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This article addresses two misconceptions that educational researchers have about partial and semi-partial 

correlations. To undo the two misconceptions, this article provides a detailed discussion of the two types 

of correlations under linear regression which includes multiple dummy indicator variables created for a 

categorical predictor. A numerical example is provided to demonstrate how the two correlations can be 

properly utilized to solve research questions in education: 1) Interpretation under the substantive problem 

and 2) assessment of relative importance of predictors in predicting the dependent variable (DV). The 

article concludes with a summary of findings and provides the SPSS code used so that interested readers 

may replicate the results. 

 artial and semi-partial correlations (a.k.a., part correlations) have had a long history of being used 

to address research questions in education (Ary, Jacobs, Sorensen, & Walker, 2013; Johnson, & 

Christensen, 2010; Ley, 1972; Pedhazur, & Schmelkin, 1991; Phelps, 1923; Sachar, 1980). Many 

research questions in education can be analyzed under these two correlations. For example, it may be that 

ACT scores can be used to predict college GPA because those test scores provide much of the same 

information given by another excellent predictor, high school GPA. Then, the question might be asked, 

“Do ACT scores still predict college GPA if we look only at students with the same high school GPA?” 

Stated differently, the question is, “What would the relationship between ACT scores and college GPA 

have been if each student had the same high school GPA?” To answer this question, we need the partial 

correlation coefficient between college GPA and ACT scores that adjusts for high school GPA. Here, 

high school GPA has been held constant and thus removed as a source of variation from both college 

GPA and ACT scores. In another case, we may ask a similar, but different question, “Given that a 

correlation exists between high school GPA and ACT scores, suppose that the ACT scores have been 

adjusted to remove the influence of high school performance. How well would the adjusted ACT scores 

then correlate with college GPA?” This second question would be investigated using the semi-partial 

correlation between college GPA and adjusted ACT scores, in which the effect of high school GPA has 

been partialled out from the ACT scores, but not from the DV (college GPA). 

  In a real sense, the use of partial and semi-partial correlations is a statistical substitute for 

experimental controls. That is, both correlation coefficients are statistical control techniques that are able 

to mathematically partial out the (linear) effects of some other extraneous variables on one or both 

correlation variables. In the statistical literature, phrases such as “partial out”, “control for”, “adjust for”, 

“hold constant”, “correct for the influence of”, and similar terms, are often used inter-changeably to refer 

to statistical control where control means the control of (removal of) variance. Statistical control serves to 

exert control over extraneous variables by applying the proper statistical or mathematical procedures, 

rather than through experimental procedures (Cohen, Cohen, West, & Aiken, 2003). This control is 

particularly important for analyzing observational data, and is different from experimental control for 

experimental data where the researcher manipulates the nature of the sample or environment so that it is 

identical across participants (Keppel, 1991). With extraneous variables statistically controlled, the 

impression of observed correlations between variables may substantially change. 

  In linear regression, it is often necessary to hold constant the effects of other predictors when 

examining the relationship between one predictor and the DV.  This is because predictors are related not 

only to the DV, but typically also to each other. The extent to which predictors are correlated with each 

other is an index of the overlap or redundancy of the information that they provide about the DV. In the 

college GPA example, one might just want to know how two predictor variables, high school GPA and 

ACT scores, predict the DV of college GPA after the redundant variance shared by the two predictors has 

been removed. This is more than an esoteric concern. Whenever test scores are used to make decisions 
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about screening, placement or selection, as a policy matter, it is important to know which scores should be 

more heavily weighted in the decisions. This can be achieved by removing the variance overlap or 

redundancy in predictors, as is the case with partial and semi-partial correlations for predictor variables 
 

Purpose of Study 

  Despite the long-standing usefulness of the two types of correlations in education, a review of the 

literature indicates that there are misconceptions about them among educational researchers. At least two 

misconceptions exist, one associated with the partial correlation and the other with the semi-partial 

correlation: 

1. Misconception 1: Partial correlations cannot be used for categorical variables. For example, 

Johnson and Christensen (2010, p. 358) argue that all variables used in partial correlation 

analysis must be quantitative rather than categorical. Price (n.d.) and Psychwiki. (n.d.) say 

that all variables (DV, predictor variable being correlated with the DV, and predictor 

variable(s) being controlled for) used in computing partial correlations have to be continuous. 

2. Misconception 2: Semi-partial correlations are semi- in the sense that only half of the other 

predictors are being controlled for. For example, Martella, Nelson, Morgan, and Marchand-

Martella (2013, p. 221) argue that the semi-partial correlation between the DV and a predictor 

can be calculated when either one of the two remaining predictors (but not both) is being 

controlled for. Oddly, the authors correctly describe the theoretical implication of the semi-

partial correlation elsewhere in the book, but they fail to translate that theoretical description 

into a solution to the concrete example. 

  The two misconceptions are very unfortunate. Whereas the opinion in misconception 1 may be just 

inaccurate or misleading, if not totally incorrect, that in misconception 2 is simply not true. Revision of 

misconception 1 would state that partial correlations can be used for categorical predictor variables as 

long as they are properly coded. Here, a categorical predictor could be either the variable that is being 

correlated with DV or the variable that is being controlled for. Revision of misconception 2 would state 

that semi-partial correlations serve to control for the effects of the remaining predictors on only the 

predictor being correlated with the DV (without removing their effects on the DV), instead of controlling 

for half of the remaining predictors. Next, this article works to undo these two misconceptions. 

  We conducted an extensive review of the literature on correlation, regression, and linear models, only 

to find very few authors discuss the two types of correlations for categorical predictors (Draper & Smith, 

1981; Edwards, 1976; Gelman & Hill, 2007; Hays, 1994; Kutner, Nachtsheim, Neter, & Li, 2005; Lewis-

Beck, 1980; Mendenhall & Sincich, 2003; Monahan, 2008; Montgomery, Peck, & Vining, 2001; Muller 

& Fetterman, 2002; Neter & Wasserman, 1974; Rao & Toutenburg, 1999; Searle, 1971; Seber & Lee, 

2003; Weisberg, 2005; Yan & Su, 2009), although many of them cover the correlations for quantitative 

variables. Cohen et al. (2003) and Field (2009) are two of the few books that provide a dedicated 

discussion on partial and semi-partial correlations for categorical predictors with the latter coverage being 

very limited. Therefore, this article builds upon the work of Cohen et al. 
 

Computation Procedures for Partial and Semi-Partial Correlations 
  We begin with a demonstration of the computation procedure of each correlation in a linear 

regression model where there are four predictors. So, each time a (partial/semi-partial) correlation is 

computed for a predictor (with the DV), the number of variables controlled for is three. Given three 

predictors to be partialled out, the partial and semi-partial correlations are both third-order. More 

generally, given a certain number of predictors, all but one must be controlled for when correlating one 

predictor with the DV. Because the order of a correlation coefficient equals the number of controlled 

variables, a fourth-order partial/semi-partial correlation is defined when we account for the effects of four 

predictors. Similarly, we can define higher/lower-order partial and semi-partial correlations. Accordingly, 

given no variables to control for, the correlation coefficient is called a zero-order correlation. Many times, 

we further square partial and semi-partial correlations to obtain coefficients of partial and semi-partial 

determination, which is much like squaring the coefficient of multiple correlation to obtain the coefficient 

of multiple determination (
2R  statistic). 

  A linear regression model containing four predictors is defined as follows: 

         
0 1 1 2 2 3 3 4 4 ,i i i i i iY X X X X                 (1) 
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where i = 1, 2, . . . n, and n is the sample size. In Equation 1, partial and semi-partial correlations can be 

calculated for any of the four predictors: X1, X2, X3, and X4. We take X1 as an example without losing 

generalizability. When computing the two correlations for X1, we account for the effects of X2, X3, and X4 

combined. As for the notation, we use 𝑟𝑌𝑋1.𝑋2𝑋3𝑋4
  to represent the partial correlation between Y and X1, 

and use 𝑟𝑌(𝑋1.𝑋2𝑋3𝑋4)  to represent the semi-partial correlation. In both cases, the dot notation in subscripts 

indicates what is being partialled from what: YX1.X2X3X4 means X2, X3, and X4 combined are partialled 

from both Y and X1, whereas Y(X1.X2X3X4) means X2, X3, and X4 combined are partialled from only X1. We 

use 𝑅𝑌.𝑋1𝑋2𝑋3𝑋4

2 to represent the coefficient of multiple determination (R
2
 statistic) when regressing Y on 

all four predictors. Finally, we use 𝑟𝑌𝑋1
 to indicate the zero-order correlation between Y and X1. 

  Next, we present the two types of correlations through partitioning of the total sum of squares of the 

DV into various sources, an extra sum of squares method designed to measure the marginal reduction in 

the error sum of squares when one or several predictor variables are added to the regression model, given 

certain predictor variables already in the model. These sum of squares statistics are typically available in 

regression outputs and are easy to understand. 
 

Partial Correlation between Y and X1  

  The partial correlation 𝑟𝑌𝑋1.𝑋2𝑋3𝑋4
 measures the correlation between X1 and Y when the linear effects 

of X2, X3, and X4 have been removed from both. We first present the formula for the coefficient of partial 

determination 𝑟𝑌𝑋1.𝑋2𝑋3𝑋4

2  before discussing the formula for partial correlation. According to Kutner et al. 

(2005) and Tamhane and Dunlop (2000), 𝑟𝑌𝑋1.𝑋2𝑋3𝑋4

2  is given by 
 

   𝑟𝑌𝑋1.𝑋2𝑋3𝑋4

2 =  
𝑆𝑆𝑅(𝑋1|𝑋2,𝑋3,𝑋4)

𝑆𝑆𝐸(𝑋2,𝑋3,𝑋4)
=

𝑆𝑆𝐸(𝑋2,𝑋3,𝑋4)−𝑆𝑆𝐸(𝑋1,𝑋2,𝑋3,𝑋4)

𝑆𝑆𝐸(𝑋2,𝑋3,𝑋4)
   ;   (2) 

 

where SSR(X1|X2,X3,X4) is the extra sum of squares statistic measuring the marginal reduction in the error 

sum of squares when X1 is added to the regression model that has already had X2, X3, and X4 in it, 

SSE(X1,X2,X3,X4) and SSE(X2,X3,X4) are, respectively, the error sum of squares from the regression of Y  

on all four predictors, and on just three of them: X2, X3, and X4. With 𝑟𝑌𝑋1.𝑋2𝑋3𝑋4

2  defined, the partial 

correlation 𝑟𝑌𝑋1.𝑋2𝑋3𝑋4
 is simply the square root of 𝑟𝑌𝑋1.𝑋2𝑋3𝑋4

2 , and it is given the same sign as that of the 

corresponding regression coefficient in the fitted regression model. 

  An interpretation of the coefficient of partial determination can be obtained from its definition in 

Equation 2. The numerator of the equation is the reduction in the error sum of squares when X1 is added 

to the regression model which already has X2, X3, and X4 in it. In other words, it represents the amount of 

variability in Y that X1 uniquely explains beyond the amount already explained by an optimally weighted 

linear combination of X2, X3, and X4. The denominator of the equation is the error sum of squares when 

the model contains only X2, X3, and X4. In other words, it represents the amount of variability in Y that an 

optimally weighted linear combination of X2, X3, and X4 fails to explain. So, the coefficient of partial 

determination for X1 as defined in Equation 2 represents the proportion of the remaining DV variability 

left unexplained by X2, X3, and X4 combined that is uniquely explained by X1. 

  Next, the coefficient of partial correlation can also be calculated from the perspective of effects 

removed. Here, removing the effects of a set of variables (say, X2, X3, and X4 combined) on another 

variable (say, X1) is equivalent to subtracting from X1 the values of X1 predicted  from an optimally 

weighted linear combination of X2, X3, and X4. That is, to remove the effects of X2, X3, and X4 on each of 

Y  and X1, we have to calculate the residuals from regressing separately each variable (Y and X1) on X2, 

X3, and X4 combined. Next, the zero-order Pearson correlation between the two sets of residuals equals the 

partial correlation between Y and X1 after adjusting for their linear relationships to X2, X3, and X4. As such, 

the coefficient of partial determination for X1 can also be calculated as the coefficient of (simple) 

determination from squaring the zero-order correlation between the two sets of residuals (Draper, & 

Smith, 1981; Hays, 1994; Kutner et al., 2005; Montgomery et al., 2001).  
 

Semi-Partial Correlation between Y and X1  

  The semi-partial correlation 𝑟𝑌(𝑋1.𝑋2𝑋3𝑋4) measures the correlation between X1 and Y when the linear 

effects of X2, X3, and X4 have been removed from only X1. After squaring the semi-partial correlation 

coefficient, we obtain 𝑟𝑌(𝑋1.𝑋2𝑋3𝑋4)
2  which measures the proportion of the total DV variability accounted 
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for by X1 beyond the proportion already explained by the other three predictors X2, X3, and X4 combined. 

Simply put, 𝑟𝑌(𝑋1.𝑋2𝑋3𝑋4)
2  equals the increase in the R

2
 statistic when X1 is added to a model that has 

already had X2, X3, and X4 in it.  Therefore, 𝑟𝑌(𝑋1.𝑋2𝑋3𝑋4)
2  represents the unique contribution of X1 to the 

coefficient of multiple determination in the context of X2, X3, and X4. So, according to Cohen et al. (2003), 

𝑟𝑌(𝑋1.𝑋2𝑋3𝑋4)
2   is given by 

 

     𝑟𝑌(𝑋1.𝑋2𝑋3𝑋4)
2 =  

𝑆𝑆𝑅(𝑋1|𝑋2,𝑋3,𝑋4)

𝑆𝑆𝑇𝑌
=

𝑆𝑆𝐸(𝑋2,𝑋3,𝑋4)−𝑆𝑆𝐸(𝑋1,𝑋2,𝑋3,𝑋4)

𝑆𝑆𝑇𝑌
   ;   (3) 

 

where SSTY is total sum of squares for the DV, and SSR(X1|X2,X3,X4), SSE(X1,X2,X3,X4), and SSE(X2,X3,X4) 

have been previously defined in Equation 2. Next, the semi-partial correlation 𝑟𝑌(𝑋1.𝑋2𝑋3𝑋4) is simply the 

square root of 𝑟𝑌(𝑋1.𝑋2𝑋3𝑋4)
2 , and it is given the same sign as that of the corresponding regression 

coefficient in the fitted regression model. 

  An interpretation of the coefficient of semi-partial determination can be obtained from its definition 

in Equation 3. The numerator of the equation is the reduction in the error sum of squares when X1 is 

added to the regression model which already has X2, X3, and X4 in it. In other words, it represents the 

amount of variability in Y that X1 uniquely explains beyond the amount already explained by an optimally 

weighted linear combination of X2, X3, and X4. The denominator of the equation is the total sum of squares 

of the DV; it represents the total amount of variability in Y. So, the coefficient of semi-partial 

determination for X1 as defined in Equation 3 represents the proportion of the total DV variability that is 

uniquely explained by X1. 

  Next, the coefficient of semi-partial correlation can also be calculated from the perspective of effects 

removed. To that end, we calculate the set of residuals from regressing X1 on X2, X3, and X4 combined. 

Then, the zero-order Pearson correlation between the DV (Y) and the calculated set of residuals equals the 

semi-partial correlation between Y and X1 after adjusting for the linear relationship of X1 to X2, X3, and X4 

combined. Next, the coefficient of semi-partial determination for X1 can be calculated as the coefficient of 

(simple) determination from squaring the zero-order correlation between Y and the set of residuals from 

the regression of X1 on X2, X3, and X4 combined. 
 

Given Categorical Predictor Variables Correlated with the DV 

  The definitions of partial and semi-partial correlations do not exclude categorical predictors, and the 

calculations involving one or more such variables are conducted in a similar way (Cohen et al., 2003; 

Field, 2009). Here, a categorical predictor variable could be one for which a partial/semi-partial 

correlation coefficient is being computed, and/or one whose effect is being adjusted for when calculating 

the two types of correlations for another predictor variable. Here, we primarily examine correlation 

coefficients computed for a categorical predictor, with a brief mention in the end of the case of a 

categorical predictor whose effect is controlled for. 

  A categorical predictor is typically numerically coded into contrast variables before it can be used in a 

regression model. One of the frequently used types of contrast variables is that of indicator variables or 

dummy variables. This dummy coding process uses one of the categories as the baseline of comparison 

(a.k.a., reference group/category where all dummy indicators assume the value of zero), and creates a 

dummy variable for each and every other category of the predictor. A dummy variable for a particular 

category is dichotomous which takes on only 1’s and 0’s, with 1 representing the category is present for 

the observation and 0 absent for the observation. For a categorical predictor with k  categories, we need 

to create (k-1) dummy variables to fully incorporate all categories of this predictor into a regression model 

that contains an intercept. Therefore, when examining the correlations between the DV and the 

categorical predictor, partial and semi-partial correlations are calculated for each of its dummy indicators. 

  For each dummy indicator, its partial correlation can be viewed as a representation of the 

corresponding unstandardized regression parameter estimate in a correlational rather than raw score 

metric (Cohen et al., 2003). Specifically, the partial correlation for a dummy predictor is an expression in 

correlational terms of the difference between the indicated group and the reference group in terms of the 

DV scores. By contrast, with the semi-partial correlation for a dummy indicator, it is usually its square 

that gets interpreted. The squared semi-partial correlation represents the reduction in the multiple 
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coefficient of determination (R
2
 statistic) when the category indicated by this particular dummy variable is 

collapsed or combined with the baseline category of comparison (a.k.a., removing the distinction between 

this category and the reference category to come up with a combined, new category). In other words, the 

squared semi-partial correlation for a dummy variable provides a measure, in terms of the proportion of 

total DV variability, of the importance of distinguishing the group indicated by the dummy variable from 

the reference group where all dummy variables assume the value of zero. 

  Given that X1 is one of the dichotomous dummy variables for a categorical predictor, Equation 2 can 

also be used to calculate its partial determination coefficient. When the categorical predictor has only two 

categories, X1 is the only dummy variable that is needed to fully describe the categorical predictor. 

Equation 2 can be used to obtain the coefficient of partial determination for X1 to adjust for X2, X3, and X4 

in the same manner as described above: Calculating the extra sum of squares statistic when X1 is added to 

a model that already has X2, X3, and X4 in it. Given that the categorical predictor has three categories, a 

second dummy variable X2 is created which is in addition to X1. In this case, to obtain the coefficient of 

partial determination for X1, the extra sum of squares statistic has to be calculated for X1 given the other 

dummy variable X2 and any other predictors already in the model. Then Equation 2 can be used to 

calculate the partial determination coefficient for X1. Next, the partial determination coefficient for X2 can 

be obtained in a similar manner. This method is easily generalizable to a categorical predictor with an 

even larger number of categories. As long as we obtain the extra sum of squares statistic for each and 

every dummy variable given all other dummy variables and any other predictors in the model, we can 

easily obtain the coefficient of partial determination for that dummy variable which adjusts for everything 

else (all other dummy variables that belong to the same categorical predictor, and any other predictors), 

hence obtaining the partial correlation coefficient after computing the square root of the partial 

determination coefficient and taking into account the sign of the corresponding regression parameter 

estimate. 

  Given that X1 is one of the dichotomous dummy variables for a categorical predictor, Equation 3 

functions to compute its semi-partial determination coefficient in a manner similar to the way Equation 2 

is used to compute its partial determination coefficient. As long as we are able to obtain the extra sum of 

squares statistic for that dummy variable given all other dummy variables (if any) and all other predictors 

(if any) in the model, we can easily obtain its coefficient of semi-partial determination which adjusts for 

everything else (any other dummy variables that belong to the same categorical predictor, and any other 

predictors), hence obtaining the semi-partial correlation coefficient after computing the square root of the 

semi-partial determination coefficient and taking into account the sign of the corresponding regression 

parameter estimate. 
 

A Numerical Example from Educational Research 

  An example provided next demonstrates the use of partial and semi-partial correlations for dummy 

variables to address research questions in education. The artificial data set contains 232 complete 

observations taken from 232 first year college freshmen. Each student is measured on four variables: one 

DV and three predictors. A description of the variables is found below: 
 

 Dependent variable: End-of-first-year college GPA 

 Predictor variables: 

 XPopulation - Population (ethnic) group each student belongs to: 1 for Asian, 2 for White, 3 for 

African American, and 4 for Others (Hispanics, American Indians, Alaskans, etc.) 

 X4 - Admission ACT score 

 X5 - High school GPA 
 

Out of the three predictors here, X4 (admission ACT score) and X5 (high school GPA) are treated as 

continuous and XPopulation (population group) is categorical. Next, we proceed to create dummy variables 

for XPopulation. Given four categories, we need three dummy variables to fully incorporate this categorical 

predictor into a regression model that contains an intercept. Here, we choose the Others category 

(XPopulation = 4 in the data set) as the reference level and create a dummy variable for each of the other 

three groups: 1) Dum1_Asian or X1 for Asian, 2) Dum2_White or X2 for White, and 3) Dum3_Africam or 

X3 for African American. Then, the regression model is built that relates the DV to three dummy variables 

(X1, X2, and X3) and two continuous predictors (X4 and X5). Finally, it should be noted that this example is 
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based on an artificial data set and is thus fictitious. Therefore, any resemblance to real research problems 

is purely coincidental. 

  To complete the (first) analysis, we use the REGRESSION command provided in SPSS 23. The 

command is run to fit two models. In model 1, students are analyzed in four groups (Asian, White, 

African American, and Others), whereas in model 2, the distinction between Asian and Others is 

eliminated (by removing Dum1_Asian from the model), which leads to three types of classifications 

(Others/Asian, White, and African American) with the new category of Others/Asian being the new 

reference level this time. That means, model 2 just uses two of the three dummy variables created above: 

1) Dum2_White, and 2) Dum3_Africam. Dum1_Asian is not part of this second model because it is this 

dummy indicator that distinguishes Asian students from students in the Others group, given the 

distinctions made in the other two dummy variables. In other words, model 1 contains three dummy 

variables all of which assume the value of zero for the Others category, whereas model 2 contains only 

two dummy variables both of which assume the value of zero for the new Others/Asian category. Finally, 

we have the program also compute standardized parameter estimates and zero-order correlations for all 

predictors in the two models. Together with partial and semi-partial correlations, these additional statistics 

typically serve to evaluate the relative importance (to be defined later in the article) of predictors. The 

summary matrix (correlations, means, etc.) of the original data and the SPSS code used for the (first) 

analysis are provided in the appendix. A summary of model fit and inferential statistics information is 

found in Table 1. 

  A review of Table 1 indicates that both models provide a reasonable fit to the data with the 

coefficients of multiple determination being about 30.0% and the ANOVA tables (omitted from here) 

supporting a linear regression relationship between the DV and each set of predictors. Next, we primarily 

examine model 1: Its partial and semi-partial correlation/determination coefficients, along with some 

other statistics, for the three dummy indicators from the categorical predictor. During the process, we take 

X1 as an example (𝑟𝑌𝑋1.𝑋2𝑋3𝑋4𝑋5

2 , etc.) and the conclusions generalize easily to other dummy predictors. 
 

Table 1. Model Information from the SPSS REGRESSION Command 

  

Unstandardized 

Coefficients 

Standardized  

Coefficients  
Correlations 

Model 

R
2
 

Predictors  B Std. Error Beta t Sig. 
Zero- 

Order 
Partial Semi-Partial 

1 

0.299 

(Constant) -0.626 0.491 
 

-1.275 0.204 
   

dum1_asian -1.160 0.474 -0.173 -2.449 0.015 -0.132 -0.161 -0.136 

dum2_white -0.189 0.300 -0.067 -0.629 0.530 0.148 -0.042 -0.035 

dum3_africam -0.501 0.348 -0.141 -1.439 0.151 -0.144 -0.095 -0.080 

e_act 0.039 0.016 0.154 2.382 0.018 0.357 0.157 0.133 

hs_gpa 0.767 0.115 0.422 6.656 0.000 0.501 0.405 0.371 

          

2 

0.281 

(Constant) -1.025 0.468 
 

-2.190 0.030 
   

dum2_white 0.263 0.239 0.093 1.099 0.273 0.148 0.073 0.062 

dum3_africam -0.059 0.301 -0.017 -0.194 0.846 -0.144 -0.013 -0.011 

e_act 0.034 0.017 0.134 2.077 0.039 0.357 0.137 0.117 

hs_gpa 0.787 0.116 0.432 6.771 0.000 0.501 0.410 0.381 

 

Partial Correlations for Dummy Indicators  

  As far as the partial correlation coefficient 𝑟𝑌𝑋1.𝑋2𝑋3𝑋4𝑋5
 = -0.161 is concerned, it measures the 

relationship between X1 and Y, after holding constant the effects on both of them from all other predictors. 

Given that X1 for Asian students is one of the dummy indicators created for a categorical predictor, 

holding constant the other dummy variables means that it is within a subset of the data where the other 

two dummy indicators (X2 and X3) remain invariant: Those cases that are neither White nor African 
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American students. This subset of data is further restricted to those cases with identical values on X4 and 

X5. Therefore, we are left with students who are either Asian or Others, and are identical on admission 

ACT score and high school GPA. From here, we investigate the distinction between these two groups of 

students (Asian versus Others). Specifically, 𝑟𝑌𝑋1.𝑋2𝑋3𝑋4𝑋5
 = -0.161   in the current example is the 

correlation between college GPA (DV) and Asian versus non-Asian (a.k.a., Others), holding constant 

White versus non-White, African American versus non-African American, and finally the continuous 

predictors X4 and X5. Then, 𝑟𝑌𝑋1.𝑋2𝑋3𝑋4𝑋5
 = -0.161   is an expression in correlational terms of the 

difference in college GPA (DV) between Asian students and students from the Others group, given the 

distinctions made in the other two dummy variables and given the two continuous predictors. 

  On the other hand, we can also square 𝑟𝑌𝑋1.𝑋2𝑋3𝑋4𝑋5
 and study the relationship from the perspective of 

the coefficient of partial determination using the extra sum of squares statistic. Given that 𝑟𝑌𝑋1.𝑋2𝑋3𝑋4𝑋5

2  = 

0.026, we conclude that, within those students who are neither White nor African American and are 

identical on admission ACT score and high school GPA, a new distinction made between Asian students 

and other students (Others) is estimated to help the model explain about 2 6. %  of the remaining 

variability in the DV left unexplained by X4 and X5 and the classification of students into only three 

groups: White, African American, and Others/Asian. In other words, given that we continue to keep in the 

model the distinction between White and non-White, the distinction between African American and non-

African American, admission ACT score, and high school GPA, the removal of the distinction between 

Asian and other students (Others), which results in a new reference category of Others/Asian, would lead 

to an increase (in unexplained DV variability) of  2.669% = 100[0.026/(1-0.026)] of the amount of 

remaining DV variability left unexplained by a combination of the original categorical predictor with four 

groups of students and X4 and X5. 
 

Semi-Partial Correlations for Dummy Indicators  

  As far as the semi-partial correlation coefficient 𝑟𝑌(𝑋1.𝑋2𝑋3𝑋4𝑋5) = -0.136 is concerned, it measures the 

relationship between X1 and Y, after holding constant the effects on only X1 from all other predictors.  

Because its square or the coefficient of semi-partial determination is closely related to the commonly used 
2R  statistic, we choose to discuss the 𝑟𝑌(𝑋1.𝑋2𝑋3𝑋4𝑋5)

2  statistic here which is more intuitive to understand. 

In this scenario, 𝑟𝑌(𝑋1.𝑋2𝑋3𝑋4𝑋5)
2 = 𝑅𝑌.𝑋1𝑋2𝑋3𝑋4𝑋5

2  - 𝑅𝑌.𝑋2𝑋3𝑋4𝑋5

2 , and the absence of X1 in the subscript of 

𝑅𝑌.𝑋2𝑋3𝑋4𝑋5

2  means collapsing (a.k.a., combining) the Asian students group with the Others group (the 

baseline of comparison in model 1), which leads to model 2 where the new category of Others/Asian is 

the new baseline level. Clearly, 𝑟𝑌(𝑋1.𝑋2𝑋3𝑋4𝑋5)
2  serves as a numeric measure of the importance of 

distinguishing Asian students from students in the Others group in terms of the proportion of the total 

variability in the DV, after adjusting for the distinction between White and non-White, the distinction 

between African American and non-African American, and the effects of any other predictors. 

  Given that 𝑟𝑌(𝑋1.𝑋2𝑋3𝑋4𝑋5)
2  =1.85%, we conclude that, within those students who are neither White nor 

African American and are identical on admission ACT score and high school GPA, a new distinction 

made between Asian and other students is estimated to help the model explain additional 1 85. %  of the 

total variability of the DV beyond the proportion already explained by X4 and X5 and the classification of 

students into only three groups: White, African American, and Others/Asian. Stated differently, if we stop 

making the distinction between Asian students and students in the Others group (as in model 2), the 

predictive power of our model would drop by an amount that is about 1 85. %  = [𝑅𝑌.𝑋1𝑋2𝑋3𝑋4𝑋5

2  - 

𝑅𝑌.𝑋2𝑋3𝑋4𝑋5

2 ] of the total DV variability, given that we continue to keep in the model the distinction 

between White and non-White, the distinction between African American and non-African American, 

admission ACT score, and high school GPA. Equivalently, the model estimates that the distinction 

between Asian students and students in the Others group explains about 1 85. %  of the total DV 

variability. 

  With 𝑟𝑌𝑋1.𝑋2𝑋3𝑋4𝑋5
 and 𝑟𝑌(𝑋1.𝑋2𝑋3𝑋4𝑋5) explained, correlations for the other two dummy variables can 

be interpreted in a similar manner. Each time we work on a dummy variable, we need to keep constant the 

distinctions made in all other dummy variables and also keep constant all other predictors, if any. 



Yang et al. 

 

8                                                                                                        General Linear Model Journal, 2017, Vol. 43(1) 

Partial and Semi-Partial Correlations for Other Predictors 

 So far, we have examined partial and semi-partial correlations for dummy indicators created for a 

categorical predictor. For completeness, we next briefly interpret the two types of correlations for the 

other predictors when the categorical predictor is statistically controlled. We examine the correlations for 

X4, admission ACT score: 1) Partial correlation 𝑟𝑌𝑋4.𝑋1𝑋2𝑋3𝑋5
 = 0.157, 2) semi-partial correlation 

𝑟𝑌(𝑋4.𝑋1𝑋2𝑋3𝑋5) = 0.133, and 3) zero-order correlation 𝑟𝑌𝑋4
 = 0.357. 

 After squaring 𝑟𝑌𝑋4.𝑋1𝑋2𝑋3𝑋5
 and 𝑟𝑌(𝑋4.𝑋1𝑋2𝑋3𝑋5), we obtain 𝑟𝑌𝑋4.𝑋1𝑋2𝑋3𝑋5

2  = 0.025 and 𝑟𝑌(𝑋4.𝑋1𝑋2𝑋3𝑋5)
2  = 

0.018. We see that X4 uniquely explains about 1.8% of the total DV variability based on the coefficient of 

semi-partial determination, but 2.5% of the remaining DV variability not already explained by all other 

predictors according to the coefficient of partial determination. 

 Suppose that we are interested in the correlation between the DV (college GPA) and X4 (admission 

ACT score). On the face of it, a moderate correlation (0.357) seems to exist between these two variables. 

However, X4 is also moderately correlated (0.470) with X5 (high school GPA), and weakly correlated 

(from 0.049 to 0.171 in absolute value) with the three dummy variables for the categorical predictor 

XPopulation. A research question might be, then “What would the relationship between the DV (college 

GPA) and X4 (admission ACT score) have been if we examined only those students from one of the four 

ethnic groups who also had identical high school GPA?” Clearly, this question can be answered by the 

partial correlation between the DV and X4 when controlling for all other predictors in the model. The 

correlation between college GPA and admission ACT score is reduced noticeably, from 𝑟𝑌𝑋4
 = 0.357 to 

𝑟𝑌𝑋4.𝑋1𝑋2𝑋3𝑋5
 = 0.157. On the other hand, a second research question might be, “What would the 

relationship between the DV (college GPA) and X4 (admission ACT score) have been if we adjusted only 

admission ACT score for high school GPA and the four ethnic groups, a.k.a., if we removed high school 

GPA and ethnic group as two sources of variation from admission ACT score, but not from college 

GPA?” Clearly, this second question can be answered by the semi-partial correlation between the DV and 

X4. This time, the correlation between college GPA and admission ACT score is also reduced noticeably, 

from 𝑟𝑌𝑋4
 = 0.357 to 𝑟𝑌(𝑋4.𝑋1𝑋2𝑋3𝑋5) = 0.133. 

  It is believed that this noticeable reduction in the value of the correlation between the DV and X4, 

after removing the effects of a linear combination of X5 and XPopulation from one (X4) or both variables, is 

more related to the statistical control of X5 (with which X4 is moderately correlated at .470) than to that of 

XPopulation (with which X4 is weakly correlated, from .049 to .171 in absolute value). To find supportive 

evidence for this, we run a second analysis where another model (model 3a) is estimated which contains 

everything that model 1 has with the exception of X5 (high school GPA). This time, when computing the 

partial and semi-partial correlations between the DV and X4, we statistically control only XPopulation but 

without adjusting for X5. This time, there is hardly any reduction in the correlation between the DV and 

X4: 𝑟𝑌𝑋4
 = 0.357, 𝑟𝑌𝑋4.𝑋1𝑋2𝑋3

 = 0.355, and 𝑟𝑌(𝑋4.𝑋1𝑋2𝑋3) = 0.348, which are almost identical. By contrast, if 

we choose to statistically control X5 without adjusting for XPopulation (model 3b), the noticeable reduction in 

the value of the correlation between the DV and X4 is once again observed: 𝑟𝑌𝑋4
 = 0.357, , 𝑟𝑌𝑋4.𝑋5

 = 

0.158, and 𝑟𝑌(𝑋4.𝑋5) = 0.137. Finally, similar patterns of change are observed when correlating X5 with the 

DV. To see the effect of statistically controlling only XPopulation on the correlation calculated for X5 (but 

without adjusting for X4), we run a third analysis where another model (model 4a) is estimated which 

contains everything that model 1 has with the exception of X4 (admission ACT score). The observation is 

that the statistical control of only XPopulation hardly has any effect on the correlation between the DV and 

X5: 𝑟𝑌𝑋5
 = 0.501, 𝑟𝑌𝑋5.𝑋1𝑋2𝑋3

 = 0.301, and 𝑟𝑌(𝑋5.𝑋1𝑋2𝑋3) = 0.491, which are almost identical. By contrast, if 

we choose to statistically control X4 but without adjusting for XPopulation (model 4b), the noticeable 

reduction in the value of the correlation between the DV and X5 is once again observed: 𝑟𝑌𝑋5
 = 0.501, , 

𝑟𝑌𝑋5.𝑋4
 = 0.405, and 𝑟𝑌(𝑋5.𝑋4) = 0.378. The SPSS code for these two additional analyses (models 3a 

through 4b) is also provided in the appendix. 
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Evaluating Relative Importance of Predictors  

  Another important topic in educational research is that of assessing relative importance of predictors. 

Most of the time, measuring relative importance refers to an explicit quantification of the relative 

contributions of individual predictors to the model’s total explanatory power, and it revolves around the 

determination of a rank ordering of the predictors based on a criterion of choice. (Azen & Budescu, 2003; 

Azen & Traxel, 2009; Budescu, 1993; Courville & Thompson, 2001; Darlington, 1968; Luo & Azen, 

2013; Nathans, Oswald, & Nimon, 2012; Pedhazur, 1997; Thompson, 1997; Thompson & Borrello, 

1985). However, there is no universally accepted definition of how to quantify predictor importance, and 

various methods have been suggested in the literature (Achen, 1982; Bring, 1994; Kruskal & Majors, 

1989). These proposed methods are in the form of statistics or procedures measuring predictor 

contributions from various perspectives. Also, in the literature, there exist multiple ways of labeling these 

perspectives, leading to different ways of categorizing or grouping these predictor importance methods. 

  Following Budescu (1993) and Azen and Budescu (2003), among such methods are slope-based 

measures (standardized regression coefficients, etc.) and correlation-based variance decomposition 

measures (squared partial and semi-partial correlations, etc.). But, the list does not stop there. There are 

many variable importance methods which do not fall into the two categories described above. They 

include the relatively simple Pratt index which combines regression coefficients and correlations between 

predictors and the DV (Liu, Zumbo, & Wu, 2014; Pratt, 1987; Thomas, Hughes, & Zumbo, 1998; Zumbo, 

2007) and several other mathematically challenging procedures which measure importance using effects 

averaged across all possible importance ordering sequences (Theil, 1987; Theil, & Chung, 1988). Among 

methods of measuring predictor importance, dominance analysis (DA) is probably one of the most 

respected these days which have been widely investigated and implemented (Azen, & Budescu, 2003; 

Azen, & Budescu, 2006; Azen, & Traxel, 2009; Budescu, 1993; Budescu, & Azen, 2004; Luo, & Azen, 

2013). From a different perspective, according to Johnson and LeBreton (2004), some importance 

measures are single-analysis methods because they use the output from a single regression analysis: 

Squared partial and semi-partial correlations, Pratt index, etc. By contrast, others are multiple-analysis 

methods in that they combine the results from more than one regression analysis involving different 

combinations of the same variables: DA, methods based on averaging over orderings, etc. To sum up, the 

literature on predictor importance is extensive and a thorough discussion is beyond the scope of this 

article. Interested readers should refer to review articles and annotated bibliographies like Firth (1998), 

Gromping (2007), Johnson and LeBreton (2004) to begin with. 

  Despite the richness of relative importance methods, almost all of them are inadequate in one way or 

another. It is thus important for applied researchers to be aware of limitations associated with these 

methods in order to make the right choice of which measures to use in a particular research project. 

Simple single analysis methods measuring marginal contributions of individual predictors (e.g., 

standardized regression coefficients and semi-partial correlations) and those that do not involve marginal 

contributions (e.g., structure coefficients and zero-order correlations) may not agree with each other and 

thus paint conflicting pictures of predictor importance (an example is to be provided next). This happens 

even more frequently given strong collinearity among predictors and/or suppressor variables (Budescu, 

1993; Cramer, 1974; Tzelgov & Henik, 1991). On the other hand, most multi-analysis methods based on 

averaging over all ordering of predictors are computationally challenging, their justifications have 

originally been quite ad hoc and their properties are not yet well understood (Johnson & LeBreton, 2004). 

At this point, dominance analysis is generally considered to be one of the most successful methods in the 

literature, but the procedure also suffers from computational complexity, making it difficult to implement. 

Again, the limitations of various importance measures are extensive and need multiple dedicated studies 

to cover. Here, we refer the readers to Johnson and LeBreton in which a concise discussion is provided of 

limitations of a full range of predictor importance statistics and procedures. 

  Back to partial and semi-partial correlations, they have an important role to play in assessing 

predictor importance (Azen & Budescu, 2003). Kruskal (1987) advocates squared partial correlations 

represent importance of predictors whereas Lindeman, Merenda, and Gold (1980) propose a similar 

procedure based on the squared semi-partial correlations. In addition, a variant of measuring importance 

through partial correlations is known as commonality analysis (Mood, 1969, 1971; Newton & Spurrell, 

1967a, 1967b). Finally, in Budescu’s (1993) dominance analysis, the contribution to prediction is defined 

as the squared semi-partial correlation. 



Yang et al. 

 

10                                                                                                        General Linear Model Journal, 2017, Vol. 43(1) 

  In regression, together with partial and semi-partial correlations, several other importance statistics 

are commonly used simply because they are typically made available in standard regression computer 

programs: 1) Standardized regression coefficients, 2) statistical significance tests for regression 

parameters, and 3) zero-order correlation between the DV and each predictor (This correlation is 

mathematically equivalent to the structure coefficient for the predictor in assessing relative importance of 

predictors, although they are different in value (Courville & Thompson, 2001; Pedhazur, 1997; 

Thompson & Borrello, 1985)). In addition, there are also statistics software programs  which focus on 

evaluating predictor importance and thus have many of the newer methods built-in: Gromping (2006) and 

Nimon, Oswald, and Roberts (2013). 

  As is well known, when predictors are uncorrelated with each other, many different measures of 

relative importance are equivalent in the sense of leading to the same rank ordering of predictors 

(Gromping, 2007). Unfortunately, this simple picture does not apply to multiple dummy variables from a 

single categorical predictor with three or more categories. These dummy variables are always correlated 

to some extent because they are never independent of each other (Cohen et al., 2003). So, when 

evaluating relative importance of dummy indicators, we have to take into account the extent to which they 

overlap. Therefore, statistics that are able to measure marginal contributions of individual predictors can 

be used with dummy predictors: Partial and semi-partial correlations, standardized regression coefficients, 

observed level of significance (p-value) from partial t-tests on regression parameters, etc. Next, we 

examine the relative importance of dummy indicators for the categorical predictor 
PopulationX  using the 

above partial statistics that are able to partial out the effects from other aspects of the model on the DV 

and measure marginal contributions of each individual predictor. We also compare the results with those 

from using zero-order correlations which do not have the partial-out capability. 

From Table 1, the results on the rank ordering of predictors are mixed, and depend on if the criterion is 

one of the partial statistics or the zero-order correlation. With the exception of 
5X  which all five criteria 

agree contributes most to the prediction of the DV, the results of ranking of relative importance of the 

three dummy indicators are in two different groups: 
 

1. Group one: Dum1_Asian > Dum3_AfricanAmerican > Dum2_White, as suggested by 

standardized coefficients, values of observed level of significance (p-value), partial and semi-

partial correlations 

2. Group two: Dum2_White > Dum3_AfricanAmerican > Dum1_Asian, as suggested by zero-

order correlations 
 

  Among the five criteria used here, four of them are compared in terms of their absolute values and are 

in higher-is-better (more important) format, whereas only the p-values are evaluated without taking the 

absolute value and they are in lower-is-better (more important) format. That said, we should note that the 

zero-order correlation statistic utilized in group two may be inappropriate to use because this particular 

statistic is unable to factor in the overlap between the three dummy indicators that belong to the same 

categorical predictor. The failure to do so may lead to erroneous conclusions because zero-order 

correlations and partial/semi-partial correlations may give us very different pictures of the inter-

relationships among those variables (Cohen et al., 2003; Hays, 1994; IBM SPSS, 2012). Therefore, it is 

the group one results that we primarily count on during the evaluation process because they are more 

statistically reasonable. We also recommend that the results be further assessed under some other well-

supported methods from the literature: dominance analysis, etc. 

  In group one, all four partial criteria used are consistent with each other in terms of the relative 

importance of dummy indicators. First, the distinction between Asian students and students in the Others 

group contributes the most to the prediction of college GPA under the existing way of classifying students 

(Asian, White, African American, and Others), after holding constant the effects of admission ACT score 

and high school GPA. In other words, when examining students who are identical on admission ACT 

score and high school GPA, the model estimates that Asian students are significantly lower than students 

in the Others group in terms of college GPA. Second, the extent is less between African American 

students and students in the Others group, although the pattern is similar. Given identical admission ACT 

score and high school GPA, African American students are not as effective as students in the Others 



Partial and Semi-Partial Correlations for Categorical Variables 

General Linear Model Journal, 2017, Vol. 43(1)                                                                                                        11 

group in earning high college GPA. As for White students, there is some evidence that they tend to be 

lower on college GPA than students in the Others group, but the evidence is marginal at best. 

Additionally, we note that Dum2_White has the least significant p-value (0.530) among all three dummy 

variables, but its zero-order correlation in group two indicates the strongest correlation (0.148) with the 

DV. So, although the p-value indicates that Dum2_White is the least useful dummy indicator out of the 

three, its zero-order correlation with the DV suggests just the opposite. To interpret this conflicting 

scenario, we also examine its partial (-0.042) and semi-partial (-0.035) correlations, each one being the 

weakest among the three dummy variables. Clearly, partial and semi-partial correlations agree with the p-

value in terms of the relative importance of this dummy indicator. This may not be surprising because 

partial statistics are able to measure the marginal contribution of the individual predictor to the model 

after adjusting for the effects of all other predictors, whereas the zero-order correlation does not have such 

a capability. Also, this case with Dum2_White is a typical demonstration of how converting a zero-order 

Pearson correlation to a partial/semi-partial correlation may change our impression of observed 

relationship between variables (Hays, 1994; IBM SPSS, 2012). Given that the zero-order correlation 

between Dum2_White and the DV is .148, we say that the correlation between college GPA and a 

variable that distinguishes White students from non-White students may be small at about 0.148. But, 

when we remove from all non-White students those who are either Asian or African American students 

(by factoring in the other two dummy indicators), the observed correlation between Dum2_White and the 

DV almost completely diminishes, suggesting that there is hardly any difference between White students 

and students in the Others group in terms of college GPA. 

 

Conclusion 

  This article discusses partial and semi-partial correlations for a categorical predictor in linear 

regression to undo two misconceptions about these correlations. To address misconception 1, the article 

demonstrates the concept of partial correlation is applicable to a categorical predictor variable given that 

the predictor is properly coded into one or more dummy variables. For each dummy variable, its partial 

correlation represents the corresponding unstandardized regression parameter estimate in a correlational 

rather than raw score metric. The partial correlation serves as an expression in correlational terms of the 

difference between the indicated group and the reference group in terms of the DV scores. To address 

misconception 2, the article interprets the squared semi-partial correlation for a dummy variable as 

representing the reduction in the multiple coefficient of determination (R
2
 statistic) when the category 

indicated by this variable is collapsed or combined with the baseline category of comparison. Stated 

differently, the squared semi-partial correlation serves as a measure, in terms of the proportion of total 

DV variability, of the importance of distinguishing the group indicated by this variable from the baseline 

level. Finally, this article examines the two correlations under one of their major areas of application: 

Evaluating predictor importance. Conceptually, it is generally agreed that measuring predictor importance 

involves quantification of the relative contributions of individual predictors to the model’s total 

explanatory power. In practice, there exist many different ways of quantifying the contributions of an 

individual predictor and grouping those relative importance methods. The article briefly mentions many 

such methods, alludes to their inadequacies, and offers many recommended readings and resources that 

interested readers can consult about understanding and implementing these methods. The article 

emphasizes that methods able to partial out effects of other predictors when assessing predictor 

importance often disagree with those that do not have the capability, thus creating a conflicting picture of 

relative importance of predictors. In the numerical example, the article demonstrates a case of this 

discrepancy. Although this article favors results from methods with the partial-out capability, it is 

recommended to subject the results to further analysis under dominance analysis and other well-supported 

methods from the literature. 
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APPENDIX 
 

Data Summary Matrix and SPSS Code 
 

 

 

matrix data variables=rowtype_ cum_gpa dum1_asian dum2_white 

dum3_africanamerican e_act     hs_gpa. 

begin data 

n           232        232          232        232      232        232 

corr       1.0000      

corr      -0.1323    1.0000     

corr       0.1482   -0.3710    1.0000    

corr      -0.1443   -0.0443   -0.7467   1.0000   

corr       0.3565    0.0486    0.1707  -0.1733   1.0000  

corr       0.5012    0.0055    0.0452  -0.0804   0.4699    1.0000 

mean        2.6964      0.0216    0.8621   0.0819  24.1552    3.3923 

stddev      0.9743    0.1455    0.3456   0.2748   3.8130    0.5354 

end data. 

 

*Analysis 1. 

*Model 1: All predictors and all four ethnic groups included. 

*Model 2: 3 population groups - Others/Asian, White, and African American 

after collapsing the categories of Others and Asian. 

regression matrix in (*) 

   /missing listwise 

   /statistics coeff outs r anova zpp 

   /noorigin 

   /dependent cum_gpa 

   /method=enter dum1_asian dum2_white dum3_africanamerican e_act hs_gpa 

   /method=remove dum1_asian. 
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*Analysis 2. 

*Model 1: All predictors and all four ethnic groups included. 

*Model 3a: High school GPA is no longer controlled, but ethnic group is 

controlled. 

*Model 1: All predictors and all four ethnic groups included. 

*Model 3b: Ethnic group is no longer controlled, but high school GPA is 

controlled. 

regression matrix in (*) 

   /missing listwise 

   /statistics coeff outs r anova zpp 

   /noorigin 

   /dependent cum_gpa 

   /method=enter dum1_asian dum2_white dum3_africanamerican e_act hs_gpa 

   /method=remove hs_gpa 

   /method=enter hs_gpa 

   /method=remove dum1_asian dum2_white dum3_africanamerican. 

 

*Analysis 3. 

*Model 1: All predictors and all four ethnic groups included. 

*Model 4a: Admission ACT score is no longer controlled, but ethnic group is 

controlled. 

*Model 1: All predictors and all four ethnic groups included. 

*Model 4b: Ethnic group is no longer controlled, but admission ACT score is 

controlled. 

regression matrix in (*) 

   /missing listwise 

   /statistics coeff outs r anova zpp 

   /noorigin 

   /dependent cum_gpa 

   /method=enter dum1_asian dum2_white dum3_africanamerican e_act hs_gpa 

   /method=remove e_act 

   /method=enter e_act 

   /method=remove dum1_asian dum2_white dum3_africanamerican. 


