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Invariance testing remains a widely used and important issue for social scientists.  At its heart, assessment 
of factor invariance involves an examination of the suitability of a scale’s use across an entire population.  
Traditionally, invariance testing has been carried out using a Chi-square difference test in conjunction with 
multiple group confirmatory factor analysis.  However, research has demonstrated that this approach can 
result in inflated Type I error rates, or findings of a lack of invariance when in fact invariance is present.  
As a result, statisticians and methodologists have been investigating alternative approaches to testing 
invariance, which control the Type I error rate without sacrificing much in terms of power.  The current 
study investigated one such alternative, based on a penalized likelihood estimator.  This estimator has been 
previously investigated in the context of fitting structural equation models, and found to perform well in 
terms of parameter estimation accuracy.  Results of the current Monte Carlo simulation study found that 
the PLE approach is in fact promising in the context of invariance assessment.  It was able to control the 
Type I error rate better than did the Chi-square test, and it exhibited power rates that were as good as or 
better than those of the Chi-square.  Implications of these findings are discussed. 

he invariance of latent variable models is an important issue in a wide variety of fields within the 
social sciences.  Invariance refers to the case where latent variable model parameters, such as factor 
loadings, factor intercepts, or error variances, are equivalent across subgroups within the population.  

It is key for users of educational and psychological scales, as its presence allows for the use of such 
instruments with the entire population of interest.  On the other hand, when invariance cannot be 
demonstrated, users of the scale cannot be certain that scores produced by it have the same meaning across 
subgroups, such as different ethnic groups, genders, or individuals with different socioeconomic status 
(Dorans, & Cook, 2016; Millsap, 2011; Wu, Li, & Zumbo, 2007).  Thus, researchers who do plan to use 
scales with broad populations of individuals need to demonstrate scale invariance. 
  The investigation of latent trait model parameter invariance typically involves the use of multiple 
groups confirmatory factor analysis (MGCFA).  In this paradigm, the fit of models with, and without group 
equality constraints on the model parameters are compared, and if the fit of the models differs, we conclude 
that invariance does not hold (Millsap, 2011).  Perhaps the most common statistical approach used in such 
invariance assessment involves the calculation of the Chi-square difference statistic, which is discussed in 
more detail below.  However, research has demonstrated that in some situations, this approach has an 
inflated Type I error rate, resulting in a rejection of the null hypothesis of invariance when in fact invariance 
holds within the population (Yuan & Bentler, 2004).  The purpose of the current study is to examine the 
performance of an invariance assessment approach based upon the use of a penalized likelihood estimator 
(PLE) for latent variable models (Huang, 2018), and which might prove to be a worthy alternative to the 
chi-square difference based approach. The paper is organized as follows. First, a brief review of the 
MGCFA approach to testing factor invariance (FI) is presented.  Next, PLE is discussed, followed by a 
description of how it can be used to assess FI. The goals of the study, including research questions and 
hypotheses are then presented, as is the methodology used to address them.  Finally, the results of the 
simulation study and a discussion of those results are presented. 
 

Factor Invariance Assessment with MGCFA 
  The general factor model takes the following form: 
 

             𝑥𝑥 = 𝜏𝜏 + Λ𝜉𝜉 + 𝛿𝛿             (1) 
 

   where  𝑥𝑥 = Vector of observed indicator variables; e. g. items on a scale or subscale scores 
     𝜉𝜉 = Vector of latent traits being measures by 𝑥𝑥 
     Λ = Matrix of factor loadings linking 𝑥𝑥 and 𝜉𝜉 
     𝜏𝜏 = Vector of intercepts associated with 𝑥𝑥 
     𝛿𝛿 = Vector of unique errors associated with 𝑥𝑥   

T 
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  The model in (1) implies the following covariance matrix for the observed indicators: 
 

          Σ = ΛΨΛ′ + Θ                (2) 
 

   where  Σ = Covariance matrix of the observed indicators,𝑥𝑥 
     Ψ = Covariance matrix of the latent factors 
     Θ = Covariance matrix of unique error terms, assumed to be diagonal 
 

  As noted above, FI occurs when the parameters in equations (1) and (2) are equivalent across subgroups 
within the population.  There exist different levels of FI, each of which makes different assumptions about 
the nature of such equivalencies.  The weakest type of invariance is referred to as configural invariance 
(CI), for which it is assumed that only the basic factor structure (i.e., the number of latent variables and the 
correspondence of observed indicators to these variables) is the same across groups.  If CI is present, 
researchers typically next assess whether the factor loadings (Λ) are equal across groups, in what is known 
as measurement invariance (MI).  In turn, when MI is present, the equality of the factor model intercepts 
(𝜏𝜏) across groups is next determined, for what is known as structural invariance (SI).  Finally, if SI holds, 
the researcher can assess whether there is group invariance with respect to the unique indicator variances 
(𝛿𝛿), which is known as strict factor invariance (SFI)  
 The MGCFA model in equation (3) is perhaps the most common approach for assessing the various 
types of FI (Meredith, 1993).   
 

            𝑥𝑥𝑔𝑔 = 𝜏𝜏𝑔𝑔 + Λg𝜉𝜉 + 𝛿𝛿𝑔𝑔             (3) 
 

  The population parameters in equation (3) correspond to those in equation (1), except that they are 
group specific, as denoted by the g subscript.  In other words, the MGCFA model allows the intercepts (𝜏𝜏𝑔𝑔), 
loadings (Λg), and unique variances (𝛿𝛿𝑔𝑔) to vary by group.  The indicator covariance matrix in (2) can also 
be group specific, as appears in equation (4): 
 

           Σg = ΛgΨgΛg′ + Θg              (4) 
 

 MGCFA is used to test for the presence of various types of FI through the placement of group equality 
constraints on the model parameters in equations (3) and (4).  For example, to assess CI, a factor model is 
fit to both groups where the number of latent variables and the indicators associated with them are the same 
between groups, but no group equality constraints are placed on any of the model parameters.  If this model 
fits the data well, based on indices such as the comparative fit index (CFI), the root mean squared error of 
approximation (RMSEA), or the Standardized Root Mean Residual (SRMR), we can conclude that CI is 
present (Millsap, 2011).  Next, we can assess MI by constraining the groups’ factor loadings (Λg) to be 
equivalent, and comparing the fit of this model to the fit of the unconstrained model (3).  Because the 
constrained and unconstrained models are nested, it is possible to compare their fit using the difference in 
their model 𝜒𝜒2values, which is itself distributed as a 𝜒𝜒2, with degrees of freedom equal to the difference in 
degrees of freedom for the two models.  A statistically significant result for this 𝜒𝜒Δ2 statistic leads to rejection 
of the null hypothesis that the groups have equal loadings in the population; i.e., MI is not present in the 
population.  On the other hand, if the 𝜒𝜒Δ2 is not statistically significant (i.e., MI holds), the researcher can 
proceed to test other types of FI, such SI and SFI.   
 Although it is intuitive and convenient to use, prior research has found that the 𝜒𝜒Δ2 test does not always 
maintain the nominal Type I error rate that is assumed when it is being used.  For example, Chen (2007) 
reported that this test is very sensitive to both sample size, and to a lack of normality of the indicators.  
Furthermore, if the factor model is misspecified in some fashion, 𝜒𝜒Δ2 is not actually distributed as a chi-
square statistic, and therefore yields inflated Type I error rates when used to test the various aspects of FI 
(Yuan & Bentler, 2004; Yuan & Chan, 2016).  Other researchers have reported that for normally distributed 
indicator variables and sample sizes less than 500, 𝜒𝜒Δ2 can control Type I error at the nominal level (French 
& Finch, 2006).  One set of alternatives that has been proposed for assessing FI involves the examination 
of differences in fit statistics such as the CFI for the constrained and unconstrained models.  These 
approaches rely on the use of cut-values, such that when the difference is greater than some predetermined 
threshold (e.g., 0.01 or 0.005), invariance is said not to hold (Chen, 2007).  Another alternative that has 
been recently proposed in the literature involves the use of effect sizes in the context of equivalence testing 
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in order to identify when FI is not present (Yuan & Chan, 2016). While certainly useful for descriptive 
purposes, these approaches do not provide a formal test of the null hypothesis that invariance is present.  
Given these mixed results for 𝜒𝜒Δ2, and the lack of a true hypothesis test for assessing FI, there remains room 
in the invariance testing literature for an alternative approach. As is discussed below, one such alternative 
involves the use of the PLE approach. 
 

Penalized Likelihood Estimator 
 In recent years, a number of authors have described approaches for fitting factor models, and structural 
equation models (SEMs) that combine elements of CFA, in which strong constraints are placed upon model 
parameters, with exploratory approaches that allow free estimation of certain parameters.  For example, 
Asparouhov and Muthèn (2009) introduced exploratory structural equation models, which combines the 
use of an exploratory approach for defining latent variables, in conjunction with a confirmatory fitting of 
structural aspects of a model.  A primary advantage of this modeling approach is that it does not require the 
imposition of strong constraints on all model parameters, thereby allowing for an exploration of factor 
structure, when it is not clear a priori what it should be.  Other authors have approached this problem of 
uncertainty with regard to certain model parameters through the lens of penalized parameter estimation 
(e.g., Jacobucci, Grimm, & McArdle, 2016; Hirose & Yamamoto, 2015; Tutz & Schauberger, 2015).  These 
approaches treat the estimation of model parameters in the context of CFA and SEM as a problem of 
sparsity, whereby some model parameters are freely estimated, and others are penalized using one of several 
popular approaches such as the Lasso (Tibshirani, 1996).   
  Huang, Chen, and Weng (2017) discussed a penalized likelihood estimator (PLE) for fitting SEMs in 
the context of exploratory SEM (ESEM).  This approach builds upon the standard maximum likelihood 
estimator (MLE), by adding a penalty term to the fitting function.  The standard MLE fitting function for 
SEM takes the form: 
 

        𝐿𝐿(𝜃𝜃) = −0.5𝑙𝑙𝑙𝑙|Σ(𝜃𝜃)| − 0.5�𝑦𝑦 − 𝜇𝜇(𝜃𝜃)�𝑇𝑇Σ(𝜃𝜃)−1�𝑦𝑦 − 𝜇𝜇(𝜃𝜃)�    (5) 
   where 𝜃𝜃 =Set of parameter estimates 
     Σ(𝜃𝜃) =Model implied covariance matrix 
     𝜇𝜇(𝜃𝜃) =Model implied mean vector 
     𝑦𝑦 =Observed vector. 
 

  The PLE of Huang, et al. is expressed as: 
 

           𝑈𝑈(𝜃𝜃, 𝛾𝛾) = 𝐿𝐿(𝜃𝜃) − 𝑅𝑅(𝜃𝜃, 𝛾𝛾)         (6) 
  where  𝑅𝑅(𝜃𝜃, 𝛾𝛾) = ∑ 𝑐𝑐𝑗𝑗𝜌𝜌��𝜃𝜃𝑗𝑗�, 𝛾𝛾�

𝐽𝐽
𝑗𝑗=1   

    𝜌𝜌��𝜃𝜃𝑗𝑗�, 𝛾𝛾� =Penalty function 
    𝛾𝛾 =Regularization parameter 
    𝑐𝑐𝑞𝑞 =Penalty indicator for observed variable j. 
 

  When the indicator 𝑐𝑐𝑗𝑗  is set to 0, the model parameter(s) for observed indicator j, 𝜃𝜃𝑗𝑗 , are freely 
estimated, whereas when 𝑐𝑐𝑗𝑗 = 1, parameter 𝜃𝜃𝑗𝑗  is penalized in its estimation.  The 𝛾𝛾 parameter determines 
the level of model complexity (i.e., penalization), where larger values of 𝛾𝛾 lead to a more sparse model; 
i.e., parameters with 𝑐𝑐𝑗𝑗 = 1 tend toward 0.  In practice, optimal values of 𝛾𝛾 are selected using comparative 
model fit statistics, such as the Akaike Information Criterion (AIC), the Bayesian Information Criterion 
(BIC), or some variant of those.   
 Huang et al. (2017) discuss the application of several approaches for fitting the PLE, including the 
Lasso (L1) and the Mimimax Concave Penalty (MCP).  We will first describe the MCP function, of which 
the Lasso is a special case.  The MCP function is  
 

           𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌(𝑡𝑡, 𝛾𝛾) = �𝛾𝛾𝑡𝑡 −
𝑡𝑡2

2𝛿𝛿
    𝑖𝑖𝑖𝑖 𝑡𝑡 ≤ 𝛿𝛿𝛾𝛾

0.5𝛾𝛾2𝛿𝛿    𝑖𝑖𝑖𝑖 𝛿𝛿𝛾𝛾 < 𝑡𝑡
�        (7) 

  where  𝛿𝛿 =Parameter that controls the convexity of the penalty function.  
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  Smaller values of 𝛿𝛿 make the PLE behave similarly to best subsets regression selection, whereas when 
𝛿𝛿 → ∞, it becomes the Lasso estimator.  Huang, et al., note that when 𝛾𝛾 is small, PLE behaves similarly to 
ESEM, such that many of the model parameters may take non-0 values.  Conversely, when 𝛾𝛾 is large 
(meaning the penalty is more severe), PLE behaves much like traditional CFA/SEM, with many parameters 
taking the value of 0.  As noted above, in practice researchers may fit several models with differing values 
of 𝛾𝛾 and 𝛿𝛿, and then select the one that yields optimal fit, based on information index values. 
  As an example of applying the PLE in practice, a researcher may wish to apply a sparsity penalty to 
factor loadings linking specific indicator variables to a latent variable.  In such a case, the researcher may 
be unsure a priori whether the indicators are in fact linked to the factor in question, given a lack of theory 
and/or prior empirical evidence.  Through application of a sparsity penalty, such as the Lasso, estimation 
of these loadings can be done in an exploratory fashion so that hard constraints (e.g., loadings linking the 
indicators to a factor are set to 0) are not imposed on the model.  In this regard, the application of PLE is 
very similar to that of ESEM, as described by Asparouhov and Muthèn (2009).     
 

Invariance Assessment with Penalized Likelihood 
 Although the primary focus of work heretofore has been with respect to applications of PLE to 
situations where ESEM would be appropriate, it can also be applied to the problem of parameter invariance 
testing (Huang, 2018).  Unlike the MGCFA approach to this problem, the PLE model does not constrain 
parameters for which invariance assessment is desired (e.g., factor loadings) to be equal between the groups.  
Rather, invariance (or a lack thereof) is expressed in terms of what portion of the values is associated with 
a reference component, versus what additional information is added by the group specific increment.  When 
this increment for a group differs from that of other groups, we can conclude that there is a lack of invariance 
for the model parameter.   
  In order to provide a deeper explanation of how PLE can be used for invariance assessment, consider 
a loading relating indicator variable j to a factor.     
 

            𝜆𝜆𝑗𝑗𝑔𝑔 = 𝜆𝜆𝑗𝑗𝑞𝑞 + 𝜆𝜆𝑗𝑗𝑞𝑞𝑔𝑔          (8) 
  where  𝜆𝜆𝑗𝑗𝑔𝑔 =Factor loading for group g on indicator variable j 
    𝜆𝜆𝑗𝑗𝑞𝑞 =Reference component of loading for indicator variable j; common across groups 
    𝜆𝜆𝑗𝑗𝑞𝑞𝑔𝑔 =Group specific increment component. 
 

  Equation (8) shows that the factor loading for a specific group, g, is a function of a reference component 
that is common across groups, and a component that represents the specific contribution of the group itself, 
known as the increment. When the increment is 0, then the group specific factor loading is equivalent to 
the reference component, meaning that the group does not contribute anything unique to the loading.  On 
the other hand, a non-zero value for 𝜆𝜆𝑗𝑗𝑞𝑞𝑔𝑔 indicates that membership in group g does contribute something 
unique to the relationship between observed indicator j and the factor.  In other words, the loading for group 
g does differ from that of the reference component.  In the multiple groups case, the likelihood function in 
(5) becomes 
𝐿𝐿(𝜃𝜃) = −0.5∑ 𝑤𝑤𝑔𝑔𝐺𝐺

𝑔𝑔=1 �𝑙𝑙𝑙𝑙�Σ�𝜃𝜃𝑔𝑔��+ 𝑡𝑡𝑡𝑡 �Σ�𝜃𝜃𝑔𝑔�
−1
𝑆𝑆𝑔𝑔�� − 0.5∑ 𝑤𝑤𝑔𝑔𝐺𝐺

𝑔𝑔=1 �𝑦𝑦𝑔𝑔 − 𝜇𝜇�𝜃𝜃𝑔𝑔��
𝑇𝑇
Σ�𝜃𝜃𝑔𝑔�

−1 �𝑦𝑦𝑔𝑔 − 𝜇𝜇�𝜃𝜃𝑔𝑔��    (9) 
  where  𝜃𝜃𝑔𝑔 =Set of parameter estimates for group g 
    Σ�𝜃𝜃𝑔𝑔� =Model implied covariance matrix for group g 
    𝑆𝑆𝑔𝑔 =Observed covariance matrix for group g 
    𝜇𝜇�𝜃𝜃𝑔𝑔� =Model implied mean vector for group g 
    𝑦𝑦𝑔𝑔 =Observed vector for group g 
    𝑤𝑤𝑔𝑔 =Proportion of total sample in group g. 
 

  In turn, the penalty function takes the following form: 
 

        𝑅𝑅(𝜃𝜃, 𝛾𝛾) = ∑ 𝑐𝑐𝑗𝑗𝜌𝜌��𝜃𝜃𝑗𝑗�, 𝛾𝛾�
𝐽𝐽
𝑗𝑗=1 +∑ ∑ 𝑐𝑐𝑔𝑔𝑗𝑗

𝐽𝐽
𝑗𝑗=1 𝜌𝜌𝐺𝐺

𝑔𝑔=1 ��𝜃𝜃𝑔𝑔𝑗𝑗�, 𝛾𝛾�          (10) 
 

  where  𝜌𝜌��𝜃𝜃𝑔𝑔𝑗𝑗�, 𝛾𝛾� =Penalty function for group g 
    𝑐𝑐𝑔𝑔𝑗𝑗 =Penalization indicators for group g  
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 Huang (2018) provides an example involving factor loadings to describe how factor invariance 
assessment with PLE works in practice.  We borrow this example here to provide a bit more insight 
regarding this approach.  Huang’s description of this example appears on pages 4 and 5 of his manuscript.  
To motivate this example, consider factor loadings for indicator variable j and groups 1 and 2.  These can 
be written as: 
    𝜆𝜆𝑗𝑗𝐺𝐺1 =Factor loading for indicator j for group 1 
    𝜆𝜆𝑗𝑗𝐺𝐺2 =Factor loading for indicator j for group 2. 
 

Applying equation (8), we can express these loadings as follows: 
 

            𝜆𝜆𝑗𝑗𝐺𝐺1 = 𝜆𝜆𝑗𝑗𝑞𝑞 + 𝜆𝜆𝑗𝑗𝑞𝑞1              (11) 
    𝜆𝜆𝑗𝑗𝐺𝐺2 = 𝜆𝜆𝑗𝑗𝑞𝑞 + 𝜆𝜆𝑗𝑗𝑞𝑞2  
    𝜆𝜆𝑗𝑗𝑞𝑞1 = 0 implies: 
      1.  𝜆𝜆𝑗𝑗𝐺𝐺1 = 𝜆𝜆𝑗𝑗𝑞𝑞,  
      2.  𝜆𝜆𝑗𝑗𝐺𝐺2 = 𝜆𝜆𝑗𝑗𝑞𝑞2 − 𝜆𝜆𝑗𝑗𝑞𝑞1 
 

In turn, implication 2 means that when 𝜆𝜆𝑗𝑗𝑞𝑞2 = 0, the groups’ factor loadings will be invariant; i.e., 𝜆𝜆𝑗𝑗𝐺𝐺2 =
𝜆𝜆𝑗𝑗𝐺𝐺1 = 𝜆𝜆𝑗𝑗𝑞𝑞.   
  In practice, MI assessment based on PLE involves first setting the referent indicator loading to some 
value across groups; e.g., 1.  Next, the constraint of 𝜆𝜆𝑗𝑗𝑞𝑞1 = 0 is set for all indicators.  In this way, the 
reference component portion of each loading is defined.  Third, PLE is applied to the non-referent 
indicators, accounting for the previous constraint of the group 1 loadings.  The optimal model is then 
selected, using AIC, BIC, or one of their variants.  If the penalized estimate of the group 2 increment 
component for indicator j is not equal to 0 (𝜆𝜆𝑗𝑗𝑞𝑞2 ≠ 0), we would conclude that the loading is not invariant 
across the groups.  If, on the other hand, 𝜆𝜆𝑗𝑗𝑞𝑞2 = 0, then invariance for that loading is found to hold. 
 Huang (2018) investigated the performance of the PLE based invariance assessment procedure using a 
Monte Carlo simulation study.  The study focused on the 2 groups, 1 factor measurement invariance 
condition.  The factor was simulated to have 12 multivariate normal indicators, with factor loadings ranging 
between 0.6 and 0.8.  A lack of invariance was simulated by reducing the loadings for the second group, 
such that they differed by 0.1 (small noninvariance), 0.2 (moderate noninvariance), or 0.3 (large 
noninvariance).  Total sample sizes of 200, 400, 600, 800, and 1000 were simulated, with the groups being 
of equal size across conditions.  The outcomes of interest were the mean squared error (MSE), squared bias, 
proportion of times when the true model was selected, the true positive, and false positive rates.  MCP was 
the only penalty method included in the study, given that the Lasso is a special case of MCP.  Results 
presented by Huang demonstrated that PLE for invariance testing has real promise for application in 
practice.  More specifically, when invariance held between the groups (i.e., group loadings didn’t differ), 
or the loadings differed in either the moderate or large range, MCP with the BIC used to select optimal 
settings of 𝛾𝛾 and 𝛿𝛿 performed well in terms of identifying the correct model, particularly when the sample 
size was large.  For small samples, or when the level of invariance was small, AIC yielded the highest rate 
of correct model identification.  Finally, Huang found that when the sample size was small and invariance 
held, neither AIC nor BIC were able to identify the correct model very well. 
 

Goals of the Current Study 
 The primary goal of the current simulation study is to extend upon the work of Huang (2018) by 
comparing the performance of PLE for invariance testing with that of the standard MLE based approach.  
Huang demonstrated that the PLE approach holds promise for researchers in practice, but more simulations 
are needed to further understand how well it performs across a variety of conditions, and vis-à-vis the 
standard MGCFA approach based on MLE.  Thus, as is described below, this study extends several of the 
conditions examined by Huang, and includes others that were not investigated in the earlier research.  The 
research questions and hypotheses to be addressed in this study are: 
  1. How does the Type I error rate of PLE invariance testing compare to that of MLE?  It is hypothesized 
that the Type I error rate of PLE will be lower than that of MLE, and that it will be at or below the nominal 
0.05 level. 
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  2.  How does the power of PLE invariance testing compare to that of MLE?  It is hypothesized that 
power for PLE will be lower than that of MLE for small sample sizes, but comparable for larger samples. 
  3.  How does parameter estimation bias of PLE compare to that of MLE?  It is hypothesized that bias 
in the PLE based estimates will be greater than that of MLE, which will exhibit little or no such bias.   
  4.  How do coverage rates of PLE compare to those of MLE?  It is hypothesized that coverage rates for 
the two approaches will be comparable. 
 

Method 
 In order to address the research questions and hypotheses outlined above, a Monte Carlo simulation 
study was used, with 1000 replications per combination of the conditions described below.  When 
replications did not converge, additional simulations were run in order to obtain the requisite number of 
1000 per combination of study conditions.  Data were generated using Mplus version 8.0 (Muthèn & 
Muthèn, 2017), and were analyzed using the lavaan (Rossel, 2012) and lslx (Huang, 2018) libraries in 
the R software package, version 3.4.3 (R Development Core Team, 2016).  Data were generated for 2 
groups, with 1 factor, and measurement invariance was assessed using the 𝜒𝜒Δ2 statistic in conjunction with 
MLE, as well as using the PLE based approach outlined above.  The indicator variables were generated 
from the multivariate standard normal distribution, with factor model intercepts of 0 for all indicators, and 
variances for all factors simulated to be 1.  Factor loadings for group 1 were simulated to be 1, and were 
varied for group 2 in order to induce a lack of invariance, as is described below.  When factor loadings 
differed, such differences were simulated for 10% of the indicator variables.  All other factor model 
parameters were simulated to be invariant across groups.  The following conditions were manipulated in 
the study. 
 

Sample size 
 Given that sample size has been shown to have an impact on the performance of both the PLE 
invariance procedure and the 𝜒𝜒Δ2 statistic (Chen, 2007; Huang, 2018), a variety of sample sizes were 
simulated in the current study.  The total sample size conditions included were 50, 100, 200, 400, 600, 800, 
and 1000.  The groups were simulated to have equal sample sizes, leading to individual group sizes of 25, 
50, 100, 200, 300, 400, and 500.  These overall values were designed to reflect cases from very small (50) 
to large (1000). 
 

Number of Indicator Variables 
 Data were simulated to have either 10, 20, or 30 observed indicator variables.  These values were 
selected to represent a variety of real world cases, from a fairly small number (10) to a relatively large 
number of indicators (30). 
 

Magnitude of Group Factor Loading Difference 
 In order to assess and compare both the Type I error rate coverage, and the power of the MLE and PLE 
approaches, a variety of group factor loading differences were simulated.  In the Type I error rate case, the 
loadings were simulated to be equivalent between the groups.  In order to assess power, group loading 
differences were simulated to be 0.1, 0.2, 0.3, 0.4, and 0.5, in order to represent a range of noninvariance 
from small (0.1) to large (0.5).  Measurement noninvariance was simulated by subtracting the group loading 
difference from the group 1 loading, in order to obtain the group 2 loading.  For example, in the 10 indicators 
0.2 loading difference magnitude condition, the loadings for groups 1 and 2 were simulated as below: 
Group 1 loadings: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 
Group 2 loadings: 1, 0.8, 1, 1, 1, 1, 1, 1, 1, 1 
 

Estimation Method 
 Three parameter estimation methods were used in this study:  MLE, Lasso, and MCP.  As noted above, 
the Lasso is a special case of MCP where 𝛿𝛿 = ∞.  The Lasso is included in the study in order to ascertain 
whether this simpler PLE approach works comparably to, or better than, the more complex MCP.  The 
MCP is more complex to use because it requires finding the optimal settings for two penalty parameters, 𝛿𝛿 
and 𝛾𝛾, whereas the Lasso only requires finding the optimal setting for 𝛾𝛾.  MLE is included in the study 
because it is generally regarded as the standard estimation technique to use with normally distributed 
indicator variables.  
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 With respect to the invariance testing, the 𝜒𝜒Δ2 statistic was used to test the null hypothesis that MI held 
for the two groups.  In terms of assessing MI using PLE, the steps outlined in Huang (2018), and which 
were described in some detail above, were employed in this study.  To summarize, the referent indicator 
(variable 1) was constrained to be equal to a set value, such as 1, for both groups.  For the remaining 
indicators, the group 1 specific increment was set to 0 (𝜆𝜆𝑗𝑗𝐺𝐺1 = 0) in order to define the reference component 
for each loading.  PLE was then applied to these non-referent indicators, accounting for the fact that the 
group 1 loadings were constrained as described above.  The optimal model was selected using an 
information index, and if the penalized estimate of the group 2 specific increment component for indicator 
j was not equal to 0 for this optimal model, the loading was not assumed to be invariant across the groups; 
i.e., MI did not hold.  Conversely, if the PLE group 2 specific increment was 0, then invariance for that 
loading was assumed.  The AIC, BIC, and CAIC were each used in the current study, with the CAIC 
consistently providing optimal results.  Therefore, results using only the CAIC are reported below. 
 

Study Outcomes of Interest 
 Several outcome variables were of interest in this study, including the Type I error rate and power for 
identifying a lack of invariance, relative parameter estimation bias for the target group 2 loading, and 
coverage rates for the target group 2 loading.  In this study, the group 2 factor loading estimate for indicator 
variable 2 served as the target.  For each estimator (MLE, Lasso, MCP) the Type I error rate was simply 
calculated as the proportion of replications for which factor loadings were identified as different between 
the groups when they were simulated to be equal between groups.  Likewise, power was the proportion of 
replications for which the factor loadings were identified to be different between the groups, when in fact 
they were simulated to differ between the groups.  For a given replication, the relative bias for the target 
group 2 factor loading was calculated as follows: 

              𝑅𝑅𝑅𝑅 =
𝜆𝜆𝑗𝑗−𝜆𝜆𝚥𝚥�

𝜆𝜆𝑗𝑗
                (12) 

  where  𝜆𝜆𝑗𝑗 =Population factor loading 
    𝜆𝜆𝚥𝚥� =Estimated factor loading. 
 

  The mean of these values was then taken across the replications for a specific combination of study 
conditions.  Parameter coverage was the proportion of replications for which the population value for the 
target group 2 loading fell within the confidence interval.  Values for each of these outcomes were estimated 
for each estimation method.   
  In order to identify which of the manipulated variables, and their interactions were important in terms 
of the study outcome variables, analysis of variance (ANOVA) was used, in conjunction with the 𝜂𝜂2 effect 
size.  Terms of the ANOVA model that were statistically significant were identified as important with 
respect to the outcomes.  In addition to statistical significance, the effect size for the effect is also reported 
in the results below.  Separate ANOVA models were used for each of the outcome variables.  For the Type 
I error and power results, rates were summarized across replications for each combination of conditions 
prior to the application of the ANOVA. 
 

Results 
Type I Error Rate 
 The ANOVA for Type I error rate identified the interaction of sample size by estimation method as the 
only statistically significant term in the model (F12,22 = 2.349, p = 0.008, η2 = 0.668). Figure 1 displays the 
Type I error rate by sample size and estimation method. A reference line has been placed at the nominal 
0.05 error rate.  These results show that, as has been reported in prior literature (Chen, 2007; Yuan & 
Bentler, 2004), the Type I error rate for the standard Chi-square difference test based on MLE is somewhat 
inflated.  The greatest such inflation occurred for samples of 50 and 100 (25 and 50 per group).  At the 
other end of the spectrum, the Type I error rate for the Lasso estimator was well below the nominal 0.05 
level, with the highest value be approximately 0.016 for a sample size of 50.  In all other sample size 
conditions, the error rate was below 0.01. The Type I error rate for the MCP estimator was above the 
nominal 0.05 level across sample size conditions, generally staying close to 0.06, and was below that of the 
MLE approach in all cases. Finally, based on guidelines laid out by Bradley (1978), only the error rate of 
MCP can be classified as in control across all sample size conditions, as it consistently lay between 0.025 
and 0.075.  
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Figure 1. Type I error rate by sample size and estimation method. 
    Note. Reference line at nominal Type I error rate of 0.05. 
 

Power 
 ANOVA identified the interactions of estimation method by sample size by magnitude of group loading 
difference (𝐹𝐹48,146 = 4.215,𝑝𝑝 < 0.001, 𝜂𝜂20.581), and estimation method by number of indicators 
(𝐹𝐹4,148 = 9.781,𝑝𝑝 < 0.001, 𝜂𝜂20.211) as being statistically significantly related to power for detecting 
measurement noninvariance.  Figure 2 includes power rates by estimation method, sample size, and 
magnitude of group loading difference.  When loadings differed by 0.4 or 0.5, and samples were 800 or 
1000, power for the Lasso was comparable to that of the other two methods.  In all other cases, the Lasso 
estimator yielded lower power than did MCP or MLE.  Across all conditions, MCP had comparable or 
higher power for detecting group loading differences than did MLE.  More specifically, when group 
loadings differed by 0.2 or 0.1, MCP had higher power than MLE, except for a sample size of 50 (25 per 
group). When the loadings differed by 0.4 or 0.5, the power rates of MCP and MLE were comparable for 
samples of 400 or more.  For samples of 200 or fewer and loading differences of 0.4 or higher, MCP had 
higher power than did MLE.  For a group loading difference of 0.3, MCP exhibited higher power rates 
across sample sizes, except when N=50.  Finally, when interpreting these power results, it is important to 
note that under many conditions, the differences in power rates among the methods, particularly MCP and 
MLE, were fairly small.  Thus, although MCP did often have slightly higher power rates than those of MLE, 
the differences were not very large.  
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Figure 2. Power rates by estimation method, sample size, and magnitude of group loading difference. 
 

 Figure 3 displays power rates by estimation method and number of indicator variables.  This graph 
reinforces the finding in Figure 2 that MCP generally displayed higher power rates for detecting 
noninvariance of factor loadings than did MLE, and that Lasso had the lowest power.  However, it is also 
important to note that in many of these cases, power rates for the MCP and MLE, in particular, were very 
close to one another.  Thus, although MCP did exhibit higher power rates, the differences were often not 
very large.  In addition, both MCP and MLE yielded higher power for more indicator variables.  This higher 
power associated with a greater number of indicators was more pronounced for MLE than for MCP, such 
that for 30 indicators the power rates for the two methods were closer in magnitude than was the case for 
10 or 20 indicator variables. 
 

Parameter Estimation Bias 
 The results of the ANOVA revealed that the interactions of estimation method by sample size, and 
magnitude of group loading difference (𝐹𝐹60,168 = 3.419,𝑝𝑝 < 0.001, 𝜂𝜂20.550), and estimation method by 
number of indicator variables by magnitude of group loading difference (𝐹𝐹20,168 = 1.860,𝑝𝑝 <
0.001, 𝜂𝜂20.181) were statistically significant.  Figure 4 displays the relative parameter estimation bias for 
the group 2 factor loadings that were simulated to be noninvariant by the estimation method, magnitude of 
the group loading difference, and sample size.  These results demonstrate that across conditions, the relative 
bias of the MLE derived loadings was comparable to, or in most cases lower, than that of either MCP or 
Lasso.  In addition, for group loading differences of 0.2 or less, and sample sizes of 50 or 100, the MCP 
estimator yielded estimates with higher relative bias than did the Lasso estimator.  For larger group loading 
differences, the Lasso estimator exhibited greater bias than did MCP at these sample size levels.  Finally, 
bias declined for MCP and Lasso concomitantly with increases in the sample size.  
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Figure 3. Power rates by estimation method and number of indicators. 
 

 
Figure 4. Relative parameter estimation bias for group 2 noninvariant factor loadings by estimation method, 
sample size, and magnitude of group loading difference.  
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Figure 5. Relative parameter estimation bias for group 2 noninvariant factor loadings by estimation method, 
number of indicators, and magnitude of group loading difference.   
 

 Figure 5 displays the relative bias in the group 2 noninvariant factor loadings by the estimation method, 
number of indicators, and the magnitude of the group loading difference.  As was evident in Figure 4, 
relative bias was lowest for the MLE loadings across conditions.  The relative bias was highest for MCP 
when the magnitude of group loading difference was 0 or 0.1, above which the Lasso estimator exhibited 
the largest relative bias.  An examination of Figure 5 reveals that the relative bias in MCP was stable across 
the magnitude of group loading differences, but that of the Lasso estimator increased concomitantly with 
increases in the magnitude of the group loading difference. 
Coverage Rates 
 Based upon the results of the ANOVA, the interaction of estimation method by magnitude of the group 
loading difference by the sample size (𝐹𝐹60,168 = 3.389,𝑝𝑝 < 0.001, 𝜂𝜂20.548) was the only term that was 
statistically significantly associated with the coverage rates for the group 2 noninvariant parameter loadings.  
The coverage rates by estimation method, sample size, and magnitude of group loading difference appears 
in Figure 6.  A reference line appears at the nominal 0.95 level.  The coverage rates for the MCP and MLE 
approaches were at the nominal level across all conditions.  On the other hand, the coverage rates for the 
Lasso estimator were below the nominal 0.95 level when the group factor loadings differed by 0.3, and the 
sample size was 600 or more, as well as when the loading difference was 0.4 or 0.5, and the sample size 
was 200 or more. 
 

Discussion 
 The purpose of the current study was to investigate the performance of an approach for measurement 
invariance testing based on the work of Huang et al. (2017) and Huang (2018), using a PLE to fit factor 
models.  As has been noted in the literature (Yuan & Bentler, 2004; Yuan & Chan, 2016) the standard 
MGCFA approach based on the Chi-square difference test has been shown to yield elevated Type I error 
rates.  Thus, the goal of the current work was to extend prior work by Huang to ascertain whether the PLE 
approach might yield a viable alternative to the standard 𝜒𝜒Δ2 test statistic.  As noted above, despite continuing 
concerns regarding the potential for Type I error inflation, practicing researchers continue to use the 𝜒𝜒Δ2 test 
as a primary way to investigate questions around factor invariance.    
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Figure 6. Coverage rates for group 2 noninvariant factor loadings by estimation method, sample size, and 
magnitude of group loading difference. 
   Note. Reference line at the nominal 0.95 level. 
   

  Alternatives for invariance assessment, such as equivalence testing based upon model fit statistics, 
while promising, do not provide the researcher with an explicit test of the null hypothesis that factor model 
parameters are invariant across groups.   
  Thus, it would appear to be useful for a reliable such test to be identified for use in practice. 
This study was framed around 4 research questions and associated hypotheses.  The first research 
hypothesis stated that the Type I error rate for the PLE techniques would be lower than that of the 𝜒𝜒Δ2test 
based on MLE.  The results presented above support this hypothesis.  The two PLE based approaches did 
have lower Type I error rates than did the MLE, with the Lasso having the lowest values.  MCP yielded 
error rates that were consistently around 0.06, which is considered in control based upon recommendations 
by Bradley (1978).  Such cannot be said for either the Lasso or MLE results.  The second hypothesis asserted 
that power would be lower for the PLE based approaches than for MLE.  This hypothesis was supported 
with respect to the Lasso, which did yield lower power results than did MLE.  However, the MCP invariance 
test yielded higher power than that of MLE, except for the larger sample size conditions, in which case the 
two methods had similar power rates.  The third hypothesis was that MLE would have little to no parameter 
estimation bias, whereas the PLE based approaches would exhibit greater such bias.  This hypothesis was 
supported by the results presented above.  The final hypothesis was that coverage rates for the MLE and 
PLE based methods would be comparable to one another.  The results presented above partially support 
this hypothesis.  The coverage rates for MLE and MCP were indeed comparable, and at the 0.95 level across 
study conditions.  however, the coverage rates for the Lasso estimator were below the nominal level for 
larger samples and a greater degree of group loading difference. 
  The results of this study have several implications for researchers and practitioners.  First, under 
conditions similar to those simulated in this study, MCP for invariance testing would appear to present a 
viable alternative to the standard 𝜒𝜒Δ2 test based on MLE.  Given that its Type I error rate was found to be in 
control, and its power was comparable to that of 𝜒𝜒Δ2, researchers should certainly consider using it when 
conducting invariance tests.  On the other hand, the Lasso estimator based approach does not seem as 
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promising for this purpose.  While it did consistently yield Type I error rates that were well below the 
nominal 0.05 level, its power rates were also lower than those of the other two methods, in some cases quite 
a bit lower.  It is possible that this lower power is a function of the higher degree of bias that was evident 
in the estimates produced by the Lasso.  The results presented above demonstrated that this bias was larger 
when the difference between the group factor loadings was larger.  Recall from the methods section that 
group differences were simulated by reducing the noninvariant loadings for group 2 by the amount of group 
difference.  Both PLE techniques examined here work by reducing the magnitude of the penalized 
parameters.  In the context of invariance testing, one of these parameters is the effect of loadings of the 
second group.  Thus, when the shrinkage penalty is applied to this parameter, it would be anticipated that 
the estimate would exhibit more bias than would MLE, which is precisely what was found here. 
 

Directions for Future Research 
 The current study was designed to extend work by Huang (2018) assessing the PLE approach for testing 
measurement invariance.  As such, a number of simulation conditions were selected so as to provide insights 
into its performance across various sample size, number of indicators, and group loading difference 
magnitude conditions.  As with all studies, there were conditions that were not examined in the current 
work, but which need to be investigated in future studies.  For example, a wider set of conditions for the 
proportion of noninvariant loadings should be researched.  In this study, 0% and 10% of loadings were 
simulated to differ between the groups.  Future work should investigate higher proportions of noninvariant 
loadings, in order to provide insights into the performance of MCP and Lasso in such cases.  In addition, 
future research should investigate the performance of the PLE approaches with respect to scalar invariance 
assessment.  MCP, in particular, showed promise for testing the null hypothesis of no measurement 
invariance, but this cannot be seen as evidence that it will perform similarly when applied to the assessment 
of factor intercept differences between groups.  Finally, future work in this area needs to examine how the 
PLE methods for assessing factor invariance perform with categorical indicator variables.  This is 
particularly important given that in many applications in the social sciences invariance assessment is 
applied to scales consisting of dichotomous or polytmous items. 
 

 

Conclusions 
Taken together with the promising findings from Huang (2018), and Huang et al. (2017), the results of the 
current study provide support for the use of PLE for invariance testing, in the form of the MCP estimator.  
Certainly, more work investigating its performance under a wider variety of conditions is needed.  However, 
the current results provide evidence supporting the use of PLE for invariance assessment.  The MCP 
estimator exhibited superior control of the Type I error rate to that of MLE, and had higher or comparable 
power across conditions.  This approach would seem to be quite useful when used in conjunction with an 
effect size based approach for invariance assessment, such as the equivalence procedure of Yuan, Chan, 
Marcoulides, and Bentler (2016).  In addition, though the relative bias for MCP was higher than that of 
MLE, it was consistently around 0.17.  This would mean that for a population factor loading of 0.8 the MCP 
estimate might be approximately 0.64.  Certainly these values differ, but in both cases the fact that there 
exists a relationship between the indicator and the factor is clear.  Therefore, it could be argued that the 
level of bias in the MCP estimate would not alter the final conclusions drawn regarding the nature of the 
factor models.  In addition, researchers could use the MCP approach to test for factor invariance, but then 
rely on consulting both the MCP and MLE factor loading estimates in order to gain insights into the factor 
structure itself.  In summary, the results of this study support the utility of the PLE approach, in the form 
of MCP, for assessing measurement invariance.  
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