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This study investigated the possibility of using item correlations with subscales as a tool to diagnose cross-

loadings in the scale development process using smaller sample sizes than required for factor analysis. A 

Monte Carlo simulation using R examined sample sizes from 30-120 under several conditions of 

correlations, numbers of items (8-36), and numbers of factors (2-3). Within each condition, most items were 

generated to load on their expected dimensions, but some items were generated that (a) cross-loaded on 

multiple dimensions or (b) loaded on no dimensions. Based on its consistently larger average loading 

differences between loading power (loading correctly on the right dimension) and loading error (wrongly 

loading on an incorrect dimension), combined especially with its consistently lower loading errors, 

Structural Item-Total Correlation Analysis (SITCA) diagnosed cross-loading and non-loading items most 

effectively across most of the conditions when sample sizes were approximately 50-60. 

 he importance of quality items in scale development cannot be overestimated. However, in the 

current world, samples are increasingly difficult to obtain, making the process of scale development 

more difficult. Potentially, a single new scale could conceivably require multiple samples for pilot 

studies and validity studies to improve items and provide evidence of validity and reliability, respectively, 

depending on how many changes are made to the scale during the process (ideally, item analyses and 

validity studies continue after any items are changed before the scale is used for applied research purposes). 

Having the ability to weed out and improve items that need to be repaired or replaced (or removed) as early 

as possible in the process, with typically smaller pilot study samples, allows for fewer more extensive and 

more expensive validity study samples later. 

  Applied researchers perform a number of statistical analyses as they develop tests and scales, in order 

to provide evidence of both reliability and validity. For example, they perform item analyses (e.g., alpha, 

item-total correlations, alpha-if-item-deleted) for unidimensional scales and subscales to verify that all 

items are contributing positively to reliability. Previous authors have suggested that preliminary or pilot 

studies for these issues in scale development can be performed successfully with small sample sizes of 24-

36 cases based on the precision of correlations (standard errors, confidence intervals) used in item analyses 

(Johanson & Brooks, 2010). Evidence (often from experts) for content validity arguments is also needed. 

Scale developers also typically perform factor analyses for structural validity to provide evidence that the 

underlying dimensional structure of an instrument supports construct validity. These factor analytic 

methods—for example, exploratory factor analysis (EFA), confirmatory factor analysis (CFA), or principal 

components analysis (PCA)—are also the best methods to verify (a) that items are contributing to the 

measurement of their designated subscale and (b) that items are not contributing to multiple subscales (item 

unidimensionality). Items that contribute significantly to more than one subscale (or factor or component) 

are commonly called cross-loaded items. Therefore, in the scale development process, while still creating 

and revising items, researchers often desire to use factor analysis to help examine the quality of items: 

whether items load statistically on any of the dimensions of the scale, whether items load on the correct 

dimensions, and whether items load on just one dimension. This evidence is useful as the scale and items 

are still being developed so the items can be improved as much as possible before the more extensive 

construct validity evidence is collected. 

  Unfortunately, these factor analytic methods generally require hundreds of cases for most scales of 

decent size and with multiple subscales. For example, some say minimum sample sizes of at least 150 

should be used even in the very best circumstances (Bandalos & Finney, 2010; Gorsuch, 1983; Guadagnoli 

& Velicer, 1988; Kahn, 2006; Kline, 1994). Frequently, however, scholars simply suggest samples as large 

as possible, perhaps over 300 cases or cases-to-items ratios such as 10:1 or 20:1, which would require 200 

or 400 cases, respectively, for just 20 items (Comrey & Lee, 1992; Hair et al., 1998; Kline, 2016; 

Tabachnick & Fidell, 2007). Mundfrom, Shaw, and Ke (2005) and Pearson and Mundfrom (2010) reported 
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that with larger item-to-factor ratios like 7:1 to 8:1, minimum sample sizes required for most circumstances 

were generally below 150 when there were high communalities. They noted, however, that many more 

cases may be required with smaller item-to-factor ratios. Ultimately, these authors suggested that in the best 

of conditions (at least seven items per factor and high communality), as few as 60 cases may be required 

for factor analysis. De Winter et al. (2009) provided some guidelines for EFA with small samples, also 

emphasizing the importance of high communalities and large item-to-factor ratios. 
 

Purpose of the Study 

  The purpose of this study was to investigate the possibility of using item-total correlations as a proxy 

for factor analysis with much smaller sample sizes that might be more easily obtainable during pilot study 

work early in the scale development process. We present a method we call “Structural Item-Total 

Correlation Analysis” (SITCA) that may help researchers use smaller samples earlier in the process to 

identify items that may be problematic in ways related to the structure of the scale. SITCA describes an 

item-total correlations analysis process analogous to factor analysis, not to replace EFA, CFA, or PCA, but 

rather as a method to analyze relationships between items and composite scores on subscales—with the 

specific potential to identify obviously troublesome items and to do this with smaller sample sizes.  

  Note that for both theoretical and philosophical reasons, we—like many others—prefer EFA and CFA 

to PCA for structural validity and scale and item analysis, but EFA and CFA often face difficulties with 

small samples. Therefore, for practical reasons, we used PCA for comparative purposes in this study. 

Thankfully, studies have suggested that PCA and EFA provide equivalent results when underlying 

dimensional structures are relatively strong, as often can be expected in scale development (Tabachnick & 

Fidell, 2007; Velicer & Jackson, 1990). Further, scholars often performed exploratory EFA or PCA and 

gave it a confirmatory interpretation before CFA became more commonly used. However, even now, we 

might argue that CFA is often used prematurely, before the quality of items has been thoroughly studied—

that researchers should ensure item quality before moving to CFA, with larger more costly sample sizes, 

thereby ensuring that items are strong before testing theory. 
 

Factor Analysis in Scale Development 

  In PCA and EFA, researchers assume that items within subscales are relatively strongly correlated—

and more highly correlated with items from their own subscales than with items from other subscales. PCA 

and EFA are exploratory in that they use data to show where structures or dimensions are located; CFA is 

confirmatory because the structure is assumed known and the question is whether the data fit this known 

structure. Usually, the number of factors to be extracted in EFA and PCA is based on parallel analysis, 

minimum average partial (MAP), Kaiser’s rule, or scree plots, among other methods (Tabachnick & Fidell, 

2007). However, in scale development, researchers create instruments and items designed to measure 

particular aspects of a larger construct, that is, designated to measure a particular subscale—for example, 

using theory, a table of specifications, or scale blueprint. Therefore, because the researcher has a keen sense 

of how many dimensions there should be, that known number may be used to extract factors when 

performing EFA or PCA—and is required for defining the measurement model for CFA. That is, 

researchers extract the number of components equal to the number of subscales intended or designed in the 

scale. The exploratory or confirmatory factor analytic results then help to verify that each item is associated 

statistically (loads) with ( or “belongs to”) the dimension of the construct (factor, component, or subscale) 

it is intended to be associated with—its designated dimension. 

  Researchers use loadings, which are correlations (or standardized regression weights or path 

coefficients), observed between the item variables and latent common factors or composite components to 

examine the strength of these associations (Bai, & Ng, 2008; Hair et al., 1998). Rotated loadings are often 

used to help the set of items load more strongly with the extracted factors, with oblique rotation most 

commonly used in scale development due to the expected correlations among the dimensions of a construct 

(Bandalos, 2018; Bandalos & Finney, 2010; Hair et al., 1998; Pituch & Stevens, 2015; Rummel, 1970; 

Tabachnick & Fidell, 2007). In oblique rotation (e.g., Promax or Direct Oblimin) there are two matrices of 

loadings: the pattern matrix of regression weights that represent the unique relationship of a factor to an 

item with all other factors held constant (recommended by Fabrigar & Wegener, 2012) and the structure 

matrix of correlations between items and factors that assess both those unique relationships and the 

additional association introduced by any overlap among the factors. 
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  In Figure 1 we present familiar loadings tables from PCA for a two-dimensional scale: unrotated 

component matrix (Figure 1a), obliquely rotated pattern matrix (Figure 1b), and obliquely rotated structure 

matrix (Figure 1c). In the Pattern Matrix in Figure 1b, we see that most items load as expected from this 

generated data (N = 120): V1-V5 load on Component 2 and V7-V11 on Component 1. These 10 items 

exhibit “simple structure”: high loadings above some criterion on only one component, low loadings on 

other components, and components having sufficient items for strong reliability. When factor loadings show 

that all items each load highly on only one dimension, this is called simple structure (Bandalos & Finney, 

2010; Thurstone, 1947), which is often the ideal pattern of loadings desired.  

  Various rules for these “high” loadings have been considered by scholars. For example, Pituch and 

Stevens (2015) suggested a threshold of greater than .40, where the greater the loadings, the more the item 

or variable is a pure measure of the factor (Bandalos, 2018; Bandalos & Finney, 2010; Comrey & Lee, 

1992; Hair et al., 1998; Pituch & Stevens, 2015; Tabachnick & Fidell, 2007). Some of these scholars have 

categorized based on the squared loadings as measures of overlapping variance between the factors and the 

items, with loadings of .32 (10% shared variance) as the minimum for an acceptable loading. Jordan and 

Spiess (2019) reported that the second standardized loadings should be below a cutoff of .30. However, 

most authors do not discuss the maximum size of the second highest loadings (necessary for diagnosing 

cross-loading violations to simple structure) in these conventional rules, but sometimes define or imply 

cross-loading as two loadings above these thresholds. However, adherence to such threshold rules can result 

in arbitrarily small differences between loading and not-loading, for example, .41 considered loading but 

.39 not. 

  Returning to Figure 1b, two items (V6 and V12) do not load clearly on just one component because 

both items’ rotated pattern coefficients are relatively high for both components (comparable results appear 

in the rotated structure matrix, Figure 1c). That is, V6 and V12 are somewhat equivalently associated with 

both components. Consequently, we have concerns about the quality and unidimensionality of V6 and V12 

and would not yet want to undertake validity studies before we can repair, replace, or (as a last resort) 

remove these items. Likewise, if any items have small loadings on both components, those items would not 

be considered to measure either component (“not-loaded”). No examples of not-loading items are shown, 

but the reader can easily imagine a hypothetical V13 with a .1 loading on both components. 

 

(a) 

 

(b) 

 

(c) 

 

Figure 1. Example Loadings from PCA with N = 120 
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SITCA: Structural Item-Total Correlation Analysis 

We present SITCA as a proxy for factor analysis to help identify 

cross-loaded or not-loaded items. Because SITCA is based on 

imposing fundamentally confirmatory structural assumptions to data 

analyzed with simple item-total correlations, but without the burden 

of estimating latent variables, sample size requirements will not be as 

large as for confirmatory factor analysis. The PCA structure matrix 

provides item-component correlations (linear combinations of all 

items, regardless of which component they belong to), but SITCA 

provides item-total correlations between items and a summated or 

averaged score for their own designated scale only (in this way, a bit 

more like CFA than EFA or PCA). Item-total correlations are often 

referred to item discrimination indices and the relationship of 

discrimination indices to factor loading is well known (Richardson, 

1936; Henrysson, 1962; Jordan & Spiess, 2019). 

  In Figure 1, items V1-V6 are expected a priori (based on the item 

generation process) to be part of Component 2 and items V7-V12 are 

expected to be Component 1. Figure 2 shows these item-total 

correlations (not corrected or adjusted item-total correlations). For 

example, Scale 1 was added to the data for this sample as the average 

scores for only items V1-V6—not including items V7-V12, so we see 

higher correlations between items V1-V6 and Scale1. Similarly, items 

V7-V12 are highly correlated with Scale2, which was calculated as 

the average of only items V7-V12. We have arbitrarily numbered the 

scales whereas PCA extracts components in order based on variance, 

therefore Scale1 is the same as Component 2 in our example. We also 

see high correlations for items V6 and V12 with both scales. 
 

 

Methods and Data Sources 

  This study used Monte Carlo methods in R to generate and analyze data that fit certain conditions. We 

performed 10,000 simulated samples for each condition. We generated samples ranging from 30-120 and 

conditions where (a) some items load on no components (not-loaded), (b) some items cross-load on multiple 

components (cross-loaded), and (c) most items load as expected. The study included simulations for 

different numbers of items (8, 12, 16, 18, 20, 24, 30, 36) and different numbers of dimensions (2, 3). 

Population correlation matrices were defined to represent relatively strong simple structures and reflected 

varying sizes of correlations between items and their designated components (correlations of items with 

other items on the same subscale of, for example, .4 or .5) versus between items and other components 

(correlations of items with items on different subscales of, for example, .2 or .3).  

  Multivariate normal datasets were generated from these correlation matrices as population data with 

2,000,000 cases for each condition and then random samples were drawn from the datasets. The data 

mimicked ordinal integer scale data from 1 to 5. We generated data based on correlation matrices where 

the sizes of the correlations differed by 0.1, 0.2, and 0.3. To carry the examples above further, we generated 

some correlation matrices where the correlations among items within their designated subscales were .3, 

.4, and .5 while the correlations with items not in the same subscales were .2 (for example, see Table 1, 

which includes Promax obliquely rotated loadings related to that correlation matrix). 

  The SITCA and PCA approaches necessarily work in conjunction with numeric rules that are used to 

determine minimum and maximum acceptable loadings to determine simple structure. We adapted simple 

structure criteria from our experience to determine how well SITCA and PCA correctly identified not-

loaded/cross-loaded items. However, we did not find many such rules for cross-loading in the literature, as 

most rules were like those mentioned earlier for single loadings rather than for combinations of loadings 

for items. Therefore, we examined the quality of many rules and report our results about SITCA and PCA 

approaches based on the rules that worked most effectively across the most conditions.  

  The rules we ultimately used were based on the magnitudes of the correlations or loadings across the 

dimensions. These rules were among the most useful for the approaches we investigated: SITCA, PCA   

 
Figure 2. Example Item-Total 

Correlations with N = 120 (not 

corrected or adjusted by deleting 

each item from its scale score). 
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Table 1. An example population correlation matrix for data generation with correlations r = .4 

among items on the same subscale (shaded yellow and green) and correlations with items on 

another subscale r = .2 (a correlation differential, r_diff, = 0.2), with loadings from PCA with 

Promax rotation. 

 Item1 Item2 Item3 Item4 Item5 Item6 Item7 Item8 Loading1 Loading2 

Item1 1.0 0.4 0.4 0.4 0.2 0.2 0.2 0.2 .790 .001 

Item2 0.4 1.0 0.4 0.4 0.2 0.2 0.2 0.2 .790 .001 

Item3 0.4 0.4 1.0 0.4 0.2 0.2 0.2 0.2 .790 .001 

Item4 0.4 0.4 0.4 1.0 0.2 0.2 0.2 0.2 .790 .001 

Item5 0.2 0.2 0.2 0.2 1.0 0.4 0.4 0.4 .001 .790 

Item6 0.2 0.2 0.2 0.2 0.4 1.0 0.4 0.4 .001 .790 

Item7 0.2 0.2 0.2 0.2 0.4 0.4 1.0 0.4 .001 .790 

Item8 0.2 0.2 0.2 0.2 0.4 0.4 0.4 1.0 .001 .790 

Note: Sample correlation matrices would not be nearly so strong in simple structure as the 

population, particularly with smaller sample sizes. 
 

pattern loadings, and PCA structure loadings. The first sets of results we present below focus on the six 

rules that appeared to work best across the most conditions: (a) items load with a coefficient or correlation 

of at least .40, .50, or .60 on their designated subscales and this larger coefficient or correlation is at least 

0.2 greater than loadings on other subscales (called .4-.2, .5-.2, and .6-.2, respectively); and (b) items load 

with a coefficient or correlation of at least .40, .50, or .60 on their designated subscales and this larger 

correlation is at least 1.25 times greater than loadings on other subscales (called .4>1.25x, .5>1.25x, and 

.6>1.25x, respectively). In these results, we also included the rule that items load with a coefficient or 

correlation of at least .60 on their designated subscales and no other loadings with other dimensions are 

above .40 (called .6v.4). In later results we focus just on the .5-.2 and .5>1.25x rules because they performed 

most effectively in the most conditions. We tried other rules that did not perform as well (and therefore we 

do not report them because these rules were not the focus of this research), for example, rules like .5-.3, 

.5>2x, .5>1.5x, and rules based on significance or communalities, among others. 

  In each condition, we counted the number of samples in which items loaded cleanly on one dimension. 

Consequently, we looked for high percentages of samples where items correctly loaded on the one 

dimension they were designated to load on (these are “correctly loading” results, like power, that we will 

call “loading power”—and conversely, where an item failed to load where it should load would be akin to 

a Type II error). Similarly, we looked for low percentages of samples where items incorrectly loaded on a 

single dimension when they were designed to load not-at-all or designed to cross-load ( these are 

“incorrectly loading” results, like Type I errors, that we call “loading errors” because they should not have 

loaded on just one dimension). 
 

Results and Conclusions 

  We present results that were similar and relatively consistent across conditions. Multiple correlation 

matrices and conditions were used to generate data, so where appropriate, these results represent averages 

across conditions (we verified that means reported in this way provided a reasonable sense of the results). 

Unsurprisingly, most results got better as sample sizes increased. We found that the 0.1 correlation 

differentials provided too little structure and made both SITCA and PCA analyses more ambiguous—errors 

at both ends were generally too large to be acceptable with smallest sample sizes (but the methods worked 

effectively with larger sample sizes). However, our experience suggests that 0.2 or 0.3 or larger correlation 

differences between items and their designated dimensions versus other dimensions (r_diff = 0.2 and 

r_diff = 0.3 in the figures) is not unreasonable in scale development, especially after pilot or preliminary 

studies have sharpened the items used in the subscales. 

  Figure 3 is one example condition, averaged across sample sizes, that shows both the (upper) 

percentages of samples where the methods showed correlations or loadings for items on the correct 

designated dimensions as well as the (lower) percentages for which the methods showed where items load 

on a single dimension but should not have. So, for example, with the .6-.2, .6>1.25x, .5>1.25x, and .4>1.25x 

rules in this Figure 3 condition, SITCA had the highest loading power. Both SITCA and PCAS had almost   
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Figure 3. Loading Power (higher) percentages and Loading Error (lower) percentages averaged across 

sample sizes for the condition with 24 items on 3 factors with 0.2 differences between correlations for 

designated factors versus other factors. 

 
Note: SITCA represents Structural Item-Total Correlation Analysis, PCAP represents PCA Loadings 

analysis based on Pattern Matrix, PCAS represents PCA Loadings analysis based on Structure Matrix. 
 

Figure 4. Differences in Loading Power percentages and Loading Error percentages averaged across 

sample sizes for the condition with 24 items on 3 factors with 0.2 differences between correlations for 

designated factors versus other factors 

 
Note: SITCA is Structural Item-Total Correlation Analysis, PCAP is PCA Loadings analysis based on 

Pattern Matrix, PCAS is PCA Loadings analysis based on Structure Matrix 
 

no loading errors with the .6v.4 rule, but both had unacceptably low loading power with this rule. We 

observed this general pattern or trade-off across most conditions—that is, the methods with higher loading 

power also tended to have higher loading error for that condition (and lower power with lower error – again, 

not unlike power and Type I error for many statistics, where lower alpha means lower power). There is 

clearly a trade-off in the choice of methods for maximizing loading power versus minimizing loading error. 

 Because we desire methods with higher loading power percentages (perhaps over 80%) and also 

lower loading error percentages (perhaps under 20%), we provide Figure 4 that shows average differences 

between these two percentages. Using Figure 3, we can see that SITCA has roughly 95% loading power   
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with the .5>1.25x rule and approximately 15% loading error with that same rule in this condition. In Figure 

4, we see this average difference of approximately 80% (i.e., 95%-15%). We can also see that despite 

having lower loading power, because it also has lower loading error, PCAS has essentially the same average 

loading difference as SITCA for this condition. Larger average differences showed more deviation (which 

is good) between higher loading power and lower loading error results. 

  Figures 5a and 5b show results for the six primary methods (two simple structure rules used with three 

types of coefficients) for two sample sizes under one condition, with Figure 5c showing results averaged 

across all sample sizes for that condition. As mentioned above, the .5-.2 and .5>1.25x rules tended to 

provide the best performance across the most conditions. These figures show the data that serves as the 

input for the next series of graphs (Figures 6-14). Note that Figure 5c also shows the minimum differences 

for each rule and method combination. These represent the smallest (worst) difference between the loading 

power and loading error across all the sample sizes for that condition. Like average differences, larger 

minimum differences are also better. In our review of the results, we found essentially the same conclusions 

for comparing methods whether using the average loading differences or the minimum differences. 

  We provide Figures 6-14 to show results across several conditions and sample sizes. Figures 6-8 show 

the average loading differences (power versus error) for 4:1, 6:1, and 8:1 item-to-factor ratio conditions 

across the sample sizes from 30-120, respectively. Figures 9-11 and 12-14 show similarly the minimum 

loading power across the conditions and the maximum loading errors, respectively. For all three results 

(average loading differences, loading power, and loading errors), we found that above an 8:1 item-to-factor 

ratio the changes are relatively minimal and therefore do not show above 8:1 (patterns and rankings of more 

effective methods remain essentially the same). 

  By comparing the difference in correlations (i.e., r_diff) values of 0.2 and 0.3 across Figures 6-14, we 

can see clearly that having larger correlations among subscale items as compared to correlations across 

items of different scales results in higher loading power, lower loading error, and larger average differences 

between the two. Because of this, smaller sample sizes are needed to achieve any given level of loading 

power or minimized loading error with larger correlation differentials. For example, comparing Figures 8a 

and 8b, we can see that all rules hit the 80% average difference at roughly N = 70 for a difference of 0.2 

but at approximately N = 40 for a difference of 0.3 among correlations. We see a similar pattern when we 

examine loading power (Figures 11a and 11b) and loading error (Figures 14a and 14b) separately. Figures 

6-8 show that across most of the conditions, the SITCA with the .5-.2 simple structure rule was among the 

largest, if not the largest, average difference between loading power and loading error rates. 

  Looking across Figures 9-11, it is also relatively clear that small sample sizes may be sufficient if using 

80% as the criterion for acceptable minimum loading power in many conditions. Indeed, in most of the 

conditions when the coefficient or correlation differential is 0.3 (r_diff = 0.3), sample sizes as small as 30-

40 may be sufficient for most conditions using any of the methods. When the correlation differential is 0.2 

(r_diff = 0.2), however, sample sizes of 50-70 are required for all methods to reach the 80% criterion. If 

loading power is the primary interest, then PCAS with the .5>1.25x rule shows the highest loading power 

across most conditions, with PCAP and .5>1.25x having the second highest loading power. Curiously, 

loading power does not tend to improve much as the item-to-factor ratios increase from 4:1 to 8:1 (recall 

that above 8:1 the results were essentially the same, with the methods becoming more tightly similar 

graphically). 

  In Figures 12-14, larger samples are clearly required to keep maximum loading errors low for most 

methods. Indeed, some of the approaches never result in smaller than 20% loading errors, even as high as 

N = 120. The 4:1 item-to-factor ratio results were particularly unhappy in this regard, suggesting that larger 

samples are required when subscales have fewer items, even for the best method (SITCA required at least 

60-70 cases to get as low as 20% loading errors in the 4:1 ratio conditions with r_diff = 0.3, and did not 

reach 20% even with 120 cases when r_diff = 0.2). However, loading errors tended to decrease as item-to-

factor ratios increased (such as comparing Figures 12c, 13c, 14c). SITCA with the .5-.2 rule showed the 

fewest loading errors across all conditions and sample sizes, often 5% lower than the next best method. 

With its lower loading errors, SITCA with the .5-.2 rule also consistently provided among the largest (if 

not the largest) average loading differences among the methods tested (see Figures 6-8). 

 Lower loading errors with reasonable loading power may be the most important key to identifying not-

loaded/cross-loaded items. That is, with lower loading errors, not-loaded/cross-loaded items are less likely 

to load on a single dimension, and therefore easily diagnosed. We do not want items that do not belong to   
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Figure 5. Average Differences in Loading Power (higher) percentages and Loading Error (lower) 

percentages at (a) N = 60, (b) N = 120, and (c) across all N conditions for conditions with 24 items on 3 

factors with 0.2 differences between correlations within designated factors versus other factors. 

(a).  

 

(b).  

 

(c).  

 
Note: (I) represents SITCA; (P) represents PCA Loadings analysis using Pattern Matrix; (S) represents 

PCA Loadings analysis using Structure Matrix 
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Figure 6. Comparing Average Differences between Loading Power percentages and Loading Error 

percentages for 4:1 Item-to-Factor Ratio conditions across sample sizes when the difference between 

correlations for designated factors versus other factors is 0.2 and 0.3. 

(a)  (b)  

(c)  (d)  
Note: (I) represents SITCA; (P) represents PCA Loadings analysis using Pattern Matrix; (S) represents 

PCA Loadings analysis using Structure Matrix 
 

any dimension to load, nor do we want cross-loaded items to load on only a single dimension. SITCA with 

the .5-.2 rule performs effectively across many conditions in this regard. The results in Figures 12-14 show 

that samples of about 50-60 may be sufficient in 6:1 item-to-factor (with r_diff = 0.2) conditions to identify 

not-loaded/cross-loaded items using SITCA with the .5-.2 rule (and with smaller samples for r_diff = 0.3). 
 

Conclusions 

  The purpose of this study was to investigate SITCA, compared to PCA, with smaller samples that might 

be more obtainable during small-scale studies. That is, while still creating and revising items, researchers 

want to diagnose whether items load on any dimensions of the scale, load on the correct dimensions, or 

load ideally on just one dimension. Diagnosing problematic items early in the scale development process 

while still revising items, with smaller samples, will allow developers to revise items and scales before 

expending time, money, and effort collecting larger samples for structural and construct validity evidence 

purposes. 

  We found that SITCA, especially combined with the .5-.2 simple structure rule, shows promise in its 

potential to identify not-loaded/cross-loaded items in scale development with smaller sample sizes (N = 50-

60) than required for EFA, CFA, or PCA. No methods were effective under N = 70 with 4:1 item-to-factor 

ratios or when the population correlation differentials were 0.1, but SITCA was more effective than PCA 

methods for diagnosing loading errors. The purpose here is narrow: identifying problematic items because 

they cross-load on multiple subscales or do not load at all on any scale—not structural validity evidence.  

  Our goal is to improve items. For this purpose, we are less concerned with small sample results that 

correctly identify that items belong on particular subscale (loading power)—because we believe this falls 

more appropriately in the realm of structural validity evaluation. For item analysis, we believe the focus 

should be on minimizing loading errors. That is, lower loading error rates imply that not-loaded/cross-

loaded items will be less likely to load incorrectly on a single subscale—and therefore, we can be more 

confident that items are genuinely concerns when they cross-load or do not load at all. 
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Figure 7. Comparing Average Differences between Loading Power percentages and Loading Error 

percentages for 6:1 Item-to-Factor Ratio conditions across sample sizes when the difference between 

correlations for designated factors versus other factors is 0.2 and 0.3 

(a)  (b)  

(c)  (d)  

Note: (I) represents SITCA; (P) represents PCA Loadings analysis using Pattern Matrix; (S) represents 

PCA Loadings analysis using Structure Matrix. 
 

 We recommend that researchers follow strong processes when developing scales, such as phases 

suggested by various authors (Boateng et al., 2018; Clark & Watson, 1995; DeVellis, 2012; Worthington 

& Whittaker, 2006). Essentially these phases include: 

1. defining the content domain for construct, including dimensions of the construct; 

2. generating items, preferably within a table of item specifications; 

3. evaluating content validity evidence; 

4. evaluating items for both quality and bias, and choosing, repairing, removing and replacing 

items, as necessary; 

5. evaluating scale reliability and construct validity evidence; 

6. using the scale and continuing to evaluate and revise as needed. 

  Some have recommended a mixed methods approach to generating items in Phase 2 (Zhou, 2019), but 

others rely on theoretical definitions of constructs. If analyses during Phases 3-5, which typically require 

new data collection, suggest changes to the instrument, then the analyses in Phases 3-5 would ideally be 

repeated with new samples (but perhaps all analyses could be performed in one new larger validity study 

sample if changes are made in Phase 5). Along with item analyses (item difficulty and discrimination), the 

SITCA cross-loadings analysis presented in this paper would occur in Phase 4 for the purpose of evaluating 

items. Phase 4 can often be accomplished with small (but well-taken) samples, while Phase 5 is where the 

validity studies would begin and typically require larger samples. More complete EFA, CFA, or PCA would 

occur during Phase 5 to test reliability and structural validity to provide evidence of construct validity. 

SITCA cannot provide evidence for construct validity in Phase 5, but we would recommend that researchers 

repeat the item and cross-loadings analyses again in Phase 5—now with the benefit of larger samples (and 

maybe using EFA or PCA, or perhaps CFA, rather than SITCA). 

 Cross-loading can occur when subscale dimensions are not as differentiated as the researcher may 

believe (a more theoretical matter), which makes it difficult to justify that the dimensions represent separate 

concepts. These more theoretical cross-loadings are diagnosed through EFA, CFA, or PCA using large   
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Figure 8. Comparing Average Differences between Loading Power percentages and Loading Error 

percentages for 8:1 Item-to-Factor Ratio conditions across sample sizes when the difference between 

correlations for designated factors versus other factors is 0.2 and 0.3 

(a)  (b)  

(c)  (d)  
 

Figure 9. Comparing the Minimum Loading Power percentages for 4:1 Item-to-Factor ratio conditions across 

sample sizes when the difference between correlations for designated factors versus other factors is 0.2 and 0.3 

(a)  (b)  

(c)  (d)  

Note: (I) represents SITCA; (P) represents PCA Loadings analysis using Pattern Matrix; (S) represents 

PCA Loadings analysis using Structure Matrix. 
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Figure 10. Comparing the Minimum Loading Power percentages for 6:1 Item-to-Factor ratio conditions across 

sample sizes when the difference between correlations for designated factors versus other factors is 0.2 and 0.3 

(a)  (b)  

(c)  (d)  

Note: (I) represents SITCA; (P) represents PCA Loadings analysis using Pattern Matrix; (S) represents 

PCA Loadings analysis using Structure Matrix. 
 

samples. Rotation can sometimes help remove these initial cross-loadings, but sometimes it is a deeper 

theoretical matter such as converging two dimensions into one rather than attempting to measure them 

separately. However, for cross-loadings that occur for more technical reasons, such as because of the 

wording of an item or other flaws in the item, we believe that SITCA with the .5-.2 simple structure rule 

can be used with smaller samples (N = 50-60) to diagnose such non-loading and cross-loading items. This 

recommendation is due primarily to its relatively lower loading errors. Indeed, SITCA with .5-.2 appears 

to work for this purpose more effectively than PCA approaches when there were at least six items per sub 

scale even with larger sample sizes (recall that none of the methods worked satisfactorily well with the 

smallest samples in the 4:1 ratio conditions when r_diff was 0.1 or less). It is also worth noting (though not 

shown) that with at least 8 items per factor, SITCA produced results somewhat better than other methods 

even with r_diff = 0.1, except that usually 20-30 more cases than r_diff = 0.2 were required to reach the 

20% criterion. That is, with SITCA these problematic items rarely loaded incorrectly on a single dimension 

as compared to other methods. Scale developers can use this approach with some confidence to diagnose 

these types of problematic items by the fact that they did not load on just a single dimension (subscale). 

 One approach that scale developers can take at the piloting stage is to obtain slightly larger samples 

than the 24-36 that some scholars have recommended for item analysis pilot studies (Johanson & Brooks, 

2010). By collecting data from 50-60 cases, researchers can perform both item analyses and SITCA cross-

loading analyses with the same sample. Alternatively, scale developers might work toward stronger items 

before cross-loading analyses by using strategies that include small scale pilot studies for item analyses and 

perhaps by using mixed methods cognitive interviewing or think-aloud techniques. Stronger content 

validity and item analysis evidence before collecting data for cross-loading analyses may help create 

stronger items that will load more cleanly on the correct dimensions when the cross-loading investigation 

begins—thereby requiring smaller samples. Future research might examine corrected (or adjusted) item-

total correlations used in this SITCA process, test additional simple structure rules, and whether Spearman 

or Polychoric correlations work more effectively than Pearson correlations (some authors have suggested 

Pearson correlations can be justified in the scenarios examined here, e.g., Robitzsch, 2020). 
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Figure 11. Comparing the Minimum Loading Power percentages for 8:1 Item-to-Factor ratio conditions across 

sample sizes when the difference between correlations for designated factors versus other factors is 0.2 and 0.3 

(a)  (b)  

(c)  (d)  
 

 

Figure 12. Comparing the Maximum Loading Error percentages for 4:1 Item-to-Factor ratio conditions across 

sample sizes when the difference between correlations for designated factors versus other factors is 0.2 and 0.3 

(a)  (b)  

(c)  (d)  
 

Note: (I) represents SITCA; (P) represents PCA Loadings analysis using Pattern Matrix; (S) represents 

PCA Loadings analysis using Structure Matrix 
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Figure 13. Comparing the Maximum Loading Error percentages for 6:1 Item-to-Factor ratio conditions across 

sample sizes when the difference between correlations for designated factors versus other factors is 0.2 and 0.3 

(a)  (b)  

(c)  (d)  
 

 

Figure 14. Comparing the Maximum Loading Error percentages for 8:1 Item-to-Factor ratio conditions across 

sample sizes when the difference between correlations for designated factors versus other factors is 0.2 and 0.3 

(a)  (b)  

(c)  (d)  

Note: (I) represents SITCA; (P) represents PCA Loadings analysis using Pattern Matrix; (S) represents 

PCA Loadings analysis using Structure Matrix 
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