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A primary goal in regression is to choose the simplest model that provides the best fit to the observed data 

(Thompson, 2006; West, Welch, & Galecki, 2014). In ordinary least squares regression, this may be a 

simple process of examining the relationship between the number of predictors and the resulting Multiple 

R2 or Adjusted R2 (Thompson, 2006). However, in multilevel modeling, the model selection process is more 

complicated.  Not only must researchers consider which variables to include in the model, they must also 

determine whether level-1 variables should be modeled as random effects (West et al., 2104).  The purpose 

of this paper is to present a software-based model-selection diagnostic tool that supports two-level models 

with a single grouping factor. 

  ultilevel modeling (MLM) supports data that are measured in clusters or at multiple levels of a 

hierarchy.  A typical MLM dataset includes some level-1 units (e.g., students or measurement 

occasions) nested inside level-2 units (e.g., schools or years).  Although three-, four- and even 

five-level structures are plausible, multilevel models are typically easier to interpret when they are limited 

to two levels. 
  Because hierarchical linear modeling (HLM) is a generalization of ordinary least squares (OLS) 

(Newman, Newman, & Salzman, 2010, p. 1), one might expect that researchers apply similar techniques to 

analyze clustered data as are available for non-clustered data.  However, gaps in knowledge, tools, and 

analytic strategies prohibit such application.  For example, in OLS regression, much literature and software 

exists to help researchers report the appropriate effect size for an OLS regression model (e.g., Nimon, 

Oswald, & Roberts, 2013; Yin & Fan, 2001) and interpret results in the face of multicollinearity including 

commonality and dominance analysis (e.g., Courville & Thompson, 2001; Nimon, Lewis, Kane & Hayes, 

2008; Nimon & Oswald, 2013).  However, effect sizes for multilevel models are still in development 

(LaHuis, Hartman, Hakoyama, & Clark, 2014; Luo & Azen, 2013) and few studies have examined the 

consequences of multicollinearity on the context of multilevel models (Shieh & Fouladi, 2003).  Further, 

current techniques that consider “predictor importance” in multilevel models (i.e., dominance analysis, 

Pratt’s index) are only applicable to random intercept regression models (Liu, Zumbo, Wu, 2014; Luo & 

Azen). Similarly, although software is available to help researchers identify parsimonious OLS regression 

models by considering all-possible-subsets (e.g., Lumley, 2017), it appears that such software has yet to be 

made available to support multilevel models.  The purpose of this paper is to make such software available 

and to demonstrate its use. 

  Thompson (2006) noted “in predictive applications, the researcher may seek a parsimonious (smaller) 

set of predictors that may still yield an acceptable R2” (p. 277). In OLS, this is a straightforward process of 

computing the R2 for every combination of predictors. For example, researchers can plot the resulting R2s 

from an all-possible-subsets regression by the number of predictors to inform the researcher’s judgment as 

to the number of predictors to retain. Such analyses is aided by the fact that R2 increases each time a 

predictor is added to a model. However, the property of monotonicity for R2 analogues in multilevel models 

is limited to models with random intercepts as the “problems raised by a random slope model are still not 

yet solved” (Liu et al., 2014, p. 7).   

  Researchers wanting to compare multi-level models from an all-possible-subsets analysis may therefore 

consider the deviance (-2 log-likelihood) as measure of model fit as a lower deviance always implies better 

fit. The disadvantage of the deviance is that a model fit to the same data with more parameters will always 

have better fit (i.e., smaller deviance) (Luke, 2004). While smaller deviance is good in that researchers 

generally want to maximize the fit of the model to the data, researchers also often desire parsimonious 

models – those that are able to explain the data with as few parameters as possible. Therefore, researchers 

may also consider the Akaike Information Criterion ( AIC. Akaike, 1973) and/or Bayesian Information 

Criterion (BIC, Schwarz, 1978)  when making model comparisons. Both AIC and BIC are based on the 

deviance where smaller is better but incorporate different penalties for the number of model parameters 

estimated. The AIC penalizes the fit of a model by adding twice the number of parameters being estimated 
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to the deviance while the BIC applies a greater penalty by adding the product of the number of parameters 

estimated by the natural logarithm of the number of observations in the model (West, Welch, & Galecki, 

2014).  However, by their nature, AIC and BIC are not monotonic. 
 

 

apsl2lme and plot.apsl2lme 

  In order to facilitate data analysis and accessibility, the statistical package R was used. R is a free 

statistical programming language and environment for the Unix, Windows and Mac families of operating 

systems (R Core Team, 2019). Two new functions, apsl2lme and plot.apsl2lme were written in R 

to perform the multilevel equivalent of an all-possible -subsets analysis.  
 

 

apsl2lme 

  The function apsl2lme receives output from the lme function and conducts a series of multilevel 

analyses using the variables identified in the lme output. For more information on the use of the lme 

function, readers are encouraged to consult Crawley (2013).  The apsl2lme function identifies all 

possible combinations of fixed effects and all possible combinations of random effects for each fixed effect 

permutation.  Note that the apsl2lme function considers all possible random effects even if they are not 

identified in the original function.  In this way, the function serves as a tool for model building that supports 

the "top-down strategy" and "step-up strategy" presented by West et al. (2014).  For each model derived, 

the apsl2lme function calls the lme function and captures the resulting model summary statistics. 

However, before executing these permutations, the function eliminates any missing data so that meaningful 

comparisons can be made between fit indices. The apsl2lme function also summarizes model metrics 

and fit indices and captures model formulas that do not converge.  All models are identified by a unique 

identifier (i.e., model ID) for subsequent analysis.   
 

 

plot.apsl2lme 

 The function plot.apsl2lme receives output from the apsl2lme object and plots model IDs, 

depicting differences in fit indices and variance components by degrees of freedom.  Three plots are 

produced depicting relationships between fit indices (specifically -2LL, AIC and BIC) and degrees of 

freedom. Two plots are produced depicting relationships between variance components and degrees of 

freedom.  The plots only include the variance components for the intercept 

(𝜎𝑢0𝑗
2 ) and the residual variance (𝜎𝑒𝑖𝑗

2 ) since additional variance components for random effects only 

represent a subset of all models tested. 

 

Calling Sequence 

  As depicted in the Appendix, the typical usage sequence involves: (a) loading the nlme library 

(Pinheiro, Bates, DebRoy, Sarkar, & R Core Team, 2018), graphics library (R Core Team, 2018), and 

the foreign library (R Core Team, 2017), (b) calling the lme function with a well-specified model, (c) 

calling the apsl2lme function with the output of the lme function, and (d) calling the 

plot.apsl2lme function with the output of the apsl2lme function.   

To illustrate the usage, we replicated the analysis reported in Kreft and de Leeuw (1998) where a two-level 

model was built to analyze math achievement scores from a subset of scores from the NELS-88 dataset 

(available at https://stats.idre.ucla.edu/wp-content/uploads/2016/02/imm23-1.sav).  Identified as Model 6 

(Equation 1), school-level variables 'public' and student-level variables 'homework' and 'white' were used 

to model variance in math achievement scores.  The student-level variables were also modeled as random 

effects.  The complete model tested was then: 
 

𝑚𝑎𝑡ℎ𝑖𝑗 = 𝛾00 + (𝛾10 + 𝑢1𝑗)ℎ𝑜𝑚𝑒𝑤𝑜𝑟𝑘𝑖𝑗 + (𝛾20 + 𝑢2𝑗)𝑤ℎ𝑖𝑡𝑒𝑖𝑗 + 𝛾10𝑝𝑢𝑏𝑙𝑖𝑐𝑗 + 𝑢0𝑗 + 𝑒𝑖𝑗 (1) 

  After loading the necessary libraries and software and reading in the dataset (see Appendix, lines 3 – 

12), Equation 1 was specified using the function lme (see Appendix, lines 14 – 15). The results of the call 

to lme was saved to an object named lme.out which is presented in Figure 1. 
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(lme.out<-lme(data=Dataset,math~homework+white+public,random= 

~white+homework| schid,method='ML')) 
 

Linear mixed-effects model fit by maximum likelihood 

 Data: dt  

       AIC      BIC    logLik 

  3640.854 3687.625 -1809.427 
 

Random effects: 

 Formula: ~homework + white | schid 

 Structure: General positive-definite, Log-Cholesky parametrization 

            StdDev   Corr          

(Intercept) 8.025397 (Intr) homwrk 

homework    3.960801 -0.849        

white       4.902999 -0.513  0.142 

Residual    7.152161               

 

Fixed effects: list(formfix)  

               Value Std.Error  DF   t-value p-value 

(Intercept) 48.17410  2.271634 494 21.206802  0.0000 

homework     1.94666  0.880458 494  2.210968  0.0275 

white        2.67606  1.507105 494  1.775630  0.0764 

public      -4.93191  1.582288  21 -3.116947  0.0052 

 Correlation:  

         (Intr) homwrk white  

homework -0.663               

white    -0.537  0.083        

public   -0.478  0.011  0.006 

 

Standardized Within-Group Residuals: 

       Min         Q1        Med         Q3        Max  

-2.3131498 -0.6867736 -0.0041486  0.7068647  2.7363296  

 

Number of Observations: 519 

Number of Groups: 23  

 

            numDF denDF  F-value p-value 

(Intercept)     1   494 4518.088  <.0001 

homework        1   494    4.424  0.0359 

white           1   494    3.225  0.0732 

public          1    21    9.715  0.0052 
 

Figure 1. Original model (Model 18). 
 

Results 

  Processing the results of the object returned from lme, the apsl2lme function derives all possible 

models and returns an object with the following components: 

• ModelComparison - This component presents the following information for each model 

analyzed: fixed effects formula, random effects formula, degrees of freedom, deviance, AIC, BIC, 
residual error variance, variance of intercept, and variance of each level 1 variable. For models where 
variance in the slope of level 1 variables are not modeled, the table indicates NA.   
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Table 1. Example Model Comparison Output from apsl2lme 

# Fixed Effects Random Effects df -2LL AIC BIC 

Var 

(Res) 

Var 

(Intr) 

Var 

(homework) 

Var 

(white) 

1 math ~ 1                         ~1 | schid 3 3800.78 3806.78 3819.53 81.24 24.85    NA NA 

2 math ~ homework                  ~1 | schid 4 3730.49 3738.49 3755.50 71.14 20.23    NA NA 

3 math ~ homework                  ~homework | schid 6 3639.04 3651.04 3676.55 53.30 59.28 16.79 NA 

4 math ~ white                     ~1 | schid 4 3785.20 3793.20 3810.21 79.61 18.67    NA NA 

5 math ~ white                     ~white | schid 6 3784.80 3796.80 3822.31 79.01 21.18    NA 5.36 

6 math ~ public                    ~1 | schid 4 3793.67 3801.67 3818.68 81.22 17.20    NA NA 

7 math ~ homework + white          ~1 | schid 5 3717.60 3727.60 3748.86 70.18 14.68    NA NA 

8 math ~ homework + white          ~homework | schid 7 3627.86 3641.86 3671.62 52.57 55.14 16.33 NA 

9 math ~ homework + white          ~white | schid 7 3716.23 3730.23 3759.99 69.22 18.22    NA 10.97 

10 math ~ homework + white          ~homework + white | 

schid 

10 3625.32 3645.32 3687.84 51.54 61.90 16.38 9.38 

11 math ~ homework + public         ~1 | schid 5 3725.66 3735.66 3756.92 71.13 15.77    NA NA 

12 math ~ homework + public         ~homework | schid 7 3634.84 3648.84 3678.60 53.34 56.25 16.37 NA 

13 math ~ white + public            ~1 | schid 5 3776.99 3786.99 3808.25 79.60 11.88    NA NA 

14 math ~ white + public            ~white | schid 7 3775.07 3789.07 3818.84 78.58 21.09    NA 13.20 

15 math ~ homework + white + public ~1 | schid 6 3711.95 3723.95 3749.46 70.18 10.68    NA NA 

16 math ~ homework + white + public ~homework | schid 8 3623.25 3639.25 3673.27 52.64 52.28 15.84 NA 

17 math ~ homework + white + public ~white | schid 8 3707.88 3723.88 3757.90 68.67 20.86    NA 31.66 

18 math ~ homework + white + public ~homework + 

white | schid 

11 3618.85 3640.85 3687.63 51.15 64.41 15.69 24.04 
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 Figure 2. Example model ID comparisons of relationships between degrees of freedom (df) and -2LL (upper left), AIC (upper middle),  

    BIC (upper right), level 2 intercept variance (lower left), and level 1 residual variance (lower middle). 
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• ModelSummary - This component contains the summary output from the lme command and 
fixed effect F test results for each model identified in the ModelComparison.   

• InvalidModels - This component contains the fixed effects and random effects formula for 
models that did not converge.   
After running the command to conduct the all-possible-subsets analysis (see Appendix, line 17), and 

examining the ModelComparison object (see Appendix, line 18), one can see that apsl2lme ran 18 

separate models as depicted in Table 1 (see Appendix, line 19 to save ModelComparison as a comma 

separated file). The results help identify other competing models to the original model (Model 18) which is 

the best fitting model according to deviance. For example, by sorting the ModelComparison object by 

the different fit indices, one can see that Model 18 is the second best fitting model according to AIC and 

the fifth according to BIC (see Table 2 and Appendix, lines 21 - 30). One also sees that the residual variance 

is highest in Model 1 and lowest in Model 18 but that the variance of the intercept is smallest in Model 15. 

 Processing the results of the object returned from apsl2lme, plot.apsl2lme produces a 

graphical presentation of model IDs (see Appendix, line 32).  As depicted in Figure 2, five graphs are 

produced.  The upper right hand graph plots models IDs by deviance (-2LL) and degrees of freedom (df).  

The upper middle graph plots model IDs by AIC and df.  The upper right graph plots model IDs by BIC 

and df.  The lower left hand graph plots model IDs by intercept variance [Var(Int)] and df.  The lower 

middle graph plots model IDs by residual variance [Var(Res)] and df. These plots allow researchers to 

examine model fit and variance components by degrees of freedom. For example, one can see that given 8 

degrees of freedom, model 16 outperforms model 17 according to AIC and BIC. 
 

Discussion 

 A primary goal in regression is to choose the simplest model that provides the best fit to the observed 

data (cf., Thompson, 2006; West et al., 2014).  In OLS regression, this is the somewhat simple process of 

examining the relationship between the number of predictors in the model and the resulting Multiple R2 or 

Adjusted R2 (Thompson, 2006).  However, in multilevel modeling, the model selection process is more 

complicated.  Not only must researchers consider which variables to include in the model, they must also 

determine whether level 1 variables should be modeled as random effects (West et al.).  Although such 

decisions should be guided by theory, there may be times when researchers are forced to consider more 

technical approaches in determining the components of their models (Kreft & de Leeuw, 1998).  

Oftentimes, researchers compute the statistical significance of a t-statistic to help decide whether an effect 

should be kept in a model.  However, such techniques are fraught with difficulties in the face of correlated 

variables (Kreft & de Leeuw, 1998; Shieh & Fouladi, 2003).  Kreft and de Leeuw (1998) noted that in the 

absence of theory, researchers should use model fit as a criterion as it is a more reliable measure than 

individual parameter estimates.   

 As no single information criterion stands apart as the best criterion to use when selecting multilevel 

models (Gurka, 2006), the apsl2lme function provides three measures of model fit: (a) deviance, (b) 

AIC, and (c) BIC.  For ease of interpretation, all models tested in the apsl2lme function employ the 

maximum likelihood (ML) method of estimation. For all three measures of model fit, smaller values are 

considered better fit.   

 In practice, researchers can use the apsl2lme function to identify differences in model fit based on 

all possible combinations of parameters.  In the event that not all possible combinations of parameters are 

of interest, researchers can compare a subset of models that are most theoretically appropriate to their 

applications (e.g., subsets based on degrees of freedom or random effect formula).  The benefit of the 

apsl2lme function is that all possible models are available for the researcher to investigate.  No longer 

does a researcher have to worry if a decision to exclude a variable early in the model-building stage is still 

appropriate when other variables are deleted or entered into the model.  

 As previously noted, the model selection process should be guided by theory.  However, the technical 

approach of selecting models based on model fit might also be used to inform or confirm theory.  In Figure 

1, one sees that models 3, 8, 10, 12, and 16 are comparable to the original model (18) analyzed by Kreft 

and de Leeuw (1998) and are among the best fitting models. One can also see that models 4, 5, 6, 13, and 

14 are not that much better than the null model with no predictors. These data seem to suggest that home-  
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Table 2. Model # Sorted by Global Fit Indices and Variance Components 

Order -2LL AIC BIC Var(Res) Var(Intr) 

1 18 16 8 18 18 

2 16 18 16 10 10 

3 10 8 3 8 3 

4 8 10 12 16 12 

5 12 12 18 3 8 

6 3 3 10 12 16 

7 17 17 7 17 1 

8 15 15 15 9 5 

9 9 7 2 7 14 

10 7 9 11 15 17 

11 11 11 17 11 2 

12 2 2 9 2 4 

13 14 13 13 14 9 

14 13 14 4 5 6 

15 5 4 6 13 11 

16 4 5 14 4 7 

17 6 6 1 6 13 

18 1 1 5 1 15 

Note. Indices and component sorted from lowest to highest with the exception of Var(Intr). 
   

work is a critical component in explaining variance in math achievement and that its effect on math 

achievement differs from school to school regardless of what other variables are included in the model.  

The data (models 5, 9, 14, and 17) also suggest that the effect of being white on math achievement does not 

vary by school regardless of what other variables are included in the model.  Although answering questions 

such as these may be of interest to researchers, it seems unlikely that such an exhaustive model comparison 

strategy would be possible without the support of software that consider the combinations of all potential 

fixed and random effects. 

 

Conclusions and Future Development 

 The apsl2lme and plotlaps.l2lme functions presented in this paper provide researchers a 

straight forward approach to comparing models derived from multilevel data in the context of two levels 

with one grouping factor. The R functions are currently available at: 

    https://www.dropbox.com/s/qvb66pnpn3vew6f/apsl2lme.r?dl=0.  

  It is the intention of the authors to continue development on this function and to publish the functions 

on The Comprehensive R Archive Network (CRAN).   

  Further improvements could include updating the software to accommodate three level data structures, 

supporting output from lmer (Bates, Maechler, & Bolker, & Walker, 2015), and migrating the software 

so that it could be utilized with other statistical software packages (e.g., SPSS, SAS). Further extensions to 

the software could also include computing the Extension Information Criterion (EIC, Ishiguro, Sakamoto, 

& Kitagawa, 1997). 

 It is recommended that researchers employing multilevel modeling techniques consider analyzing 

competing models to determine the parsimonious solutions to answer their questions. When the problems 

raised by models with random slopes are solved (cf. Liu et al., 2014), researchers may also want to couple 

with results of the all-possible-subsets analyses described in this paper with “predictor importance” metrics 

(e.g., commonality analysis coefficients, dominance analysis coefficients, Pratt’s index) that will likely 

emerge once R2 analogues in multilevel models are developed that have the property of monotonicity. 
 

  

https://www.dropbox.com/s/qvb66pnpn3vew6f/apsl2lme.r?dl=0
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APPENDIX 
R Code for Illustrative Analyses 

 

library (nlme) 

library (graphics) 

library (foreign,pos=4) 

source("apsl2lme.r") 

 

Dataset <-  

read.spss("https://stats.idre.ucla.edu/wp-content/uploads/2016/02/imm23-

1.sav", 

   use.value.labels=FALSE, to.lower.case=TRUE,max.value.labels=Inf,  

   to.data.frame=TRUE) 

colnames(Dataset) <- tolower(colnames(Dataset)) 

 

(lme.out<- lme(data=Dataset, math~homework+white+public,  

     random = ~white+homework| schid,method='ML',na.action=na.omit)) 

 

apsOut<-apsl2lme(lme.out) 

(MC<-apsOut$ModelComparison) 

write.csv(MC,"aout.csv") 

 

(mcdev<-MC[order(MC$"-2LL"),]) 

(mcaic<-MC[order(MC$AIC),]) 

(mcbic<-MC[order(MC$BIC),]) 

(mcres<-MC[order(MC$"Var(Res)"),]) 

(mcint<-MC[order(MC$"Var(Intr)",decreasing=T),]) 

fit<-cbind(rownames(mcdev),rownames(mcaic),rownames(mcbic),rownames(mcres), 

     rownames(mcint)) 

colnames(fit)<-colnames(MC)[4:8] 

fit 

write.csv(fit,"fit.csv") 

 

plot.apsl2lme(MC) 
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