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Several tests for heteroscedasticity in a two-group between-subject variances were compared with a 

simulation study. Two common rank-based procedures inflated test size with skewed error distributions. 

Nonparametric Levene test performed well but has notable limitations. Tests based on the absolute value 

of OLS residuals also inflated test size with skewed error distributions. Procedures based on squared OLS 

residuals performed better; however, the original Breusch-Pagan and Variance Function Regression are 

sensitive to even slight departures from the normality assumption. The Brown-Forsythe test based on taking 

the absolute value of median centered data performed the best; however, generalization to more complex 

analyses would not be straightforward. 

 espite decades of research, there does not seem to be a consensus for a single procedure for testing 

for heteroscedasticity that works uniformly well across common data scenarios. In between-

subjects ANOVA, testing for heteroscedasticity reduces to testing whether the J groups have 

identical variances with the following null hypothesis: 

        H0: 𝜎1
2 = 𝜎2

2 = . . . = 𝜎𝑗
2 = . . . = 𝜎𝐽

2  .         (1) 

Tests for heteroscedasticity (i.e., differences in variances across groups) may have two different goals: 1). 

Testing the homoscedasticity assumption and 2). Analyzing variability as an outcome of interest. 
 

Testing the Homoscedasticity Assumption 

  Valid procedures for inference in linear models that estimate the mean of a response have been long 

established and are ubiquitous in countless fields of research. During the 1920’s, the term ANalysis Of 

VAriance (ANOVA) was coined to describe a method for comparing mean responses among two or more 

groups of independent, normally distributed observations with a common variance (Muller, 2009). 

However, it cannot be safely assumed that groups of subjects are homogeneous or exchangeable. Hence, 

there is no basis to assume equality of variances when testing the null hypothesis of identical means among 

multiple groups, even in randomized experiments (Nordstokke et al., 2011). Furthermore, if this assumption 

is ignored, the results of statistical tests that use a pooled estimate of the variance (e.g., pooled t-test) can 

be greatly distorted, thus potentially leading to incorrect inferences. Of note is that nonparametric tests are 

also susceptible to issues with unequal variances when testing for shifts in location parameters (Zimmerman 

& Zumbo, 1993a; 1993b). Thus, switching to a nonparametric statistical approach to avoid the 

homoscedasticity assumption does not alleviate the problem of unequal variances. In fact, rank 

transformations have been shown to inherit the heteroscedasticity from the original untransformed variables 

(Zimmerman, 1996).  

  Some researchers advocate testing the homoscedasticity assumption to justify the use of tests that 

assume variance homogeneity in their primary analysis. In this case, the researcher would hope to find that 

the variances are homogeneous. This approach of conditional testing (i.e., preliminary testing of the 

assumptions in order to choose the appropriate analysis) is debatable. First, a non-significant result from a 

test of heteroscedasticity does not guarantee that the population variances are truly constant; this could be 

a Type 2 error. Also using this approach, the choice of the “appropriate” test is conditional upon the 

statistical properties (e.g., robustness; power) of the preliminary test (Zimmerman, 2004). Furthermore, it 

does not ensure that this non-significant heteroscedasticity will not affect inferences about means in 

procedures that assume homoscedasticity. It is also important to note that it is not necessary to use a 

preliminary test of variance homoscedasticity to justify the use of heteroscedastic procedures (e.g., Welch’s 

(1951) heteroscedastic ANOVA) because these tests are generally effective regardless of whether variances 

are equal or unequal across groups. Although many researchers have suggested abandoning non-robust 

parametric procedures completely in favor of robust procedures that do not require the homogeneity of 

variances assumption (e.g., Wilcox, Charlin, & Thompson, 1986; Zimmerman, 2004), researchers in many 

disciplines still widely use traditional homoscedastic parametric procedures and feel the need to screen for 

the assumptions associated with these tests. For this reason alone, valid tests for heteroscedasticity are 

needed.  

D 
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Heteroscedasticity as an Outcome 

 In a growing number of research disciplines (e.g., education, sociology, experimental biology), 

investigators are becoming increasingly interested in the properties of their data aside from central tendency 

(Parra-Frutos, 2009). Therefore, how the variability of an outcome is affected by an experimental treatment 

or other categorical factor may be of research interest. Thus, a more interesting reason for assessing 

differences among of variances is that the primary research question is concerned with whether the 

dispersion of the dependent variable is different across multiple groups. For example, Kowalski, et al. 

(2020) examined whether professional development programs affecting the variation in educational 

outcomes for science teachers. Western & Bloome (2009) examined factors affect the variance in residual 

inequalities among racial groups. Mattison et al. (2017) reported the effects of caloric restriction on the 

variability in health outcomes in rhesus monkeys. 

  Bryk and Raudenbush (1988) argue that the presence of heterogeneity of variance across groups can 

have important implications for the research conclusions. Specifically, the presence of heterogeneity of 

variances in an experimental study may indicate the presence of an interaction between subject 

characteristics and treatment group membership. In other words, heterogeneity of variances can indicate 

that individuals vary in their response to the treatment (assuming the treatment group was a fixed effect). 

This could be an important consideration for researchers, and valid tests for evaluating heterogeneity of 

variances would be important to evaluate within an experimental design.  

  Given these reasons for testing variance homogeneity (1), valid tests for assessing heteroscedasticity 

are relevant to many research questions of interest and crucial if an investigator feels the need to justify the 

use of  pooled variance tests of mean differences.  
 

Parametric Tests for Heteroscedasticity for Between-Subjects ANOVA Designs. 

  Several tests for differences in variances for basic between-subjects ANOVA designs have been 

developed. It has been consistently shown that Bartlett’s (1937) test is sensitive to departures from 

normality (e.g., Snedecor & Cochran, 1989; Conover, Johnson, & Iman, 1981; Parra-Frutos, 2012). 

Furthermore, tests based on the ratio of variances (Hartley, 1950) perform poorly in several simulation 

studies because it requires independent random samples of the same size from normally distributed 

populations (Ott & Longnecker, 2010).  

  Procedures based on analyzing a transformation of the original response, y, have fared much better. 

The Levene (1960) approach of performing standard ANOVA with a pooled error term on transformed 

residuals to test the null hypothesis (1) is actually a family of techniques (Nordstokke & Zumbo, 2007). In 

between-subjects ANOVA models with J groups, the ordinary least squares (OLS) residuals can be 

calculated as: 

            eij = (𝑦𝑖𝑗 − 𝑦̅𝑗),             (2) 

where i = 1 to nj and j = 1 to J are subscripts for the ith subject nested in the jth group, respectively, nj is the 

sample size for the jth group, J is total number of groups, yij is the response for ith subject nested in the jth 

group, and 𝑦̅𝑗 is the mean for the jth group. 

  One approach suggested by Levene (L1) is to perform  standard ANOVA on the absolute values the 

residuals from 2 (|e|). This may be the most commonly used procedure because it the default test in many 

software including: SPSS EXAMINE, T-TEST, ONEWAY, and UNIANOVA; STATA ROBVAR; R 

LeveneTest and is available in SAS PROC GLM. Another approach suggested by Levene (L2) is to 

perform standard ANOVA on the squared residuals from 2 (e2). Miller (1968) showed that ANOVA on 

absolute values will be asymptotically incorrect if the population is not symmetric and that the problem can 

be corrected by using medians instead of means to center the variables. Therefore, Brown & Forsythe (1974) 

suggested a modification to Levene’s approach by performing standard ANOVA on the absolute value of 

differences from the group medians (BF): 

           dij = |𝑦𝑖𝑗 −𝑀𝑑𝑗|,            (3) 

where Mdj is the median for the jth group. 

 The O’Brien (OB) modification to the Levene family of procedures involves performing standard 

ANOVA on transformed squared residuals (e2):  

         uij =  
[(𝑊+𝑛𝑗−2)𝑛𝑗(𝑦𝑖𝑗−𝑦̅𝑗)

2]−[𝑊(𝑛𝑗−1)𝑠𝑗
2]

(𝑛𝑗−1)(𝑛𝑗−2)
 .       (4)  
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where 𝑠𝑗
2is the sample variance for the jth group. O’Brien (1979, 1981) noted that the choice of the value 

for W is rarely critical but suggested W=0.5 because the group means of the transformed data are the group 

variances. This is used as the default in SAS PROC GLM HOVTEST=OBRIEN. It should be noted that if 

W=0 is used then equation (4) reduces to  

          uij(W=0) =  
𝑛𝑗(𝑦𝑖𝑗−𝑦̅𝑗)

2

(𝑛𝑗−1)
  ,          (5) 

which in an ANOVA model with no additional covariates can be shown to be equal to:  

          uij(W=0) =  
(𝑦𝑖−𝑦̂𝑖)

2

(1−ℎ𝑖𝑖)
 ,           (6) 

where hii is the ith diagonal element of the hat matrix (H = X(X′X)-1X′). Keyes and Levy (1997) proposed 

a modification by taking the square root of the transformed values (6) produced by the O’Brien procedure 

with W=0 (OBW=0). It should be noted that with equal sample sizes (nj) the transformation in equations 5 

and 6 are the same for each group: 

           (1-hii) = (nj-1)/nj ,  
and thus, a linear transformation of e or e2.Therefore, in a between-subjects ANOVA with equal sample 

sizes and no additional covariates, the O’Brien procedure with W=0 is equivalent to the L2 test, and the 

Keyes-Levy (KL) procedure is equivalent to the L1 test. To our knowledge, the O’Brien family of 

procedures can only be found in SAS PROC GLM. 

  Brown and Forsythe’s (1974) suggestion of using trimmed means to center the data and taking the 

absolute value. This is a popular modification of these approaches and is available in SPSS EXAMINE, 

T-TEST, ONEWAY, and UNIANOVA; STATA ROBVAR; and R LeveneTest. Keselman et al. (2008) 

suggested using asymmetric trimming of the means in situations where the residuals are skewed; however, 

this procedure is not available in any known software. 

  Another modification often suggested is to use the separate variance approach to ANOVA and apply 

adjustments for the denominator degrees-of-freedom (e.g., Welch, 1951) to these test statistics (e.g., 

Beasley, 1995; Keselman et al., 1979). Ramsey (1994) suggested a conditional procedure based on the use 

of either BF or OB method, conditional on a test of kurtosis; however, Zimmerman (2004) has warned that 

using a conditional test to select “the appropriate” subsequent test is problematic. Wang et al. (2017) 

reported that Lim and Loh’s (1997) approach of applying bootstrapping to the BF to obtain p-values 

maintained adequate test size. However, Keselman et al. (2008) suggested that bootstrapping is not 

necessary because satisfactory Type 1 error rates for BF can be obtained without bootstrapping. 
 

Non-Parametric (Rank-Based) Tests for Heteroscedasticity for Between-Subjects Designs. 

  The Conover (1971) squared ranks test, originally proposed by Taha (1964), is a non-parametric version 

of the parametric Levene's tests for equality of variance. Procedurally, the absolute deviations from the 

sample means (i.e., L1) are ranked then squared: 

         Cij   = (RANK(|(𝑦𝑖𝑗 − 𝑦̅𝑗)|)
2.          (7) 

Although Conover and Iman (1987) developed exact tables for using the squared ranks procedure, it is more 

common to perform a test similar to the Wilcoxon Rank Sum test on these squared ranks: 

         CN = 
∑ 𝑛𝑗(𝐶̅𝑗−𝐶∗̅)

2𝐽
𝑗=1

∑ (𝐶𝑖𝑗−𝐶̅∗)
2/(𝑁−1)𝑁

𝑖=1

 ,          (8) 

where Cij is the transformed value for ith subject nested in the jth group, and 𝐶𝑗̅ is the mean for the jth group, 

𝐶∗̅ is the overall of mean of the transformed scores, and N is the total sample size, N=Σnj. This test statistic 

approximates a chi-square distribution with J–1 dfs. To our knowledge, the Conover squared ranks can only 

be found in SAS PROC NPAR1WAY. 

 Fligner and Killeen (1976) proposed several procedures as non-parametric tests for homogeneity of 

group variances based on ranks. The most widely used version of the Fligner Killen (FK) approach employs 

the BF approach of calculating absolute values of median centered samples (2), ranking these values,  

         Kij   = (RANK(|(𝑦𝑖𝑗 −𝑀𝑗)|).           (9) 

and then weighting these ranks: 

          Aij = Φ-1[(1+(Kij/(N+1)))/2] ;              (10) 
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where Φ-1 is the inverse cumulative density function of the normal distribution. The FK test statistic is 

calculated as: 

          FK = 
∑ 𝑛𝑗(𝐴̅𝑗−𝐴̅∗)

2𝐽
𝑗=1

∑ (𝐴𝑖𝑗−𝐴̅∗)
2/(𝑁−1)𝑁

𝑖=1

 ,               (11) 

where  Aij is the transformed value for ith subject nested in the jth group, and 𝐴̅𝑗 is the mean for the jth group, 

and 𝐴̅∗ is the overall of mean of the transformed scores. This test statistic also approximates a chi-square 

distribution with J–1 dfs. To our knowledge, FK can only be found in the R package fligner.test. 

 Nordstokke and Zumbo (2010) proposed non-parametric rank-based Levene test (NPL) that involves 

simply ranking the pooled data and performing the L1 test on the ranks. Shear, Nordstokke, and Zumbo 

(2018) demonstrated that sampling from populations with unequal means can lead to incorrect Type 1 error 

rates when error distributions are asymmetric. Given the novelty of this approach, it is not available in any 

commercially available statistical software. 
 

Linear Regression Model Based Generalizations of Tests for Heteroscedasticity 

  Levene’s approach of analyzing the squared residuals was generalized to linear regression models by 

Breusch and Pagan (1979). The Breusch-Pagan (BP) method uses the likelihood function to obtain a 

Lagrange multiplier score test. Specifically, the BP procedure takes the residuals from the original linear 

model: 

    Statistical Model 1:   y = XB + e  

takes the residual, which in the case of ANOVA models with no covariates is the same a subtracting the 

group means from each value of y (equation 2), squares the residual, and transforms it as follows: 

            g = e2/(SSE(1)/N)  

where  SSE(1) is the Error Sum of Squares from Model 1 and N is the total sample size. This transformation 

results in the mean of the transformed data equaling one, 𝑔̅ = 1. Typically, a linear model with the same 

design matrix (X) is performed on the transformed data: 

   Statistical Model 2:    g = XB + u       

The BP test statistic is calculated as: 

            χ2
(BP) = ½SSM(2) ;                (12) 

where SSM(2) is the Model Sum of Squares from Model 2. This test approximates a chi-square distribution 

with k dfs, where k is the number of predictors in Model 2, which equals the number of groups minus one 

(J-1) for reference cell regression for between-subjects ANOVA models without additional covariates.  

  Since the BP test has been shown to be sensitive to departures from the linear model normality 

assumption, Koenker (1981) proposed a studentized version of this test (BPS):  

            χ2
(K) =NR2

(2)                          (13) 

where R2
(2) is the R2 from Model 2. This test also approximates a chi-square distribution with k dfs. 

Woolridge (2012) suggested a modified BP tests by using the F-test from Model 2. We note that the BP 

transformation is a linear transformation of e2, and thus, the R2 and F-tests for Model 2 would be the same 

whether the analysis is performed on e2 or g. Therefore, in the context of ANOVA models, the modified 

BP F-test is identical the Levene approach of performing ANOVA on the squared residuals (L2) and the 

Koenker studentized version is equivalent to the White’s (1980) test for heteroscedasticity for two-group 

comparisons and simple regression. 
 

Test for Heteroscedasticity using Generalized Linear Models  

Recently, Western and Bloome (2009) advocated the use of Variance Function Regression (VFR) to 

examine heteroscedasticity. VFR uses a generalized linear model with the squared residuals (e2) as the 

response with a log link function. A gamma distribution is used as the assumed distribution to account to 

the right-skewed nature of e2. Although this approach sounds promising (Ng & Cribbie, 2017), it has only 

been evaluated in limited number of research applications.  
 

Methods 

 We performed a simulation study to investigate how these methods for testing heteroscedasticity 

perform in a between-subjects one-way ANOVA model with J=2 groups. We anticipate that these results 

will generalize to other one-way between-subjects ANOVA models. We compared these tests under three 

distributional and several sample size conditions. To verify computations and results, the first author 

performed simulation using R and the second author used SAS/IML. Following the work of Nordstokke 
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and Zumbo (2010) and Shear et al. (2018), we varied both Total Sample Size (N) and Sample Size Ratio of 

the two groups (n1/n2). The empirical Type 1 Error Rates (i.e., Test Size) were evaluated at two statistical 

significance levels, α = 0.05 and 0.01. The Empirical Power was evaluated under conditions where the tests 

maintained Test Size. Each sample size by distribution condition simulation employed 10,000 replications. 
 

Distributions 

  Independent errors (ε) from the unit normal distribution with homoscedastic variances (i.e., each group 

has a population variance of one; σ2
j = 1) were generated to evaluate Type 1 Error Rates (i.e., Test Size) for 

each test under conditions that meet all model assumptions. A symmetric, heavy tailed error distribution 

was employed to evaluate how kurtosis affects the statistical properties of these tests when symmetry holds. 

We chose a t-distribution with 10 dfs (t(10)), which has a skewness of g3=0 and excess kurtosis of g4=1, to 

examine how slight non-normality affect these tests. A chi-square distribution with df=1 (χ2
(1); g3=2.83; 

g4=12) was generated to evaluate how each test performs with an extreme violation of the normality 

assumption.  

  The first author used R functions to generate each distribution and standardized the variables to have a 

zero mean and unit variance using the expected means and standard deviations of each distribution. The 

second author used the SAS/IML RANNOR function and Headrick’s (2004) polynomial method of 

generating non-normal data with zero mean and unit variance. 
 

  Between-Subjects (one-way ANOVA) Designs 

  Following the work of Nordstokke and Zumbo (2010) and Shear et al. (2018), we varied both Total 

Sample Size (N) and Sample Size Ratio of the two groups (n1/n2). Both Balanced (equal sample sizes with 

Sample Size Ratio of 1:1) and Unbalanced Designs with Sample Size Ratios of 2:1 and 3:1 were 

investigated. Although we have used several total sample sizes, we have reported the results for four N’s 

that we think are representative.  
 

Tests 

 The parametric. rank-based (non-parametric), and model-based tests previously reviewed were 

compared. The parametric tests use Levene’s (1960) family of methods that perform standard ANOVA 

with a pooled variance error term to transformations of centered data. This includes: the absolute value of 

residuals method (L1); the Keyes and Levy (1997) modification of L1 (KL); Levene’s (1960) squared 

residuals method (L2); the O’Brien (1979, 1981) family of tests with W=0 and 0.5 (OB); the Brown and 

Forsythe (1974) method of centering the data with medians (BF) and centering the data with 10% symmetric 

trimmed means (TM10) then taking absolute values. Since, several investigators (e.g., Keselman et al., 2008; 

Mara & Cribbie, 2017) have suggested that using an error estimated with a separated variance approach 

and applying Welch adjusted dfs may improve the performance of tests for homogeneity of variances, and 

therefore, this modification is evaluated for L1, KL, L2, the OB tests, BF, and TM10. The non-parametric 

tests included: Conover’s square ranks test (CN); the Fligner and Killeen (1976) test (FK); and the non-

parametric Levene test (NPL) proposed by Nordstokke and Zumbo (2010). We evaluated the Breusch-

Pagan (BP) and Koenker’s (1981) studentized BP (BPS) generalizations of L2. We also evaluated VFR 

because it has only been evaluated in limited number of research applications.  
 

Results 

  Given the large number of evaluations performed, a Bonferroni correction factor of 50 was used, and 

thus, α=0.001 (i.e., 0.05/50) was used to obtain a critical value from the normal distribution and build 

simultaneous confidence intervals (CIs) for the empirical Type 1 error rejection rates. Given 10,000 

replications the standard error for Type 1 error rejection rates at α=0.05 is 0.00217945. Using the Bonferroni 

correction factor of 50, the half-width of the CIs is 0.007, and therefore, empirical Type 1 error rejection 

rates above 0.057 were considered “significant” inflations of Test Size and are in red in the Tables. This 

reflects that the procedure does not provide a valid, usable tests. By this same process, rejection rates below 

0.043 were considered “significant” suppressions of Test Size and are italicized, which reflects the 

procedure provides a usable but potentially conservative test. Procedures that maintain an adequate test size 

are bolded, indicating a valid, usable procedure. Our tables highlight rejection rates at the α=0.05 

significance level, results for α=0.01 were similar and appear as supplementary tables.   
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Table 1. Empirical Type 1 Error Rates at α=0.05 for Total Sample Size of N=24. 

Sample Size Ratio  1:1   2:1   3:1  

Sample Sizes n1 = 12  n2 = 12 n1 = 16  n2 = 8 n1 = 18  n2 = 6 

Distribution Normal t(10) χ2
(1) Normal t(10) χ2

(1) Normal t(10) χ2
(1) 

Pooled Tests          

L1 
6.02 6.04 21.58 

6.48 6.62 20.88 5.68 5.62 19.38 

KL* 6.71 6.74 21.03 6.33 6.59 20.13 

L2 
4.84 4.62 6.78 

4.76 4.70 7.41 4.08 4.32 9.04 

OBW=0* 5.31 5.23 7.92 5.61 6.15 10.16 

OBW=0.5 3.84 3.38 5.40 4.12 3.93 6.27 4.08 4.06 7.02 

BF 3.90 3.85 5.06 4.20 4.24 5.10 3.77 3.71 5.40 

TM10 5.35 5.24 9.54 5.93 5.87 10.49 5.17 4.91 10.23 

Welch df Tests          

L1(W) 
5.72 5.63 20.12 

7.74 7.63 22.35 9.85 10.06 26.70 

KL(W) * 7.18 7.15 21.72 8.38 8.57 25.39 

L2(W) 
4.11 3.67 5.41 

7.16 6.47 7.19 11.83 11.16 10.61 

OBW=0(W) * 6.30 5.75 6.85 9.88 9.32 9.67 

OBW=0.5(W) 3.11 2.62 4.32 5.14 4.74 5.75 8.38 7.84 7.97 

BF(W) 3.69 3.54 4.46 5.54 5.38 6.37 7.54 7.72 10.19 

TM10(W) 5.13 4.95 8.72 7.07 6.92 12.50 9.02 9.11 16.03 

Rank-Based Tests          

NPL 4.57 4.57 4.77 5.14 5.14 5.30 4.73 4.73 4.82 

CN 5.76 5.89 38.79 6.18 6.46 36.69 6.09 6.50 35.12 

FK 3.79 3.89 12.56 4.22 4.33 12.37 3.78 3.82 12.58 

Model Based Tests          

BP 4.82 7.73 36.55 3.94 6.26 30.72 2.94 4.67 16.68 

BPS 5.24 4.88 7.03 5.08 4.99 7.69 4.30 4.55 9.28 

VFR 8.17 11.04 41.68 9.04 11.77 41.84 9.66 11.92 41.88 

Note: * When Sample Sizes are equal, KL is equivalent to L1 and OBW=0 is equivalent to L2. 
 

Type 1 Error 

  Tables 1 through 4 report the Empirical Type 1 Error Rates for four different total samples sizes and 

three different sample size ratios. With Normally distributed errors, both parametric and non-parametric 

tests showed occasional slight Test Size inflations with a small sample size of N=24 in both balanced 

(sample size ratio 1:1) and unbalanced designs. These Type 1 Error Rates improved with larger sample 

sizes. The BP and studentized BP (BPS) performed well under normal error distributions. By contrast, VFR 

inflated Test Size with smaller sample sizes and only maintained Type 1 Error Rates with the larger sample 

size (N ≥ 192). 

  The symmetric but heavy-tailed errors sampled from the t(10) distribution had little effect on the Type 1 

Error Rate of the parametric and rank-based tests. For the BP and VFR, however, Test Size was inflated 

with rejection rates around 10% for α=0.05 regardless of sample size. The studentized version of BP (BPs) 

maintained appropriate Type 1 Error Rates. 

 With skewed errors sampled from the χ2
(1) distribution, LV1, TM10, and rank-based CN and FK tests 

drastically inflated test size. Interestingly, the newly proposed NPL did not demonstrate inflated rejection 

rates. Again, BP and VFR inflated Test Size with rejection rates around 40% for α=0.05 regardless of sample 

size., while the studentized version of BP (BPs) maintained appropriate Type 1 Error Rates. It should be 

noted that applying Welch adjusted dfs to the tests, did not substantially improve Test Size inflation, and in 

fact, with skewed residuals made the inflations worse. Also, with small sample size of N=24, only BF and 

NPL maintained reasonable Type 1 Error Rates in every condition simulated.  
 

Power 

  Table 5 reports the Empirical Type 1 Error Rates and Power for all tests with Normally distributed 

errors and a relatively large total sample size of N=240. As can be seen, the Test Size was maintained for  
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Table 2. Empirical Type 1 Error Rates at α=0.05 for Total Sample Size of N=36. 

Sample Size Ratio  1:1   2:1   3:1  

Sample Sizes n1 = 18  n2 = 18 n1 = 24  n2 = 12 n1 = 27  n2 = 9 

Distribution Normal t(10) χ2
(1) Normal t(10) χ2

(1) Normal t(10) χ2
(1) 

Pooled Tests          

L1 
5.59 5.65 20.65 

5.48 5.47 19.73 5.55 5.49 18.31 

KL* 5.57 5.59 20.15 5.77 5.94 18.83 

L2 
4.96 4.60 6.00 

4.63 4.30 5.89 4.20 4.17 6.01 

OBW=0* 4.89 4.66 6.06 5.05 5.12 7.03 

OBW=0.5 4.26 3.95 5.20 4.27 3.91 5.24 4.26 4.25 5.69 

BF 4.01 3.98 5.07 4.13 4.06 4.63 3.68 3.52 3.80 

TM10 5.19 5.28 10.94 5.16 5.04 9.12 5.36 5.25 9.61 

Welch df Tests                   

L1(W) 
5.40 5.44 19.82 

6.71 6.66 21.32 8.12 8.51 24.18 

KL(W) * 6.17 6.19 20.94 7.17 7.39 23.09 

L2(W) 
4.53 4.13 5.30 

6.97 6.59 7.15 10.67 10.30 10.05 

OBW=0(W) * 6.17 5.83 6.95 8.98 8.81 9.31 

OBW=0.5(W) 3.89 3.56 4.50 5.56 5.14 6.05 8.16 7.91 8.47 

BF(W) 3.90 3.81 4.71 4.94 5.10 6.68 5.81 6.23 8.88 

TM10(W) 5.02 5.06 10.44 6.16 6.07 11.02 7.78 7.94 15.36 

Rank-Based Tests                   

NPL 4.38 4.38 4.52 4.87 4.87 4.92 5.18 5.18 5.02 

CN 5.63 5.71 43.95 5.45 5.71 42.11 5.63 5.73 39.57 

FK 3.88 4.04 13.39 3.98 4.00 13.84 3.62 3.69 9.96 

Model Based Tests                   

BP 4.99 8.75 37.82 4.14 7.34 35.07 3.48 5.85 29.14 

BPS 5.24 4.81 6.25 4.84 4.52 6.09 4.37 4.32 6.33 

VFR 7.21 10.34 40.53 7.19 10.11 40.32 7.88 10.71 39.91 

Note: * When Sample Sizes are equal, KL is equivalent to L1 and OBW=0 is equivalent to L2. 
 

all tests under these “ideal” conditions, which makes the Power of the tests comparable. With a balanced 

design (sample ratio 1:1), VFR demonstrated a slight power advantage over other tests, such as BP, BPS, 

L2, and the OB tests. L1 and BF had similar, but lower Power. Welch adjustments did not enhance Power 

for these tests with equal sample sizes. The non-parametric tests had even less Power with NPL showing 

the lowest rejection rate. With unbalanced designs, VFR no longer demonstrated an advantage in power. In 

fact, L2, the OB tests, BP, and BPs had similar power rates and slightly more power than VFR and notably 

more power than L1, KL, BF, and TM10. Importantly, Welch adjustment of the dfs did enhance Power for 

these tests depending on the pairing of the variances and sample sizes . With negative variance-sample size 

pairing (i.e., group with smaller nj has the larger variance), Welch df adjustment decreased power for these 

tests. By contrast, Welch df adjustment increased power with positive variance-sample size pairing (i.e., 

group with larger nj has the larger variance).  

 Tables 6 and 7 report the Empirical Type 1 Error Rates and non-null rejection rates for all tests with 

skewed residuals sampled from a χ2
(1) error distribution for a Total Sample Sizes of N=60 and 84, 

respectively. The L1, KL, TM10 CN, FK, BP, and VFR inflated test size, and therefore, the rejection rates 

for these procures under non-null conditions are not considered valid estimates of empirical power. Also, 

L2 and OBW=0 showed a slight test size inflation with 3:1 sample size ratio for N=60.  

  Of the eligible tests NPL showed superior power; however, there are issues to consider with this 

approach, which will be discussed later. Among the other eligible tests, BF showed more power than tests 

based on squared residuals (L2. OB, BPS) with equal sample sizes. Although Welch ANOVA applied to L2, 

OB, and BF maintained test size, these procedures did not enhance power. For unbalanced designs where 

the smaller group had the larger variance (i.e., negative pairing), tests based on squared residuals had similar 

power to BF. For positive pairing of sample size and variance (i.e., larger group has larger variance), BF  
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Table 3. Empirical Type 1 Error Rates at α=0.05 for Total Sample Size of N=96. 

Sample Size Ratio  1:1   2:1   3:1  

Sample Sizes n1 = 48  n2 = 48 n1 = 64  n2 = 32 n1 = 72  n2 = 24 

Distribution Normal t(10) χ2
(1) Normal t(10) χ2

(1) Normal t(10) χ2
(1) 

Pooled Tests          

L1 
5.46 5.47 19.32 

4.98 5.13 18.86 4.92 4.82 18.37 

KL* 5.09 5.20 18.94 4.90 4.99 18.63 

L2 
5.36 4.89 4.62 

4.87 4.72 5.18 4.65 4.48 5.01 

OBW=0* 5.10 4.88 5.61 5.10 4.87 5.33 

OBW=0.5 5.05 4.64 4.33 4.81 4.59 5.19 4.85 4.60 5.01 

BF 4.89 4.84 5.22 4.39 4.49 4.62 4.28 4.21 4.63 

TM10 5.40 5.31 10.14 4.91 4.87 8.72 4.84 4.68 8.74 

Welch df Tests          

L1(W) 
5.45 5.45 19.17 

5.44 5.58 21.37 5.88 6.16 21.23 

KL(W) * 5.39 5.42 21.20 5.60 5.85 20.95 

L2(W) 
5.28 4.81 4.39 

5.57 5.44 9.20 7.62 8.23 9.54 

OBW=0(W) * 5.28 5.19 8.75 6.99 7.35 9.06 

OBW=0.5(W) 4.98 4.48 4.12 5.17 4.95 8.32 6.66 7.12 8.79 

BF(W) 4.89 4.80 5.16 4.68 4.81 7.47 5.08 5.49 7.88 

TM10(W) 5.37 5.29 10.00 5.27 5.37 11.81 5.67 5.97 12.08 

Rank-Based Tests          

NPL 4.98 4.98 4.70 4.95 4.95 5.14 4.64 4.64 4.80 

CN 5.30 5.45 58.73 5.19 5.17 52.79 4.85 4.99 53.58 

FK 4.78 4.64 21.27 4.47 4.60 17.01 4.25 4.31 18.39 

Model Based Tests          

BP 4.99 9.80 42.34 4.55 9.05 39.19 4.37 8.47 39.27 

BPS 5.42 5.01 4.71 4.94 4.80 5.27 4.76 4.49 5.06 

VFR 5.93 9.64 41.01 5.56 9.15 40.52 6.08 9.35 40.52 

Note: * When Sample Sizes are equal, KL is equivalent to L1 and OBW=0 is equivalent to L2. 
 

has the most power. Although Welch ANOVA applied to L2, OB, and BF enhanced power, it comes at the 

cost of inflated Test Size. 

Discussion 

  The results of this study are consistent with findings from previous similar investigations. Similar to 

Nordstokke and Zumbo (2007) and Conover et al. (1981), we found that one of the most commonly used 

tests, L1, and the KL modification of this approach suggested by Keyes & Levy (1997) drastically inflated 

Test Size when error distributions were skewed. Similarly, the procedure based on centering the data with 

10% symmetric trimming of the means also inflated Test Size when error distributions were skewed, which 

is consistent with the findings of Brown and Forsythe (1974). One might suggest that symmetric trimming 

is not appropriate for skewed data (Keselman et al., 2008); however, it should be noted that asymmetric 

trimming is not available is most software, and therefore, data analysts would have to program their own 

algorithm to attempt such a procedure. But asymmetric trimming of the means for skewed data as suggested 

by Keselman et al. (2008) does warrant attention.  

  Although L2, the OB tests, and BF showed some Test Size inflation with skewed error terms with the 

smallest sample size (N=24) used, these tests performed reasonably well with larger sample sizes, regardless 

of the shape of the error distribution (Ramsey, 1994) and sample size ratios (Boos & Brownie, 2004). It 

seems counterintuitive that squared residuals from a skewed error distribution (e.g., L2) would fare better 

than the absolute value of these residuals (e.g., L1). Squaring an already skewed distribution drastically 

increases the skewness and kurtosis. The absolute value can be defined as the square root of a squared 

value. Thus, taking the square root of a skewed distribution would reduce skewness, and therefore, it would 

seem that absolute values would perform better in statistical testing. This is not the case; however. Miller 

(1968) showed that ANOVA on absolute values will be asymptotically incorrect if the population is not 

symmetric and similar analysis on squared residuals could enlighten the phenomenon. 
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Table 4. Empirical Type 1 Error Rates at α=0.05 for Total Sample Size of N=192. 

Sample Size Ratio  1:1   2:1   3:1  

Sample Sizes n1 = 98  n2 = 98 n1 =128  n2 = 64 n1 =144  n2 = 48 

Distribution Normal t(10) χ2
(1) Normal t(10) χ2

(1) Normal t(10) χ2
(1) 

Pooled Tests          

L1 
5.22 5.20 18.22 

5.44 5.40 18.16 5.02 5.08 17.98 

KL* 5.37 5.39 18.32 5.16 5.25 17.99 

L2 
5.33 5.01 4.24 

4.94 4.64 4.56 4.63 4.48 5.07 

OBW=0* 5.02 4.72 4.67 4.95 4.75 5.32 

OBW=0.5 5.15 4.93 4.11 4.87 4.56 4.54 4.83 4.70 5.09 

BF 4.78 4.79 4.92 5.10 4.99 5.22 4.62 4.73 4.96 

TM10 5.08 4.97 8.77 5.42 5.28 9.30 4.95 4.93 9.00 

Welch df Tests          

L1(W) 
5.22 5.20 18.14 

5.63 5.62 18.36 5.37 5.49 19.41 

KL(W) * 5.57 5.65 18.35 5.10 5.26 19.16 

L2(W) 
5.32 4.98 4.14 

5.72 5.54 5.71 6.42 6.82 8.62 

OBW=0(W) * 5.66 5.43 5.58 6.07 6.50 8.34 

OBW=0.5(W) 5.15 4.86 4.03 5.53 5.27 5.46 5.84 6.31 8.04 

BF(W) 4.78 4.79 4.92 5.10 5.23 5.70 4.87 5.12 6.46 

TM10(W) 5.08 4.96 8.75 5.57 5.66 9.86 5.25 5.41 10.46 

Rank-Based Tests          

NPL 4.96 4.96 4.95 5.35 5.35 4.96 5.27 5.27 5.16 

CN 5.15 5.22 66.24 5.29 5.35 64.75 4.89 5.00 63.14 

FK 4.90 4.83 26.97 5.10 5.04 26.30 4.59 4.61 25.10 

Model Based Tests          

BP 4.96 10.48 43.51 5.06 10.15 42.51 4.59 9.64 41.20 

BPS 5.39 5.04 4.29 4.98 4.68 4.60 4.69 4.50 5.12 

VFR 5.47 9.66 41.25 5.72 9.65 40.62 5.34 9.52 40.08 

Note: * When Sample Sizes are equal, KL is equivalent to L1 and OBW=0 is equivalent to L2. 
 

 Despite suggestions from other investigators, applying Welch adjusted dfs to these tests, did not 

substantially improve Test Size inflation, and in fact, with skewed residuals and smaller sizes made the 

inflations worse; however, this approach increased power with positive variance-sample size pairing and 

symmetric error distributions. This is interesting because in ANOVA models for comparing means with 

negative variance-sample size pairing (i.e., group with smaller nj has the larger variance) the heteroscedastic 

standard error tends to be larger than the pooled standard error and the Welch procedure adjusts the 

denominator dfs downward drastically, which typically leads to less power. By contrast, with positive 

variance-sample size pairing (i.e., group with larger nj has the larger variance) the heteroscedastic standard 

error tends to be smaller than the pooled standard error and the Welch procedure adjusts the denominator 

df s downward slightly, which can lead to more statistical power. 

  We also demonstrated that the originally proposed BP test and VFR are highly sensitive to deviations 

from normality. In fact, sampling error terms from a symmetric but slightly non-normal distribution, t(10), 

led to substantial Test Size inflation and sampling error terms from a skewed distribution led to drastic Test 

Size inflation. However, the rejection rates did not substantially increase with sample size suggesting that 

these procedures are sensitive to departure from normality but are not testing a different null hypothesis. 

Although the studentized BP showed Test Size inflation with skewed error terms and the smallest sample 

size (N=24), it performed well in most other conditions. Perhaps with smaller sample sizes, some form of 

randomization test performed on squared residuals might be preferable.  

  Among the non-parametric rank-based tests, the Conover squared ranks test performed poorly with 

skewed error distribution and with a small sample size, even under symmetric distributional conditions. 

Although Conover et al. (1981) suggested FK as a procedure robust against departures from normality, it 

did inflate Test Size with skewed error distributions. With skewed error distributions, both CN and FK had 

consistently high rejection rates that increased with total sample size, N. When rejection rates increase with   
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Table 5. Empirical Type 1 Error and Power at α=0.05 for Total Sample Size of N=240 with Normal Error 

Distributions. 

Sample Size Ratio  1:1   2:1   3:1  

Sample Sizes n1=120  n2=120 n1=160  n2 = 80 n1=180  n2 = 60 

Variances 

Pooled Tests 

σ2
1=1 

σ2
2=1 

σ2
1=1 

σ2
2=1.5 

σ2
1=1 

σ2
2=1.7 

σ2
1=1 

σ2
2=1 

σ2
1=1 

σ2
2=1.7 

σ2
1=1.7 

σ2
2=1 

σ2
1=1 

σ2
2=1 

σ2
1=1 

σ2
2=1.7 

σ2
1=1.7 

σ2
2=1 

L1 
4.89 53.79 76.61 

5.01 72.04 71.03 4.74 65.68 62.22 

KL* 4.91 72.98 69.79 4.77 67.43 60.42 

L2 
4.88 58.49 80.94 

4.52 77.90 73.93 4.62 72.28 63.42 

OBW=0* 4.59 78.85 72.83 4.62 74.06 61.42 

OBW=0.5 4.81 58.22 80.62 4.55 78.56 72.51 4.55 73.76 61.16 

BF 4.66 52.78 75.88 4.70 70.70 70.52 4.52 63.80 62.26 

TM10 4.86 53.63 76.49 5.02 71.78 71.00 4.71 65.26 62.28 

Welch df Tests                   

L1(W) 
4.89 53.78 76.56 

5.08 66.66 75.56 5.10 56.45 70.68 

KL(W) * 5.10 67.55 74.72 5.03 58.23 68.81 

L2(W) 
4.85 58.45 80.92 

5.26 69.18 82.00 6.11 56.45 78.67 

OBW=0(W) * 5.13 70.31 81.14 5.71 58.36 77.22 

OBW=0.5(W) 4.76 58.18 80.57 5.06 69.92 80.89 5.60 57.63 76.91 

BF(W) 4.66 52.77 75.87 4.84 65.07 75.27 4.82 53.63 70.42 

TM10(W) 4.86 53.62 76.45 5.03 66.42 75.62 5.02 55.65 70.72 

Rank-Based Tests                   

NPL 4.92 40.12 60.51 4.75 53.33 57.76 4.69 45.70 51.76 

CN 5.12 48.53 71.00 4.81 64.79 66.46 4.67 57.31 59.08 

FK 4.74 51.46 74.27 4.56 68.77 69.39 4.43 61.43 61.37 

Model Based Tests                   

BP 4.91 59.23 81.97 4.56 78.72 75.29 4.45 73.19 64.86 

BPS 4.91 58.60 80.99 4.56 77.96 74.04 4.65 72.34 63.57 

VFR 5.18 60.02 82.42 4.88 76.78 78.80 4.91 69.48 71.72 

Note: * When Sample Sizes are equal, KL is equivalent to L1 and OBW=0 is equivalent to L2. 
 

sample size, it suggests that sample size is “powering” the tests. This implies that these rank-based tests are 

testing a different null hypothesis when there are skewed error distributions. It is likely that these procedures 

are testing a different null hypothesis of “stochastic homogeneity” (Vargha & Delaney, 1998) or 

equivalence of distribution functions (Lehman, 1975) rather than equivalence of variances (equation 1). 

  The non-parametric Levene (NPL) test (Nordstokke & Zumbo, 2010) performed surprisingly well in 

all conditions. Shear, Nordstokke, and Zumbo (2018), however, demonstrated that sampling from 

populations with unequal and unknown means can lead to incorrect (either inflated or decreased, depending 

on the magnitude of the mean separation) Type I error rates of the NPL test when error distributions are 

asymmetric. Furthermore, centering samples using either sample means, or medians did not correct the 

Type 1 error rates. We conducted a small simulation study to investigate this phenomenon and were able 

to reproduce their findings. This again implies issues with the null hypothesis being tested by rank-based 

tests. Given that the FK did not show the extreme inflations show by CN and that NPL performed well in 

many conditions, perhaps some method using aspects of each approach could provide a “good” non-

parametric test for heteroscedasticity.  

  Due to the robustness of OLS, if the normality assumption holds for the ANOVA model for mean 

response, then the Levene family of procedures that perform ANOVA on a transformation of the residuals 

is generally robust, despite the fact that the L1, L2, BF, and OB transformations result in an asymmetric 

response variable (e.g., |e|; e2; d; u). However, if the original response variable, y, has a skewed error term 

then these transformed response variables are highly skewed. To demonstrate this, we generated 10,000 

replications of a response variable, y, with normally distributed errors for two samples of nj = 100: one with 

a mean of µ1 = 0 and variance of 𝜎1
2 = 1 and a second group with a mean of µ2 = 0 and variance of 𝜎2

2 = 3.  
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Table 6. Rejection Rates under Null and Non-Null Variance Structures at α=0.05 for Total Sample Sizes 

of N=60 with Skewed (χ2
(1)) Error Distributions. 

Sample Size Ratio  1:1   2:1   3:1  

Sample Sizes n1= 30  n2=30 n1 = 40  n2 = 20 n1= 45  n2 = 15 

Variances 

Pooled Tests 

σ2
1=1 

σ2
2=1 

σ2
1=1 

σ2
2=2 

σ2
1=1 

σ2
2=3 

σ2
1=1 

σ2
2=1 

σ2
1=1 

σ2
2=3 

σ2
1=3 

σ2
2=1 

σ2
1=1 

σ2
2=1 

σ2
1=1 

σ2
2=3 

σ2
1=3 

σ2
2=1 

L1 
19.72 33.78 51.34 

19.41 50.87 45.20 18.22 46.87 38.85 

KL* 19.65 52.21 43.98 18.43 48.70 37.29 

L2 
4.97 10.35 18.51 

4.91 28.62 7.21 5.74 30.95 3.16 

OBW=0* 5.25 29.51 6.97 6.14 32.46 3.02 

OBW=0.5 4.51 9.52 17.11 4.72 27.83 6.47 5.54 30.38 2.71 

BF 5.01 12.86 25.57 5.05 28.70 16.18 4.60 26.86 10.17 

TM10 10.82 21.87 36.96 10.55 39.16 28.40 8.76 34.72 20.93 

Welch df Tests                   

L1(W) 
19.46 33.42 50.92 

21.08 40.49 56.56 22.30 32.92 58.51 

KL(W) * 20.78 41.40 55.41 21.62 34.10 56.80 

L2(W) 
4.61 9.59 17.28 

6.58 10.06 27.84 9.78 7.63 34.42 

OBW=0(W) * 6.39 10.29 27.06 9.28 7.98 32.94 

OBW=0.5(W) 4.20 8.92 16.09 5.99 9.27 25.85 8.72 6.88 31.80 

BF(W) 4.80 12.48 24.89 6.25 14.02 33.64 7.98 8.63 37.45 

TM10(W) 10.55 21.44 36.56 11.71 26.96 43.62 12.83 18.44 45.86 

Rank-Based Tests                   

NPL 4.93 87.77 96.96 4.85 88.35 98.14 4.89 77.08 97.14 

CN 51.12 63.95 77.81 50.03 74.22 74.66 47.26 69.11 69.86 

FK 16.53 28.61 43.61 16.51 39.51 41.16 13.85 31.97 36.87 

Model Based Tests                   

BP 40.71 53.35 67.01 39.12 63.35 64.47 35.63 57.37 59.88 

BPS 5.10 10.52 18.86 5.07 28.97 7.57 5.81 31.20 3.27 

VFR 40.65 53.10 66.81 40.59 61.68 68.31 39.70 54.95 67.82 

Note: * When Sample Sizes are equal, KL is equivalent to L1 and OBW=0 is equivalent to L2. 
 

The L1, KL, L2, OBW=0 , OBW=0.5, and BF transformations were computed. We then generated samples with 

skewed errors sampled form a chi-square distribution with df=1.  

  Table 8 shows the Mean, Variance (s2), Skewness (g3), excess Kurtosis (g4) for all 1,000,000 generated 

cases (10,000 replications of sample size of 100) for both samples. As can be seen in the left side of the 

table, the original response variable, y, has a means of 0 with variances of 𝑠1
2 = 1 and 𝑠2

2 = 3, respectively, 

and virtually no skewness or excessive kurtosis. As would be expected from distributional theory, 

transformations based on squared residuals (L2, OB) from a central unit normal distribution approximates 

a chi-square distribution with df=1. For Group 1 (top left panel), these transformations have mean of 1 (df); 

variance of 2 (2df), skewness of 2.83, and excess kurtosis of 12. For the transformations based on absolute 

values (L1, KL, BF), the variables approximate a chi distribution. In this case, BF is virtually equivalent to 

L1 and KL because the median equals the mean in a symmetric distribution such as the normal. For Group 

2 (bottom left panel), transformations based on squared residuals (L2, OB) from a central normal 

distribution with 𝜎2
2 = 3 approximates the shape of a chi-square distribution with df=1; skewness 

approximately 2.83, and excess kurtosis approximately 12. The means of these transformations are 

approximately equal to the variance of y, (e.g., mean of OB ~ 𝜎2
2 = 3, and the variance of these 

transformation is approximately 18, 2df(𝜎2
2)2. 

  For the results on the right side of the table, data were generated from a standardized Chi-Square 

distribution with df=1. As can be seen, the original response variable, y, has a means of 0 with approximately 

the expected skewness of 2.83 and excess kurtosis of 12, and variances of 𝑠1
2 = 1 and 𝑠2

2 = 3, respectively, 

as assured by the Headrick (2002) method. Transforming a skewed variable by centering then squaring or 

taking absolute value creates variables with inflated variances. As compared to residuals sampled from a 

central unit normal, squaring residuals (L2, OB) from an extremely skewed distribution retains the means   
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Table 7. Rejection Rates under Null and Non-Null Variance Structures at α=0.05 for Total Sample Sizes 

of N=84 with Skewed (χ2
(1)) Error Distributions. 

Sample Size Ratio  1:1   2:1   3:1  

Sample Sizes n1= 42  n2=42 n1 = 56  n2 = 28 n1= 63  n2 = 21 

Variances 

Pooled Tests 

σ2
1=1 

σ2
2=1 

σ2
1=1 

σ2
2=2 

σ2
1=1 

σ2
2=3 

σ2
1=1 

σ2
2=1 

σ2
1=1 

σ2
2=3 

σ2
1=3 

σ2
2=1 

σ2
1=1 

σ2
2=1 

σ2
1=1 

σ2
2=3 

σ2
1=3 

σ2
2=1 

L1 
19.31 39.69 61.87 

18.90 59.68 55.40 18.54 54.86 48.08 

KL* 18.90 60.63 54.49 18.82 56.70 46.60 

L2 
4.81 13.07 25.03 

4.95 34.80 10.87 5.22 36.77 4.28 

OBW=0* 5.14 35.66 10.53 5.57 38.19 4.14 

OBW=0.5 4.49 12.36 23.88 4.80 34.23 9.96 5.19 36.60 3.95 

BF 5.13 17.17 35.40 4.76 37.31 25.15 4.94 35.95 16.92 

TM10 9.51 25.36 46.03 9.62 47.36 37.76 8.71 42.80 29.04 

Welch df Tests                   

L1(W) 19.14 39.58 61.59 20.60 51.29 64.87 21.83 42.37 63.94 

KL(W) * 19.14 39.58 61.59 20.39 52.24 64.03 21.24 43.64 62.51 

L2(W) 4.52 12.43 23.99 6.55 13.10 36.15 9.75 9.36 41.86 

OBW=0(W) * 4.52 12.43 23.99 6.45 13.47 35.59 9.41 9.80 40.77 

OBW=0.5(W) 4.25 11.77 22.96 6.10 12.35 34.77 8.98 8.68 39.87 

BF(W) 5.03 16.92 34.99 6.24 21.78 43.09 7.70 14.43 44.48 

TM10(W) 9.38 25.04 45.72 10.90 34.73 52.13 12.03 24.35 52.44 

Rank-Based Tests                   

NPL 4.75 96.34 99.63 4.93 96.99 99.83 5.15 90.58 99.57 

CN 55.88 72.82 86.46 54.65 83.24 83.77 52.36 78.47 79.51 

FK 19.49 35.34 55.18 18.58 49.79 53.11 16.69 43.58 47.06 

Model Based Tests                   

BP 41.47 57.91 75.14 40.49 69.95 73.04 38.73 65.19 68.69 

BPS 4.93 13.16 25.41 5.02 35.12 11.21 5.35 37.09 4.39 

VFR 40.63 56.92 74.42 40.37 67.64 74.81 40.47 62.17 73.24 

Note: * When Sample Sizes are equal, KL is identical to L1 and OBW=0 is identical to L2. 
 

of approximately 1 and 3 for Groups 1 and 2, respectively; however, the variances are inflated from 

approximately 2 to over 13 for Group 1; and for Group 2, the variance increases from 18 to over 120. 

Interestingly, our previous simulations showed that with adequately large sample sizes, the squared 

residuals approaches maintained test size; thus, the variance inflation due to skewed residuals does not 

necessarily affect Type 1 error rate, but it can affect power depending on the variance-sample size 

configuration.  

  With skewed residuals, BF is no longer equivalent to L1 and KL. Consistent with many other studies, 

our previous simulations show that BF maintained test size while L1 and KL inflated Type 1 error rates 

with skewed residuals. Miller (1968) showed that ANOVA on absolute values of residuals will be 

asymptotically incorrect if the population is not symmetric, but indicated median centering will provide the 

correct variance. In the table above, BF had a smaller mean than L1 and KL, suggesting estimation bias. 

Furthermore, BF had a larger variance that L1 and KL, which implies the test size inflation demonstrated 

by L1 and KL may be due to an underestimation of the variance. 

  To investigate the sampling properties of these transformations, we calculated the average of Mean, 

Variance, Skewness, and excess Kurtosis for each sample over the 10,000 replications. Table 9 reports the 

Means and SDs for the Mean, Variance (s2), Skewness (g3), and excess Kurtosis (g4) calculated for each 

sample of nj = 100 across the 10,000 replications. With normally distributed errors, the means and variances 

are estimated with reasonable accuracy with relatively small SDs surrounding them. The skew and kurtosis 

for the squared residual transformations (L2, OB) tend be underestimated in the sample.  

  When the residuals are sampled from an extremely skewed error distribution, the mean of the squared 

residual transformations (L2, OB) are relatively accurate; however, SDs around these mean estimates are 

inflated compared to results under the normality assumption. The variances for these transformations are   
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Table 8. Mean, Variance (s2), Skewness (g3), and Kurtosis (g4) of each Response Variable over 10,000 

replications of nj = 100 (1,000,000) values for Normal and Chi-Square (df=1) Distributions. 

 Normal Distribution (0, 𝝈𝒋
𝟐) Standardized Chi-Square (χ2

(1)) 

Response Mean s2 g3 g4 Mean s2 g3 g4 

y -0.00018 1.00008 0.00183 -0.00315 0.00003 0.99998 2.81365 11.80644 

L1  0.79405 0.35944 0.99372 0.85796 0.68261 0.52378 4.20352 26.97209 

KL  0.79805 0.36307 0.99372 0.85796 0.68605 0.52907 4.20352 26.97209 

BF  0.79185 0.36837 0.99547 0.86054 0.60146 0.78833 3.44044 16.99818 

L2  0.98995 1.95592 2.80985 11.71095 0.98974 13.27553 13.62516 393.90418 

OBW=0  0.99995 1.99563 2.80985 11.71095 0.99974 13.54508 13.62516 393.90418 

OBW=0.5  0.99995 2.01584 2.80985 11.71100 0.99974 13.68220 13.62527 393.90505 

 Mean s2 g3 g4 Mean s2 g3 g4 

y -0.00033 3.00402 -0.00197 -0.00026 0.00037 3.00019 2.83133 12.15842 

L1  1.37569 1.08114 0.99363 0.86703 1.18217 1.57252 4.25127 28.05752 

KL  1.38262 1.09206 0.99363 0.86703 1.18813 1.58840 4.25127 28.05752 

BF  1.37187 1.10784 0.99544 0.87003 1.04158 2.36378 3.46728 17.55470 

L2  2.97367 17.68200 2.83984 12.28015 2.97005 122.75847 14.32639 413.82074 

OBW=0  3.00371 18.04102 2.83984 12.28015 3.00005 125.25096 14.32639 413.82074 

OBW=0.5  3.00371 18.22374 2.83984 12.28006 3.00005 126.51944 14.32648 413.82120 
 

drastically inflated with extremely large SDs. Again, BF had smaller means while having larger variances 

than L1 and KL. Furthermore, the SDs for the variances were larger than the SDs for L1 and KL.  

 Since means and variances are the critical components of the test statistics under investigation, we 

report their distributional properties to further investigate the sampling properties on these transformations. 

As can be seen in Table 10, the variance and non-normality of the distribution of the mean increase when 

the residuals are sampled from a skewed error distribution. For the transformations that employ absolute 

values (L1, KL, BF), the variance of the variance distribution increases substantially, while non-normality 

of the distribution of the variance increases slightly when the residuals are sampled from a skewed error 

distribution. Again, BF had a larger variance that L1 and KL, but had a slightly less skewed distribution. It 

is interesting that the distributions of L1 and KL have more skewness and kurtosis but less variance; 

however, this still implies the test size inflation demonstrated by L1 and KL is due to an underestimation of 

the variance. 

  Again, the means of the squared residual transformations (L2, OB) are relatively accurate; however, 

SDs around these mean estimates are inflated compared to results under the normality assumption. The 

variances for these transformations are drastically inflated with extremely large SDs when the residuals are 

sampled from an extremely skewed error distribution. This variance inflation is likely due to the extreme 

skewness (Skew(s2) ~ 17.8 for Group 1, σ2 = 1; Skew(s2) ~ 14 for Group 2, σ2 = 3) for the distributions of 

variances for the squared residual transformations (L2, OB) as compared the skewness of the variance 

distribution under normality (Skew(s2) ~ 1.2 for Group 1, σ2 = 1; Skew(s2) ~ 1.4 for Group 2, σ2 = 3). The 

fact the test for heterogeneous variance based on square residuals (L2, OB) are more robust than test based 

the absolute values of residuals (L1, KL), despite the noted differences in variances and distributional shape, 

warrants further investigation in the distributional properties of these tests. 
 

Recommendations 

 Although Test Size inflations were observed with smaller sample sizes, tests based on squared residuals 

(L2, the OB tests, BPs) performed well the most conditions simulated and are recommended because 

generalizing then to more complex statistical models is straightforward. One of the most commonly used 

tests, L1, and the KL modification of this approach suggested by Keyes & Levy (1997), cannot be 

recommended due to the drastically inflated Test Size when error distributions were skewed. Similarly, the 

trimmed means approach cannot be recommended due to drastically inflated Type 1 error rates. Although 

asymmetric trimming has been suggested (Keselman et al., 2008), this option is not available is many 

software, and therefore, data analysts would have to program their own algorithm to perform such a 

procedure.   
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Table 9. Means and Standard Deviations (SD) for the Mean, Variance (s2), Skewness (g3), and Kurtosis 

(g4) for each sample of nj = 100 computed over the 10,000 replications for each response variable with 

Normal and Chi-Square (df=1) Distributions. 

Normal Mean Variance (s2) Skewness (g3) Kurtosis (g4) 

Group 1 Mean SE(Mean) Mean(s2) SD(s2) Mean(g3) SD(g3) Mean(g4) SD(g4) 

y -0.00018 0.10065 0.99995 0.14352 0.00099 0.24065 -0.00392 0.47264 

L1 0.79405 0.06075 0.35934 0.06165 0.95973 0.26737 0.75309 1.11045 

KL 0.79805 0.06105 0.36297 0.06227 0.95973 0.26737 0.75309 1.11045 

BF 0.79185 0.06065 0.36838 0.06281 0.96131 0.26699 0.75595 1.11077 

L2 0.98995 0.14209 1.95528 0.72697 2.47145 0.71696 8.04552 6.18553 

OBW=0 0.99995 0.14352 1.99498 0.74173 2.47145 0.71696 8.04552 6.18553 

OBW=0.5 0.99995 0.14352 2.01539 0.74931 2.47145 0.71696 8.04552 6.18553 

Group 2 Mean SE(Mean) Mean(s2) SD(s2) Mean(g3) SD(g3) Mean(g4) SD(g4) 

y -0.00033 0.17421 3.00371 0.42348 -0.00166 0.24038 -0.00054 0.47641 

L1 1.37569 0.10393 1.08115 0.18292 0.95951 0.26899 0.75260 1.12559 

KL 1.38262 0.10446 1.09207 0.18477 0.95951 0.26899 0.75260 1.12559 

BF 1.37187 0.10371 1.10817 0.18681 0.96096 0.26942 0.75565 1.12791 

L2 2.97367 0.41924 17.68307 6.67686 2.47280 0.72898 8.08353 6.34150 

OBW=0 3.00371 0.42348 18.04211 6.81242 2.47280 0.72898 8.08353 6.34150 

OBW=0.5 3.00371 0.42348 18.22668 6.88212 2.47280 0.72898 8.08353 6.34150 

χ2
(1) Mean Variance (s2) Skewness (g3) Kurtosis (g4) 

Group 1 Mean SE(Mean) Mean(s2) SD(s2) Mean(g3) SD(g3) Mean(g4) SD(g4) 

y 0.00003 0.10116 0.99974 0.37615 2.46668 0.71333 7.99230 6.11124 

L1 0.68261 0.10604 0.51772 0.25253 3.48424 1.00186 16.21985 10.25452 

KL 0.68605 0.10658 0.52295 0.25509 3.48424 1.00186 16.21985 10.25452 

BF 0.60146 0.08960 0.78818 0.34153 2.98486 0.78696 11.17758 7.56060 

L2 0.98974 0.37239 13.26955 26.20130 5.79360 1.58126 39.63311 21.37640 

OBW=0 0.99974 0.37615 13.53898 26.73330 5.79360 1.58126 39.63311 21.37640 

OBW=0.5 0.99974 0.37615 13.67749 27.00678 5.79360 1.58126 39.63311 21.37640 

Group 2 Mean SE(Mean) Mean(s2) SD(s2) Mean(g3) SD(g3) Mean(g4) SD(g4) 

y 0.00037 0.17361 3.00005 1.12113 2.47370 0.72983 8.07091 6.37247 

L1 1.18217 0.18075 1.55540 0.76144 3.49326 1.02328 16.33284 10.59997 

KL 1.18813 0.18166 1.57112 0.76913 3.49326 1.02328 16.33284 10.59997 

BF 1.04158 0.15359 2.36383 1.01894 2.99358 0.80857 11.28490 7.88690 

L2 2.97005 1.10992 122.75408 246.65710 5.79571 1.60448 39.70314 21.72725 

OBW=0 3.00005 1.12113 125.24649 251.66524 5.79571 1.60448 39.70314 21.72725 

OBW=0.5 3.00005 1.12113 126.52777 254.23980 5.79571 1.60448 39.70314 21.72725 
 

  Welch df adjustment applied to L2 and the OB tests showed inconsistent Test Size. These modifications 

inflated Test size with sample size N < 100 with skewed errors in our simulations; however, these 

procedures increase power with symmetric error distributions and positive pairing of variances and sample 

sizes. Therefore, we do not recommend that Welch df adjustment be applied to L2 or the OB tests with 

smaller sample sizes. More research into the degree of skewness in context with sample size for these 

procedures to be robust needs to be conducted. In a preliminary investigation not reported, we found that 

with a total sample size of N=500 with a 3:1 sample size ratio (n1=375; n2=125), the Welch df correction 

applied to square residuals (L2; OB) did not maintain test size when residuals were sample from the χ2
(1) 

distribution. 

  Despite a slight advantage in power under ideal circumstances, the original BP and VFR cannot be 

recommended due to their sensitivity to even slight departures from normality. The FK and NPL rank-based 

tests performed well in a number of conditions simulated, however, more work in the area non-parametric 

tests of homogenous variances is needed.  

  As previously mentioned, another reason that methods based on squared residuals, namely the 

studentized Breusch-Pagan (BPs), L2, and OBW=0 tests, are recommended is that it is straightforward to   
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Table 10. Mean, Variance, Skewness, and Kurtosis for the Mean and Variance (s2) for each sample of nj 

= 100 computed over the 10,000 replications for each response variable with Normal and Chi-Square 

(df=1) Distributions. 

Normal Mean (M) Variance (s2) 

Group 1 Mean(M) Var(M) Skew(M) Kurt(M) Mean(s2) Var(s2) Skew(s2) Kurt(s2) 

y -0.00018 0.01013 0.02877 0.08932 0.99995 0.02060 0.27936 0.23981 

L1 0.79405 0.00369 0.08060 0.12591 0.35934 0.00380 0.37072 0.19126 

KL 0.79805 0.00373 0.08060 0.12591 0.36297 0.00388 0.37072 0.19126 

BF 0.79185 0.00368 0.08254 0.13175 0.36838 0.00395 0.37382 0.18439 

L2 0.98995 0.02019 0.27936 0.23981 1.95528 0.52848 1.18323 3.05746 

OBW=0 0.99995 0.02060 0.27936 0.23981 1.99498 0.55016 1.18323 3.05746 

OBW=0.5 0.99995 0.02060 0.27936 0.23981 2.01539 0.56147 1.18323 3.05746 

Group 2 Mean(M) Var(M) Skew(M) Kurt(M) Mean(s2) Var(s2) Skew(s2) Kurt(s2) 

y -0.00033 0.03035 -0.02885 0.07944 3.00371 0.17933 0.29235 0.15844 

L1 1.37569 0.01080 0.13270 0.05539 1.08115 0.03346 0.39531 0.41264 

KL 1.38262 0.01091 0.13270 0.05539 1.09207 0.03414 0.39531 0.41264 

BF 1.37187 0.01076 0.13194 0.04873 1.10817 0.03490 0.38930 0.35906 

L2 2.97367 0.17576 0.29235 0.15844 17.68307 44.58041 1.43693 4.78333 

OBW=0 3.00371 0.17933 0.29235 0.15844 18.04211 46.40912 1.43693 4.78333 

OBW=0.5 3.00371 0.17933 0.29235 0.15844 18.22668 47.36352 1.43693 4.78333 

χ2
(1) Mean (M) Variance (s2) 

Group 1 Mean(M) Var(M) Skew(M) Kurt(M) Mean(s2) Var(s2) Skew(s2) Kurt(s2) 

y 0.00003 0.01023 0.31804 0.30827 0.99974 0.14149 1.32709 4.16387 

L1 0.68261 0.01124 0.33265 0.29534 0.51772 0.06377 1.89296 8.78852 

KL 0.68605 0.01136 0.33265 0.29534 0.52295 0.06507 1.89296 8.78852 

BF 0.60146 0.00803 0.31284 0.31941 0.78818 0.11664 1.45320 4.82212 

L2 0.98974 0.13867 1.32709 4.16387 13.26955 686.50827 17.84739 619.38288 

OBW=0 0.99974 0.14149 1.32709 4.16387 13.53898 714.66908 17.84739 619.38288 

OBW=0.5 0.99974 0.14149 1.32709 4.16387 13.67749 729.36617 17.84739 619.38288 

Group 2 Mean(M) Var(M) Skew(M) Kurt(M) Mean(s2) Var(s2) Skew(s2) Kurt(s2) 

y 0.00037 0.03014 0.26036 0.11903 3.00005 1.25694 1.31566 3.82258 

L1 1.18217 0.03267 0.30905 0.15622 1.55540 0.57978 1.93774 8.35067 

KL 1.18813 0.03300 0.30905 0.15622 1.57112 0.59156 1.93774 8.35067 

BF 1.04158 0.02359 0.27453 0.12332 2.36383 1.03824 1.49332 4.99183 

L2 2.97005 1.23193 1.31566 3.82258 122.75408 60839.72 13.97286 386.57797 

OBW=0 3.00005 1.25694 1.31566 3.82258 125.24649 63335.39 13.97286 386.57797 

OBW=0.5 3.00005 1.25694 1.31566 3.82258 126.52777 64637.88 13.97286 386.57797 
 

generalize these methods to more complex linear and mixed linear models. The BF test is recommended 

for ANOVA designs because tests for heteroscedasticity can be generalized to factorial designs based on 

procedures using medians to center the data (Boos & Brownie, 2004), or applying some rank 

transformation; however, generalizing these methods to more complex modeling procedures (e.g., multiple 

linear regression) would not be straightforward. Furthermore, rank-based methods would have to 

potentially align the ranks to obtain a valid procedure for factorial designs (e.g., Higgins & Tashtoush, 

1994; Beasley, 2002). 

  In summary, testing for heteroscedasticity can be complicated by many factors, even in a simple two-

group ANOVA. In many circumstances, a valid test may be elusive. We agree with other researchers 

(Zimmerman, 2004) and do not recommend performing preliminary tests of the homoscedasticity 

assumption to decide which statistical analysis to perform. If researchers are interested in modeling means 

and are concerned about violations to the homoscedasticity assumption, then they should use robust 

procedures that do not require the homogeneity of variances assumption (Wilcox et al., 1986), such as the 

ANOVA with separate variance error terms and Welch df adjustments for between-subjects designs. 

Although not investigated in this study this would generalize to using heteroscedasticity consistent 
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covariance matrices (HCCMs) to estimate standard error is linear regression (Long & Ervin, 2000; White, 

1980), and heteroscedastic models with Kenward and Roger (1997) dfs for mixed linear models (Littell et 

al., 2006). 

  If researchers are interested in testing for heteroscedasticity as an outcome of interest, then we 

recommend planning accordingly. This paper demonstrates the problems encountered when error 

distributions are skewed. If researchers suspect skewness related to the outcome of interest (e.g., reaction 

time), then they should consider some form of a between-subjects (or other ANOVA-type) design where 

the BF test can be used. If researcher do not suspect serious departures from normality, then tests based on 

squared residuals may provide a slight advantage in power and applying Welch ANOVA with adjusted dfs 

to the squared residual approaches may provide additional but slight increases in power. Furthermore, 

analyzing squared residuals has a straightforward generalization to more complex statistical analyses; 

however, the performance of such approaches needs to be investigated. 
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