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The multivariate multilevel model (MVMM) is an extension of the univariate multilevel model (MLM) 

that may be used in the presence of multiple outcomes.  In a two-group cluster randomized design, one 

approach is to apply the MLM separately to each outcome variable whereas an alternate approach is to 

use the MVMM, which incorporates all outcomes simultaneously in a single analysis model. This Monte 

Carlo study investigated the degree to which results from the two models differ across a set of conditions 

that can be considered to favor the use of univariate analysis. Our results showed there were no 

differences in the performance of the MLM and MVMM with respect to estimation bias, power, and Type 

I error rate. We discuss the implications of these findings for applied researchers. 

 n educational research, clustered data are often collected from individuals who are nested within 

clusters and then analyzed with hierarchical linear or multilevel models (MLMs; Raudenbush & Bryk, 

2002). As is well known, with such clustered data, MLMs help maintain accurate Type I error rates 

for tests of fixed effects while use of traditional multiple linear regression (MR) models may result in 

underestimated standard errors. In addition, in applied studies, data collected from participants often 

include scores on multiple outcome variables (Pituch, Whittaker, & Chang, 2016). Since conventional 

MLMs include just one participant-level outcome, and are thus univariate models, one approach, when 

multiple outcomes are collected, is to conduct as many MLM analyses as there are outcomes. 

  However, in recent years, there has been a growing interest in using a multivariate analysis approach 

when multiple outcomes are collected in a multilevel design. This approach, known as the multivariate 

multilevel model (MVMM), is an extension of the standard MLM that allows for multiple outcomes to be 

analyzed jointly (Goldstein, 2011; Hox, 2010; Snijders & Bosker, 2012). It is also a multilevel extension 

of single-level multivariate multiple linear regression (MMR) models if multiple outcomes are jointly 

regressed on a set of independent variables that are common to all the outcomes, and Zellner’s (1962) 

seemingly unrelated regression (SUR) models if the independent variables differ across the outcomes 

(Timm, 2002). 

  In applied studies with continuous clustered data, MVMMs have been used to investigate the effects 

of (a) emotion regulation on multiple indicators of concordance (Butler, Gross, & Barnard, 2014); (b) 

cognitive ability (Freund, Hooling, & Preckel, 2007) and reading ability (Korpershoek, Kuyper, & Van 

Der Werf, 2015) on measures of academic achievement; (c) intergroup contact on subtle and blatant 

prejudice in adolescents (Olaizola, Diaz, & Ochoa, 2014); and (d) individual and contextual variables on 

health and happiness (Pierewan & Tampubolon, 2015).  In addition, several pedagogical articles have 

analyzed real and simulated multilevel data for the purpose of illustrating the application of MVMMs in 

cross-sectional (Hauck & Street, 2006; Hoffman & Rovine, 2007; Paterson, 1998; Tate & Pituch, 2007) 

and longitudinal (Baldwin et al., 2014; Plewis, 2005) contexts, as well as in situations with missing data 

(Yang, Goldstein, Browne, & Woodhouse, 2002). Other studies have proposed methods of specifying 

Bayesian priors (Turner, Omar, & Thompson, 2006) and incorporating sample weights (Veiga, Smith, & 

Brown, 2014) when estimating MVMMs.  

  There are several advantages to using the multivariate approach. According to Snijders and Bosker 

(2012) and Hox (2010), the MVMM tends to be more powerful than the MLM for tests of specific 

dependent variables, especially if the outcomes are highly correlated and there is a large amount of 

incomplete outcome data. In addition, with the MVMM, one can test whether the impact of a predictor 

variable differs across multiple outcomes, provided these outcomes are on the same scale (Baldwin, Imel, 

Braithwaite, & Atkins, 2014; Pituch & Stevens, 2016; Snijders & Bosker, 2012).  In addition, with 

multilevel data, the MVMM allows one to obtain estimates of correlations among the outcomes at each of 

the various levels (e.g., within cluster, between cluster).  These correlations may be of substantive interest 

and would not be estimable with a strictly univariate approach.  Finally, the MVMM procedure can be 

implemented using an overall multivariate test which is useful in controlling the Type I error rate. Note 
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though that Frane (2015) showed, for a standard (non-multilevel) design, use of a Bonferroni-adjusted 

alpha approach for the tests of specific dependent variables also provides for accurate family-wise and 

per-family Type I error rates and can often provide for as much or greater power compared to using a 

multivariate omnibus test, particularly when the number of outcomes are greater than two. 

  While applied researchers have begun to use the MVMM, there has been limited research regarding 

how well the MVMM performs compared to separate univariate only analyses. Park, Pituch, Kim, Chung, 

and Dodd (2015) compared MVMM to traditional multivariate and univariate analyses with regard to 

power and Type I error rate in a non-multilevel setting across several conditions. Their simulation study 

found that the MVMM was often more powerful, particularly as outcome missingness and the correlation 

among outcomes increased, even when data were missing completely at random. Further, Hauck and 

Street (2006) and Baldwin et al. (2014) compared results from MVMM analysis with multilevel data to 

those from MLM analyses. Hauck and Street analyzed existing cross-sectional data on the performance of 

health organizations, and Baldwin et al. simulated longitudinal data in the context of a clinical study on 

depression with a single fixed condition. Both studies found little to no difference in MVMM and MLM 

estimates of the common parameters (i.e., fixed effects and variances).  According to Baldwin et al. 

(2014), MLM and MVMM provided essentially the same estimates in their study because the fixed effects 

and variances (“univariate” parameters) are estimated using the data for their respective outcome, 

independent of the data for all other outcomes. Note, though, that no missing data were present in their 

study. However, because the MVMM allows outcomes to be correlated, the MVMM models were a better 

fit to the data than the corresponding MLMs. According to Hauck and Street, the correlations obtained 

from MVMM analysis provides more information, which “improves the quality of the statistical analysis” 

and “provides insight into the potential trade-offs or synergies between” outcomes (p. 1047). 

Furthermore, allowing outcomes to be correlated leads to more powerful tests of whether the effect of a 

treatment varies across outcomes (Baldwin et al., 2014).  

  Given the similar performance of the MVMM and MLM in Hauck and Street (2006) and Baldwin et 

al. (2014), this study explores the degree to which these statistical models perform similarly under 

conditions generally favorable to the univariate model. That is, we assume multiple correlated outcomes 

are present, but that there is no missing data. Further, we suppose that researchers have no interest in 

testing whether the effect of a given predictor varies across outcomes and are not particularly interested in 

estimating the within- and between-cluster correlations among the outcomes.   

We are not aware of any study that has compared the performance of MVMM and MLM in this context. 

As such, we conduct a simulation study to compare the performance of these models with regard to 

estimation bias, power, and Type I error rate accuracy. Similar performance between these approaches 

would suggest, of course, that researchers could potentially forgo using the more complex multivariate 

approach.  

  We also note that we do not examine the possible use of descriptive discriminant analysis in this 

context. As is well known, this procedure may be used to find linear composites of the outcome variable 

that best differentiate between groups. However, our study context assumes that researchers are interested 

in each outcome in its own right, a condition for focusing on separate outcomes as noted in Pituch and 

Stevens (2016, p. 408). That is, our context assumes that researchers wish to test whether there are group 

mean differences present for each outcome as well as estimating the association between an individual-

level predictor and each outcome. A primary reason that researchers focus on outcome variables 

separately in such a multivariate setting is that the variables are not thought to represent indicators of a 

smaller number of constructs (as would be the case in discriminant analysis). Instead, the outcome 

variables are thought to be correlated yet distinct variables or be what Biskin (1980, p. 70) referred to as 

“conceptually independent.” Raykov and Marcoulides (2008, p. 143) also note that a focus on separate 

outcomes may be considered when an “unambiguous” multivariate research question cannot be 

formulated due to insufficient information. Accordingly, we focus on whether the benefits found for 

MVMM over univariate procedures hold for the research context described above. In the next section, we 

present the multilevel models that are the focus of this study, after which we outline the simulation study 

conditions and highlight study results. 
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The Univariate and Multivariate Multilevel Models 

  In this study, we focus on random-intercept multilevel models for two reasons. First, the random-

intercept MLM is commonly used in multilevel studies where the primary research objective is to 

examine group mean differences, that is, in cluster randomized trials, or CRTs (e.g., Carlson, Borman, & 

Robinson, 2011; Clements, Sarama, Spitler, Lange, & Wolfe, 2011; McCoach, Gubbins, Foreman, 

Rubenstein, & Rambo-Hernandez, 2014; Snyder, Vuchinich, Acock, Washburn, & Flay, 2012). In 

addition, estimates of design parameters for use in sample size determination and power analysis of CRTs 

are based on analyses of data with random-intercept MLMs (Hedges & Hedberg, 2007; Jacob, Zhu, & 

Bloom, 2010; Kelcey & Phelps, 2013; Xu & Nichols, 2010). A second reason we focus on random-

intercept models is that they are often the model of choice in applied MVMM studies. For example, in the 

studies we reported above that used MVMM, all, except Freund et al. (2007), reported results only from 

random-intercept MVMMs fit to their data. We note though that even Freund et al. reported results from 

the random intercept model because the slopes associated with the primary predictors in their initial 

model did not vary significantly across clusters. 

 

The Random-Intercept Multilevel Model 

  Conventional two-level MLMs partition the total variance in a single continuous outcome into within-

cluster variance at the individual level (level-1) and between-cluster variance at the cluster level (level-2). 

In a two-level random-intercept model that includes predictor variables at each level, the individual-level 

equation is  

         0 1 ( )jij j j ij ijY X X r     ,           (1) 

where ijY  represents the score on a normal outcome variable for individual i in cluster j, ijX  represents 

individual i’s score on a covariate, and jX  represents the mean covariate in cluster j. The term ( )jijX X  

indicates that the covariate is group-mean centered. Such centering is useful because the regression 

coefficient associated with this predictor reflects only the within-cluster association (and not the between 

association) for X and Y, which is often preferred (Enders & Tofighi, 2007; Pituch & Stevens, 2016, 

Chapter 13). The intercept, 0 j , represents the unadjusted Y mean for cluster j. The slope, 1 j , 

represents the expected increase in Y for a one unit increase in X (or the “effect” of the covariate) in 

cluster j. The residual, ijr , is assumed to be normally distributed with a mean of zero and some variance 

var(r). 

 The cluster-level model, assuming a two-group cluster randomized trial, is  

        
0 00 01 0

1 10

j j j

j

Z u  

 

  




,              (2) 

where jZ  represents a dummy-coded treatment variable for cluster j, 00 represents the predicted   

cluster mean when jZ = 0, 01 represents the difference between the treatment groups on the outcome 

mean for cluster j, and 10  represents the overall average of the within-cluster slopes of of Y on X. The 

residual, 0 ju , is assumed to be normally distributed with a mean of zero and variance 0var( )u . This 

residual allows the individual-level intercept, 0 j , to vary across clusters. The individual-level slope, 

1 j , on the other hand, is treated as constant across all clusters, as indicated by the absence of a residual 

term. Note that, if desired, jX may be included as a predictor in Equation 2, which may result in 

increased power for the test of the treatment if jX were strongly related to 0 j .    

Substituting Equation 2 into Equation 1 yields the combined MLM: 

        00 01 10 0( )jij j ij j ijY Z X X u r        .         (3) 
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  Note that if multiple outcomes were present, this model could then be estimated separately for each 

outcome. 

  The degree of correlation among individual scores within a cluster, after controlling for the 

covariates, is measured by the residual intraclass correlation coefficient (ICC) (Snijders & Bosker, 2012). 

The formula for the residual ICC is as follows: 

          0

0

var( )
ICC 

var( ) var( )

u

u r



.            (4) 

 

The Random-Intercept Multivariate Multilevel Model (MVMM) 
  The MVMM counterpart to the univariate model described above is often expressed using three 

model levels. The level-1 equation models the multivariate structure of the data. For data with two 

continuous outcomes, the equation is  

          1 1 2 2hij ij ij ij ijY d d   ,           (5) 

where 
hijY represents the score on outcome h (h = 1 or 2) for individual i in cluster j, 

1ijd and 
2ijd  are 

dummy coded variables so that 1 1ijd   for the first outcome and zero for the second, and 2 1ijd   for the 

second outcome and zero for the first. As such,  

          
1 1 2 1

2 1 2 2

(1) (0)

(0) (1)

ij ij ij ij

ij ij ij ij

Y

Y

  

  

  

  
. 

 The individual-level (level-2) equation resembles the level-1 equation of the MLM model: 

            
1 1 10 11 1

2 2 20 21 2

( )

( )

jij ij j j ij ij

jij ij j j ij ij

Y X X r

Y X X r
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  

     


    

,             (6) 

where group-mean centering is used for each predictor. The within-cluster residuals, 1ijr and 
2ijr , are 

assumed to be multivariate normally distributed with means of zero and constant covariance matrix r , 

where 

            
1

1 2 2

var( )

cov( , ) var( )
r

r

r r r

 
  
 

 .           (7) 

 The cluster-level (level-3) equation is similar to the level-2 equation of the MLM model: 
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1

1
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  




 

 

,          (8) 

where jZ  represents a dummy-coded treatment variable for cluster j as in the MLM. The between-cluster 

intercept residuals, 10 ju and 20 ju , are assumed to be multivariate normally distributed with means of zero 

and constant covariance matrix u , where 

            
10

10 20 20

var( )

cov( , ) var( )
u

u

u u u

 
  
 

 .         (9) 

 The combined model for the random-intercept MVMM with two outcomes is 

            
1 100 101 110 10 1

2 200 201 210 20 2

( )

( )

jij j ij j ij

jij j ij j ij

Y Z X X u r

Y Z X X u r

  

  

      


     

.        (10) 
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  The variances in Equations 7 and 9 can be used to calculate the residual ICC for each outcome h, as 

follows: 

          0

0

var( )
ICC  

var( ) var( )
h

h
h h

u

u r



.              (11) 

In addition, the variances and covariances can be used to calculate the conditional correlation (r) between 

pairs of outcomes (h and h′) at the individual- and cluster-levels: 

          
cov( , )

var( ) var( )

h h
hh

h h

r r

r r
 








               (12) 

          0 0

0 0

cov( , )

var( ) var( )

h h
hh

h h

u u

u u
 








               (13) 

The conditional correlations represent the correlations among the outcomes that remain after inclusion of 

the covariates in the model. 
 

Method 
 A Monte Carlo simulation study was conducted to compare the performance of the univariate and 

multivariate MLMs across 324 conditions, each replicated 1,000 times. SAS 9.4 was used to generate the 

data and estimate the parameters.  
 

Generating and Estimating Models 
 Data were generated according to MVMMs with three and then with four outcomes. Data were 

analyzed using the random-intercept MLMs and MVMMs discussed previously. 
 

Simulation Conditions 

The six manipulated factors that comprised the 324 conditions were: number of outcomes (three and 

four), number of clusters (10, 30, and 50), cluster size (five, 10, and 30), residual ICC (.10, .20, and .30), 

conditional correlation between pairs of outcomes (.40, .60, and .80), and degree of imbalance of the two-

group design (50/50 and 70/30). The 50/50 ratio represents a balanced design in which the clusters are 

divided equally into two treatment groups. The 70/30 ratio indicates that 70% of the clusters are assigned 

to one treatment group and 30% to the comparison group. The selection of factors and their levels began 

with conditions that have been shown in previous studies (described below) to be generally sufficient or 

necessary for acceptable univariate MLM results. Then, we included additional factors that would allow 

us to determine whether we could generalize what is already known from the univariate procedure to 

situations with multiple correlated outcomes.       

The numbers of clusters, cluster size, and ICC values chosen for this study are commonly found in the 

simulation design of studies on adequate sample sizes for MLMs (e.g., Bell et al., 2010; Maas & Hox, 

2004, 2005). Assuming a balanced design, Maas and Hox (2004, 2005) found that as few as 10 clusters 

along with a cluster size of five were sufficient for obtaining fairly unbiased estimates of the fixed effects, 

while at least 30 clusters were needed for reasonable estimates of the standard errors and variances. Maas 

and Hox also varied the ICC from .10 to .30, although no statistically significant effect was found on 

either parameter or standard error bias. For statistical power, Bell et al. (2010) recommended sample sizes 

larger than 30 clusters with a cluster size of 30.  

In addition, methodological studies on MLM have investigated the extent to which unequal cluster sizes, 

unequal number of clusters, or both can impact estimates, power, and Type I error rates (e.g., Bell, 

Ferron, & Kromrey, 2008; Browne & Draper, 2000; Cools, van den Noortgate, & Onghena, 2009; 

Konstantopoulos, 2010; Steele, Mundfrom, & Perrett, 2011). The overall conclusion across these studies 

is that mild or moderate imbalance generally can be ignored. In the current study, the 70/30 ratio 

represents a moderate imbalance at the cluster level (Konstantopoulos, 2010). 

The number of outcomes and values for the outcome correlations were drawn from a range of values 

found in methodological studies on the power of MANOVA (e.g., Cole, Maxwell, Arvey, & Salas, 1994; 

Frane, 2015; Stevens, 1980). These studies found that power was a function of the degree of 

intercorrelations among outcomes. Furthermore, the intercorrelations interacted with effect sizes, 

resulting in different “spots” of power advantage between the traditional MANOVA and ANOVA 
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procedures (Frane, 2015). Note that referencing MANOVA here is appropriate for studies on MVMMs as 

both procedures are multivariate and because MANOVA is analogous to (albeit less flexible and less 

powerful than) a two-level MVMM with outcomes nested within clusters (Hox, 2010; Park et al., 2015). 
 

Generating Parameter Values 

The generating parameter values for the fixed effects and variances are shown in Tables 1 and 2, 

respectively. To allow for an assessment of the Type I error rate, a parameter value of zero was used for 

the regression coefficients associated with the individual- and cluster-level predictors for the first 

outcome. For the other outcomes, the cluster-level coefficients ( 01h ) were manipulated to correspond to 

a range of Cohen’s d values and obtained using the following equations for calculating effect sizes from 

clustered data (Hedges, 2007): 

          01

0var( ) var( )

h
h

h h

d
u r





               (14) 

          10

0var( ) var( )

h
h

h h

d
u r





               (15) 

The values of the cluster-level coefficients were then repeated for the individual-level effects ( 10h ). 

 The values of the within- and between-cluster variances were a function of the ICC (see Equation 11) 

and of the total variance. A total (within and between) variance of 562.50 was used and then fixed across 

all outcomes. The values of the covariances were conditional on the outcome correlations and calculated 

using Equations 12 and 13. 
 

Predictor Variables 

  Values for the individual-level predictor were randomly drawn from a normal distribution with a 

mean of zero and a standard deviation of one. For the dummy-coded cluster-level variable in the 50/50 

design, the first half of the clusters within each replication was assigned a value of zero and the other half 

assigned a value of one. In the 70/30 design, 70% of the clusters were assigned a value of zero and the 

rest assigned a value of one. 
 

Table 1. Generating Parameter Values for the Fixed Effects 

Outcome Intercept 
10h  01h  (Cohen’s d) 

1 90 0.00 0.00 (d = 0.00) 

2 90 4.74 4.74 (d = 0.20) 

3 90 11.86 11.86 (d = 0.50) 

4 90 18.97 18.97 (d = 0.80) 

Note. 10h  = individual-level fixed effect for outcome h; 01h  = cluster-level fixed effect for outcome h. 
 

Table 2. Generating Parameter Values for the Variances and Covariances 

ICC Correlation var( )hr  0var( )h
u  '

cov ,( )h h
r r  0 '0

cov ,( )h h
u u  

.10 .40 506.25 56.25 202.50 22.50 

 .60 506.25 56.25 303.75 33.75 

 .80 506.25 56.25 405.00 45.00 

.20 .40 450.00 112.50 180.00 45.00 

 .60 450.00 112.50 270.00 67.50 

 .80 450.00 112.50 360.00 90.00 

.30 .40 393.75 168.75 157.50 67.50 

 .60 393.75 168.75 236.25 101.25 

 .80 393.75 168.75 315.00 135.00 

Note. var( )hr  = individual-level variance for outcome h; 0var( )h
u  = cluster-level variance for outcome 

h; '
cov ,( )h h

r r  = individual-level covariance between outcomes h and h′;  0 '0
cov ,( )h h

u u  = cluster-level 

covariance between outcomes h and h′.   
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Estimation Method  
  Parameters were estimated using SAS PROC MIXED with restricted maximum likelihood (REML) 

estimation. In addition, given the inclusion of unbalanced data sets and small sample sizes in the 

simulation, the Kenward and Roger (1997) degrees of freedom was specified for the fixed effects test 

statistics, as recommended by Schaalje, McBride, and Fellingham (2001). 
 

Analyses 
  For each condition, 1,000 sets of converged model estimates were analyzed in terms of relative 

parameter bias, relative standard error bias, power, and Type I error. Since our primary interest is in 

comparing the MLM and MVMM results, we focused our analysis on the parameters that are estimated 

by both models (i.e., the fixed effects and variances). 
 

  Relative parameter bias (RPB). Relative parameter bias was calculated to evaluate the accuracy of 

estimates of the non-null fixed effects and variances in each condition. The formula for relative parameter 

bias (Hoogland & Boomsma, 1998) is:  

            i i

i

RPB
 




                 (16) 

where 𝜃𝑖 is the population value of parameter i and 𝜃̅𝑖 is the parameter estimate averaged across the 1,000 

replications in each condition. Absolute values of relative parameter bias less than Hoogland and 

Boomsma’s recommended cutoff of .05 were considered acceptable. 
 

  Relative standard error bias (RSEB). The accuracy of the standard error estimates of the non-null 

fixed effects and variances was assessed using relative standard error bias. The formula for relative 

standard error bias (Hoogland & Boomsma, 1998) is: 

                  𝑅𝑆𝐸𝐵 =  
𝑆𝐸̅̅̅̅

𝜃̂𝑖
−𝑆𝐸𝜃𝑖

𝑆𝐸𝜃𝑖

              (17) 

where 𝑆𝐸𝜃𝑖
is the standard deviation of the parameter estimates ( s)i  across the 1,000 replications in each 

condition and 𝑆𝐸̅̅̅̅
𝜃̂𝑖

is the mean standard error estimate of i . Relative standard error bias values with a 

magnitude less than Hoogland and Boomsma’s cutoff of .10 were deemed acceptable. 
 

Power. For each non-null fixed effect in each condition, the empirical power rate was calculated as the 

number of times each null hypothesis of no effect was correctly rejected at an alpha-level of .05, divided 

by 1,000 replications.  
 

 Type I error. For each null fixed effect in each condition, the empirical Type I error rate was 

calculated as the number of times each null hypothesis was incorrectly rejected at an alpha-level of .05, 

divided by 1,000 replications. A Type I error rate within the interval of .025 to .075 was considered 

acceptable (Bradley, 1978). 
 

Hypotheses 
 Based on the Baldwin et al. study (2014) and given no missing data, we hypothesize that differences 

between the MLM and MVMM in the common parameters estimated (i.e., fixed effects and variances) are 

expected to be minimal. Similarly, there should be essentially no differences between these two statistical 

models with regard to power and Type I error rate.  However, given the small sample size conditions 

included in this study, it is reasonable to expect that MVMM may experience greater convergence and/or 

estimation problems due to the larger number of estimated parameters. That is, in the 3 outcome 

condition, the MVMM will estimate 6 outcome covariances (3 within- and 3 between-cluster 

covariances), and in the 4 outcome conditions, will estimate 12 covariances (6 within- and 6 between-

cluster covariances). No outcome covariances are estimated in the MLM approach.  
 

Results 

 Results from 1,000 sets of converged estimates per condition show virtually no difference between 

MLM and MVMM, as values of relative bias, power, and Type I error rates for the common parameters 

(i.e., fixed effects and variances) were almost all identical to the third decimal place. Details of the results, 
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including convergence issues, are presented below, followed by a discussion of the implications of our 

finding of no difference between models. 
 

 Convergence. Convergence issues in the form of negative intercept variance estimates occurred in 

equal frequency between MLM and MVMM. Non-convergence resulted in the need for additional 

replications in order to obtain 1,000 sets of converged estimates, particularly in the conditions with fewer 

than 30 clusters and an ICC of .10. 
 

 Relative parameter bias (RPB). For the individual-level non-null fixed effects, relative bias values 

ranged from –0.053 to 0.046 (M = 0.001, SD = 0.013) for estimates of γ210, from –0.019 to 0.023 (M = 

0.000, SD = 0.005)  for estimates of γ310, and from –0.014 to 0.014 (M = 0.000, SD = 0.003) for estimates 

of γ410. With the exception of one condition in which γ210 was substantially underestimated (RPB = –

0.053), these results indicate that estimates of the individual-level fixed effects were unbiased.  

All estimates of the cluster-level fixed effects with Cohen’s d effect sizes of 0.50 and 0.80 were also 

unbiased. For estimates of γ301 (d = 0.50), relative bias values ranged from –0.045 to 0.047 (M = 0.000, 

SD = 0.014). For estimates of γ401 (d = 0.80), relative bias values ranged from –0.027 to 0.024 (M 

= -0.001, SD = 0.008). On the other hand, the relative bias of estimates of 201 (d = 0.20) ranged 

from -0.131 to 0.133 (M = 0.000, SD = 0.038). The estimates were substantially negatively biased (RPB 

= -0.131 to –0.053) in 8.9% of the conditions and substantially positively biased (RPB = 0.051 to 0.133) 

in 6.8% of the conditions, with substantial bias more likely to occur with fewer clusters, smaller cluster 

sizes, and larger ICCs. Specifically, the percentage of conditions with substantial bias decreased 

considerably from 34.4% to 2.8% as number of clusters increased from 10 to 50 and from 22.2% to 7.4% 

as cluster size increased from five to 30. However, the percentage increased considerably from 6.5% to 

27.8% as ICC increased. 

  Across all outcomes, relative bias of estimates of the individual-level variances (var(rh)) ranged from 

–0.061 to 0.009 (M = –0.005, SD = 0.011).The variances were substantially underestimated (RPB =  

–0.061 to –0.051) in 2.8% of the conditions and only with the fewest number of clusters (10), the smallest 

cluster size (five), and the smallest ICC (.10) . 

 A larger proportion of estimates of the cluster-level variances (var(uh0)) was substantially biased 

compared to the variances at the individual-level. The overall mean relative bias was 0.068 (SD = 0.167), 

which exceeds the acceptable upper bound of 0.05. Relative bias values ranged from –0.032 to 0.996, 

with substantial positive bias (RPB = 0.051 to 0.996) in 26.2% of the conditions. Substantial bias was 

more likely to occur with fewer clusters, smaller cluster sizes, and smaller ICCs, as both the mean relative 

bias and the percentage of conditions with substantial bias decreased considerably as number of clusters, 

cluster size, and ICC increased, as shown in Table 3. 

 Relative standard error bias (RSEB). Relative bias of the standard error estimates of the individual-

level non-null fixed effects ranged from –0.078 to 0.060 (M = –0.004, SD = 0.024) for γ210, from –0.088 

to 0.074 (M = –0.005, SD = 0.025) for γ310, and from –0.070 to 0.062 (M = 0.000, SD = 0.026) for γ410. 

These results indicate that the standard error estimates were all unbiased. 

  At the cluster-level, relative bias of the standard error estimates ranged from –0.082 to 0.137 (M = 

0.000, SD = 0.033) for γ201, –0.086 to 0.132 (M = 0.001, SD = 0.036) for γ301, and –0.068 to 0.121 (M = 

0.006, SD = 0.036) for γ401. The standard errors for γ401 were substantially overestimated (RSEB = 0.121) 

in only one condition, while the standard errors for γ201 were substantially overestimated (RSEB = 0.111 

to 0.137) in 1.5% of the conditions, and the standard errors for 301  were substantially overestimated 

(RSEB = 0.105 to 0.132) in 2.2% of the conditions. All of the biased standard error estimates occurred in 

the conditions with the fewest number of clusters (10), smallest cluster size (five), and smallest ICC (.10) 

across the range of effect sizes.  

 The standard error estimates of the individual-level variances were all unbiased, with the exception of 

one condition that substantially overestimated the residual variance of the second outcome (RSEB = 

0.102). Relative bias ranged from –0.069 to 0.102 (M = 0.004, SD = 0.024). In contrast, the relative bias   
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Table 3. Mean Relative Parameter Bias (RPB) of the Cluster-Level Variances, var(uh0), and the Percentage of 

Conditions with Substantial Bias at Each Level of a Factor, Collapsed Across All Other Factors 

  MLM  MVMM 

  Mean (SD) %  Mean (SD) % 

Outcomes 3 0.064 (0.159) 25.9%  0.064 (0.159) 25.9% 

 4 0.072 (0.172) 27.2%  0.072 (0.172) 27.2% 

Clusters 10 0.172 (0.251) 57.4%  0.172 (0.251) 57.4% 

 30 0.024 (0.058) 11.1%  0.024 (0.058) 11.1% 

 50 0.009 (0.025) 11.1%  0.009 (0.025) 11.1% 

Cluster size 5 0.157 (0.250) 55.6%  0.157 (0.250) 55.6% 

 10 0.044 (0.091) 22.2%  0.044 (0.091) 22.2% 

 30 0.004 (0.015) 1.9%  0.004 (0.014) 1.9% 

ICC .10 0.156 (0.254) 46.3%  0.156 (0.254) 46.3% 

 .20 0.037 (0.077) 21.3%  0.037 (0.077) 21.3% 

 .30 0.012 (0.031) 12.0%  0.012 (0.031) 12.0% 

Correlation .40 0.059 (0.146) 25.9%  0.059 (0.146) 25.9% 

 .60 0.071 (0.172) 26.9%  0.071 (0.172) 26.9% 

 .80 0.075 (0.180) 26.9%  0.075 (0.180) 26.9% 

Imbalance 50/50 0.069 (0.168) 26.5%  0.069 (0.168) 26.5% 

 70/30 0.068 (0.166) 26.5%  0.068 (0.166) 26.5% 

Note. ICC = intraclass correlation coefficient; bolded values indicate substantial bias (mean RPB > 0.05). 
 

of the standard error estimates ranged from –0.060 to 0.472 (M = 0.049, SD = 0.088) for the cluster-level 

variances. The standard errors were substantially overestimated (RSEB = .102 to .472) in 21.6% of the 

conditions. As with the results for relative parameter bias, substantial standard error bias was more likely 

to occur with fewer clusters, smaller cluster sizes, and smaller ICCs. The percentage of conditions with 

substantial bias decreased considerably from 46.3% to 7.4% as number of clusters increased from 10 to 

50, from 48.1% to 0.0% as cluster size increased from five to 30, and from 40.7% to 7.4% as ICC 

increased from .10 to .30.  
 

  Power. At the individual-level, empirical power rates of tests of γ310  and γ410 were all high, ranging 

from .880 to 1.000 (M = .991, SD = .027) for γ310 and .997 to 1.000 (M = 1.000, SD = .001) for γ410. For 

the parameter with the smallest effect size, γ210, empirical power rates ranged from .255 to 1.000 (M = 

.814, SD = .238), with power of less than .80 in 33.3% of the conditions. As expected, power improved as 

sample sizes increased, with power exceeding .80 in all of the conditions with 50 clusters and a cluster 

size of 30. 

  Tests of the cluster-level fixed effects were considerably less powerful than tests of the individual-

level fixed effects. Empirical power rates of tests of γ201 (d = .20) were all less than .80, ranging from 

.030 to .515 (M = .165, SD = .099). Power rates for γ301 (d = .50) ranged from .124 to .999 (M = .588, SD 

= .286) and were less than .80 in 68.8% of the conditions. Power rates for γ401 (d = .80) ranged from .241 

to 1.000 (M = .817, SD = .214) and were smaller than .80 in 30.2% of the conditions. Not surprisingly, 

power improved as effect size, number of clusters, and cluster size increased, as shown in Table 4. 

However, power tended to decrease as ICC increased, holding all other factors constant. Note that the 

power values displayed in Table 4 are collapsed across MLM and MVMM analyses as the values are 

identical to the third decimal place. 
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Table 4. Mean Power of Tests of the Cluster-Level Fixed Effects Across the MLM and MVMM Analyses 

and the Percentage of Conditions With Power Rates Below .80 for Each Factor Level, Collapsing Across 

All Other Factors 

  
201  (d = 0.20)  

301  (d = 0.50)  
401  (d = 0.80) 

  Mean (SD) %  Mean (SD) %  Mean (SD) % 

Outcomes 3 .166 (.099) 100.0%  .588 (.285) 69.8%    

 4 .163 (.098) 100.0%  .589 (.287) 67.9%  .817 (.241) 30.2% 

Clusters 10 .067 (.022) 100.0%  .233 (.090) 100.0%  .504 (.154) 90.7% 

 30 .169 (.054) 100.0%  .670 (.143) 78.7%  .951 (.045) 0.0% 

 50 .258 (.088) 100.0%  .861 (.097) 27.8%  .995 (.008) 0.0% 

Cluster size 5 .126 (.067) 100.0%  .500 (.270) 84.3%  .759 (.281) 33.3% 

 10 .164 (.090) 100.0%  .596 (.286) 65.7%  .822 (.231) 33.3% 

 30 .204 (.117) 100.0%  .669 (.279) 56.5%  .869 (.194) 24.1% 

ICC .10 .208 (.131) 100.0%  .679 (.301) 48.1%  .869 (.206) 24.1% 

 .20 .156 (.078) 100.0%  .583 (.280) 70.4%  .815 (.242) 33.3% 

 .30 .130 (.055) 100.0%  .502 (.248) 88.0%  .766 (.265) 33.3% 

Correlation .40 .165 (.098) 100.0%  .589 (.286) 66.7%  .818 (.240) 29.6% 

 .60 .165 (.101) 100.0%  .587 (.286) 69.4%  .817 (.243) 29.6% 

 .80 .163 (.099) 100.0%  .588 (.288) 70.4%  .815 (.244) 31.5% 

Imbalance 50/50 .176 (.107) 100.0%  .613 (.289) 62.3%  .832 (.230) 29.6% 

 70/30 .153 (.089) 100.0%  .563 (.281) 75.3%  .801 (.252) 30.9% 

Note. d = Cohen’s d effect size; ICC = intraclass correlation coefficient; bolded values indicate mean 

power < .80. 
 

 Type I Error. Type I error rates for the test of the individual-level null fixed effect were all within 

acceptable bounds, ranging from .034 to .072 (M = .050, SD = .007). At the cluster-level, Type I error 

rates ranged from .010 to .070 (M = .045, SD = .010) and were too conservative (i.e., less than .025) in 

4.6% of the conditions. All of the unacceptable Type I error rates occurred in the conditions with 10 

clusters, a cluster size of five or 10, and an ICC of .10 or .20. With 30 or more clusters, the largest cluster 

size (30), and the largest ICC (.30), Type I error rates were all close to the nominal value. 
 

Discussion 

  The goal of this study was to determine if there are differences in the quality of parameter estimates 

obtained from random intercept univariate and multivariate multilevel models. The context in which this 

study was implemented was a cluster-randomized design with a dummy-coded treatment indicator 

variable at the cluster level, a continuous predictor at the individual level, and correlated continuous 

outcomes at the individual level, although the results apply generally to multilevel cross-sectional studies 

with these same variable configurations. Further, the context of our study assumes that researchers are 

interested in estimating fixed effects and variances at the individual and cluster level, but not covariances 

(or correlations) for each of several correlated outcomes.  We further assumed that data were complete for 

all variables and that researchers were not interested in assessing whether the effects of the treatment 

differed across the multiple outcomes nor in estimating the within-cluster and between-cluster 

correlations among outcomes.  

  In this context, our simulation study estimated parameter and standard error bias associated with the 

within cluster and between cluster variances for the multiple outcomes as well as the fixed effects 

associated with the individual and cluster level predictors. We also estimated the power and Type I error 

rate associated with the test of each of the fixed effects. While other studies (Baldwin et al., 2014; Hauck 

& Street, 2006) analyzed an existing data set or simulated data for a single condition, we examined the 

performance of the MLM and MVMM across 324 conditions. The simulated conditions varied by number 

of outcomes, number of clusters, cluster size, intraclass correlation, outcome correlation, and degree of 
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imbalance. We also included a range of effect size values for the fixed effects by assigning small, 

moderate, and large effect sizes to the different outcomes. 

  For these conditions, we found, consistent particularly with the results from Baldwin et al. (2014), 

that there was remarkable similarity in the performance of MLM and MVMM, as there were no real 

differences in parameter estimation, standard error bias, power, and Type I error accuracy.  In addition, 

we found no difference in convergence problems. For both models, parameters and standard errors were 

more accurately estimated, tests of the non-null fixed effects were more powerful, and Type I error rates 

were more accurate at the individual-level than at the cluster-level. Furthermore, in most cases, estimation 

accuracy, power, and Type I error rates improved considerably as number of clusters, cluster size, and 

ICC increased. However, for number of outcomes, outcome correlation, and degree of imbalance, any 

differences in results across the levels of each of these factors were regarded as trivial.  

  The findings from our current study suggest that if the restrictive conditions we implemented are 

present for an applied study and if the applied researcher were interested only in estimating fixed effects 

and variances, and not the covariances, the MLM and the MVMM may be used interchangeably. This 

similarity of performance assumes that the models of interest are simple random-intercept models, 

imbalance occurs only between two treatment groups and not across cluster sizes, there is no missing 

data, and researchers are not interested testing the equivalence of a predictor’s impact across multiple 

outcomes. 

  The conditions we implemented here are important to keep in mind because the literature suggests 

that the MVMM may have better performance than the MLM when other conditions are present. For 

example, Snijders and Bosker (2012) and Hox (2010) point out that the MVMM approach is expected to 

yield more power and more accurate Type I error rates than the univariate MLM approach when data are 

missing and outcomes are correlated. While we affirmed in this study that the MLM and MVMM perform 

similarly in certain conditions when data are complete, the work of Park et al. (2015) showed that, with 

non-clustered data, MVMM provides greater power than a univariate analysis approach when outcome 

data are incomplete.  

  Taken as a whole, the results of this study provide support both to those wishing to use the simpler 

MLM and the more complex MVMM. That is, our results indicated that in the conditions we examined 

there is no benefit to using the more complex MVMM procedure, in that the parameter estimates, power, 

and Type I error accuracy from a specific multivariate multilevel design are virtually identical for the two 

statistical models. On the other hand, given research conditions that generally favor use of the univariate 

MLM, as implemented in this study, our results suggest that the MVMM could be used in place of the 

MLM without sacrificing power, Type I error accuracy, or the quality of parameter estimates. This is 

important for applied researchers, who, working in a similar multivariate multilevel context as 

implemented in this study, wish to use the MVMM, for example, to test for the equivalence of the effect 

of a predictor across multiple outcomes. Further, note that the MVMM performed just as well as the 

MLM under the smaller sample and effect size conditions implemented in this study. As a whole, then, 

our research supports the continued use of MVMM in multivariate multilevel designs. It is important, 

though that future research continues to assess the performance of the MVMM to learn of its limitations 

and potential benefits compared to using univariate MLMs. 

  Finally, as a practical note, in an applied study, it is generally important to use a Bonferroni-adjusted 

alpha for the tests of each outcome variable to preserve the family-wise error rate. We used an unadjusted 

alpha in our study because we simply wished to compare the performance of the two statistical models, 

and the use of the unadjusted alpha level has no bearing on this comparison. Also, we remind readers that 

we did not use a protected testing strategy that is often used in traditional MANOVA. The work of Frane 

(2015) suggests that the Bonferonni procedure as applied to the tests of specific outcomes often performs 

as well as or better than use of an omnibus testing strategy, particularly when the number of outcome 

variables is larger than two. 
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