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A formula for estimation of the validity concentration of a prediction model is specified, and its 

performance (ρcv and MSEcv) in tracking the accuracy of alternate non-OLS weighting methods (ridge 

regression, regression on principal components and equal weighting) was investigated.    The performance 

of all alternate methods was tracked very accurately; the formula predicted performance perfectly (R2 = 

1.0) for all three alternatives for both ρcv and MSEcv.  The use of this validity concentration formula to 

help decide when to use a non-OLS method is thus deemed promising. 

 he purpose of this investigation was to specify and examine an objective and, hopefully useful, 

definition of validity concentration.  Previous work has shown that the performance of various non-

OLS prediction modeling techniques depend on validity concentration, and in the most recent, 

candidate formulas for validity concentration were proposed (Morris & Lieberman, 2016).  Although the 

concept of validity concentration has been described in the literature, identifying a specific formula that 

predicts the performance of non-OLS predictor weighting techniques does not appear to have been 

accomplished.  The goal of this study is to consider the performance of one possibility. 
 

Theoretical Framework 

  Darlington (1978) posited that the relative multiple regression cross-validation prediction accuracy 

between OLS and alternatives, with a concentration on ridge regression, is a function of R
2
, N, p, and 

validity concentration, where R
2
 represents the squared sample multiple correlation, N is sample size, and 

p is the number of predictor variables. In Darlington’s formulation, validity concentration was used to 

describe a data condition in which the principal components of the predictor variables’ intercorrelation 

matrix with large eigenvalues also have large correlations with the criterion.  Thus, validity concentration 

requires at least a modicum of predictor variable collinearity (large predictor eigenvalues); but 

collinearity is only necessary, not sufficient, for validity concentration. Morris (1982) examined the 

prediction performance of the specific version of ridge regression recommended by Darlington (RIDGM, 

Dempster, Shatzoff, & Wermuth, 1977) with the same data structures on which the technique's superiority 

was posited.  A synopsis of those results were that OLS was superior at smaller levels of validity 

concentration and as validity concentration increased, alternatives to OLS became superior.  So, as 

Darlington specified, Ridge became better than OLS with larger validity concentration, but also, in those 

same conditions, other methods exceeded Ridge. 

  In addition, it has been shown that in the case of classification (Morris & Huberty, 1987; 

Morris, & Lieberman, 2012), prediction accuracy follows a similar pattern.  As well, it was 

shown that OLS prediction performance was unrelated to multicollinearity, regardless of whether 

validity concentration obtained (Morris & Lieberman, 2015).  The difference that accrues 

between OLS and alternative methods is not due to a loss in predictive performance of OLS as 

multicollinearity increases (as stated, performance is flat in respect to multicollinearity), rather it 

is due to the enhancement in performance of alternative methods afforded by increasing validity 

concentration (given, of course, the requisite increase in multicollinearity). 
 

Method 

  As specified, the notion of validity concentration has been vaguely described.  In a comparison of the 

prediction performance of OLS and alternatives, Darlington (1978) posed the term “validity 

concentration” and manipulated it in the following way.  The data situation was such that the number of 

predictors (p) was 10.  Requisite predictor variable multicollinearity was manipulated such that principal 

component eigenvalues of the predictor variable intercorrelation matrix decreased by a constant ratio (λr 

=.50, .65, .80 and .95), therein creating decreasing multicollinearity with increasing λr.  In turn, validity 

concentration was manipulated such that corresponding principal components manifested squared 

correlations with the criterion that were proportional to varying powers of the eigenvalues; those powers 

were .1, .5, 1, 2, 4, and 10, with the resulting squared component validities necessarily summing in each 

case to the prescribed R
2
 of .25.  Thus, therein, creating increasing validity concentration, within λr, as 

T 
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this power increased.  However, as stated, multicollinearity limits the degree of validity concentration 

possible, thus the validity concentration was, in each case, capped by λr. 

The purpose herein is to consider a possible formula for validity concentration and to examine how well it 

performs in detecting the data conditions under which some alternative methods outperform OLS. 

A potentially appealing index of validity concentration, might be: 
 

         VC = (Σλiρi
2
/R

2
 - 1)/(p – 1),             (1) 

 

where λi and ρi
2
 are the ith eigenvalue of a principal component of the predictor variable intercorrelation 

matrix and its corresponding squared component validity, R
2
 is the sample squared multiple correlation, 

and p is the number of predictor variables.  As the predictor variable intercorrelation matrix is full rank 

(else OLS multiple correlation would be impossible), and as the component validity is squared, both λi 

and ρi
2 

are necessarily positive.  VC can be negative under the unusual circumstance of large eigenvalues 

being systematically associated with smaller component validities. However, although it is certainly 

possible to create such a situation “in the lab,” with components manifesting more variance having less 

covariance shared with the criterion, this is deemed very unlikely to be the case with real data.  Outside of 

this possibility, VC is nicely bounded [0,1].   These limits seem consistent with the aforementioned notion 

of validity concentration.   

  Considering the operating characteristics of the formula, as λ1 approaches p, representing perfect 

collinearity in the first component (of course to be considered here only as an asymptotic theoretical limit, 

as OLS regression would be impossible in that case due to the resultant singular intercorrelation matrix), 

and ρ1
2
 approaches R

2
 (given that λ1=p, representing maximum validity concentration), the numerator 

becomes p-1, and thus VC=1.  On the other hand, if all λi=1, representing minimum multicollinearity – 

indeed, orthogonality  -- the numerator becomes zero, thus VC = 0, regardless of the ρi
2
s.  If validity is 

equally distributed across components such that all ρi
2
=R

2
/p, the same obtains with VC=0, regardless of 

the λis.  This can be interpreted in line with former arguments; validity concentration can’t exist without a 

modicum of collinearity, but collinearity, no matter how great, can’t manifest validity concentration 

without the association of larger ρi
2
s with larger λis.  

  To allow maximum validity concentration range therefore requires multicollinearity, thus a λr of .30 

was used herein to examine the performance of VC.  To provide context, one further comment (and the 

reason for its selection) about the .30 λr condition is needed. Although originally posited as a test of the 

ability of digital computers to accomplish the necessary inversion of a near singular matrix for regression 

(Longley, 1967), the infamous “Longley Data” has often been used as a reference point for very extreme 

multicollinearity (VIFs from 4 to 1789).  With VIFs of 340 to 2000, the .30 λr condition manifested even 

greater multicollinearity than the Longley data.   

  Validity concentration was manipulated as in former studies with powers of the λ of .1, .5, 1, 2, 4, and 

10, but with additional powers of 0, .2, .3, .4, .7, and 1.5 added to allow more precise examination of the 

functional relationship between the VC index and model accuracy. [Note that these powers are, and have 

been, used to manipulate validity concentration; they are not a measure of validity concentration as is 

the VC index.]  Consistent with former studies mentioned, N and R
2
 were set at 40 and .25.

 
 

The alternatives to OLS considered herein were bounded ridge regression, regression on principal 

components with dimensionality decided by parallel analysis, and regression on equal weights; all 

executed as in the aforementioned Morris and Lieberman (2015) study.  

  A population of 10,000 subjects was created (Morris, 1975; 1982) that manifested each condition.   

Samples of 40 subjects were selected with 1000 replicates. Prediction models as specified were created 

from the sample and cross-validated by predicting the criterion in the population for all 10,000 Ss.  A 

Fortran 90 computer program compiled by Intel Parallel Studio XE 2016 was used to accomplish all 

simulations.  
 

Results 

  The relationships between the alternative methods’ cross-validated prediction performance 

(correlation with the criterion, ρcv,, and MSEcv)  and VC are illustrated in Figures 1 and 2, respectively.  

OLS is also included as a reference, but, as mentioned, its performance is flat in respect to VC; OLS 

performance is totally insensitive to multicollinearity or potential attendant validity concentration.   
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  Figure 1. Methods’ ρcv as a function of VC. 

 

Figure 2. Methods’ MSEcv as a function of VC.
 

  The question then, is whether the VC index provides an accurate functional relationship with the 

performance of the alternative methods.  As the alternative methods capitalize on validity concentration, 

for the VC index to be of predictive use, as it increases, one would hope for a clear functional relationship 

with non-OLS model performance.  For each method, a simple, and smooth, monotonically increasing, or 

decreasing, function resulted for ρcv,, and MSEcv, respectively.  The relationship was clearly curvilinear; 

increasing VC increases the performance of the alternative methods, but the degree of that increase 

lessens as VC increases.  Therein, Ridge capitalizes on increasing VC first and remains superior to the 

other alternative methods (PC and Equal) over the greatest range of VC.  As VC increases even more, PC 
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and Equal exceed the accuracy of Ridge.  This is also consistent with the results from previous studies 

mentioned. 

  To be specific, the question is predictive.  How well can the VC index predict the performance of an 

alternative to OLS that takes advantage of validity concentration?  As has been pointed out, visual 

inspection of curve fit would lead one to judge fit as excellent for all three alternative methods.  In 

addition, for both ρcv and MSEcv, indices of accuracy for a cubic fit on VC was used, and from that, a 

perfect R
2
=1.0 resulted for all three methods.  Thus the cubic model provides perfect prediction of both 

ρcv and MSEcv performance for all three alternatives to OLS.  As they capitalize on validity concentration 

to differing degrees, they differ in their coefficients (see Table 1).  
 

Table 1. Betas for Cubic Fit of Each Non-OLS Method (R
2
 = 1.0 for All Models) 

 Ridge  PC  Equal 

 ρCV MSECV  ρCV MSECV  ρCV MSECV 

VC  2.670 -2.470   2.207 -1.336  2.458 -1.772 

VC
2
 -2.485  2.055  -1.659 -0.130  -2.333  1.013 

VC
3
 0.733 -0.509  0.369  0.510  0.825 -0.221 

 

  VC appears to be a potentially useful index of validity concentration that may help in consideration of 

when one might employ such non-OLS prediction algorithms. More examination is, of course, needed. 

Included herein are population VC values; its sampling distribution is unknown.  As well, although 

performance of the formula with real data sets has been accomplished and seems promising, more data 

sets, with a wider distribution of relevant characteristics are sought, particularly from the GLMJ 

readership. 
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