.00 0.00 1 

PA−R −0.01 0.16 0.06 0.16 0.74 98.54 0.49 0.02 0.00 3 

SES−F 5.22 8.05 0.03 0.23 1.15 37.43 9.59 6.62 44.96 64 

SES−R 3.65 6.26 0.00 0.07 0.77 47.85 9.19 6.44 35.68 64 

MAP −0.44 1.01 6.60 6.23 8.43 78.56 0.17 0.00 0.00 2 

LRT 0.01 0.37 0.04 0.42 3.62 90.91 4.17 0.71 0.13 4 

AIC 0.13 0.39 0.01 0.08 0.61 86.92 11.40 0.92 0.06 4 

BIC −0.32 0.91 5.04 3.57 6.52 84.87 0.00 0.00 0.00 0 

 

 
Table 6. Mean Error by IFC, p:m Ratio, and m — High Saturation, n=500 (Study 2) 

IFC p:m m EV-F EV-R PA-F PA-R MAP LRT AIC BIC 

0.0 4 2  0.000  0.000  0.000  0.000 −0.022 0.041 0.109  0.000 
  3  0.000  0.000  0.000  0.000 −0.058 0.050 0.194  0.000 
  4  0.000  0.000  0.000  0.000 −0.108 0.054 0.217  0.000 
  5  0.000  0.000  0.000  0.000 −0.180 0.048 0.213  0.000 
  6  0.000  0.000  0.000  0.000 −0.248 0.056 0.173  0.000 
 8 2  0.000  0.000  0.000  0.000  0.000 0.066 0.218  0.000 
  3  0.001  0.000  0.000  0.000  0.000 0.065 0.188  0.000 
  4  0.007  0.000  0.000  0.000  0.000 0.051 0.158  0.000 
  5 0.015  0.000  0.000  0.000  0.000 0.062 0.109  0.000 
  6 0.047  0.000  0.000  0.000  0.000 0.068 0.106  0.000 
 12 2  0.002  0.000  0.000  0.000  0.000 0.058 0.166  0.000 
  3 0.016  0.000  0.000  0.000  0.000 0.050 0.104  0.000 
  4 0.095  0.000  0.000  0.000  0.000 0.053 0.069  0.000 
  5 0.255  0.000  0.000  0.000  0.000 0.065 0.053  0.000 
  6 0.643  0.000  0.000  0.000  0.000 0.056 0.037  0.000 

0.4 4 2  0.000  0.000  0.000  0.000 −0.026 0.043 0.109  0.000 
  3  0.000  0.000  0.000  0.000 −0.356 0.047 0.199  0.000 
  4  0.000  0.000  0.000  0.001 −0.748 0.046 0.220  0.000 
  5  0.000  0.000  0.000  0.000 −1.081 0.045 0.200 −0.001 
  6  0.000  0.000  0.000  0.000 −1.286 0.055 0.177 −0.005 
 8 2  0.000  0.000  0.000  0.000  0.000 0.054 0.228  0.000 
  3  0.000  0.000  0.000  0.000  0.000 0.066 0.183  0.000 
  4  0.006  0.000  0.000  0.000  0.000 0.063 0.128  0.000 
  5 0.014  0.000  0.000  0.000  0.000 0.067 0.107  0.000 
  6 0.041  0.000  0.000  0.000  0.000 0.051 0.102  0.000 
 12 2  0.001  0.000  0.000  0.000  0.000 0.055 0.150  0.000 
  3 0.016  0.000  0.000  0.000  0.000 0.052 0.107  0.000 
  4 0.079  0.000  0.000  0.000  0.000 0.051 0.091  0.000 
  5 0.280  0.000  0.000  0.000  0.000 0.055 0.055  0.000 
  6 0.654  0.001  0.000  0.000  0.000 0.079 0.040  0.000 

  

 

  



Pearson et al. 

 

10                                                                                           Multiple Linear Regression Viewpoints, 2013, Vol. 39(1) 

Table 7. Mean Error by IFC, p:m Ratio, and m — High Saturation, n=200 (Study 2) 

IFC p:m m EV-F EV-R PA-F PA-R MAP LRT AIC BIC 

0.0 4 2  0.002  0.000  0.000  0.001 −0.026 0.050 0.172  0.000 
  3  0.001  0.000  0.000  0.000 −0.062 0.064 0.244  0.000 
  4  0.001  0.000  0.000  0.000 −0.087 0.062 0.267 −0.002 
  5  0.008  0.000  0.000  0.000 −0.124 0.050 0.237 −0.002 
  6 0.029  0.000  0.000  0.000 −0.184 0.049 0.234 −0.020 

 8 2 0.031  0.000  0.000  0.000  0.000 0.060 0.237  0.000 
  3 0.109  0.001  0.000  0.000  0.000 0.053 0.189  0.000 
  4 0.329 0.022  0.000  0.000  0.000 0.049 0.150  0.000 
  5 0.708 0.087  0.000  0.000  0.000 0.079 0.112  0.000 
  6 1.276 0.272  0.000  0.000  0.006 0.092 0.090  0.000 
 12 2 0.166  0.002  0.000  0.000  0.000 0.056 0.161  0.000 
  3 0.682 0.055  0.000  0.000  0.000 0.050 0.092  0.000 
  4 1.639 0.472  0.000  0.000  0.002 0.075 0.063  0.000 
  5 2.891 1.426  0.000  0.000  0.004 0.093 0.053  0.000 
  6 4.305 2.808  0.000  0.000  0.006 0.114 0.025  0.000 

0.4 4 2  0.001  0.000 −0.003  0.000 −0.035 0.054 0.178  0.001 
  3  0.000  0.000 −0.018  0.000 −0.318 0.050 0.225 −0.003 
  4  0.004  0.000 −0.066  0.000 −0.643 0.056 0.253 −0.024 

  5  0.011 −0.001 −0.191 −0.001 −0.899 0.042 0.232 −0.102 

  6 0.021  0.000 −0.412  0.003 −1.118 0.032 0.251 −0.242 

 8 2 0.018  0.001  0.000  0.000  0.000 0.066 0.241  0.000 
  3 0.095  0.001  0.000  0.000  0.000 0.061 0.173  0.000 
  4 0.349 0.016  0.000  0.000  0.000 0.079 0.154  0.000 
  5 0.691 0.092  0.000  0.000  0.000 0.096 0.113  0.000 
  6 1.199 0.288  0.000  0.000  0.002 0.071 0.097 −0.003 
 12 2 0.168  0.006  0.000  0.000  0.000 0.062 0.187  0.000 
  3 0.687 0.069  0.000  0.000  0.000 0.063 0.107  0.000 
  4 1.684 0.501  0.000  0.000  0.000 0.076 0.063  0.000 
  5 2.871 1.422  0.000  0.000  0.001 0.071 0.040  0.000 
  6 4.300 2.787  0.000  0.000 0.017 0.121 0.035  0.000 

  

 Parallel Analysis. Parallel analysis of the reduced correlation matrix was the most accurate, or very 

nearly so, of the 10 decision methods throughout Study 2, with one exception. In the “worst case 

scenario” (wide saturation,      , correlated factors, and      ), PA-R was apt to underfactor as 

were PA-F, MAP, LRT, BIC, and even AIC when    . In this case, AIC had the least error, but PA-R 

had less than all of the other procedures. Overall, PA-R was exactly correct in over 98% of all 

replications.  

  Although PA-F had slightly smaller mean error in a few cells than did PA-R, it had substantially 

greater negative bias in many others. The principle components approach correctly estimated   in 96% of 

all replications. When factors were orthogonal, the two parallel analysis procedures performed 

comparably. With correlated factors, PA-F was more likely to underfactor when     was very low, 

except when both saturation and sample size were high.  
 

 MAP. The MAP procedure was even more prone to underfactoring in this study than in Study 1. In 

nearly 13% of replications, MAP underestimated the number of factors by two or more and in terms of 

overall mean error, MAP was the most negatively biased of the 10 decision methods. As observed in 

Study 1, sample size did not appear to affect MAP’s accuracy directly nor interact with the other 

experimental factors. In the high saturation condition, MAP was quite effective, except when       

where it showed considerable negative bias especially when factors were correlated. When saturation was 

wide and factors were correlated, MAP exhibited extreme negative bias at       (e.g.,  ̅       when 

    and      ) and even underfactored at      . The presence of interfactor correlations 

generally had a negative impact on the accuracy of MAP.  
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Table 8. Mean Error by IFC, p:m Ratio, and m — Wide Saturation, n=500 (Study 2) 

IFC p:m m EV-F EV-R PA-F PA-R MAP LRT AIC BIC 

0.0 4 2 0.012 0.004 0.000 0.002 −0.859 0.052 0.155 −0.003 
  3 0.042 0.006 0.000 0.002 −1.554 0.054 0.224 −0.009 
  4 0.169 0.034 0.000 0.004 −2.115 0.052 0.208 −0.068 

  5 0.340 0.057 0.000 0.009 −2.511 0.049 0.201 −0.193 

  6 0.640 0.192 0.000 0.030 −3.012 0.029 0.222 −0.481 

 8 2 0.380 0.051 0.000 0.000 −0.001 0.050 0.211 0.000 
  3 1.231 0.374 0.000 0.002 0.000 0.070 0.168 0.000 
  4 2.432 1.132 0.000 0.004 −0.002 0.054 0.127 0.000 
  5 3.818 2.400 0.000 0.004 −0.005 0.059 0.117 0.000 
  6 5.180 3.645 0.000 0.002 −0.010 0.055 0.069 −0.005 
 12 2 1.477 0.436 0.000 0.000 0.000 0.081 0.174 0.000 
  3 3.541 2.003 0.000 0.000 0.000 0.063 0.128 0.000 
  4 5.846 4.096 0.000 0.000 0.000 0.052 0.080 0.000 
  5 8.517 6.731 0.000 0.001 0.000 0.051 0.059 0.000 
  6 11.238 9.401 0.000 0.001 0.000 0.060 0.047 0.000 

0.4 4 2 0.006 0.000 −0.010 0.000 −0.955 0.054 0.158 −0.016 

  3 0.034 0.002 −0.030 −0.001 −1.954 0.051 0.205 −0.128 

  4 0.132 0.019 −0.136 0.004 −2.936 0.002 0.191 −0.561 

  5 0.291 0.047 −0.296 0.015 −3.888 −0.064 0.210 −1.309 

  6 0.531 0.111 −0.558 0.020 −4.691 −0.166 0.132 −2.374 

 8 2 0.369 0.050 0.000 0.002 −0.004 0.049 0.234 0.000 
  3 1.251 0.360 0.000 0.000 −0.099 0.064 0.179 0.000 
  4 2.358 1.066 0.000 0.002 −0.226 0.039 0.147 −0.006 
  5 3.696 2.168 0.000 0.003 −0.404 0.060 0.109 −0.068 

  6 5.141 3.610 0.000 0.005 −0.612 0.043 0.087 −0.263 

 12 2 1.440 0.433 0.000 0.000 0.000 0.049 0.157 0.000 
  3 3.531 1.998 0.000 0.000 0.000 0.046 0.097 0.000 
  4 5.889 4.159 0.000 0.000 0.000 0.055 0.092 0.000 
  5 8.410 6.654 0.000 0.000 −0.001 0.066 0.048 −0.001 
  6 11.200 9.383 0.000 0.000 −0.001 0.057 0.051 −0.012 

 

 Maximum Likelihood Methods. In general, results for the LRT and AIC methods were quite similar 

across the two studies. The LRT overfactored by 1 approximately 5% of the time throughout most 

conditions. That method was somewhat more likely to overfactor (by 1) at the low sample size than the 

high one. AIC overestimated by one in approximately 10% - 20% of replications throughout most 

conditions.  

   The orthogonal factors results for BIC were similar to those observed in Study 1; although, when 

saturation was wide,      , and     ratio was very low, the magnitude of underestimation was greater 

in Study 2. The imposition of correlation among the factors did affect the accuracy of the BIC method. 

This is more apparent under the wide saturation in which the amount of negative bias was markedly 

greater when factors were correlated. As a result, the BIC approach faired much more poorly overall in 

Study 2 (Table 5) compared to Study 1 (Table 1). It was second to MAP in terms of negative bias 

( ̅       ); underestimating the number of factors in over 15% of the 100,000 total replications.  
 

Discussion 

  We examined 10 methods for determining the number of factors for exploratory factor analysis. The 

investigation considered a wide variety of factor structures and two sample sizes via two separate Monte 

Carlo simulations. Of the 10 decision methods, parallel analysis conducted on the reduced correlation 

matrix performed the best overall in terms of hit rate and consistency and was nearly best in terms of 

mean error. The only error it was susceptible to, with any regularity, was to underfactor by one, which  
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Table 9. Mean Error by IFC, p:m Ratio, and m — Wide Saturation, n=200 (Study 2) 

IFC p:m m EV-F EV-R PA-F PA-R MAP LRT AIC BIC 

0.0 4 2 0.159 0.056 −0.002  0.006 −0.836 0.041 0.175 −0.089 

  3 0.504 0.220 −0.009  0.017 −1.502 −0.017 0.200 −0.378 

  4 0.908 0.521 −0.019  0.025 −2.050 −0.105 0.192 −1.002 

  5 1.391 0.942 −0.040 0.062 −2.504 −0.221 0.196 −2.062 

  6 1.901 1.406 −0.097  0.079 −2.939 −0.436 0.115 −3.325 

 8 2 1.566 0.983  0.000  0.005 −0.004 0.072 0.261 −0.001 
  3 3.089 2.418  0.000  0.006 −0.005 0.067 0.193 −0.008 
  4 4.751 4.029  0.000 0.013 −0.006 0.060 0.149 −0.050 

  5 6.492 5.788  0.000  0.009 −0.010 0.031 0.108 −0.231 

  6 8.313 7.623  0.000 0.022 −0.016 −0.007 0.084 −0.757 

 12 2 3.351 2.644  0.000  0.002  0.000 0.067 0.178  0.000 
  3 6.261 5.454  0.000  0.000  0.001 0.062 0.091  0.000 
  4 9.188 8.392  0.000  0.000  0.008 0.070 0.066  0.000 
  5 12.186 11.473  0.000  0.000 0.020 0.098 0.043 −0.016 

  6 15.296 14.656  0.000  0.000 0.046 0.099 0.031 −0.133 

0.4 4 2 0.170 0.056 −0.213 −0.059 −0.935 −0.015 0.130 −0.280 

  3 0.438 0.185 −0.629 −0.116 −1.927 −0.173 0.149 −0.966 

  4 0.805 0.436 −1.240 −0.255 −2.876 −0.497  0.045 −2.089 

  5 1.246 0.806 −1.995 −0.434 −3.769 −0.860 −0.140 −3.352 

  6 1.678 1.170 −2.906 −0.757 −4.514 −1.231 −0.429 −4.601 

 8 2 1.518 0.925 −0.001  0.006 −0.024 0.056 0.241 −0.013 

  3 3.049 2.352 −0.009  0.008 −0.108 0.042 0.174 −0.179 

  4 4.641 3.936 −0.024  0.009 −0.200 −0.034 0.120 −0.779 

  5 6.363 5.646 −0.104 −0.001 −0.343 −0.174 0.096 −1.874 

  6 8.115 7.452 −0.267 −0.003 −0.418 −0.347 0.056 −3.356 

 12 2 3.411 2.699  0.000  0.001  0.000 0.056 0.163  0.000 
  3 6.175 5.432  0.000  0.000  0.002 0.055 0.108 −0.013 

  4 9.143 8.396  0.000  0.002  0.007 0.059 0.079 −0.184 

  5 12.158 11.465 −0.002  0.000 0.014 0.027 0.046 −0.913 

  6 15.169 14.540 −0.007 −0.001 0.045 −0.040 0.028 −2.156 
  

primarily occurred when there were many factors and each with few manifest variables. Additionally, it 

worked well at both sample sizes of 200 and 500. PA-R was extremely accurate in nearly every examined 

condition with the exception being that it underestimated when saturation was wide and the variable-to-

factor ratio was four. This behavior for that particular condition was exacerbated when sample size was 

small or factors were correlated. The principal components variation of parallel analysis did not perform 

as well in these studies as the common factor version, where the former was more likely to underfactor 

and to do so by a greater magnitude. Therefore, factor analysts who are able to run this procedure (PA 

using RSMC ) would be advocated to do so. The researcher should be confident in the number suggested 

unless there is reason to suspect that each factor has been measured by few variables. In that case, the 

model with one more factor might be run and the two solutions compared. One study decision may have a 

bearing on why PA-F showed such a tendency to underextract. The use of the 95th percentile of simulated 

eigenvalues, rather than the mean, may have led to this outcome. Crawford et al. (2010) recommended 

using the 95th percentile when a large     ratio is expected, and the mean eigenvalue when that ratio is 

expected to be low. The present results may add credence to that suggestion. 

 Perhaps the next best decision method in Study 1 was to run MLFA and select the model for which 

the BIC (aka SBC) was the lowest. This approach performed nearly as well as PA-R and also was only 

prone to underfactoring by one given severe under-determination. However, in Study 2 the BIC was more 

negatively biased under wide saturation and very low     ratios, especially when sample size was small 

and factors were correlated. In that case, the procedure typically underfactored by several factors. That 

range of uncertainty would negate the BIC’s usefulness as an ad hoc procedure since an analyst might be 
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forced to consider many candidate models. The other information criteria, the AIC, was consistently 

likely to suggest one too many factors, but very rarely erred in another manner. Thus, for analysts who are 

unable to run parallel analysis, but can obtain the AIC and BIC from common statistical software 

packages, the following approach might be utilized. Run MLFA on several candidate models (e.g., 2 to 4 

factors) and examine the information criteria. The model that has the lowest AIC should be examined as 

should the next smaller model. The BIC might also be inspected in a similar manner, but should be used 

warily unless final communality estimates all appear to be fairly high.  

  The likelihood ratio test was nearly as likely to be correct as PA-R or BIC, but had a small, notable 

chance of suggesting the wrong number of factors in situations that posed no problems for other 

procedures. Furthermore, the LRT was capable of both underfactoring in under-saturated conditions and 

overfactoring by one or two (and up to four in rare cases). Thus, a researcher using the LRT to determine 

the number of factors might need to consider comparing as many as five candidate models. If software 

outputs the LRT along with the AIC, then the AIC should be utilized in the manner suggested above. If 

only the LRT is given (as is the case in SPSS), it can still be used with confidence in many situations. 

  The ubiquitous eigenvalue-greater-than-one rule suggested by Kaiser was not shown to be 

particularly accurate. This study replicated the well-known tendency of Kaiser’s rule to overfactor 

(Browne, 1968; Gorsuch, 1983, 1997; Zwick & Velicer, 1986). It had the lowest overall hit rate outside of 

the SEscree procedures and frequently yielded overestimates of two or more. In Study 1 when all 

communalities were high (at least .6), this rule did work fairly well. When communalities had a greater 

range (from .2 to .8), it worked quite poorly. When communalities were wide and there are many 

variables relative to the number of factors, Kaiser’s rule suggested an average of 2 to 7 factors too many. 

In Study 2, Kaiser’s rule overfactored even in the high saturation condition and did so by extreme 

amounts when saturation was wide. It is the first author’s experience that a wide range of communalities, 

or rotated factor loadings, are common in practice. Given that EV-F is the default method in major 

software packages and has been shown in literature reviews to be common practice (Fabrigar et al., 1999; 

Ford et al., 1986; Henson & Roberts, 2006; Park et al., 2002), it seems likely that researchers often 

interpret more factors than are truly present in their data; perhaps many more. 

  Rather than retaining the number of factors with eigenvalues greater than one, researchers would be 

somewhat better served using the conceptually similar criterion of the number of eigenvalues of the 

reduced correlation matrix greater than the mean eigenvalue. If all communalities are high and the sample 

size is large, then the common factor eigenvalue rule is likely to be correct. Otherwise, this method should 

also be used with caution.  

  The accuracy of both eigenvalue rules appears to largely be determined simply by the number of 

manifest variables. In Figure 2, the mean error of estimate for the wide saturation level in Study 2 has 

been plotted by p for two sample sizes. Note that the plot has not been smoothed. Gorsuch (1983, p. 163) 

observed that the number of factors suggested by EV-F typically is a function of the number of variables, 

ranging from p/5 to p/3.   

 Velicer’s minimum average partial procedure fared somewhat well in Study 1; though, not quite as 

well as PA-R, BIC, or LRT. Like BIC and PA-R, it had the potential to underfactor when the variable-to-

factor ratio was small, but to do so by a greater magnitude than those procedures. That propensity was 

more severe in Study 2. This finding mimics that of Zwick and Velicer (1986). Therefore, a researcher 

using MAP might also try models with one or two more factors than the procedure suggests, especially 

when a low variable-to-factor ratio is possible. However, since neither MAP nor parallel analysis are 

standard options in common statistical packages, an analyst willing to attempt using one of these “outside 

procedures” should instead choose to try common factor parallel analysis. 

 The standard error scree test on the eigenvalues of either the full or reduced correlation matrix was 

shown to perform quite poorly in many conditions. The SEscree method very frequently overestimated by 

three or more factors. The fact that the procedure yielded average estimates 5 to 9 factors too high in 

many scenarios (Study 1) and by dozens in individual samples would seem to eliminate the procedure 

from consideration. The SEscree test seems to overextract whenever the     ratio is high. Nasser et al. 

(2002) observed the same phenomenon, but nevertheless found the procedure to be the best of the 

regression-based scree methods. The logic behind the tests is very reasonable. It may be that a better 

criterion than the somewhat arbitrary value of 1/p suggested by Zoski and Jurs (1996) is all that is needed 

to make the SEscree procedure more robust.  
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Figure 2. Mean error versus number of variables for 

eight methods - wide saturation (Study 2). 

 One important limitation to this study is that 

only sample sizes of 200 and 500 were used. 

Several of the procedures may have been 

adversely affected by more extreme values. In 

particular, the LRT has been observed to 

overfactor when n is very large, and 500 may 

not have been enough to clearly see that 

behavior. 

Conclusions 

  Factor analysts needing to estimate the 

number of common factors should give strong 

consideration to using parallel analysis on the 

reduced correlation matrix. A SAS macro to run 

PA-R (as well as PA-F) can be requested from 

the first author. When using this method, if it is 

suspected that each factor is only represented by 

a small number of variables (perhaps five or 

fewer), then the researcher might also examine 

the model with one more factor. Use of AIC to 

determine the best model is also recommended with the caveat that the model with one fewer factor must 

also be examined. If neither of these options is available, the number of observed variables is not too 

large, and estimated communalities are all large, the analyst might use the number of eigenvalues in the 

reduced correlation matrix greater than the mean; a decision method that was more accurate in this study 

than was the traditional eigenvalues-over-one rule. 
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