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In this journal, Robinson, Tomek, and Schumacker (2013) argued that researchers interested in whether 

the regression coefficient for X in a model estimating Y from X differs between two groups should 

conduct two separate regressions rather than rely on moderated multiple regression (MMR).  They 

advocate a standard error of the difference between coefficients they claim results in a more powerful test 

of moderation than MMR without affecting Type I error rate.  We show analytically and demonstrate 

through simulation that, consistent with prior research, their standard error estimator results in substantial 

underestimation of the standard error and should not be used. 

 stablishing the boundary conditions of independent variable X’s effect on dependent variable Y—

the factor or factors Z that influence or predict the size of X’s effect on Y—advances our 

understanding of a given phenomenon more so than does establishing merely that X is related to Y 

on average. Are grades in high school (X) more predictive of later superior performance in college (Y) 

among first-generation college students than among children of parents who attended college themselves 

(Z)? Does the relationship between frequency of television viewing at home (X) and attention problems in 

school (Y) depend on whether or not a child has a television in the same room where he or she studies 

(Z)? If so, we say that Z moderates the effect of X on Y, or that X and Z interact in predicting Y. In other 

words, the effect of X on Y depends on Z. 

 Education researchers get exposure to methods for testing such questions about moderation or 

interaction—the contingencies of an effect—early in their training in the form of factorial analysis of 

variance in which all variables but the outcome are categorical. Alternatively, this concept is introduced 

in a regression analysis class by showing how a continuous or dichotomous X’s regression weight in a 

model of a continuous Y can be estimated as a linear function of a dichotomous or continuous proposed 

moderator variable Z.  

  The linear moderation model, sometimes called a moderated multiple regression model, is frequently 

used in education research (see e.g., Aspelmeier, Love, McGill, Elliot, & Pierce, 2012; Farris, Lefever, 

Borkowski, & Whitman, 2013). It takes the form 

         Y = i1 + b1X + b2Z +b3XZ + e ,          (1) 

where X and Z are an independent variable and a moderator variable, respectively, that are either 

dichotomous or continuous, XZ is their product, Y is a continuous dependent variable, and e is an error in 

estimation. The inclusion of XZ as a predictor in Equation 1 along with X and Z allows X’s effect on Y to 

be a linear function of Z, meaning Z serves as a moderator of the effect of X on Y. If X and Z are both 

dichotomous, ordinary least squares (OLS) estimation of the regression coefficients in Equation 1 is 

equivalent to a 2 × 2 factorial analysis of variance when X and Z are effect coded (e.g., 1/-1 or -0.5/0.5; 

see Hayes, 2013).  

  This regression-based approach to moderation analysis has received much attention in the 

methodology literature. This is no doubt in part because moderation is such an important concept in most 

any substantive area, but this attention also reflects various confusions and controversies about how the 

regression coefficients in such a model are interpreted, as well as whether and how the regression 

coefficient for XZ quantifies the relationship between the size of X’s effect on Y and moderator variable Z 

and the power of tests of moderation using this approach (see e.g., Aguinis & Stone-Romero, 1997; 

Cohen, 1978; Friedrich, 1982; Hayes, Glynn, & Huge, 2012; Kromrey & Foster-Johnson, 1998). This 

commentary adds to that literature and focuses on a special form of this model in which Z, the proposed 

moderator, is a dichotomous variable. It is written in response to an article published in this journal by 

Robinson, Tomek, and Schumacker (2013) that we believe offers advice that, if followed, will result in 

investigators conducting an inaccurate test of whether X’s effect on Y differs between the two groups 

coded by Z. We offer analytical and simulation based evidence to support the position we take.   

E 
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Separate Regressions Versus Moderated Multiple Regression 

  If Z is coded 0 and 1, b1 in Equation 1 estimates the linear relationship between X and Y in the group 

coded Z = 0, and b1 + b3 estimates the linear relationship between X and Y in the group coded Z = 1. 

Therefore, the difference between the two groups in the relationship between X and Y, at least as 

quantified with a linear regression weight, is equal to b3. An inference about b3 is an inference as to 

whether Z moderates the effect of X on Y. That is, a claim that the regression coefficient for XZ in 

Equation 1 is different from zero is a claim that the linear relationship between X and Y differs between 

the two groups coded with Z. We will refer to this analytical strategy throughout as the moderated 

multiple regression (MMR) approach to moderation analysis. 

An alternative approach has been used in some published studies in the education field (e.g., Loes, 

Salisbury, & Pascarella, 2013; Roksa & Potter, 2011), which we will refer to as the separate regressions 

approach. This method involves conducting two independent regression analyses, one for the group coded 

Z = 0, and the one for the group coded Z = 1, with the goal of seeing if the relationship between X and Y 

differs in the two regressions. If one were to discard all the cases from the data coded Z = 1 and then 

regressed Y on X, as in 

          Y = i1 + b1X + e              (2) 

it can be shown that b1 in Equation 2 is equivalent to b1 in Equation 1. That is, in (2), b1 quantifies the 

relationship between X and Y in the group coded Z = 0, just as does b1 in Equation 1. Similarly, if one 

were to exclude cases with Z = 0 and estimate 

          Y = i2 + b2X + e              (3) 

on the remaining cases, b2 in Equation 3 estimates the effect of X on Y in the group coded Z = 1. It also 

turns out that b2 in Equation 3 is equivalent to b1 + b3 in Equation 1. Of interest when using the separate 

regression approach to moderation analysis is whether b1 in Equation 2 differs from b2 in Equation 3 

according to a formal statistical test.  

  In the MMR strategy, b3 is equivalent to the difference between b2 and b1 from Equations 2 and 3 and 

directly quantifies the difference in these two regression weights. Conveniently, such a regression 

analysis also yields a standard error for b3 that can be used for statistical inference, and any regression 

program will generate it along with a t and p-value whether the analyst wants it or not. The standard error 

estimator built into all commonly-used regression routines such as in SAS, SPSS, and other packages is 
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where MSresidual is the mean squared residual from Equation 1, n is the sample size, 
2

XZR is the squared 

multiple correlation from a linear regression analysis estimating XZ from X and Z, and )(ˆ XZV is the 

estimated variance of XZ (see e.g., Darlington, 1990). Under the standard assumptions of regression 

(normally, independently, and identically distributed errors in estimation) 
33 bseb is distributed as t(n – 4) 

where n is the sample size. A p-value for the test of the null hypothesis that 3, the population counterpart 

of b3, is equal to zero can be derived from the t distribution, or a c% confidence interval can be 

constructed as 
33 bcrit setb  , where tcrit is the value of t that cuts off the upper (100 – c) / 2% of the t 

distribution from the rest.
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  Robinson et al. (2013) recommend avoiding the MMR approach when interest is on testing whether 

the regression slope estimating Y from X is different in two groups. Rather, they advocate the separate 

regressions approach, which unlike the MMR approach does not automatically generate a standard error 

for b2 – b1. Instead, b1 and b2 are estimated in separate regressions, each of which yields a standard error 

for its respective regression slope, and the standard error for the difference between b2 and b1 must be 

calculated by hand or some other way. They advocate  
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as the estimator of the standard error of the difference
2
, where n1 and n2 are the sizes of the two groups 

and )(ˆ
1bV  and )(ˆ

2bV are estimated sampling variances—the squared standard errors—of b1 and b2 from 

the separate regressions of Y on X. With this standard error estimated, a t test of the difference between 
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regression coefficients can be conducted by deriving the p-value attached to 
12

)( 12 bbsebb   using the t 

distribution with n1 + n2 – 2 degrees of freedom. Alternatively, a c% confidence interval can be 

constructed as 
12

)( 12 bbcrit setbb  , where tcrit is the value of t that cuts off the upper (100 – c) / 2% of the t 

distribution from the rest..  

  Robinson et al. (2013) argue that the separate regressions approach to estimating the standard error of 

b2 – b1 is better than the MMR approach using Equation 4 for the standard error of b3. They show by way 

of two examples that although b2 – b1 from Equations 2 and 3 correspond to b3 in Equation 1, the standard 

error in Equation 5 is smaller than the standard error that Equation 4 yields. Thus, they reason, the use of 

the standard error estimator in Equation 5 produces a test with higher power while still keeping the Type I 

error in line with the nominal significance level. 

  On the surface their argument seems compelling. Indeed, Equation 5 will produce a smaller standard 

error than Equation 4, so the p-value using Equation 5 is smaller than when using Equation 4, and the 

confidence interval for the difference in regression weights is correspondingly narrower. This is apparent 

following the two examples Robinson et al. (2013) report. We concede that this is generally true, and the 

reader can verify this using any data that they have available to them that this is not specific to the two 

examples Robinson et al. provide. Furthermore, we agree that the approach Robinson et al. advocate is a 

more powerful way of testing the difference between two independent regression slopes and therefore will 

reduce the risk of a Type II error.  

  The difficulty we have with their recommendation is that it yields a more powerful test in a way that 

most researchers would consider unacceptable. The problem with this estimator is that it is downwardly 

biased, and it yields an estimate of the standard error that is systematically inaccurate and inappropriately 

small. Using a standard error that is too small is certainly one approach to increasing power, but use of the 

standard error they describe does not control Type I error rate as Robinson et al. (2013) claim. The cost of 

the power that the use of Equation 5 buys is elevated Type I error and confidence intervals with coverage 

that do not match the confidence level desired, contrary to Robinson et al.’s claim. Although investigators 

can differ in how much they weigh the cost of Type I over Type II errors, we believe that most would find 

that the elevated Type I error rate that the use of Equation 5 yields is too high a price to pay for the power 

it buys.  

  In this remainder of this paper, we illustrate the downward bias analytically and through simulation, 

and show that the result is inflated Type I error rates and confidence intervals with coverage that does not 

coincide with the confidence level. We also show that the standard error of b3 from the MMR approach is 

generally a better estimator of the standard error of the difference between the two within-group 

regression slopes, so long as the assumption of homoscedasticity is met. When it is violated, the problem 

produced by heteroscedasticity in the MMR approach is easily remedied by using a standard error 

estimator in moderated multiple regression that does not assume homoscedasticity. 

We acknowledge that we are not the first to make much of this argument we advance in the pages that 

follow. Indeed, the potential controversy this commentary may prompt has largely already been settled 

elsewhere (see Brame, Paternoster, Mazerolle, & Piquero, 1998; Cohen, 1983; Paternoster, Brame, 

Mazerolle, & Piquero, 1998). We will review some of the evidence here. Understandable though it is, 

Robinson et al.’s (2013) recommendation suggests that the resolution of this debate has not yet 

disseminated widely, at least not through the education discipline. 

  In the discussion below, we make frequent reference to two examples that Robinson et al. (2013) rely 

on in their paper. The first example is based on a study examining the relationship between academic self-

efficacy (X) and academic achievement (Y) as a function of ethnicity (Z). The second is based on data 

available on the web looking at the relationship between a continuous measure of cancer risk (X) and 

intentions to get screened for cancer (Y) as a function of a dichotomous measure of risk (Z).
3  

Robinson et 

al. (2013) report analyses based on the MMR and the separate regression approaches in their Tables 2 and 

3. For the reader’s convenience, we include excerpts from those two tables in our Table 1, along with 

additional information relevant to the argument and analyses we report below.  
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Analytical Derivation of the Standard Error of b2 – b1 in Separate Regressions 

  The regression slopes b1 and b2 in Equations 2 and Equations 3 are random variables. They can each 

be thought of as values from random draws from their respective sampling distributions and will deviate 

from their “true” or “population” values in part by the luck of the draw, i.e. the same factors that influence 

sampling error more generally. Statistical theory informs us a lot about what the distributions of random 

variables such as regression coefficients look like over repeated sampling from a population. Under the 

standard assumptions of regression, the sampling distributions of b1 and b2 are roughly normal and are 

centered at 1 and 2—their corresponding population values. That is, assuming unbiased sampling, E(b1) 

= 1 and E(b2) = 2, and so b1 and b2 are typically used as point estimators of 1 and 2. The variances of 

these sampling distributions, which we denote V(b1) and V(b2), quantify how much on average b1 and b2 

tend to differ from 1 and 2 in a sample of a given size. The square of the standard errors of b1 and b2 

produced by OLS regression, )(ˆ
1bV  and )(ˆ

2bV , are typically used as point estimators of sampling 

variances V(b1) and V(b2).  

  As b1 and b2 are random variables, so too is their difference a random variable. In any study, b2 – b1 

can be thought of as a random draw from the sampling distribution of b2 – b1, which is centered at 2 – 1 

assuming unbiased sampling. To make an inference about the difference between 1 and 2, we need a 

point estimate, b2 – b1, and an estimate of the standard error—the square root of the sampling variance of 

b2 – b1. From this we can construct a confidence interval for 2 – 1 or conduct a hypothesis test. 

Robinson et al. recommend Equation 5 as the standard error estimator, whereas the MMR strategy uses 

Equation 4.  

  Unfortunately, the estimator of the standard error of b2 – b1 that Robinson et al. (2013) advocate does 

not follow analytically from rules of covariance algebra. Put bluntly, it is incorrect. The variance of the 

difference between two random variables is the sum of their variances minus twice their covariance 

(Lindgren, 1968, p. 126). In this case, the two random variables are b1 and b2, so 

V(b2 – b1) = V(b1) + V(b2) – 2COV(b1, b2) 

But if b1 and b2 are estimates derived from two independent samples, then the covariance between b1 and 

b2 is zero, yielding  

         V(b2 – b1) = V(b1) + V(b2) 

Replacing the unknown variances with point estimators of those variances yields 

         )(ˆ)(ˆ)(ˆ
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as a point estimator of the variance of b2 – b1. The square root of Equation 6 serves as an estimator of the 

standard error of b2 – b1 (see Brame et al., 1998; Clogg, Petkova, & Haritou, 1995). 

This analytical derivation shows that the proper standard error for the sampling distribution of b2 – b1 is 

the square root of the sum of the squared standard errors of b1 and b2: 
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  There is no need to weight each of the squared standard errors by the relative sizes of the two groups 

as Robinson et al. (2013) recommend. Doing so produces an estimate of the standard error that is different 

from the one yielded by Equation 7, and is generally smaller. Holding )(ˆ
1bV and )(ˆ

2bV constant, the 

difference between Equation 5 and Equation 7 is a function of the relative sizes of n1 and n2. In the special 

case where the group sample sizes are equal (i.e., n1 = n2), the right-hand side of Equation 5 can be 

expressed as 

         )(ˆ)(ˆ
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  As n1 (and therefore n2) grows, )22/( 11 nn  rapidly approaches but is never smaller than 0.707. So 

when sample sizes are equal, Robinson et al.’s standard error estimator (Equation 5) is about seven tenths 

of the size of the analytically-derived standard error estimator (Equation 7). That is, it is about 30% 

smaller than the standard error derived from covariance algebra. 

  It is noteworthy that in both examples that Robinson et al. (2013) report, the sample sizes of the two 

groups are about equal, and the standard error they report based on Equation 5 is indeed just about seven 

tenths of the standard error generated by Equation 7, as expected from the derivation above. In their first   
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Table 1. Model Coefficients, Standard errors, and the Standard Error of the Slope Difference in the Two 

Examples Presented in Robinson et al. (2013) 

Self-Efficacy and Academic Achievement 

Example 

  b1 

(SE) 

  b2 

(SE) 

  b3 

(SE) 

Moderated Multiple Regression (Eq. 1) 0.031 

(0.006) 

-0.098 

(0.098) 

-0.013 

(0.0093) 

Separate Regressions 

(Eqs. 2 and 3) 

0.031 

(0.0065) 

n1 = 104 

 0.018 

(0.0067) 

n1 = 105 

 

  SE (slope difference) 

MMR (eq. 4) 0.0093 

Separate Regressions (Eq. 5) 0.0066 

Separate Regressions (Eq. 7) 0.0093 

Risk and Cancer Screening  

Example 

  b1 

(SE) 

  b2 

(SE) 

  b3 

(SE) 

Moderated Multiple Regression (Eq. 1) 0.908 

(0.149) 

-2.317 

(0.329) 

-1.860 

(0.217) 

Separate Regressions 

(Eqs. 2 and 3) 

0.908 

(.141) 

n1 = 96
†
 

-0.951 

(0.167) 

n2 = 91 

 

  SE (slope difference) 

Moderated Multiple Regression (Eq. 4) 0.217 

Separate Regressions (Eq. 5) 0.155 

Separate Regressions (Eq. 7) 0.219 

Moderated Multiple Regression (HC3) 0.191 

Note.
 
Robinson et al. (2013) misreport this sample size as 95 in their Table 3.   

SE = standard error.  The standard error for the slope differences is the standard error of b2 – b1 for the 

separate regressions approach and the standard error of b3 for the MMR approach.  Though not reported 

in the paper, Robinson et al. (2013) mean centered risk (X) in the cancer screening example, so we have 

done so here as well as in the analysis generating the output in the Appendix. 
 

example, Equation 5 yields 0.0066 compared to 0.0093 by Equation 7, a ratio of 0.701; in the second 

example Equation 5 yields 0.155 and Equation 7 results in 0.219, a ratio of 0.708 (see Table 1). 

 But even more telling with respect to the wisdom of Robinson et al.’s (2013) recommendation that the 

MMR approach not be used, the analytically-derived standard error expressed by Equation 7 is very 

similar to the standard error of b3 using from the MMR approach, as can be seen in Table 1. That is, the 

standard error of b3 in the first example using Equation 4 is 0.0093 and 0.217 in the second example, 

compared to the analytically derived standard errors of 0.0093 and 0.219, respectively. In other words, the 

MMR approach and the analytically derived standard error estimator largely agree each other using the 

results from the two examples Robinson et al. (2013) use, and they both differ from the standard error that 

Robinson et al. advocate by a predictable amount. This is not to say that the MMR is necessarily a good 

standard error estimator in all circumstances, as will be discussed later. But it is generally better than the 

estimator Robinson et al. (2013) advocate.  
 

Simulation Evidence of the Bias in Equation 5 

  The analytical derivation above suggests that the standard error estimator Robinson et al. (2013) 

recommend in Equation 5 is negatively biased. Furthermore, for the two examples Robinson et al. report, 

the MMR estimator of the standard error of b3 in Equation 4 provides a closer approximation of the 

analytical derivation of the standard error of the difference between b2 and b1. A small set of Monte Carlo 

simulations we report here confirms the negative bias in the estimator Robinson et al. (2013) advocate, 

and an additional published simulation we discuss later also confirms the bias. 

  One way of checking on a theoretically-derived sampling variance of an estimator is to simulate 

random draws from the sampling distribution of an estimator and compute the variance of the estimates 
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over repeated draws. By controlling the parameters of the population from which samples are drawn, it is 

possible to compare what is observed empirically to what an analytical derivation predicts. 

To do so, we used the sample results from the Aiken (cancer risk and cancer screening) example 

Robinson et al. (2013) report in their Table 3 (see the second set of results in our Table 1) as population 

values and simulated the sampling of two regression slopes from populations defined by their results. In 

this example, the separate regressions approach yields b1 = 0.908, )(ˆ
1bV = 0.141, i1  = 7.127, n1 = 96, 

and b2 = -0.951, )(ˆ
2bV = 0.167, i2 = 4.810, n2 = 91. Thus, we define the parameters of the simulation 

such that 1 = 0.908, 2 = -0.951, )( 1bV = 0.141, and )( 2bV = 0.167. All simulations were conducted 

using the GAUSS statistical system, version 12 (Aptech Systems, 2011).  

  For a simulated low risk group, we constructed n1 = 91 values of Y using the function 

          Y = 7.127 + 1X + e1 

where X was a random standard normal variable and values of e1 were drawn from a population of 

random normal deviates centered as zero with standard deviation = 1.37. This use of 1.37 ensures that the 

standard deviation of the sampling distribution of b1 is about 0.141. An identical approach was used to 

construct n2 = 96 values of X and Y for a simulated high risk group. The function to construct Y from X 

was         Y = 4.810 + 2X + e2 

where X was a random standard normal variable and e2 is drawn from a population with random normal 

errors centered at zero with standard deviation 1.57, yielding a standard deviation of the sampling 

distribution of b2 of about 0.167. 

  With values of X and Y generated in each of the two groups, we regressed Y on X using OLS 

regression in each of the two groups separately to generate estimates of b1 and b2, and then calculated 

their difference b2 – b1. This was repeated a total of 100,000 times. The result is a sample of 100,000 

estimated differences between the two slopes when sampling from two populations with values of 1, 

V(2), 2, and V(2) corresponding to the estimates from the risk and cancer screening example Robinson 

et al. (2013) use.  

  In each of these 100,000 samples we also estimated the standard error of the difference using 

Equations 5 (Robinson et al.’s approach) and 7 (the analytically derived standard error). We also 

implemented the MMR strategy, which estimates the slope difference as b3 in Equation 1, with standard 

error estimated using Equation 4. In addition, we implemented a t-test of the null hypothesis that the 

slopes are equal, as well as constructed a 95% confidence interval for the difference, recording whether or 

not the confidence interval contained the population slope difference of -1.86. 

  The results of the simulation comparing these methods, along with another we discuss later, can be 

found in the first row of Table 2. Naturally, the mean of the 100,000 estimated slope differences was -

1.86—the population difference. More important is the standard deviation of these 100,000 estimates of 

the slope difference—listed as the Empirical SE in Table 2—which was 0.219. It is this standard 

deviation that the various standard error estimators described above attempt to estimate. The empirical 

standard error is the same to the third decimal place as the estimated standard error of 0.219 generated 

when Equation 7—the analytically derived standard error—is applied to the sample results reported by 

Robinson et al. and in our Table 1. It also is very close to the standard error for b3 using the MMR 

strategy, but it is quite different from and considerably larger than the standard error generated by 

Equation 5, which is the approach Robinson et al. recommend. 

 Table 2 also provides the mean estimated standard error of the slope difference when these three 

different estimators are applied to each of the 100,000 simulated data sets. As can be seen, on average, the 

standard error constructed using Equations 4 (MMR) and 7 (analytical slope difference) is very close to 

the standard deviation of the 100,000 slope differences. But the average standard error constructed using 

Equation 5 (Robinson et al.’s favored method) is substantially smaller, at 0.155.  

 These results illustrate the bias in the standard error introduced by weighting the standard errors of 

the within-group slopes by the group samples sizes, as Equation 5 does. On the surface, this 

underestimation of the standard error would seem to have little consequence for testing the null 

hypothesis of equality of the slopes in this example, as in every case the use of Equation 5 correctly 

rejects the null. However, power is so high in this example that all methods correctly do so; the rejection 

rate is 100% for every method. More telling is the coverage of the confidence intervals constructed for the 
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slope difference using different standard error estimators. As can be seen using the MMR standard error 

estimator (Equation 4) or the analytically derived standard error of the separate regressions slope 

difference (Equation 7), about 95% of the 95% confidence intervals cover the true slope difference of -

1.86. That is, only about 5% of the confidence intervals fail to include the true difference, just as a 

properly constructed 95% interval estimate should. But only 84% of the confidence intervals constructed 

using Robinson et al.’s standard error in equation 5 contain the true slope difference. This is as would be 

expected for a standard error estimator that is negatively biased. It produces confidence intervals that are 

too narrow and, as a result, miss the population slope difference more than 5% of the time. 

 To get at Type I error, we did another simulation identical to the one just described but setting 1 = 

2. In this simulation, we split the difference between 1 and 2 in the prior simulation and used the group 

sample size-weighted average of 0.003 for each. The results of this run can be found in the second row of 

Table 2. As can be seen, again, the average of 100,000 standard errors estimated using Equations 4 and 7 

were very close to the standard deviation of the 100,000 estimated slope differences (which is still 0.220 

because the standard errors are determined by sampling variance and not by the population slopes). But 

the average standard error using Equation 5 was too small. The result is Type I error inflation, as can be 

seen in Table 2. Using Equation 5 resulted in rejection of the true null hypothesis 16.4% of the time at the 

 = 0.05 level of significance, as expected when using a standard error that is negatively biased. But the 

MMR standard error and the analytically-derived standard error rejected the true null hypothesis about 

5% of the time, as they should. Confidence interval coverage reflects this, with proper coverage using 

Equations 4 and 7, but coverage that is well below 95% when using Equation 5. These results stand in 

direct conflict with Robinson et al.’s (2013) claim in various places (pp. 16, 17, 23, 24) that the use of 

Equation 5 does not adversely affect the Type I error rate relative to Equation 4. 
 

Table 2. Monte Carlo Simulation Results Examining the Performance of Four Estimators of the 

Difference Between Independent Regression Coefficients 

   Standard Error Estimator  

Empirical 

SE  
 Parameters 

 

  

Eq. 5 

 

Eq. 7 

MMR 

Eq. 4 

MMR 

HC3 

 1 = 0.908, 2 = -0.951 Mean SE 0.155 0.219 0.218 0.223 0.219 

 n1 = 96, n2 = 91 Rej.% 100.0 100.0 100.0 100.0  

 SDe1 =  1.37, SDe2 = 1.57 Cov.% 83.7 95.1 95.0 95.3  

 1 = 0.003, 2 = 0.003 Mean SE 0.155 0.219 0.218 0.223 0.220 

 n1 = 96, n2 = 91 Rej.% 16.4 5.1 5.2 4.9  

 SDe1 =  1.37, SDe2 = 1.57 Cov.% 83.6 94.9 94.8 95.1  

 1 = -0.200, 2 = 0.200 Mean SE 0.102 0.167 0.167 0.171 0.168 

 n1 = 150, n2 = 50 Rej.% 88.2 66.7 66.8 64.6  

 SDe1 = 1.00, SDe2 = 1.00 Cov.% 77.2 94.9 95.0 95.0  

 1 = 0.400, 2 = 0.400 Mean SE 0.296 0.481 0.482 0.511 0.488 

 n1 = 25, n2 = 75 Rej.% 22.7 5.4 5.0 5.1  

 SDe1 = 2.00, SDe2 = 2.00 Cov.% 77.3 94.6 95.0 94.9  

 1 = 0.200, 2 = 0.200 Mean SE 0.162 0.300 0.220 0.310 0.304 

 n1 = 50, n2 = 150 Rej.% 29.2 5.4 15.2 5.4  

 SDe1 = 2.00, SDe2 = 1.00 Cov % 70.8 94.6 84.8 94.6  

 1 = -0.300, 2 = -0.300 Mean SE 0.161 0.219 0.301 0.225 0.220 

 n1 = 50, n2 = 150 Rej.% 14.9 5.0 0.8 4.8  

 SDe1 = 1.00, SDe2 = 2.00 Cov.% 85.1 95.0 99.2 95.2  

Note. 100,000 replications; Mean SE = Mean standard error; Rej.% = Percentage of rejections of test of 

the null hypothesis that 1 = 2 using t distribution; SDe = standard deviation of the errors in estimation of 

Y from X; Cov.% = 95% confidence interval coverage; Empirical SE is the standard deviation of the 

100,000 estimated slope differences.  
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More Simulation Evidence 

 In the event the reader questions whether the results of the simulations presented above are specific to 

the parameters we used, we provide the results from a few other simulations in Table 2 in which we 

varied the sample sizes of the two groups, error variances, and 1 and 2. The results were the same, with 

Equation 5 resulting in underestimation of the standard error of the slope difference, under-coverage of 

95% confidence intervals, and elevated Type I error when the population slopes were equal. These 

problems were not in evidence using Equation 7, or when using Equation 4, with the exception of the last 

two sets of conditions (rows 5 and 6 of Table 2) which we discuss later.  

 Furthermore, we are not the only ones to have studied the relative performance of these approaches to 

comparing independent regression weights. Brame et al. (1998) did an extensive set of Monte Carlo 

simulations comparing minor variants of these approaches and their results are comparable to those we 

report here, with Type I error rates three to seven times the nominal significance level.
4
 They conclude, in 

reference to their version of Equation 5, that “We found that the bias produced by this estimator is, in 

general, nontrivial. Consequently, we believe that researchers should abandon any use of [equation 5]” (p. 

258). We concur, as presumably does Cohen (1983), who shows that Equation 5 is not the proper 

estimator of the standard error of b2 – b1.  

 

Where Does Equation 5 Come From? 

  Robinson et al. (2013) do not provide any source justifying Equation 5 as their preferred estimator of 

the standard error of the difference between slopes. However, toward the end the paper they state “Our 

equations were verified using Kleinbaum and Kupper’s 1978 textbook” (p. 23). We examined this book 

and found two versions of the standard error estimator. On page 101, section 8.3.2, they offer a “large 

sample Z test for parallelism” that is equivalent to Equation 7—the standard error estimator we derived 

analytically. In the prior section (8.3.1) they offer a “small-sample t test for parallelism” with a standard 

error estimator that is not equivalent to Equation 5 and is more similar to Equation 4. It yields 0.212 when 

applied to the cancer risk example data, which is trivially different than what Equations 4 and 7 yield in 

this example and very different from the 0.155 that Robinson et al. report in their Table 3 using Equation 

5. This leads us to wonder whether Kleinbaum and Kupper (1978) is the source of Robinson et al.’s 

preferred standard error estimator. Regardless, later, Kleinbaum and Kupper (p. 192) point out when 

describing the MMR strategy that it yields a test of equality of regression slopes exactly equivalent to the 

small sample t test they describe in section 8.3.1.  

  Yet Robinson et al. (2013) are not the only ones to have advanced Equation 5 as the standard error of 

the difference between slopes. Others who have compared the relative performance of Equations 5 and 7 

have traced Equation 5 back to an article by Wright in a 1978 volume of the American Journal of 

Sociology (Brame et al., 1998).  We have not had any luck finding any source earlier than this, nor have 

we found any modern references advocating its use in any specific field.  But it has been used in other 

disciplines (see, for example, the list provided by Brame et al.), so we can assume it has been used in 

education research and other fields as well. 

  Regardless of its ultimate origin, there is a certain allure to Equation 5 that might lead people to 

unquestionably accept it as a legitimate standard error estimator for the difference between slopes. The 

separate regressions approach to comparing regression slopes requires a single standard error of the 

difference between slopes, but two standard errors are available for use, one for b1 and one for b2. Clearly, 

some kind of “pooling” of the information from the two regressions is needed. This is similar to the 

problem faced by researchers needing to compare the means of two independent groups. Most every 

introductory statistics book (e.g., Agresti & Findlay, 2009) offers   
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as the estimated standard error of 12 YY  , where )(ˆ
1YV is the estimated variance of the measurements of 

Y in group 1 and )(ˆ
2YV  is the estimated variance of the measurements of Y in group 2. Under the 

assumption of between-group equality of variances in Y, a “pooled” standard deviation is calculated 

which is a weighted average of variances of Y in the two groups 
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the square of which is then substituted into Equation 8 for both )(ˆ
1YV  and )(ˆ

2YV .  

  Notice that Equation 9 is quite similar to the right hand side of Equation 5, with two critical 

differences other than the subtraction of 1 from each of the sample sizes in the numerator. First, )(ˆ
1YV and 

)(ˆ
2YV are estimates of the variances of measurements, not estimates of the sampling variances of an 

estimator. Second, Equation 9 is only an intermediate computation to the generation of the standard error 

of the mean difference. The result of Equation 9 must be substituted into Equation 8 for )(ˆ
1YV  and )(ˆ

2YV  

which then yields a standard error for 
12 YY   . Indeed, 

11)(ˆ nYV  and 
22 )(ˆ nYV  in Equation 8 are the 

sampling variances of estimators (of 
1Y  and 

2Y ), much like )(ˆ
1bV and )(ˆ

2bV are sampling variances of 

estimators in Equation 7. There is no weighting of these sampling variances in Equation 8 by sample size 

as in Equation 5. Thus, the analytically derived standard error for b2 – b1 in Equation 7, shown to be the 

more accurate estimator, overlaps theoretically and computationally more with Equation 8 than with 

Equation 9. 

 

Heteroscedasticity and the Standard Error of the Slope Difference 

  The separate regressions approach and the MMR approach to comparing independent regression 

slopes differ in one important way. The two separate regressions estimators of the standard error of the 

difference between slopes (Equations 5 and 7) do not assume between-group equality of the variance of 

the errors in estimation of Y from X, unlike the MMR estimator in Equation 4. For those who prefer to 

avoid unnecessary assumptions, Equation 7 seems like a better choice than Equation 4, even though 

Equation 7 requires some extra hand computation. Yet in our limited simulation, the two methods 

performed almost identically. 

  But the results we have described thus far belie a more complex reality, as there are boundary 

conditions to the similarity between the standard errors generated by Equations 4 and 7. Research has 

shown that when the variances in the errors of estimation differ between groups and the sample sizes of 

the groups differ, Equation 4 yields a standard error for b3 that is either too small or too large (Aguinis & 

Pierce, 1998; Dretzke, Levin, and Serlin, 1982). The result is a test of equality of the regression slopes 

that is either too liberal (inflated Type I error rate) or too conservative (deflated Type I error rate and 

reduced power). So the convenience of having a standard error readily available in regression output 

when using the MMR approach is tempered in part by the conditions that must be placed on its use. If no 

alternatives were available, one recommendation would be to use the MMR strategy when the assumption 

of between group equality of variance of errors is met, otherwise use Equation 7, which must be 

calculated by hand. 

  But there are alternatives available, so a compromise is possible. There is a family of 

heteroscedasticity-consistent standard error estimators that have been widely studied and perform well in 

regression analysis in the presence of heteroscedasticity, and regardless of the form of that 

heteroscedasticity. Moreover, these estimators work quite well even when the homoscedasticity 

assumption is met. Heteroscedasticity-consistent estimators are somewhat complex and cannot be 

represented without the use of matrix notation; we refer the reader to Long and Erwin (2000) or Hayes 

and Cai (2007) for the details. Conveniently, several of these estimators have been implemented in 

STATA as well as regression analysis macros for SPSS and SAS (Hayes & Cai). One of these that seems 

to perform particularly well—the HC3 estimator attributed to MacKinnon and White (1985)—is 

implemented in a freely-available and easy-to-use SPSS and SAS macro for moderation and mediation 

analysis (PROCESS) described and documented in Hayes (2013). When the HC3 estimator was used 

instead of Equation 4 in the cancer risk analysis, the resulting standard error for b3 was 0.191 (see Table 

1), which is slightly smaller than yielded by Equations 4 and 7 but larger than Equation 5. An example 

output from the PROCESS macro for SPSS and SAS used to conduct this analysis can be found in the 

Appendix. 
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 In the simulations described earlier, we also implemented hypothesis tests and confidence intervals 

for each set of conditions using the HC3 estimator of the standard error of b3 in the moderated multiple 

regression approach. In the first two sets of conditions (rows 1 and 2 of Table 2), the equality of variance 

assumption is violated (as the population error variances were different between the two groups by 

design) but only slightly so, whereas in the second two sets (rows 3 and 4 of Table 2) the assumption is 

met. In all four of these cases, the HC3 estimator using the MMR approach yielded an accurate standard 

error, Type I error rates were about 5%, and coverage for 95% confidence intervals was about 95%, as 

they should be.  

  The last two rows of Table 2 are most important, however, as they represent more substantial 

differences in estimation error variance than in the conditions delineated in the first two rows. In the 

conditions described in row 5, 1 = 2 but the variance of the errors in estimation is 4 times larger in the 

smaller group. Observe that the MMR standard error estimator for b3 defined in Equation 4 is now quite 

liberal, though not as liberal as Robinson et al.’s preferred estimator, with a standard error that is on 

average too small, a Type I error rate is larger than 5%, and confidence interval coverage below 95%. But 

the analytically-derived standard error estimator in Equation 7 for the separate regressions approach did 

quite well, as did the MMR approach using the HC3 standard error estimator. Both of these resulted in 

average standard errors roughly equal to the empirical standard error, and Type I error rate and 

confidence interval coverage were right on at 5% and 95%, respectively. 

  The last row in Table 2 describes the results in a set of conditions in which 1 = 2 but the variance of 

errors in estimation of Y from X is now four times larger in the larger group. Now Equation 4 

overestimates the standard error of b3, yielding a highly conservative test with a Type I error rate well 

below 5% and correspondingly high confidence interval coverage. The analytically-derived standard error 

estimator in Equation 7 gets the standard error of the slope difference correct, with appropriate Type I 

error rates and coverage, as does the HC3 estimator of the standard error of b3 using the MMR approach. 

The standard error estimator Robinson et al. (2013) advocate still produces a standard error that is too 

small relative to the empirical standard error, with corresponding negative effects on Type I error rate and 

confidence interval coverage. 

 

Summary 

  In this paper we offer a rebuttal to Robinson et al.’s (2013) claim that separate regressions combined 

with the standard error estimator they recommend for comparing two independent regression coefficients 

should be routinely used instead of moderated multiple regression. We have shown that the standard error 

estimator they advocate does not follow from covariance algebra, it is downwardly biased, and results in 

an inflated Type I error rate and confidence intervals that do not provide adequate coverage of the 

population difference. Although the separate regressions approach allows one to relax the assumption of 

between-group equality of errors in estimation inherent in the MMR approach, Equation 7 is the proper 

estimator of the standard error of the difference between slopes, not Equation 5. When this assumption is 

met or nearly so, the moderated multiple regression strategy performs as well as Equation 7 when doing 

separate regressions. The disadvantage of Equation 7 is that it is not implemented in existing software and 

thus must be computed by hand. A compromise is the use of the HC3 estimator of the standard error of b3 

in moderated multiple regression. It does not require the assumption of between-group equality of errors 

in estimation, it works as well as Equation 7, and it is available in existing and widely-used software 

either with (in SPSS) or without (in STATA) a special macro.  

  It follows from the analytical derivation we outline, our simulation results, and simulations already 

published that Robinson et al.’s explanations for the superior performance of Equation 5 relative to 

Equation 4 in the latter half of their paper are neither accurate nor germane. The smaller standard errors 

they observe in their two examples after applying Equation 5 rather than Equation 4 is the result of using 

a negatively biased standard error estimator, and nothing more. Furthermore, there is no need to review 

published or unpublished studies, as they suggest may be necessary, in the hopes of finding all the false 

negatives that have resulted from the use of the moderated multiple regression strategy—effects Robinson 

et al. (2013) worry may have been detected had an researchers instead used the separate regressions 

approach and standard error they advocate.   
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APPENDIX 

Example Output from the PROCESS Macro for the Cancer Risk Analysis using the HC3 Estimator 

SPSS:  PROCESS vars=dummy risk int2gr/y=int2gr/x=risk/m=dummy/model=1/hc3=1. 

SAS:   %PROCESS (data=aiken,vars=dummy risk int2gr,y=int2gr,x=risk,m=dummy,model=1,hc3=1); 
 

    ***************** PROCESS Procedure for SPSS Release 2.12 ****************   

              Written by Andrew F. Hayes, Ph.D.       www.afhayes.com 

        Documentation available in Hayes (2013). www.guilford.com/p/hayes3 

    ************************************************************************** 

    Model = 1 

        Y = int2gr 

        X = risk 

        M = dummy 

    Sample size 

            187 

    ************************************************************************** 

    Outcome: int2gr 

 

    Model Summary 

              R       R-sq          F        df1        df2          p 

          .7027      .4937    81.0503     3.0000   183.0000      .0000 

    Model 

                  coeff         se          t          p       LLCI       ULCI 

    constant     7.1270      .1841    38.7129      .0000     6.7638     7.4902 

    dummy       -2.3168      .3174    -7.3000      .0000    -2.9429    -1.6906 

    risk          .9081      .1247     7.2818      .0000      .6620     1.1541 

    int_1       -1.8595      .1909    -9.7396      .0000    -2.2362    -1.4828 

 

    Interactions: 

     int_1    risk        X     dummy 

    ************************************************************************* 

    Conditional effect of X on Y at values of the moderator(s): 

          dummy     Effect         se          t          p       LLCI       ULCI 

          .0000      .9081      .1247     7.2818      .0000      .6620     1.1541 

         1.0000     -.9514      .1446    -6.5812      .0000    -1.2367     -.6662 

 

    Values for quantitative moderators are the mean and plus/minus one SD from mean. 

    Values for dichotomous moderators are the two values of the moderator. 

 

    ******************** ANALYSIS NOTES AND WARNINGS ************************* 

 

    Level of confidence for all confidence intervals in output: 

        95.00 

    NOTE: All standard errors for continuous outcome models are based on the  

          HC3 estimator 

 

Endnotes 

1. This test is mathematically identical to the test as to whether XZ explains any variation in Y 

independent of X and Z.   This is frequently tested by examining the change in R2 that results when XZ is 

added to a model containing X and Z.  Under the null hypothesis that the two regression coefficients are 

equal, the increase in R2 due to XZ can be converted to a statistic distributed as F(1,n – 4).  The F(1,n – 

4) distribution is the square of the t(n – 4) distribution.  The p-values for these tests will be the same. 

2. Equation 5 here is equation 8 in Robinson et al. (2013). 

3. It is not apparent from the data for this example, available at http://www.public.asu.edu/~atlsa/PSY531/ 

 whether the dichotomous  measure of risk is derived from a measure of risk different than the continuous 

measure.  We assume it is, but whether it is or not does not affect any of our computations or the 

argument itself. 

4. The version of equation 5 that Brame et al. (1998) studied weights the squared standard errors of the 

separately-estimated regression coefficients by their respective degrees of freedom rather than by the 

sample size.  Furthermore, they used maximum likelihood estimation of the parameter estimates and 

standard errors rather than OLS.  But this difference is trivial and would not have any noteworthy effects 

on the results of the simulation. 

http://www.public.asu.edu/~atlsa/PSY531/

