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This study presents comparisons of subset selection criteria used to help determine the "best" regression 

model in multiple linear regression. No such criteria can replace a researcher's knowledge of theory to 

help choose useful models, but such criteria may help in exploratory research. Relationships among 

variables can be more complicated than expected and may require adjustment to theory based on 

empirical models. Knowing how well each subset selection method performs can be useful in such cases. 

Monte Carlo simulations were performed to compare a number of well-known criteria (e.g., AIC, BIC, 

PRESS, adjusted R
2
) to some less well-known criteria (e.g., AICc, AICu, GCV, cross-validity R

2
). We 

found that although none of the criteria work well to identify a single correct model across a large number 

of coefficient and multicollinearity patterns, AIC and adjusted R
2
 work reasonably well enough to 

recommend, in combination, to identify a model within-one of the correct model. 

 henever possible, researchers would prefer to allow theory to drive their decisions about what 

predictors constitute a "best" regression model. Sometimes, however, lack of strong theory 

requires researchers to allow the data to speak. In such cases in multiple linear regression, a 

researcher might use statistical methods to help determine which predictors are most useful and most 

worthy of continued future empirical consideration. A number of methods exist for this process in 

regression, including stepwise methods (e.g., forward, backward, stepwise), cross-validation strategies 

(e.g., leave-one-out, k-fold), and best-subset regression techniques. 

  In most cases, some criterion is required to help determine which predictors and/or which models are 

best among the options provided by the data. Most commonly, fit criteria of some kind are used in 

multiple linear regression. Such criteria include methods to determine the maximum strength of 

relationship fit and methods based on minimizing error variation, most of which include penalties for 

models that include more predictors of little value (and sometimes combined with penalties for smaller 

samples). 

  The primary purpose of this study was to investigate how well various subset selection criteria 

identify the correct regression model under varying conditions. In particular, the paper compared both the 

absolute and relative success of several selection methods for identifying the correct model from among 

several predictors. However, after some early results, emergent design based on those results led us to 

compare how effectively the selection criteria worked to identify a model "within-one" of the correct 

model. 

Theoretical Perspectives 

  This study applies to standard multiple linear regression analysis, where all possible subsets of 

predictors are entered in order to create all possible models. In all subsets regression, researchers attempt 

to identify, based on some criterion, the "best" subset model of predictors. That is, researchers attempt to 

identify a subset model that works well, perhaps even as well or better than the full model of all available 

predictors. Some statistical programs have procedures available for such an analysis. 

  One approach to best-subset regression is to compare all possible regression models on the chosen 

criterion. There are 2
k
-1 possible models with predictors that can be created from a set of k predictors. 

Another approach is to compare the best subset of predictors of each possible model size. For k 

predictors, there are k possible "best" models, one model of each size from 1 to k. Researchers choose a 

criterion statistic to use for the model comparisons. For example, by default SPSS provides several 

statistics in its "Model Summary" table that might be used for such a purpose: R
2
, adjusted R

2
, standard 

error of the estimate (SEE), and perhaps even R
2
 change and F change statistics. With the "selection" 

syntax option included, SPSS also will provide the Akaike Information Criterion (AIC), the Schwarz 

Bayesian Criterion (BIC), the Amemiya Prediction Criterion (APC), and Mallows' Prediction Criterion 

(CP). Newer editions of SPSS (e.g., version 22) include an implementation of all subsets regression, but it 

is an interactive procedure without the same detailed results as its traditional regression procedure. 

  Whatever methods and criteria are used, researchers must always remember that our scholarly 

confidence in regression models must be based on cross-validation. Therefore, the techniques described in 

this paper are intended to represent approaches to exploratory use of regression modeling and model 
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building (letting the data speak). Further, researchers are reminded that, due often to correlation among 

predictors, there may not be a single best model. Learning this is not something to be feared, but too many 

want statistical analyses to provide the single correct answer. Research is about theory, not statistics. 

Information gained through comparison of multiple models may help uncover complicated relationships 

among the variables (especially predictors) under investigation – especially when theory is sparse. Subset 

selection methods and criteria can help us understand potential theoretical models for further study. 
 

Variable Selection Methods 

  Variable selection generally refers to systematic techniques for selecting a subset of predictor 

variables, from among a specified set of predictors, that adequately explains or predicts the given criterion 

variable (Weisberg, 1985). Generally, the most important tool in selecting a subset of variables for a 

multiple linear regression model is careful logical analysis based on the analyst's knowledge of theory and 

research in the area of study (Gordon, 1968). Not all researchers see the same relationships, same order of 

variable importance, and same models – perhaps based on different levels of theoretical expertise, 

experience, and creativity. Weisberg (1985) noted, however, that often a point is reached at which it 

becomes necessary to use data to determine a best subset of predictors. Afifi and Clark (1990) similarly 

suggested that the researcher may have prior justification for some but not all of the variables studied. 

Further, variable selection methods are often performed when a large number of candidate variables are 

under consideration, with theoretical rationale, but a priori knowledge does not provide clear 

understanding of their relevance (Flack & Chang, 1987; Huberty, 1989). For example, Weisberg (1985) 

noted that a smaller set of selected variables that provide nearly the same information as the original full 

set of variables can help focus future research in the area and simplify analysis.  

  Variable selection constitutes strategies by which a subset of “better” variables is chosen from among 

a “larger constellation of predictors” (Thompson, 1995, p. 525). Breiman (1995) suggested that these 

subsets are useful for two primary reasons: variance reduction and simplicity (i.e., parsimony). More 

regression coefficients increase the overall variance and the prediction errors. Huberty (1989) and 

Thompson, like Breiman, noted that while stepwise analyses may be used to assess relative importance of 

the predictor variables, the more accepted reason is to select a more parsimonious set of predictor 

variables for a final model. Weisberg (1985) also indicated that deletion of predictors from a prediction 

model can improve it and reduce apparent multicollinearity. Two more common approaches have evolved 

by which such subsets can be obtained in regression: stepwise methods and best-subsets.  

  In stepwise regression procedures, linear models are developed in a sequence of steps by adding 

and/or deleting predictor variables. That is, a path through possible models is chosen based on an 

appropriate statistical criterion, identifying first a subset of one size and then adding/deleting predictors 

until a final model is reached based on some stopping criterion. Stepwise regression techniques differ 

from all-subsets regression techniques because only a limited number of models of each size are 

examined. All-subsets regression, on the other hand, provides analysis of certain criterion statistics 

computed for every possible model of every size. Best-subsets regression, which we focus on in this 

study, then identifies the best model at each size, from among all possible models of that size, based on 

that criterion. 
 

Best-Subsets Regression 

  Whereas in stepwise methods successive models are limited by variables already in the model from 

previous steps of the analysis, all-subsets regression provides analysis of certain statistical criteria (e.g., 

AIC, adjusted R
2
, Mallow’s CP) computed for every possible model of every size (Weisberg, 1985). Then, 

in the best-subsets approach, for each model of a given size the best-subset model of predictors is chosen 

based on the chosen statistical criterion. The number of total models of all sizes is 2
k
-1 (where k is the 

number of predictors), while the number of best-subset models is equal to the number of predictors. For 

example, for five predictors there will be 31 possible regression models for all subsets, but only five best-

subset models based on some criterion such as the highest adjusted R
2
 or lowest AIC: one best one-

predictor model, one best two-predictor model, one best three-predictor model, one best four-predictor 

model, and the one full, five-predictor model. Because best-subsets approaches are computer intensive, 

because all possible regressions must be created, it is not always feasible to use the method, especially as 

k increases.   
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Concerns about Variable Selection Methods 

  Most scholars express concern over the use of data-based variable selection methods generally, and 

stepwise methods specifically (e.g., Harrell, 2015; Keith, 2005). We will not reiterate all the arguments 

against these methods in this paper, but we will highlight some more common concerns. Many concerns 

are related to using these methods in explanatory research. 

  All models, whether developed through stepwise or all subset procedures, are limited due to sampling 

error. Further, all models are susceptible to model specification error. Variable selection methods, 

however, remain common techniques in multiple linear regression. The most critical objection to variable 

selection methods is that, even when used for prediction, they may often fail to select the optimal subset 

of predictors, particularly when multicollinearity is present (Fox, 1991). Variable selection methods also 

cannot guarantee that the best variable set for any given size will be selected (Hocking, 1976; Thompson, 

1995). Indeed, it should be noted that because of relationships among the variables, different variable 

selection approaches cannot always be expected to produce the same subset models at each step. Further, 

Hocking noted that excellent models may be missed when using stepwise methods because of the 

restriction of adding only a single variable at each step. Thompson described this concern as “a linear 

series of conditional decisions not unlike the choices one makes in working through a maze. An early 

mistake in the sequence will corrupt the remaining choices” (p. 532). Huberty (1989) noted that 

multicollinearity may result in a particular combination of variables chosen for the final model in one 

sample, but may result in a different combination in another very similar sample. Such mistakes in the 

sequence and relationships among predictors are often due to sample-specific variation, which is one of 

the reasons stepwise results often do not generalize. Derksen and Keselman (1992) determined that 

sample size impacts the number of authentic variables included in the final models. All-subsets regression 

and best-subsets regression have become more popular as computing power has made it more practical to 

examine all possible models. However, Berk (1978) reported that “in the sample, the all-subsets 

procedure always produces that best set for each subset size. However, this need not be the case in the 

population” (p. 3). 
 

Potential Usefulness of Variable Selection Methods 

  Some scholars have recommended processes for using variable selection methods in a reasonable 

manner. For example, Wilkinson (1979) indicated that cross-validation should be performed in lieu of 

statistical significance testing for reduced models. That is, the results of variable selection analyses must 

be cross-validated in a new sample and only conclusions that can be drawn from both samples should be 

made. Huberty (1989) also recommended that results should only be considered valid when results can be 

shown to replicate in another sample. 

  Other scholars acknowledge that variable selection methods may be useful to help develop better 

prediction models or to manage multicollinearity (e.g., Herzberg, 1969). Fox (1991) also noted that 

selection techniques seem well-suited for prediction problems, so long as reasonable data generalizability 

conditions are met. That is, even badly biased coefficients may produce good estimates of the criterion 

variables. Similarly, Roecker (1991) indicated that predictive accuracy and model parsimony are 

reasonable motivations for subset selection. Copas (1983) reminded us that a good prediction equation 

may include predictors that are not individually statistically significant and exclude others that are 

significant. Consequently, Copas argued that several subsets should be examined prior to any 

determination of the best model.  

  It is hard to understand why the recommendation from Copas (1983) would not also make sense for 

any exploratory research. That is, the best model from a theoretical perspective may include predictors 

that are not statistically significant after controlling the other predictors, but do contribute to a statistically 

significant – and more importantly, a theoretically significant – model. In particular, such results due to 

unusual or unexpected correlation patterns among the predictors (e.g., suppressor relationships) may be 

theoretically valuable for either prediction or explanation. To this end, some scholars recommend all 

possible regressions, so all possible models for a given set of predictors can be compared. As predictors 

increase, however, this becomes more difficult and the attractiveness of other best-subsets approaches 

increases. 
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  Flack and Chang (1987) noted that the best set of predictors should be theory-driven: “strictly 

speaking, variables should not be selected solely on the basis of statistical data analysis” (p. 84). Huberty 

(1989) argued that large predictor pools be reduced and that theory and prior experience should provide 

guidance for initially screening out many of the variables during the study design process. Wilkinson 

(1979) suggested that subset selection analyses can be almost as effective as biased estimation techniques 

(e.g., ridge regression) in minimizing both prediction errors and coefficient errors when the predictors are 

highly correlated. 

  Thompson (1995) and others have suggested guidelines for safer use of stepwise analysis, which may 

apply also to best-subsets regression. In particular, less sampling error tends to be present in data (a) 

based on larger samples, (b) with fewer predictors, and (c) larger effect sizes. Thompson suggested that 

stepwise analyses with more orthogonal predictors may distort the analysis less and may be “somewhat 

less sinful” (p. 533). Cohen and Cohen (1983) suggested that for stepwise regression to be useful, the 

analyses should (a) be used primarily for predictive purposes and only secondarily for explanation, (b) be 

based on very large samples, and (c) be cross-validated. Similarly, Derksen & Keselman (1992) explained 

that most problems affecting results of stepwise analyses are due to multicollinearity, smaller sample 

sizes, and larger numbers of predictor variables in the analysis. They argued that compensating for these 

factors may provide more acceptable stepwise results. 
 

Model Selection Criteria 

  A number of criteria have been developed over the years to help researchers choose the best, or at 

least better, models. These criteria are calculated for each model and compared. Some allow statistical 

comparison (particularly when the models are nested) but most are used without statistical significance 

testing. Consequently, theoretical knowledge is useful to help determine which models are most useful 

when criteria are very similar. 

  Adjusted R
2
 is often used to help identify the best model because, unlike R

2
, it penalizes additional 

predictors that do not help. When adjusted R
2
 is used as the criterion, the model with the largest adjusted 

R
2
 is considered the best. Standard error of the estimate (SEE), or root mean squared error (MSE), is also 

commonly used. Because it is based on error, when SEE is used, the best model has the smallest SEE. 

  A class of criteria based on MSE are commonly used in subset selection decisions. Most commonly, 

perhaps, is AIC and a number of modified or related criteria (e.g., AICc, AICu, and RIC). Each 

modification provides a different penalty based on the number of predictors and/or sample size. Another 

approach, similar in calculation but derived differently – from a Bayesian perspective – is the BIC. 

Another criterion is the prediction error sum of squares (PRESS) statistic, which is based on prediction 

for each case when it is left out of the model. The Mallows CP statistic is based on the error for each 

reduced model as compared to error for the full model of available predictors. The generalized cross 

validation (GCV) criterion is also based on model error. 

  Finally, this study included a number of statistics that have typically not been used for model 

selection purposes, but seem reasonable because a number of scholars have suggested cross-validation 

approaches to model selection. Several cross-validity R
2
 statistics will be tested for model selection: one 

statistic due to Stein (1960) and Darlington (1968), one due to Lord (1950) and Nicholson (1960), and 

one due to Browne (1975). These statistics attempt to estimate the ability of a model to predict in another 

sample from the same population. R
2

PRESS is also often used for this purpose. 
 

 

Purpose of the Study 

  We agree that variable selection methods used for explanatory purposes may be problematic for 

reasons addressed above. We argue, however, that using variable selection methods thoughtfully for 

exploratory model building and model comparison can be an efficient and useful methodology. All-

subsets and best-subsets regressions allow researchers to compare multiple models. 

  Monte Carlo research has shown that neither stepwise selection nor all possible regressions may find 

the correct subset of predictors, depending on the level of multicollinearity in the data (e.g., Olejnik, 

Mills, & Keselman, 2000). But even if we cannot be sure which models are correct, the illumination 

provided by the various models may provide useful information about these complicated relationships 

among predictors and, indeed, all variables being studied. 
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Methods and Data Source 

  We used Monte Carlo simulation methods to investigate the research problem. A computer program 

was written in the statistical programming language, R, and used the leaps package for all-subsets 

regression analyses. The core of the program was tested and the output was verified in multiple ways. For 

example, single datasets were examined to verify that the accuracy of results as compared to hand 

calculations and to results from other programs and procedures. Also, we examined small numbers of 

replications (e.g., 10 and 100) to verify that the cumulative results across samples were being stored 

correctly by the program. For both single sample and small replication results, all variables were 

examined to ensure correct or reasonable results were obtained. Sensitivity testing was performed to 

ensure that the program and function logic worked correctly for all conditions that were varied. Stress 

testing was also performed to verify that strange values did not cause unexpected problems (e.g., division 

by zero). For example, correlation matrices used to generate data were verified to be legitimate (e.g., 

positive definite). Data generation techniques were verified to ensure they produced reasonable samples 

for the population values set. 

  Multivariate normal data were generated for 10,000 samples for each condition described below. In 

particular, five predictor variables (k) were used, with varying levels of explained variation (R
2
), varying 

multicollinearity (i.e., none and moderate, based on variance inflation factor, or VIF), and three sample 

sizes (i.e., n = 50, n = 250, n = 500) loosely based on examination of cross-validation methods such as 

Park and Dudycha (1974) and Brooks and Barcikowski (2012). For each sample, the best subsets for five 

predictors were obtained using the exhaustive (all possible) regressions approach. 

  For data generation, we varied the correlation coefficients between the predictors and the dependent 

variable (the correlation pattern) from .0 to .8 with a .2 increment to cover a wide range of possible 

predictor correlation values with the outcome. For example, the first model created this way had 0, 0, 0, 0, 

and .2 as correlation between predictors and the outcome, while the last model had correlations of 0, .2, 

.2, .4, and .8. Some models had only one non-zero correlation (e.g., the first model), while some (e.g., .2, 

.4, .4, .4, and .6) had five non-zero correlations. This resulted in 47 total correlation matrices for each 

multicollinearity condition. Of course, certain patterns of these correlation coefficients were not possible 

(e.g., uncorrelated predictors with correlations with the outcome of 0, .2, .4, .6, and .8 would result in 

R
2
 > 1.0 and would not be legitimate). We used a maximum R

2
 of .90 with no multicollinearity as our 

ceiling (e.g., uncorrelated predictors with 0, .2, .4, .6, and .6 correlations with the outcome would result in 

R
2
 = .92 and therefore that pattern was not included). We also included four patterns having just a .1 

increment, from (0, 0, 0, .1, .2) to (.1, .2, .3, .4, .5), to explore a set of smaller predictor correlations with 

the dependent variable and very small overall R
2
 values with multiple predictors. 

  We varied the patterns of correlations among predictors from no multicollinearity (i.e., all 

correlations among predictors equal 0, called M0 here) to moderate multicollinearity (based on VIF). The 

M1 multicollinearity pattern represented a situation where all predictors are correlated at r = .2 (where all 

VIF = 1.1 for each predictor) and M2 represented all predictors correlated at r = .4 (where all VIF = 1.4). 

Table 1 shows the multicollinearity patterns for M3 and M4, which were not consistent across all 

predictors like M1 and M2. It should be noted that as multicollinearity increased, it became increasingly 

difficult to identify correlation matrices that were positive definite for all 51 sets of predictor-outcome 

correlation patterns (e.g., we were not able to set all predictor correlations at r = .6). Several higher 

multicollinearity conditions were attempted until two could be identified that successfully produced 

positive definite matrices in combination with all 51 predictor-outcome correlation patterns. This resulted 

in only two particular patterns of higher multicollinearity used in the study. Further, it is important to note 

that the levels of multicollinearity represented by these matrices would be considered relatively mild (e.g., 

no VIF higher than 5.0). The combination of correlation patterns and multicollinearity produced 

population R
2
 values of .04 to .96 across all conditions (some R

2
 values increased above our original 

criterion of .90 as multicollinearity increased). 

  For each sample, selection criteria were used to identify the "best" model from among the five 

possible best-subset models (e.g., the model with the minimum AIC or the maximum adjusted R
2
). We 

recorded whether each criterion identified the correct model. More specifically, we determined whether 

the criterion chose the model of the correct size (that is, the number of predictors in the model). Selection 

criteria statistics were calculated by the authors and verified where possible using built-in R functions.  
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Table 1. Multicollinearity Conditions and Associated Variance Inflation Factors (VIF) Values for the M3 

and M4 Correlation Matrices Used in Simulated Samples 

Multicollinearity  Correlations among Predictors  

Condition Predictors X1 X2 X3 X4 X5 VIF 

M3 Y 0 .2 .2 .4 .6 - 

 X1  .8 .6 .4 .2 3.0 

 X2   .6 .4 .2 3.0 

 X3    .4 .2 1.7 

 X4     .2 1.3 

 X5      1.1 

M4 Y 0 0 .1 .2 .3 - 

 X1  .8 .8 .4 .2 3.5 

 X2   .8 .4 .2 3.5 

 X3    .6 .2 4.6 

 X4     .2 1.6 

 X5      1.1 

Note. Correlations with the outcome Y are examples of the 51 patterns we used. 
 

  We made a practical decision in order to determine which model was correct. There are at least three 

competing definitions for the "true" or "correct" population model. First, we could have chosen to 

consider the correct model to be the one that includes only the predictors which have non-zero 

correlations with the dependent variable. This rule, however, would neglect the fact that, due to 

multicollinearity, partial population regression coefficients may be non-zero even if they have zero 

correlation with the outcome (or vice versa). Second, we could have chosen to consider the correct model 

to be the one that includes only predictors with non-zero population regression coefficients. This rule, 

however, would almost exclusively have resulted in the full model being considered the correct model in 

our simulated conditions when there was multicollinearity. Therefore, we chose a practical solution and 

rounded population coefficients to the nearest tenth. Rates of success were calculated for each selection 

criterion method using this rule. 

 

Phase 1 Results 

  We began by investigating which selection criterion most effectively identified the correct model. 

However, we saw that, as other researchers have, none performed all that well. They all performed most 

successfully with no multicollinearity. We learned that some criteria work better for some conditions and 

some work better for others. 

  More specifically, we calculated how frequently each selection criterion identified the correct model 

out of the 10,000 samples for each of the 765 conditions (i.e., 3 sample sizes, 5 multicollinearity 

conditions, and 51 regression coefficient patterns). We determined that BIC was most frequently correct 

across more of the conditions. That is, BIC identified the correct model in at least 80% of the samples 

(i.e., 8000 of the 10,000 samples) in each condition for 271 conditions (35.4% of 765 total conditions). 

AICu was correct at least 80% of the time for 235 conditions, AIC for 197, and adjusted R
2
 for 186 

conditions. BIC was correct in 90% of the samples for 203 conditions. Disappointed in the low accuracy 

rate, we decided to alter our investigation to study how frequently the selection criteria identified a model 

within one predictor (in size) of the correct model (described in Phase 2 results). That is, if the correct 

model had three predictors, we would consider a criterion as being correct "within one" if it identified the 

two-predictor model or the four-predictor model. 

  We also determined that a number of selection criteria we tested were highly correlated. That is, when 

examined across the 51 conditions for each condition, we discovered that methods were correlated in how 

frequently they identified the correct model. Table 2 shows the minimum correlations among the selection 

criteria across the 51 regression coefficient patterns for the 15 sample size and multicollinearity 

conditions. For example, out of 15 correlation matrices calculated in this way, AIC and AICc are always 

correlated at or above r = .96 (i.e., for all conditions, AIC and AICc are very highly correlated).  
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The following criteria are represented in the table: 

  BIC   =  Schwarz Bayesian Information Criterion (Schwarz, 1978) 

  CAIC  =  Conditional AIC (Bozdogan, 1987) 

  AICu   =  Unbiased AIC (McQuarrie, Shumway, & Tsai, 1997) 

  AICc   =  Corrected AIC (Hurvich & Tsai, 1991) 

  AIC   =  Akaike Information Criterion 

  MinCP   =  Minimum Mallow's CP (Mallows, 2000) 

  CP    =  Mallow's CP (Mallows, 2000) 

  Rc2SD   = Stein-Darlington Cross-Validity R
2
 (Darlington, 1968; Stein, 1960) 

  Rc2LN   =  Lord-Nicholson Cross-Validity R
2
 (Lord, 1950; Nicholson, 1960) 

  Rc2B  = Browne Cross-Validity R
2
 (Browne, 1975) 

  PRESS   = Prediction Error Sum of Squares 

  RIC   =  Risk Inflation Criterion Corrected (Leng, 2013) 

  GCV  =  Generalized Cross-Validation (Takezawa, 2014) 

  Amemiya  = Amemiya Prediction Criterion (Amemiya, 1980) 

  Ra2   = Adjusted R
2
 (Ezekiel, 1930; Wherry, 1931) 

  SEE   =  Standard Error of the Estimate 

  Ra2OP   =  Olkin-Pratt Adjusted R
2
 (Olkin & Pratt, 1958) 

 

  Based on these correlations, we decided to reduce the number of selection criteria in the study to the 

following five: BIC, AICu, AICc, AIC, and adjusted R
2
 (and indeed, because the results for AICc were 

not so different from AICu and AIC, we focused later on just the other four criteria). 

 The final result of note from Phase 1 was the determination that methods were often correct for 

different conditions. For example, of the 271 conditions where BIC was correct at least 80% of the time, 

adjusted R
2
 was correct 80% of the time for only 108 of them and AIC was correct for only 142. For 

example, there were 78 conditions where adjusted R
2
 was correct 80% of the time but BIC was not. In 

succeeding phases, we attempted to identify rules that researchers might be able to use to maximize the 

correct choice of criterion. For example, if a researcher can identify when to use BIC and when to use 

adjusted R
2
, then we can increase the correct choice from 271 conditions to 349 conditions. 

 

Table 2. Minimum Correlations among Correct Identifications of Selection Criteria across 15 Cells for N 

and Multicollinearity (Correlations above .95 are Highlighted) 

 
BIC CAIC AICu AICc AIC MinCp Cp Rc2SD Rc2LN Rc2B PRESS RIC GCV Amemiya Ra2 SEE Ra2OP 

BIC 1.00 0.98 0.55 0.30 0.29 0.29 0.29 0.29 0.29 0.30 0.29 0.29 0.29 0.29 0.10 0.10 0.10 

CAIC 0.98 1.00 0.48 0.23 0.22 0.22 0.22 0.22 0.22 0.23 0.22 0.22 0.22 0.22 0.02 0.02 0.02 

AICu 0.55 0.48 1.00 0.85 0.83 0.83 0.83 0.83 0.83 0.84 0.84 0.83 0.83 0.83 0.31 0.31 0.31 

AICc 0.30 0.23 0.85 1.00 0.96 0.98 0.98 0.98 0.96 0.96 0.97 0.98 0.98 0.96 0.53 0.53 0.52 

AIC 0.29 0.22 0.83 0.96 1.00 1.00 1.00 0.99 1.00 0.99 0.99 1.00 1.00 1.00 0.74 0.74 0.74 

MinCp 0.29 0.22 0.83 0.98 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 0.67 0.67 0.67 

Cp 0.29 0.22 0.83 0.98 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 0.67 0.67 0.67 

Rc2SD 0.29 0.22 0.83 0.98 0.99 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 0.67 0.67 0.67 

Rc2LN 0.29 0.22 0.83 0.96 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 0.74 0.74 0.74 

Rc2B 0.30 0.23 0.84 0.96 0.99 0.99 0.99 0.99 0.99 1.00 1.00 0.99 0.99 0.99 0.71 0.71 0.71 

PRESS 0.29 0.22 0.84 0.97 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.70 0.70 0.70 

RIC 0.29 0.22 0.83 0.98 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 0.67 0.67 0.67 

GCV 0.29 0.22 0.83 0.98 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 0.68 0.68 0.68 

Amemiya 0.29 0.22 0.83 0.96 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 0.74 0.74 0.74 

Ra2 0.10 0.02 0.31 0.53 0.74 0.67 0.67 0.67 0.74 0.71 0.70 0.67 0.68 0.74 1.00 1.00 1.00 

SEE 0.10 0.02 0.31 0.53 0.74 0.67 0.67 0.67 0.74 0.71 0.70 0.67 0.68 0.74 1.00 1.00 1.00 

Ra2OP 0.10 0.02 0.31 0.52 0.74 0.67 0.67 0.67 0.74 0.71 0.70 0.67 0.68 0.74 1.00 1.00 1.00 
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Phase 2 Results 
  Because we were trying many different combination and multi-step rules in Phase 2, we changed to 

1,000 replications per condition. We ran many Monte Carlo attempts to try to identify rules and needed to 

be able to process results more quickly than 10,000 iterations would allow. However, we increased the 

sample sizes to include an n = 100 condition, which increased our total number of conditions to 1,020 (4 

sample sizes by 5 multicollinearity by 51 correlation-coefficient patterns). Finally, while we continued to 

verify the "actual correct" results from Phase 1, in Phase 2 we focused on the "within-one" correctness 

(for both correctness percentages and correlations among criteria). 

  We chose to investigate within-one for a theoretical reason as well. Knowing that, like us, previous 

researchers have generally found that subset selection criteria do not find the correct model at high rates 

of accuracy, we decided to use the within-one rule to get a sense of how frequently the methods were 

close to the correct model (in terms of number of predictors). That is, we believe, as did a number of 

scholars cited above, that researchers must bring theoretical knowledge to bear on subset selection 

methods in multiple regression. Knowing that a selection criterion can provide accuracy within-one can 

help a researcher identify the most promising candidate models from a statistical perspective (based on 

their data). This may help maximize their ability to determine a best model based on the other knowledge 

they bring to the problem. 

  We present Table 3 as an example of the kind of results we examined. Several examples of interesting 

outcomes from the n = 250 and M1 condition are highlighted. For example, the row identified as 

Condition 19 shows that all selection criterion identified models within-one of the correct model size in 

100% of the samples. Condition 25 shows that none of the selection criterion were correct within-one at 

least 80% of the time (indeed, the maximum was 37.8% percent). In Conditions 21 and 23, adjusted R
2
 is 

correct more frequently than any of the other three criteria shown here (i.e., BIC, AICu, and AIC). In the 

MAX column, the .727 reflects that adjusted R
2
 is the maximum value for Condition 21 (which was not 

above the 80% correctness rule) and .938 for Condition 23 (in Condition 23, however, AIC is also above 

the 80% rule). Finally, Condition 29 shows a condition where BIC, AICu, and AIC are all above the 80% 

correctness rule, but adjusted R
2
 only identified the within-one correct model 67% of the time. 

 Condition 17 (not highlighted) shows two regression coefficients (both 0.03) that would be 

considered 0.0 when rounded to the nearest tenth; therefore, the correct model in Condition 17 is 

considered a three-predictor model. Note that the original correlations are in the far right columns, but 

because of the multicollinearity, the population coefficients have changed (with no multicollinearity, the 

population coefficients would be the same as the correlations with the outcome). Table 3 also shows some 

of the combination rules we tried. For example, we examined how many times the three more common 

criteria (BIC, AIC, and adjusted R
2
) agreed. That is, Table 3 shows columns for when adjusted R

2
, BIC, 

and AIC, all correctly agreed in the samples (R=S=A), meaning that the maximum adjusted R
2
, the 

minimum BIC, and the minimum AIC all pointed to the same model and this model was a correct within-

one model (the three may also point to the same model, but it may not be a correct within-one model). We 

recorded how frequently this agreed-upon model was within-one of the correct model size. We also 

recorded when adjusted R
2
 and AIC agreed (R=A), when BIC and AIC agreed (S=A), and when adjusted 

R
2
 and BIC agreed (but R=S is not shown in the example). 

  Further, Table 3 shows an example of one of the many two-step rules we tried. Because the selection 

criteria did not frequently agree to identify the correct model within-one (when paired as described 

above), we tried two-step rules that would follow disagreement with another choice of selection criterion. 

For example, in Table 3, sample results are shown for the rule that first tested whether BIC and AIC 

agreed and then, if they did not agree, would use adjusted R
2
 to identify the model. This rule is 

abbreviated as (S=A|R). We had hoped that such rules would take advantage of the agreement of the 

criteria in the conditions in which they performed well, but then revert to another criterion (here, adjusted 

R
2
) for the conditions where it performed better. Sadly, the rules continued to agree even in conditions 

where they performed poorly and did not revert to the second option enough to improve the results. For 

example, in Condition 24 (not highlighted), BIC reached the 80% rule in 13.8% of the samples, and AIC 

reached it in 66.1% of the samples. Adjusted R
2
, however, reached it in 84.8% of the samples, meeting 

our 80% correctness rule. The difficulty is trying to find a rule that will tell a researcher to use adjusted R
2 

for that condition, in order to maximize correctness. We had hoped the two-step rule would allow a   
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Table 3. Sample Results from the Monte Carlo Simulations 

Cond RSQ b1 b2 b3 b4 b5 MAX BIC AICu AIC Ra2 R=S=A R=A S=A S=A|R ry1 ry2 ry3 ry4 ry5 

15 0.40 -0.17 -0.17 0.33 0.33 0.33 1.000 0.977 0.997 1.000 1.000 0.674 0.964 0.707 1.000 0.0 0.0 0.4 0.4 0.4 

16 0.38 -0.19 0.06 0.31 0.31 0.31 0.996 0.884 0.970 0.987 0.996 0.517 0.823 0.664 0.987 0.0 0.2 0.4 0.4 0.4 

17 0.34 0.03 0.03 0.28 0.28 0.28 1.000 1.000 0.990 0.960 0.875 0.433 0.679 0.659 0.907 0.2 0.2 0.4 0.4 0.4 

18 0.44 -0.22 0.28 0.28 0.28 0.28 1.000 0.998 1.000 1.000 1.000 0.981 0.999 0.982 1.000 0.0 0.4 0.4 0.4 0.4 

19 0.40 0.00 0.25 0.25 0.25 0.25 1.000 1.000 1.000 1.000 1.000 0.692 0.859 0.828 1.000 0.2 0.4 0.4 0.4 0.4 

20 0.44 0.22 0.22 0.22 0.22 0.22 1.000 0.999 1.000 1.000 1.000 0.900 0.989 0.911 1.000 0.4 0.4 0.4 0.4 0.4 

21 0.40 -0.08 -0.08 -0.08 -0.08 0.67 0.727 0.038 0.258 0.483 0.727 0.015 0.343 0.025 0.647 0.0 0.0 0.0 0.0 0.6 

22 0.41 -0.11 -0.11 -0.11 0.14 0.64 0.944 0.315 0.657 0.835 0.944 0.099 0.649 0.142 0.897 0.0 0.0 0.0 0.2 0.6 

23 0.41 -0.14 -0.14 0.11 0.11 0.61 0.938 0.294 0.639 0.833 0.938 0.115 0.659 0.153 0.899 0.0 0.0 0.2 0.2 0.6 

24 0.40 -0.17 0.08 0.08 0.08 0.58 0.848 0.138 0.452 0.661 0.848 0.063 0.513 0.084 0.771 0.0 0.2 0.2 0.2 0.6 

25 0.38 0.06 0.06 0.06 0.06 0.56 0.378 0.000 0.027 0.134 0.378 0.000 0.110 0.000 0.337 0.2 0.2 0.2 0.2 0.6 

26 0.51 -0.14 -0.14 -0.14 0.36 0.61 1.000 0.902 0.980 0.992 1.000 0.426 0.899 0.496 0.992 0.0 0.0 0.0 0.4 0.6 

27 0.50 -0.17 -0.17 0.08 0.33 0.58 0.996 0.766 0.939 0.978 0.996 0.400 0.828 0.506 0.980 0.0 0.0 0.2 0.4 0.6 

28 0.48 -0.19 0.06 0.06 0.31 0.56 0.849 0.280 0.522 0.700 0.849 0.154 0.532 0.207 0.715 0.0 0.2 0.2 0.4 0.6 

29 0.44 0.03 0.03 0.03 0.28 0.53 0.996 0.996 0.950 0.868 0.669 0.243 0.488 0.504 0.749 0.2 0.2 0.2 0.4 0.6 

30 0.58 -0.19 -0.19 0.31 0.31 0.56 1.000 1.000 1.000 1.000 1.000 0.969 1.000 0.969 1.000 0.0 0.0 0.4 0.4 0.6 

31 0.54 -0.22 0.03 0.28 0.28 0.53 1.000 0.999 1.000 1.000 1.000 0.645 0.840 0.805 1.000 0.0 0.2 0.4 0.4 0.6 

32 0.50 0.00 0.00 0.25 0.25 0.50 1.000 1.000 0.992 0.970 0.879 0.467 0.659 0.726 0.918 0.2 0.2 0.4 0.4 0.6 

 

researcher to see that BIC and AIC did not agree and therefore use adjusted R
2
. However, the rule was 

only correct 77.1% of the time. We found that using the better individual criterion rules (e.g., AIC by 

itself) nearly always outperformed these multi-step combination rules. That is, even though the multi-step 

combination rules we tried did achieve a balance between individual criteria as we had hoped, one of the 

individual rules was nearly always more accurate than the combination rules, thereby making it difficult 

to recommend combination rules or multi-step rules that use multiple selection criteria. 

  In particular, AIC and adjusted R
2
 provided the most frequent correct within-one results. In fact, we 

found that AICu was correct within-one most frequently using a 95% rule (i.e., within-one of the correct 

model in at least 95% of the samples in a condition), but that it was only correct for 54.1% of the 1,020 

conditions. AIC was most accurate at both a 90% rule (for 59.9% of the conditions) and an 80% rule (for 

70.6% of the conditions). Adjusted R
2
 was most accurate within-one for all correctness rules below 80% 

(e.g., 70%, 60%, 50%) and, indeed, was correct more frequently for all conditions where none of the 

methods reached the correctness rule (e.g., recall Condition 25 in Table 3).  

 Table 4 shows the percentages across the 1,020 conditions of each individual method being correct 

within-one. For example, for no multicollinearity M0 and n = 50, AIC was correct at least 80% of the 

time in 42 (82.4%) of the 51 conditions. The column labeled maxPC represents the percentage correct if 

we could identify the best method to use in every condition. In that same M0 and n = 50 condition, if we 

knew which method to use in every one of the 51 conditions, we could be at least 80% accurate within-

one for 48 (94.1%) of the 51 conditions. Consequently, AIC would help us identify the correct within-one 

model size in 42 (87.5%) of those 48 conditions. Adjusted R
2
 would identify the other six conditions at 

80% correctness within-one. We could use other criteria to help us identify the correct model within-one, 

but the accuracy rate would be lower than80% of the time for three of the conditions (the results show the 

lowest to be 52%). In total, if we were able to determine which criterion to use across all conditions, we 

could correctly identify models within-one in 819 (80.3%) of the 1,020 conditions, but using only AIC 

always, we could do so in 720 (70.6%) of the conditions. 

  We also found that we could not reach 50% within-one correctness in 99 (9.7%) of the conditions. 

Most commonly, the conditions that resulted in poor identification of the correct within-one models were 

those with smaller sample sizes, multicollinearity, and several very small regression coefficients (i.e., 0.1 

or 0.2). As sample size increased, however, these selection criteria did indeed perform more effectively. 

For example, with n = 100 and M1 (which resulted in regression coefficients of 0.1, 0.1, 0.1, 0.1, and 
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Table 4. Percentages of 80% Within-One Correctness 

in Conditions. 

 

0.6), AIC identified a correct model within-

one in 4% of the samples; with n = 500, 

however, AIC identified a correct within-one 

model 37.1% of the time (adjusted R
2
 

increased from 17.9% when n = 100 to 65.5% 

when n = 500). 

  The yellow highlights in Table 4 identify 

the most effective criteria within each cell (20 

combinations of sample size and 

multicollinearity). The green highlights 

indicate the most effective criteria at the 

margins for either sample size (4 sample 

sizes) or multicollinearity (5 levels of 

multicollinearity). The blue highlights show 

the most effective across all 1,020 cell 

combinations. In recognition of the relatively 

small number of replications (i.e., 1,000), 

highlights show the most effective criterion as 

well as any other criterion within 3% of that 

most effective result. 

  Table 4 shows clearly that with any 

multicollinearity (recall that the 

multicollinearity we used in the study was 

relatively minimal), we cannot use these 

selection criteria to choose models even 

within-one very well when sample sizes are 

small. That is, when n = 50 (which would 

generally be considered small for a multiple 

regression) and n = 100 (which would often 

be considered acceptable for a multiple 

regression with five predictors), the criteria 

often more frequently than not did not reach 

80% correctness within-one (i.e., most 

proportions with multicollinearity are below .5). The adjusted R
2
 criterion was most useful when 

multicollinearity existed, but clearly was not the best choice with no multicollinearity, which was AIC. 

As multicollinearity increased slightly to M3 and M4 with smaller sample sizes, adjusted R
2
 became the 

clear choice. As sample sizes increased to n = 250 and n = 500 (both of which would be very large for 

most multiple regressions with five predictors), AIC becomes a relatively clear choice based on an 80% 

correct rule. Also recall that AIC was generally better across the same conditions with an 80% as well as 

90% correctness within-one rule. 

Discussion 

  Using the results presented above, we believe new rules can be developed based on sample size and 

multicollinearity. First, as a general principle, we need to seriously consider much larger sample sizes in 

multiple regression. We almost always have some collinearity among predictors in multiple regressions 

performed in social sciences. Second, if a sample has almost no multicollinearity (recall that M1 had r = 

.2 for all predictors), we would recommend AIC at all sample sizes (see Table 4). Third, if a sample is 

small (e.g., n ≤ 100) and has any multicollinearity, we recommend adjusted R
2
. We added simulation for n 

= 150 and n = 200 to comparing several new rules across additional sample sizes based on this 

combination of criteria. We found that the rule "Use adjusted R
2
 when n ≤ 200 and the largest VIF > 2, 

otherwise use AIC" increased the number of 80% correct within-one results by approximately 20 

conditions better than the AIC results. This was the best of the several rules we tested. 

  We also learned that BIC performed very well with multiple non-zero population regression 

coefficients, but like other criteria suffered with small regression coefficients. Consequently, we are not 
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certain at this time how to use this result in a sample-based rule, since even zero population coefficients 

are likely to be small and non-zero in samples. 

  Certainly, our study is limited by the multivariate normal data, number of predictors, and 

multicollinearity patterns we included. We used only five predictors in these simulations. However, we 

varied the correlations of the predictors with the dependent variables broadly. Additional study certainly 

must be done to examine these results with more predictors. There is a good chance that the within-one 

correctness will decrease as additional predictors are added, especially as multicollinearity increases and 

becomes more complicated. But the rules may continue to work equivalent to the relative effectiveness 

found here. 

  Our study is also limited by the definition of "correct" model we used. We were able to determine that 

there was little difference in within-one correctness effectiveness for the selection criteria when we used a 

correctness rule with rounding to the nearest hundredth instead of nearest tenth. However, using the 

correlation or true zero regression coefficients impacted within-one correctness (as well as exact 

correctness) of the criteria. 

  We often hope or think that statistical methods will just give us "the" answer. Rarely is it that easy, 

especially in exploratory research. The best alternative may sometimes be to obtain exploratory 

information from multiple statistical methods to make theoretically reasonable decisions about 

relationships based on empirical data obtained from samples. For example, identifying within-one models 

may help us discover and make sense of more complicated relationships among the predictors in relation 

to the outcomes that interest us. Finally, with variable selection methods just like all statistical methods, 

researchers using regression must remember the importance of testing assumptions, checking for 

influential cases, using sufficient sample size, and cross-validating results. 
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