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Recommendations from popular statistics texts regarding avoidance of predictor variable multicollinearity
in the use of OLS multiple regression are considered from the perspective of the alternate purposes of
explanation and prediction. Under the conditions considered, in the case of relative or absolute prediction
accuracy, it is shown that multicollinearity has no effect on OLS prediction. Moreover, in regard to
prediction accuracy, not only does multicollinearity not disadvantage OLS, but indeed, it is, in most data
conditions presented, advantageous to model prediction accuracy, as it allows validity concentration to
become large enough for alternative non-OLS methods to exceed OLS.

P erusal of many texts typically used to introduce, or provide a more advanced treatment of, multiple

regression (Belesley, Kuh, & Welch, 1980; Brook, & Arnold, 1985; Chatterjee, & Price; 1977,

CIiff, 1987; Cohen & Cohen, 1983; Gnanadesikan, 1977; Kerlinger, & Pedhazur, 1973; Kleinbaum,
Kupper, Nizan, & Rosenberg, 2013; Lomax, & Hahs-Vaughn, 2012; Meyers, Gamst, & Guarino, 2006;
Pedhazur, 1997; Stevens, 2009; Tabachnick, & Fidell, 2012) provides a univocal warning to avoid the
dangers of multicollinearity among predictor variables. Arguments center on the instability of the
estimated regression weights, and to a lesser degree, numerical difficulties involved in inverting near
singular predictor variable covariance matrices.

However, two different goals in multiple regression modeling may be of interest: prediction or
explanation. These have been clearly distinguished elsewhere (Kerlinger, 1973, p. 9-10; Kerlinger &
Pedhazur, 1973, p. 48-49), with detailed attention to the calculation of indices appropriate to each purpose
afforded by Huberty (2003). Briefly, the distinction is that, in the case of explanation one’s interest is in
parameter estimation, whereas in prediction, one’s interest is in model accuracy. In the case of prediction,
the unassailable notion of “external” (Huberty), or cross-validated, accuracy is the gold standard.
Consideration of the potentially different effect of multicollinearity on the alternate goals of prediction
and explanation analyses does not appear to have been considered in the delivery of the aforementioned
admonition in these mainstream texts.

The purpose of the present study is twofold. First, a more precise examination of the aforementioned
recommendations regarding the prediction performance of Ordinary Least Squares (OLS) regression
models over an extremely wide range of multicollinearity conditions is sought. In addition, to understand
the full impact of multicollinearity, and attendant validity concentration, on prediction performance, some
non-OLS predictor variable weighting strategies were presented under the same data conditions. The
purpose of the inclusion of the non-OLS methods was to provide context for the performance of OLS,
rather than to rigorously consider the relative performance among the non-OLS methods.

Although collinearity in a predictor variable set may arise from such a simple cause as a large bivariate
correlation between two predictors, it may also be due to more complex associations among predictors,
and in that case is often dubbed “multicollinearity;” that term will be used herein regardless of the number
of predictors involved. Several indices of multicollinearity are currently in use, including the Variance
Inflation Factor (VIF, and its redundant inverse, the “Tolerance”) the MI indices of Thisted & Morris
(1980), and presentation of, or functions of, the principal component eigenvalues of the predictor variable
intercorrelation matrix. It appears that VIFs may be the most popular index, but perhaps the most general
structural way to consider multicollinearity is to note that large and small principal component
eigenvalue(s) arise from the predictor variable intercorrelation matrix if multicollinearity is high.

It is this property that Darlington (1978) used, and that was also used in subsequent reexaminations
(Morris, 1982; Morris & Huberty, 1987; Lieberman & Morris, 2014), to manipulate multicollinearity in
examining its effect on a variety of prediction model weighting strategies. Rather than only considering
the largest and smallest eigenvalue of the predictor variable intercorrelation matrix, the rate of decline of
all principal component eigenvalues was set to ratios (A;) of .50, .65, .80, and .95. In those studies, it was
shown that N, p? and validity concentration also influenced the relative performance of weighting
algorithms, where N was the sample size and p> was the population squared multiple correlation.
Although no specific index has been widely accepted, validity concentration is, generally speaking, the
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degree to which predictor variable principal components with large eigenvalues are matched by large
component-criterion correlations.

The present study uses similar, but extended, data conditions to those in Morris (1982) and
Lieberman and Morris (2014). Among the eigenvalue-ratio () conditions considered in those
studies (.50, .65, .80, and .95), only one (.50) achieved levels conventionally considered
multicollinear (VIFs > 10), thus two additional, more multicollinear, conditions were included in
this examination (A, = .30 and .40). To provide context, one further comment (and the reason for
its selection) about the .30 A, condition is needed. Although originally posited as a test of the
ability of digital computers to accomplish the matrix inversion necessary for regression of a near
singular matrix (Longley, 1967), the infamous “Longley data” has often been used in the
statistical literature as a reference point for very extreme multicollinearity (VIFs from 4 to
1789). With VIFs of 340 to 2000, the .30 A, condition manifests even greater multicollinear than
the Longley data, and would, we believe, be considered by most to manifest “tragic”
multicollinearity. Thus, given that the least collinear (A=.95) condition portrayed in this study
manifests essentially no collinearity, with VIFs that are < 1.03 (zero correlations among all
predictors would yield VIFs = 1.0), ranging to the aforementioned tragic multicollinearity of the
A=.30 condition, it would be difficult to argue that an extreme range of multicollinearity has not
been covered herein.

Method

Although, as specified in respect to the textbook references, the greatest interest herein regards the
performance of OLS in prediction, to lend perspective to the broader effect of multicollinearity with
attendant validity concentration, alternative algorithms appearing in Morris (1982) and Morris and
Lieberman (2014) were included. These were Ridge regression (Ridge), regression on Principal
Components (PC), and equal weighting of predictors (Equal).

The Dempster, Shatzoff, and Wermuth (1977), “RIDGM” ridge regression estimator that has been
considered in previous work was modified. As the Dempster RIDGM technique for selecting k is
impossible if R* < p/(n-1), where R? is the sample multiple correlation, p is the number of predictors, and
n is the sample size, Darlington suggested setting the Ridge weights to zero in that condition, which was
executed in the exact replication of Darlington’s recommendations by Morris (1982). However, this is
thought to be too punitive to Ridge, thus in such cases in this study, Lawless and Wang’s (1976) 1/F
estimator of k was substituted. In addition, finding the RIDGM k requires an iterative routine. That
iteration can exceed 1, sometimes, we judge, excessively so. To keep the Ridge technique reasonable, and
in line with the original Hoerl and Kennard (1970) Ridge Trace logic, herein k is bounded to [0,1]. In the
case of regression on Principal Components, dimensionality was determined by parallel analysis.

Equal weighting was accomplished by assigning predictors standardized weights of one and the same
sign as the predictor-criterion correlation if the value of that correlation was significant (p < .01). If no
predictor-criterion correlation was that large (in absolute value), the predictor with the largest correlation
was assigned a 1 (with appropriate sign). This last step was executed so that there would be no case in
which all predictors are assigned zero weights, thus resulting in predicted values with zero variance.

Data Creation
The same fundamental data configurations that were originally posited by Darlington (1978) and used in
Morris (1982) and Lieberman and Morris (2014) were expanded in this study. The number of predictor
variables was set as 10. Multicollinearity was manipulated by setting the ratio between eigenvalues equal
to a constant (A,). For Darlington’s conditions of constant proportional eigenvalue decrease, it is obvious
that if the first eigenvalue can be calculated, all remaining eigenvalues are evident. As used in Morris
(1982), the formula for calculating the first eigenvalue is:

Aa=p/(1 + it 1) (€N
where, p is the number of components (or variables) and g=p-1. Varying levels of validity concentration

were created by setting the principal components’ squared correlations with the criterion equal to a
specified power of the aforementioned eigenvalues. Each such squared correlation can be calculated as:
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pi2 — RZ}\‘iPower/S (2)
where, R? is the desired population multiple correlation, Power is previously described, and S = X A",

Therefore, a summary of data conditions presented were: 4 levels of collinearity (A, = .30, .40, .50,
and .65) representing “Tragic Multicollinearity” (VIFs from 340 to 2000), “High Multicollinearity” (VIFs
from 49 to 232), “Multicollinear” (VIFs from 12 to 39) and, “Not Multicollinear (VIFs from 3 to 6); 6
levels of validity concentration (Powers of .1, .5, 1, 2, 4, and 10); two population multiple correlations
(p®= .25 and .50); and two sample sizes (N = 40 and 100).

A population of 10,000 subjects was created (Morris, 1975; Morris, 1982) that manifested each of the
48 desired sets of collinearity, validity concentration, and multiple correlation. Samples of 40 and 100
were selected, giving rise to 96 data conditions. A Fortran 90 computer program compiled by Intel
Parallel Studio XE 2015 using 128-bit computation was used to accomplish all simulations. The random
normal deviates required were created by the “Rectangle-Wedge-Tail” method (Marsaglia, MacLauren, &
Bray, 1964), with the required uniform random numbers generated by the “shuffling” Algorithm M
recommended by Knuth (1969, p. 30). Dolker and Halperin (1982) found this combination to perform
most satisfactorily in a comparison of several methods of creating random normal deviates.

The sample weights were then cross-validated by using them to predict the criterion for all 10,000
population subjects; this was replicated 1,000 times with the mean performance presented. Relative
accuracy, as measured by the cross-validated correlation between predicted and actual criterion score, has
been, heretofore, the only index of prediction accuracy presented in the former studies mentioned. Herein,
the absolute accuracy index, given by the MSE, X(y — ¥)?/n, was also included.

Results

To target “Tragic Multicollinearity,” “Highly Multicollinear,” Multicollinear” and ‘“Not
Multicollinear,” only the .30, .40, .50, and .65 A, data conditions are presented in detail in this report. But,
to fully demonstrate the influence of a very wide range of multicollinearity conditions on OLS prediction
accuracy, the .80 and .95 A, conditions were also included in Table 1. In this Table, data were collapsed
across N and validity concentration Power.

As can be seen from Table 1, and the attendant plots of the same data in Figures 1 and 2, OLS
multiple regression relative (p%,) and absolute (MSE) accuracy were completely unaffected by
multicollinearity — flat with no trend -- regardless of p°. Not only were the included F-ratios from a one-
way ANOVA comparing the means across the six multicollinearity levels (Table 1) not significant in each
case, they were, near zero; there was essentially no between multicollinearity condition variance.
Moreover, if one considers three significant digits, range in accuracy across multicollinearity levels
(within a p? level) is a maximum of .001 for p’, and .000 for MSE. The same trend can be seen within
condition in Tables 2 and 3 in which N and validity concentration Power were not collapsed. One can see
that the answer is very simple; multicollinearity, from essentially non-existent to very extreme, has
absolutely no effect on the cross-validated prediction accuracy of OLS, whether relative or absolute.
Thus, the warnings regarding multicollinearity leveled by previously mentioned texts certainly do not
apply to the objective of

prediction. Table 1. OLS Performance by Multicollinearity Condition and p°
'_I'ables 2 and 3 show the Mean Performance

relative and absolute
performance of all methods as Ar VIF Range p?=.25 p?= .50
a function of increasing ) 2
validity concentration for each (rounded) P ov MSE P ov MSE
A, N and p? In brief, in all 30 340102000  .3945  .9468 6438 6312
conditions, as validity 40 49 to 232 .3946 .9468 6438 6311
concentration increased, .50 121039 3941 9468 6436 6311
ar']temat've me]fhgﬂss eX?iedﬁd 65 3t06 3936 .9469 6432 6312
the accuracy of OLs, with this g 1t02 3951 9467 6442 6311
effect lessened somewhat by

95 1 .3946 .9468 .6439 6313

the larger p°, and N, and

limited by multicollinearity ~ F(5.66)
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(A). In addition, this effect was a bit stronger for absolute (MSE) than for relative (p2,) accuracy. As the
availability of validity concentration is limited by multicollinearity, the validity concentration Power
necessary to afford the alternative methods’ exceeding OLS was greater as multicollinearity decreased (A,
increased). That is, multicollinearity is a necessary, but not sufficient condition for validity concentration,
thus for the added accuracy afforded by alternative methods, given attendant validity concentration.

It is important to note that it is not a decline in accuracy of OLS with increasing multicollinearity or
validity concentration that advantages these alternative methods; indeed OLS prediction accuracy is, as
has been demonstrated, insensitive to both multicollinearity and validity concentration. The superior
performance of the alternative methods over OLS arises from their ability to take advantage of validity
concentration and thus, given its presence, exceed the accuracy of OLS. So, from the perspective of the
goal of prediction accuracy, not only does multicollinearity not disadvantage OLS, but indeed, it is, in
most data conditions presented, advantageous to model accuracy if one is willing to use non-OLS
methods, as it allows validity concentration to become large enough for non-OLS methods to exceed
OLS.

Although not the primary focus of this paper, special attention may be appropriate for the bounded
ridge estimator. Alternatives to OLS other than Ridge, herein PC and Equal, did exceed Ridge and OLS at
the higher validity concentrations, which is consistent with the findings of Morris (1982). But in addition,
this version of Ridge also manifested areas of “middle” validity concentration in which it was superior to
OLS, as well as the other non-OLS alternatives; this was not the case for the RIDGEM algorithm used in
that former study. Moreover, the only conditions in which the OLS MSE was superior to Ridge was at the
lowest validity concentration Power of .1. As well, in those conditions, the increase in MSE over that

from OLS was only about 3%, Wh_er_eas OLS p,, as f(\,)

the decrement to OLS MSE prediction ‘

accuracy ranged to about 21% when .80

larger degrees of validity concentration 75

were afforded. Considering pe’°, the .70 52,50

performance of the Ridge estimator was & .65 . ° . ° ° .

similar. With the single exception off the £ .60

Power of .5 at the A, =.65and N =100 < .55

condition, OLS was superior to Ridge 50

only at the lowest validity concentration; 45

there the loss due to use of Ridge in 40 *————e * *———o0

respect to OLS was about 9%, whereas 35 =2

the gain to using Ridge with higher 30 _ _ _ _ _

validity concentration ranged to 31%. /1§12 .65/36 .5/12-39 .4/49-232 .3/340-2K
The question that always needs to be A./VIF Range (rounded)

addressed after such a simulation study  Figure 1.

regards the dggree to _Whlch _real c_iata OLS MSE as f(A)

structures are like those in the simulation.

From these results, it is clear that 1 -

multicollinearity has no effect on the 33 g * ® * ® 2 d

prediction accuracy of OLS regression. =

Further, we doubt that the degree of =»

validity concentration exhibited in usual =

behavioral science data manifests as low  § 7

as the conditions in which this version of = "

Ridge was inferior to OLS. Whether “j . < & 2 > °

typical data have validity concentration ° p?=50

high enough to benefit more from 5

alternatives other than Ridge is a more & ) e

complicated question demanding further - ' o e s

examination with a wide range of real \./VIF Range (rounded)

data sets. Figure 2.
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Table 2. Mean Cross-Validated Performance (p*«/MSE) for p* = .25

Method
Ar Power N =40 N =100
[VIF Range] OLS Ridge PC Equal OLS Ridge PC  Equal
.30 1 3525  .3214 2173 2428 4347 4071 2577 2727
[340 to 2000] 1.0491 9579 1.0012 .9898 8445 8533 .9514  .9420

5 3535 4212 .3829 3973 4354 4591 4087  .3941
1.0491  .8710 .8970 .8844 8445 8066 .8495  .8607

1 3537 4515 4493 4537 4358 4787 4686  .4461
1.0491  .8422 .8401 .8347 8445 7876 .7961  .8166
2. 3536  .4605 4756 4783 4361 4850 .4902  .4838
1.0491  .8334 .8151 .8098 8445 7807 7751  .7811
4. 3533 .4617 4794 4862 4363 4859 4923 4984

1.0491  .8321 8113 .8010 8445 7796 7731  .7664
10. 3531 4617 4797 A8T7 4364 4860 .4923 4989
1.0491 8321 8112 .7995 8445 7796 7731  .7659

40 1 3543  .3236 .2073 2448 4362 4127 2457 2833

[49 to 232] 1.0483  .9550  1.0079 9929 8438 .8473 .9570  .9360
5 3531  .4062 .3543 .3805 4352 4518 3790  .3902

1.0494 8825 9195 .8986 8447 8128 .8729  .8637

1. 3531 4421 4310 4408 4354 4735 4499 4408
1.0494  .8493 .8569 .8468 8447 7923 8133  .8210
2. 3535  .4546 4698 4677 4359 4822 4856 4763
1.0491  .8375 8211 .8201 8445 7833 7795  .7882
4. 3533 .4570 4769 4757 4362 4837 4920 4952

1.0492  .8350 .8140 .8110 8445 7814 7734 7695
10. 3531  .4572 4772 4794 4363 4839 4922 4973
1.0491  .8348 .8137 .8073 8445 7813 7731 7675

.50 1 3516 .3245 .2062 .2388 4354 4150 .2558  .2925
[12 to 39] 1.0491 9487 1.0111 1.0016 8445 .8447 9529  .9319
) 3519 .3912 .3285 .3643 4353 4451 3687  .3906

1.0492 8926 9381 9136 .8445 8187 .8810  .8640

1. 3524 4290 .4088 4259 4354 4670 4385  .4367
1.0492  .8587 .8763 .8605 8445 7985 .8237  .8250
2. 3529 .4462 .4583 4547 4356 4781 4787  .4698
1.0493  .8432 .8318 .8334 8446 7872 7864  .7943
4. 3532 .4506 4720 4607 4361 .4808  .4881  .4895

1.0491  .8397 .8190 .8265 8445 7840 7774 7750
10. 3530  .4513 4726 4649 4364 4813 4888 4944
1.0491  .8389 .8181 .8216 8445 7834 7768  .7703

.65 1 3504  .3351 2129 .2488 4342 4204 2648  .3207
[3 to 6] 1.0493 9351 1.0128 1.0024 8446 8392 .9489  .9153
5 3511 .3726 .2954 3254 4346 4372 3441 3830

1.0491  .9048 .9633 9479 8445 8251 .8994  .8699

1. 3516 .4035 .3676 .3830 4350 4539 4096 @ .4281
1.0491  .8781 9113 .9000 8444 8104 .8491  .8328
2. 3522 4262 4309 4222 4354 4680 4636  .4609
1.0493  .8580 .8579 .8658 8446 7971 .8012  .8032
4. 3529 4348 4579 4291 4360 4734 4827 4754

1.0491  .8508 8331 .8604 8445 7914 7831  .7889
10. 3529 4372 4621 4270 4363 4748 4848  .4836
1.0493  .8487 .8289 .8615 8446 .7898 7813  .7809

Note. The best performing method is in bold; for pzc\,, larger is better, for MSE, smaller is better.
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Table 3. Mean Cross-Validated Performance (p°e/MSE) for p? = 0.50

Power N =40 N =100
[VIF Range] OLS Ridge PC Equal OLS Ridge PC Equal
.30 1 .6142 5751 3485 .3801 6730 .6559 .3794  .3792
[340 to 2000] 6994 7131 9215 .8970 5630 .5824 8726  .8725

5 6145 6494 5681  .5652 6731 .6807 .5868  .5342

6994 6125 7126 .7174 5630 .5482 .6686 .7286

1. 6146  .6767 .6572  .6372 6732 6939 .6704  .6151

6994 5741 5987 .6269 5630 .5300 .5617  .6343

2. 6146  .6856 .6928  .6859 6733 .6985 .7005 .6814

6994 5600 .5488  .5589 5630 5236 5196  .5465

4. .6144 6867 .6981 .7039 6733 .6995 .7034  .7058

6994 5579 5412 5321 5630 .5221 5154 5119

10. 6143  .6868 .6983 .7050 6733 .6995 .7035  .7063
6994 5579  .5409 5304 5630 5220 5154 5112

40 A1 .6148 5804 3373 .3948 6732 .6616 .3636  .4013
[49 to 232] 6991 .7050 9314 .8866 5627 5741  .8841  .8549
5 .6145 6385 5322 .5576 6731 6767 .5459  .5262

6992 6270 .7542 7255 5629 5533 .7154  .7368

1. 6144 6694 .6347 .6298 6730 .6906 .6445  .6049

6994 5839 .6290 .6361 5630 .5344 5961  .6468

2. .6144 6818 .6867 .6770 6732 6966 .6943  .6661

6994 5653 5573 5712 5630 5263 .5283  .5676

4, .6144 6840 .6967 .6988 6733 .6980 .7032  .7028

6994 5616 5431 .5392 5630 .5244 5158  .5163

10. .6143  .6840 .6971 .7020 6733 .6981 .7034  .7056

6994 5612 5426  .5344 5630 .5240 5155 5122

.50 1 .6139  .5844 3372  .4030 6734 6642 .3827 4225
[12 to 39] 6989 6972 9307 .8821 5626 .5706 .8698  .8380
5 6138  .6281 5031 .5529 6730 .6737 .5362  .5321

6993  .6404 7852 .7317 5629 5575 .7263  .7310

1. 6139 .6600 .6091 .6242 6729 6862 .6324  .5920

6995 5970 .6622 .6438 5630 .5404 .6120 .6623

2. .6142 6761 .6753 .6680 6731 .6938 .6880  .6545

6993 5735 5732 .5830 5629 5301 .5373  .5832

4, 6142 6799 .6934  .6905 6731 .6957 .7009  .6957

6996 5670 5476  .5506 5631 5276 5191  .5263

10. 6142 6805 .6949  .6969 6733 .6962 .7017 7044

6994 5662 5456 5415 5630 .5269 5179 5140

.65 A1 6130 5943 3498  .4375 6728 .6669 .3990 .4738
[3to 6] 6992 6823 9222  .8513 5628 .5666 .8570  .7909
5 .6130 .6177 .4650 .5364 6726 6712 5064  .5383

6996  .6535 .8230 .7488 5631 5607  .7581  .7242

1. 6135 .6415 5621 .6045 6728 .6787 .5961  .5970

6993 6228 .7190 .6666 5629 5507  .6576  .6566

2. .6138 .6618 .6468 .6522 6729 6867 .6706  .6418

6995 5942 6122 .6040 5630 5397 5615  .5997

4, .6140 .6694 6823 .6662 6730 .6900 .6967  .6788

6996 .5830 5629 .5837 5631 .5354 5252  .5500

10. .6142 6715 6885 .6754 6733 6911 .6996  .7003

6994 5793 5542 5706 5630 5339 5212 5198

Note. The best performing method is in bold; for pzc\,, larger is better, for MSE, smaller is better.
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