
Validity Concentration 

General Linear Model Journal, 2015, Vol. 41(1)                                                                                                        29 

Prediction, Explanation, Multicollinearity,  

and Validity Concentration in Multiple Regression 
        John D. Morris            Mary G. Lieberman 

Florida Atlantic University 

Recommendations from popular statistics texts regarding avoidance of predictor variable multicollinearity 

in the use of OLS multiple regression are considered from the perspective of the alternate purposes of 

explanation and prediction. Under the conditions considered, in the case of relative or absolute prediction 

accuracy, it is shown that multicollinearity has no effect on OLS prediction. Moreover, in regard to 

prediction accuracy, not only does multicollinearity not disadvantage OLS, but indeed, it is, in most data 

conditions presented, advantageous to model prediction accuracy, as it allows validity concentration to 

become large enough for alternative non-OLS methods to exceed OLS. 

 erusal of many texts typically used to introduce, or provide a more advanced treatment of, multiple 

regression (Belesley, Kuh, & Welch, 1980; Brook, & Arnold, 1985; Chatterjee, & Price; 1977; 

Cliff, 1987; Cohen & Cohen, 1983; Gnanadesikan, 1977; Kerlinger, & Pedhazur, 1973; Kleinbaum, 

Kupper, Nizan, & Rosenberg, 2013; Lomax, & Hahs-Vaughn, 2012; Meyers, Gamst, & Guarino, 2006; 

Pedhazur, 1997; Stevens, 2009; Tabachnick, & Fidell, 2012) provides a univocal warning to avoid the 

dangers of multicollinearity among predictor variables. Arguments center on the instability of the 

estimated regression weights, and to a lesser degree, numerical difficulties involved in inverting near 

singular predictor variable covariance matrices.   

  However, two different goals in multiple regression modeling may be of interest: prediction or 

explanation. These have been clearly distinguished elsewhere (Kerlinger, 1973, p. 9-10; Kerlinger & 

Pedhazur, 1973, p. 48-49), with detailed attention to the calculation of indices appropriate to each purpose 

afforded by Huberty (2003). Briefly, the distinction is that, in the case of explanation one’s interest is in 

parameter estimation, whereas in prediction, one’s interest is in model accuracy. In the case of prediction, 

the unassailable notion of “external” (Huberty), or cross-validated, accuracy is the gold standard. 

Consideration of the potentially different effect of multicollinearity on the alternate goals of prediction 

and explanation analyses does not appear to have been considered in the delivery of the aforementioned 

admonition in these mainstream texts.   

  The purpose of the present study is twofold. First, a more precise examination of the aforementioned 

recommendations regarding the prediction performance of Ordinary Least Squares (OLS) regression 

models over an extremely wide range of multicollinearity conditions is sought. In addition, to understand 

the full impact of multicollinearity, and attendant validity concentration, on prediction performance, some 

non-OLS predictor variable weighting strategies were presented under the same data conditions. The 

purpose of the inclusion of the non-OLS methods was to provide context for the performance of OLS, 

rather than to rigorously consider the relative performance among the non-OLS methods. 

Although collinearity in a predictor variable set may arise from such a simple cause as a large bivariate 

correlation between two predictors, it may also be due to more complex associations among predictors, 

and in that case is often dubbed “multicollinearity;” that term will be used herein regardless of the number 

of predictors involved. Several indices of multicollinearity are currently in use, including the Variance 

Inflation Factor (VIF, and its redundant inverse, the “Tolerance”) the MI indices of Thisted & Morris 

(1980), and presentation of, or functions of, the principal component eigenvalues of the predictor variable 

intercorrelation matrix. It appears that VIFs may be the most popular index, but perhaps the most general 

structural way to consider multicollinearity is to note that large and small principal component 

eigenvalue(s) arise from the predictor variable intercorrelation matrix if multicollinearity is high. 

It is this property that Darlington (1978) used, and that was also used in subsequent reexaminations 

(Morris, 1982; Morris & Huberty, 1987; Lieberman & Morris, 2014), to manipulate multicollinearity in 

examining its effect on a variety of prediction model weighting strategies. Rather than only considering 

the largest and smallest eigenvalue of the predictor variable intercorrelation matrix, the rate of decline of 

all principal component eigenvalues was set to ratios (λr) of .50, .65, .80, and .95. In those studies, it was 

shown that N, ρ
2
 and validity concentration also influenced the relative performance of weighting 

algorithms, where N was the sample size and ρ
2
 was the population squared multiple correlation. 

Although no specific index has been widely accepted, validity concentration is, generally speaking, the 
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degree to which predictor variable principal components with large eigenvalues are matched by large 

component-criterion correlations.   

  The present study uses similar, but extended, data conditions to those in Morris (1982) and 

Lieberman and Morris (2014). Among the eigenvalue-ratio (λr) conditions considered in those 

studies (.50, .65, .80, and .95), only one (.50) achieved levels conventionally considered 

multicollinear (VIFs > 10), thus two additional, more multicollinear, conditions were included in 

this examination (λr = .30 and .40). To provide context, one further comment (and the reason for 

its selection) about the .30 λr condition is needed. Although originally posited as a test of the 

ability of digital computers to accomplish the matrix inversion necessary for regression of a near 

singular matrix (Longley, 1967), the infamous “Longley data” has often been used in the 

statistical literature as a reference point for very extreme multicollinearity (VIFs from 4 to 

1789).  With VIFs of 340 to 2000, the .30 λr condition manifests even greater multicollinear than 

the Longley data, and would, we believe, be considered by most to manifest “tragic” 

multicollinearity. Thus, given that the least collinear (λr=.95) condition portrayed in this study 

manifests essentially no collinearity, with VIFs that are < 1.03 (zero correlations among all 

predictors would yield VIFs = 1.0), ranging to the aforementioned tragic multicollinearity of the 

λr=.30 condition, it would be difficult to argue that an extreme range of multicollinearity has not 

been covered herein. 
 

Method 

  Although, as specified in respect to the textbook references, the greatest interest herein regards the 

performance of OLS in prediction, to lend perspective to the broader effect of multicollinearity with 

attendant validity concentration, alternative algorithms appearing in Morris (1982) and Morris and 

Lieberman (2014) were included. These were Ridge regression (Ridge), regression on Principal 

Components (PC), and equal weighting of predictors (Equal). 

  The Dempster, Shatzoff, and Wermuth (1977), “RIDGM” ridge regression estimator that has been 

considered in previous work was modified. As the Dempster RIDGM technique for selecting k is 

impossible if R
2 

< p/(n-1), where R
2
 is the sample multiple correlation, p is the number of predictors, and 

n is the sample size, Darlington suggested setting the Ridge weights to zero in that condition, which was 

executed in the exact replication of Darlington’s recommendations by Morris (1982). However, this is 

thought to be too punitive to Ridge, thus in such cases in this study, Lawless and Wang’s (1976) 1/F 

estimator of k was substituted. In addition, finding the RIDGM k requires an iterative routine. That 

iteration can exceed 1, sometimes, we judge, excessively so. To keep the Ridge technique reasonable, and 

in line with the original Hoerl and Kennard (1970) Ridge Trace logic, herein k is bounded to [0,1]. In the 

case of regression on Principal Components, dimensionality was determined by parallel analysis. 

  Equal weighting was accomplished by assigning predictors standardized weights of one and the same 

sign as the predictor-criterion correlation if the value of that correlation was significant (p < .01).  If no 

predictor-criterion correlation was that large (in absolute value), the predictor with the largest correlation 

was assigned a 1 (with appropriate sign). This last step was executed so that there would be no case in 

which all predictors are assigned zero weights, thus resulting in predicted values with zero variance. 
 

Data Creation 

The same fundamental data configurations that were originally posited by Darlington (1978) and used in 

Morris (1982) and Lieberman and Morris (2014) were expanded in this study. The number of predictor 

variables was set as 10. Multicollinearity was manipulated by setting the ratio between eigenvalues equal 

to a constant (λr). For Darlington’s conditions of constant proportional eigenvalue decrease, it is obvious 

that if the first eigenvalue can be calculated, all remaining eigenvalues are evident. As used in Morris 

(1982), the formula for calculating the first eigenvalue is:  
 

            λ1=p/(1 + ∑j=1
q 
λr

j
)           (1) 

 

where, p is the number of components (or variables) and q=p-1. Varying levels of validity concentration 

were created by setting the principal components’ squared correlations with the criterion equal to a 

specified power of the aforementioned eigenvalues. Each such squared correlation can be calculated as:  
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Table 1. OLS Performance by Multicollinearity Condition and ρ
2
 

  

Mean Performance 

λr VIF Range ρ
2 
= .25 

 

ρ
2
 = .50 

  (rounded) ρ
2

cv MSE   ρ
2

cv MSE 

.30 340 to 2000 .3945 .9468 

 

.6438 .6312 

.40 49 to 232 .3946 .9468 

 

.6438 .6311 

.50 12 to 39 .3941 .9468 

 

.6436 .6311 

.65 3 to 6 .3936 .9469 

 

.6432 .6312 

.80 1 to 2 .3951 .9467 

 

.6442 .6311 

.95 1 .3946 .9468 

 

.6439 .6313 

F(5,66) 

= 

 

.002 .000 

 

.001 .000 

 

                      ρi
2
 = R

2
λi

Power
/S          (2) 

 

where, R
2
 is the desired population multiple correlation, Power is previously described, and S = Σi

p
 λi

Power
. 

 

  Therefore, a summary of data conditions presented were: 4 levels of collinearity (λr = .30, .40, .50, 

and .65) representing “Tragic Multicollinearity” (VIFs from 340 to 2000), “High Multicollinearity” (VIFs 

from 49 to 232), “Multicollinear” (VIFs from 12 to 39) and, “Not Multicollinear (VIFs from 3 to 6); 6 

levels of validity concentration (Powers of .1, .5, 1, 2, 4, and 10); two population multiple correlations  

(ρ
2 
= .25 and .50); and two sample sizes (N = 40 and 100). 

  A population of 10,000 subjects was created (Morris, 1975; Morris, 1982) that manifested each of the 

48 desired sets of collinearity, validity concentration, and multiple correlation. Samples of 40 and 100 

were selected, giving rise to 96 data conditions. A Fortran 90 computer program compiled by Intel 

Parallel Studio XE 2015 using 128-bit computation was used to accomplish all simulations. The random 

normal deviates required were created by the “Rectangle-Wedge-Tail” method (Marsaglia, MacLauren, & 

Bray, 1964), with the required uniform random numbers generated by the “shuffling” Algorithm M 

recommended by Knuth (1969, p. 30). Dolker and Halperin (1982) found this combination to perform 

most satisfactorily in a comparison of several methods of creating random normal deviates. 

  The sample weights were then cross-validated by using them to predict the criterion for all 10,000 

population subjects; this was replicated 1,000 times with the mean performance presented. Relative 

accuracy, as measured by the cross-validated correlation between predicted and actual criterion score, has 

been, heretofore, the only index of prediction accuracy presented in the former studies mentioned. Herein, 

the absolute accuracy index, given by the MSE, Σ(y – ŷ)
2
/n, was also included. 

 

Results 

  To target “Tragic Multicollinearity,” “Highly Multicollinear,” Multicollinear” and “Not 

Multicollinear,” only the .30, .40, .50, and .65 λr data conditions are presented in detail in this report. But, 

to fully demonstrate the influence of a very wide range of multicollinearity conditions on OLS prediction 

accuracy, the .80 and .95 λr conditions were also included in Table 1. In this Table, data were collapsed 

across N and validity concentration Power.   

 As can be seen from Table 1, and the attendant plots of the same data in Figures 1 and 2, OLS 

multiple regression relative (ρ
2

cv) and absolute (MSE) accuracy were completely unaffected by 

multicollinearity – flat with no trend -- regardless of ρ
2
. Not only were the included F-ratios from a one-

way ANOVA comparing the means across the six multicollinearity levels (Table 1) not significant in each 

case, they were, near zero; there was essentially no between multicollinearity condition variance. 

Moreover, if one considers three significant digits, range in accuracy across multicollinearity levels 

(within a ρ
2
 level) is a maximum of .001 for ρ

2
cv and .000 for MSE. The same trend can be seen within 

condition in Tables 2 and 3 in which N and validity concentration Power were not collapsed. One can see 

that the answer is very simple; multicollinearity, from essentially non-existent to very extreme, has 

absolutely no effect on the cross-validated prediction accuracy of OLS, whether relative or absolute. 

Thus, the warnings regarding multicollinearity leveled by previously mentioned texts certainly do not 

apply to the objective of 

prediction. 

 Tables 2 and 3 show the 

relative and absolute 

performance of all methods as 

a function of increasing 

validity concentration for each 

λr, N and ρ
2
. In brief, in all 

conditions, as validity 

concentration increased, 

alternative methods exceeded 

the accuracy of OLS, with this 

effect lessened somewhat by 

the larger ρ
2
, and N, and 

limited by multicollinearity 
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Figure 1. 

 
Figure 2. 

(λr). In addition, this effect was a bit stronger for absolute (MSE) than for relative (ρ
2
cv) accuracy. As the 

availability of validity concentration is limited by multicollinearity, the validity concentration Power 

necessary to afford the alternative methods’ exceeding OLS was greater as multicollinearity decreased (λr 

increased). That is, multicollinearity is a necessary, but not sufficient condition for validity concentration, 

thus for the added accuracy afforded by alternative methods, given attendant validity concentration.   

  It is important to note that it is not a decline in accuracy of OLS with increasing multicollinearity or 

validity concentration that advantages these alternative methods; indeed OLS prediction accuracy is, as 

has been demonstrated, insensitive to both multicollinearity and validity concentration. The superior 

performance of the alternative methods over OLS arises from their ability to take advantage of validity 

concentration and thus, given its presence, exceed the accuracy of OLS. So, from the perspective of the 

goal of prediction accuracy, not only does multicollinearity not disadvantage OLS, but indeed, it is, in 

most data conditions presented, advantageous to model accuracy if one is willing to use non-OLS 

methods, as it allows validity concentration to become large enough for non-OLS methods to exceed 

OLS.  

  Although not the primary focus of this paper, special attention may be appropriate for the bounded 

ridge estimator. Alternatives to OLS other than Ridge, herein PC and Equal, did exceed Ridge and OLS at 

the higher validity concentrations, which is consistent with the findings of Morris (1982). But in addition, 

this version of Ridge also manifested areas of “middle” validity concentration in which it was superior to 

OLS, as well as the other non-OLS alternatives; this was not the case for the RIDGEM algorithm used in 

that former study. Moreover, the only conditions in which the OLS MSE was superior to Ridge was at the 

lowest validity concentration Power of .1. As well, in those conditions, the increase in MSE over that 

from OLS was only about 3%, whereas 

the decrement to OLS MSE prediction 

accuracy ranged to about 21% when 

larger degrees of validity concentration 

were afforded. Considering ρcv
2
, the 

performance of the Ridge estimator was 

similar. With the single exception off the 

Power of .5 at the λr =.65 and N = 100 

condition, OLS was superior to Ridge 

only at the lowest validity concentration; 

there the loss due to use of Ridge in 

respect to OLS was about 9%, whereas 

the gain to using Ridge with higher 

validity concentration ranged to 31%.   

  The question that always needs to be 

addressed after such a simulation study 

regards the degree to which real data 

structures are like those in the simulation. 

From these results, it is clear that 

multicollinearity has no effect on the 

prediction accuracy of OLS regression. 

Further, we doubt that the degree of 

validity concentration exhibited in usual 

behavioral science data manifests as low 

as the conditions in which this version of 

Ridge was inferior to OLS. Whether 

typical data have validity concentration 

high enough to benefit more from 

alternatives other than Ridge is a more 

complicated question demanding further 

examination with a wide range of real 

data sets.  
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Table 2. Mean Cross-Validated Performance (ρ
2
cv/MSE) for ρ

2
 = .25 

  

   Method 

λr Power N = 40 

 

N = 100 

[VIF Range]     OLS Ridge    PC  Equal    OLS Ridge   PC Equal 

.30 .1 .3525 .3214 .2173 .2428 
 

.4347 .4071 .2577 .2727 

[340 to 2000] 

 

1.0491 .9579 1.0012 .9898 
 

.8445 .8533 .9514 .9420 

 

.5 .3535 .4212 .3829 .3973 
 

.4354 .4591 .4087 .3941 

  

1.0491 .8710 .8970 .8844 
 

.8445 .8066 .8495 .8607 

 

1. .3537 .4515 .4493 .4537 
 

.4358 .4787 .4686 .4461 

  

1.0491 .8422 .8401 .8347 
 

.8445 .7876 .7961 .8166 

 

2. .3536 .4605 .4756 .4783 
 

.4361 .4850 .4902 .4838 

  

1.0491 .8334 .8151 .8098 
 

.8445 .7807 .7751 .7811 

 

4. .3533 .4617 .4794 .4862 
 

.4363 .4859 .4923 .4984 

  

1.0491 .8321 .8113 .8010 
 

.8445 .7796 .7731 .7664 

 

10. .3531 .4617 .4797 .4877 
 

.4364 .4860 .4923 .4989 

  

1.0491 .8321 .8112 .7995 
 

.8445 .7796 .7731 .7659 

.40 .1 .3543 .3236 .2073 .2448 
 

.4362 .4127 .2457 .2833 

[49 to 232] 

 

1.0483 .9550 1.0079 .9929 
 

.8438 .8473 .9570 .9360 

 

.5 .3531 .4062 .3543 .3805 
 

.4352 .4518 .3790 .3902 

  

1.0494 .8825 .9195 .8986 
 

.8447 .8128 .8729 .8637 

 

1. .3531 .4421 .4310 .4408 
 

.4354 .4735 .4499 .4408 

  

1.0494 .8493 .8569 .8468 
 

.8447 .7923 .8133 .8210 

 

2. .3535 .4546 .4698 .4677 
 

.4359 .4822 .4856 .4763 

  

1.0491 .8375 .8211 .8201 
 

.8445 .7833 .7795 .7882 

 

4. .3533 .4570 .4769 .4757 
 

.4362 .4837 .4920 .4952 

  

1.0492 .8350 .8140 .8110 
 

.8445 .7814 .7734 .7695 

 

10. .3531 .4572 .4772 .4794 
 

.4363 .4839 .4922 .4973 

  

1.0491 .8348 .8137 .8073 
 

.8445 .7813 .7731 .7675 

.50 .1 .3516 .3245 .2062 .2388 
 

.4354 .4150 .2558 .2925 

[12 to 39] 

 

1.0491 .9487 1.0111 1.0016 
 

.8445 .8447 .9529 .9319 

 

.5 .3519 .3912 .3285 .3643 
 

.4353 .4451 .3687 .3906 

  

1.0492 .8926 .9381 .9136 
 

.8445 .8187 .8810 .8640 

 

1. .3524 .4290 .4088 .4259 
 

.4354 .4670 .4385 .4367 

  

1.0492 .8587 .8763 .8605 
 

.8445 .7985 .8237 .8250 

 

2. .3529 .4462 .4583 .4547 
 

.4356 .4781 .4787 .4698 

  

1.0493 .8432 .8318 .8334 
 

.8446 .7872 .7864 .7943 

 

4. .3532 .4506 .4720 .4607 
 

.4361 .4808 .4881 .4895 

  

1.0491 .8397 .8190 .8265 
 

.8445 .7840 .7774 .7750 

 

10. .3530 .4513 .4726 .4649 
 

.4364 .4813 .4888 .4944 

  

1.0491 .8389 .8181 .8216 
 

.8445 .7834 .7768 .7703 

.65 .1 .3504 .3351 .2129 .2488 
 

.4342 .4204 .2648 .3207 

[3 to 6] 

 

1.0493 .9351 1.0128 1.0024 
 

.8446 .8392 .9489 .9153 

 

.5 .3511 .3726 .2954 .3254 
 

.4346 .4372 .3441 .3830 

  

1.0491 .9048 .9633 .9479 
 

.8445 .8251 .8994 .8699 

 

1. .3516 .4035 .3676 .3830 
 

.4350 .4539 .4096 .4281 

  

1.0491 .8781 .9113 .9000 
 

.8444 .8104 .8491 .8328 

 

2. .3522 .4262 .4309 .4222 
 

.4354 .4680 .4636 .4609 

  

1.0493 .8580 .8579 .8658 
 

.8446 .7971 .8012 .8032 

 

4. .3529 .4348 .4579 .4291 
 

.4360 .4734 .4827 .4754 

  

1.0491 .8508 .8331 .8604 
 

.8445 .7914 .7831 .7889 

 

10. .3529 .4372 .4621 .4270 
 

.4363 .4748 .4848 .4836 

  

1.0493 .8487 .8289 .8615 
 

.8446 .7898 .7813 .7809 

Note. The best performing method is in bold; for ρ
2
cv, larger is better, for MSE, smaller is better.  
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Table 3. Mean Cross-Validated Performance (ρ
2

cv/MSE) for ρ
2
 = 0.50 

 

Power N = 40 

 

N = 100 

[VIF Range]     OLS Ridge     PC  Equal    OLS Ridge   PC Equal 

.30 .1 .6142 .5751 .3485 .3801 
 

.6730 .6559 .3794 .3792 

[340 to 2000] 

 
.6994 .7131 .9215 .8970 

 
.5630 .5824 .8726 .8725 

 

.5 .6145 .6494 .5681 .5652 
 

.6731 .6807 .5868 .5342 

  

.6994 .6125 .7126 .7174 
 

.5630 .5482 .6686 .7286 

 

1. .6146 .6767 .6572 .6372 
 

.6732 .6939 .6704 .6151 

  

.6994 .5741 .5987 .6269 
 

.5630 .5300 .5617 .6343 

 

2. .6146 .6856 .6928 .6859 
 

.6733 .6985 .7005 .6814 

  

.6994 .5600 .5488 .5589 
 

.5630 .5236 .5196 .5465 

 

4. .6144 .6867 .6981 .7039 
 

.6733 .6995 .7034 .7058 

  

.6994 .5579 .5412 .5321 
 

.5630 .5221 .5154 .5119 

 

10. .6143 .6868 .6983 .7050 
 

.6733 .6995 .7035 .7063 

  

.6994 .5579 .5409 .5304 
 

.5630 .5220 .5154 .5112 

.40 .1 .6148 .5804 .3373 .3948 
 

.6732 .6616 .3636 .4013 

[49 to 232] 

 
.6991 .7050 .9314 .8866 

 
.5627 .5741 .8841 .8549 

 

.5 .6145 .6385 .5322 .5576 
 

.6731 .6767 .5459 .5262 

  

.6992 .6270 .7542 .7255 
 

.5629 .5533 .7154 .7368 

 

1. .6144 .6694 .6347 .6298 
 

.6730 .6906 .6445 .6049 

  

.6994 .5839 .6290 .6361 
 

.5630 .5344 .5961 .6468 

 

2. .6144 .6818 .6867 .6770 
 

.6732 .6966 .6943 .6661 

  

.6994 .5653 .5573 .5712 
 

.5630 .5263 .5283 .5676 

 

4. .6144 .6840 .6967 .6988 
 

.6733 .6980 .7032 .7028 

  

.6994 .5616 .5431 .5392 
 

.5630 .5244 .5158 .5163 

 

10. .6143 .6840 .6971 .7020 
 

.6733 .6981 .7034 .7056 

  

.6994 .5612 .5426 .5344 
 

.5630 .5240 .5155 .5122 

.50 .1 .6139 .5844 .3372 .4030 
 

.6734 .6642 .3827 .4225 

[12 to 39] 

 

.6989 .6972 .9307 .8821 
 

.5626 .5706 .8698 .8380 

 

.5 .6138 .6281 .5031 .5529 
 

.6730 .6737 .5362 .5321 

  

.6993 .6404 .7852 .7317 
 

.5629 .5575 .7263 .7310 

 

1. .6139 .6600 .6091 .6242 
 

.6729 .6862 .6324 .5920 

  

.6995 .5970 .6622 .6438 
 

.5630 .5404 .6120 .6623 

 

2. .6142 .6761 .6753 .6680 
 

.6731 .6938 .6880 .6545 

  

.6993 .5735 .5732 .5830 
 

.5629 .5301 .5373 .5832 

 

4. .6142 .6799 .6934 .6905 
 

.6731 .6957 .7009 .6957 

  

.6996 .5670 .5476 .5506 
 

.5631 .5276 .5191 .5263 

 

10. .6142 .6805 .6949 .6969 
 

.6733 .6962 .7017 .7044 

  

.6994 .5662 .5456 .5415 
 

.5630 .5269 .5179 .5140 

.65 .1 .6130 .5943 .3498 .4375 
 

.6728 .6669 .3990 .4738 

[3 to 6] 

 

.6992 .6823 .9222 .8513 
 

.5628 .5666 .8570 .7909 

 

.5 .6130 .6177 .4650 .5364 
 

.6726 .6712 .5064 .5383 

  

.6996 .6535 .8230 .7488 
 

.5631 .5607 .7581 .7242 

 

1. .6135 .6415 .5621 .6045 
 

.6728 .6787 .5961 .5970 

  

.6993 .6228 .7190 .6666 
 

.5629 .5507 .6576 .6566 

 

2. .6138 .6618 .6468 .6522 
 

.6729 .6867 .6706 .6418 

  

.6995 .5942 .6122 .6040 
 

.5630 .5397 .5615 .5997 

 

4. .6140 .6694 .6823 .6662 
 

.6730 .6900 .6967 .6788 

  

.6996 .5830 .5629 .5837 
 

.5631 .5354 .5252 .5500 

 

10. .6142 .6715 .6885 .6754 
 

.6733 .6911 .6996 .7003 

  

.6994 .5793 .5542 .5706 
 

.5630 .5339 .5212 .5198 

Note. The best performing method is in bold; for ρ
2
cv, larger is better, for MSE, smaller is better. 
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