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Partialling correlations (partial, semipartial or bipartial) is built upon regression equation(s). It is imperative
that the assumptions of those models be considered. Those assumptions rest on the OLS residuals of those
models (e.g., linearity, homoscedasticity, normality, independence, absence from data with extreme
influence). Partial correlations of all types depend on residuals, but consideration of fit of data in respect to
those residuals is seldom done. Although this can be accomplished with repeated subsequent analyses,
partialling in commercial software does not directly render these assumption diagnostics. As these are
mandatory for use of least squares, examples are produced and an Excel program that automatically
performs an exhaustive set of diagnostic analyses and plots for partialling is offered.

P arsing effects is a fundamental part of science, from physics (partial pressure) to statistics (partial

correlation). Although the same model fit questions arise from all mathematical models (e.g.,

maximum likelihood), only least squares will be considered here. Although partialling is always a
function of residuals, typical commercial software [SAS, SPSS, Stata] relies on formulas, the residuals are
never calculated. [Minitab is an outlier in that it has no partialling program.] The difficulty with this is that
the usual assumptions of least squares model(s), which rely on residuals, are not tested. In addition,
partialling always reduces variance, so it important to see the degree of that reduction and how it manifests
in a scatterplot of the relevant residuals.

Perspectives - Theoretical Framework
All least squares partialling is done by a simple procedure. First, predict each variable from the variable we
which to “partial out” with least squares. Assume two variables, t and u, and the “controlled for” variable
is v. In standard score form this means creating the equations below and transformations for each subject.
t1 = rwVi, tires = ti-ti, with “res” for residual.
This subtraction gives the part of t that is not predictable from v, thus r(v,t.s)=0. And,
01 = ruwVi, Uires = Ui-(j,
where, again, this gives the part of u that is not predictable from v, thus r(v,urs) = 0.
Thus, we now have two residuals, one from t and one from u, both uncorrelated with v. We now correlate
those two residuals for a partial correlation.
Ipartial = Nuv = r(tres,ures)-

That correlation is spoken of as the correlation between t and u, “controlling” for v. “Controlling” has a
very limited meaning -- only that the two residuals are now uncorrelated with v. Although not the point of
the present paper, much has been written about appropriate caution in interpretation of such a partial
correlation (e.g., Lynam, Hoyle, & Newman, 2006). Remembering that these correlations only regard the
linear relationship of v with t and u, we should understand that if there are other forms of relationship (e.g.,
quadratic) they remain. Moreover, one can’t claim that this is the same as the relationship between t and u
for subjects who have the same v score.

As the fundamental mathematics behind partialling is OLS regression, one can do the same with
multiple zs. As well, one can elect to only partial from one variable (say t), leaving u as raw. This is a
semipartial or part correlation. Tests of semipartial correlations are automatically rendered with any
multiple regression program; partialling the remainder of the variables from x, but not from y, for each x in
turn. And, given the flexibility of the underlying mathematics, one can choose to partial a different set of
variables from x than from y. Although this is done less frequently, it is often called a bipartial correlation.
Although the correlation of residuals from multiple regression equation(s) is the foundation of partialling,
we can derive formulas that render partial correlations directly from the relevant bivariate correlations (and
recursive “chaining” their application for higher order partial correlations) or use matrix algebra. Therein,
avoiding calculating residuals for each subject from regression equation(s). These formulas are found in
most intermediate statistics texts; for a good presentation see Cohen & Cohen (1983).

This mathematical shortcut gives us the following for first order partial and semipartial correlations:

rut.v:(rut—ruvrtv)/\/(( 1 'ruvz) (1'rtv2)) , and
ru(t.v)=(rulﬁruvrtv)/\/( 1 ‘rtvz)) .
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However, the problem with this approach is that we apparently forget where the residuals came from. As
with all multiple regression models, it is mandatory to check the assumptions of the multiple regression
model(s) that produce the residuals. Thus, consideration of linearity, homoskedasticity, independence, and
normality of the residuals, as well as data points with excessive leverage or influence, is, as in any regression
model, our responsibility. In addition, collinearity in the regression model(s) needs to be considered. These
typical regression examinations are essentially never done in partialling. [It is worthwhile to note that
diagnostics for a regression model including all constituent variables is not the same — wrong model.] To
accomplish these diagnostics, one would need to run regression analyses and diagnostics separately for
each regression model used to calculate residuals— two in the case of partial or bipartial correlation, and
one in the case of semipartial correlation.
Method

As with all model assumptions, rendering such regression diagnostic information should be part of
commercial partialling software, but it is not. The purpose of this paper is to point out this necessity, but
also to offer a flexible Excel program that automatically yields all of these diagnostics for any partial,
semipartial, or bipartial correlation requested. As well, the reduction in variance due to partialling must be
considered, and a scatterplot of the original and partialled residuals should be compared. One can then see
what partialling did at the subject level. SAS (an option in proc “corr”) is the only commercial software
platform known that offers this scatterplot comparison of original and partialled data.

The Excel program used herein has a very simple interface for specifying any partial, semipartial, or
bipartial correlation one wishes among variables entered. [Note that the Excel statistical “Analysis
Toolpak™ that has received some flack in the literature (e.g., McCullough & Berry, but see amelioration
with more recent versions, Melard, 2014) is not used — all programming is original. Moreover, with a very
large set of examples, an exact match with results obtained with the multiple runs necessary to obtain the
same in SPSS, SAS, or Systat is always obtained.] Correlations from partialling are calculated from actual
residuals with relevant residual plots (f with tres, and @ with urs, each predictor with respective residuals,
Index, and P-P and Q-Q normal plots), leverage and influence statistics for total t and u models as well as
DFBETAS for individual predictors are all automatically generated. In addition, VIFs for each regression
model (if the number of predictors is >1) are automatically rendered.

Data Source
A venerable data set from Kerlinger and Pedhazur (1973, p. 292) including GPA, GRE (Quantitative and
Verbal), the Miller Analogies Test, and the Average Rating of faculty is used to demonstrate model
assumption testing that should be done, but also the program that can aid in that process.

Results

To allow variable choice and role, the program simply lists the names of all variables that were included in
the Input page twice. From those two lists, all one must do is to place a “t,” a “u,” and “p”’s (variables to
partial out) under the desired variables in the respective lists. If no variables are given “p”s for either t or u,
this then necessarily becomes a semipartial correlation. If the same variable(s) are given ps for the “t” and
“u” variable, the result is a partial correlation and, finally, if different variables are given ps for t and u, the
result is a bipartial correlation. The program parses this as a partial, semipartial, or bipartial correlation, and
provides labels, and statistics appropriately.

The following screenshot shows the input to obtain the partial correlation between GRE-Q and GPA, with
GRE-V partialled out of both. Given appropriate assignation of variables, results are immediately rendered.
Here we see that the partial r is .471 [.126,.714], with p=.01. The CI is calculated in respect to the a entered
on the Input sheet; in this case .05, thus a 95% CI.

Place a t below one variable of interest and a P below each variable to be partialled from it:

GPA GRE-O GRE-V MAT AR
t p
Place a u below the other variable of interest and a P below each variable to be partialled from it:
GPA GRE-O GRE-V MAT AR
u P

Partial r= .471, [.126, .714], t(27) =2.774, p =.010.
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So, you can see that the reduction in variance

for GRE-Q and GPA was about 78% and 66%, Variance

respectively. We believe that this is too Original Partialled % of Original

infrequently considered in partialling. t 2367.826 1850.653 78.16%
To consider what the partialling did to the .360 .238 56.19%

correlation between GRE-Q and GPA, we can
simply ponder the respective correlations; it was .610 in raw form, and .471 after “partialling out” GRE-V.
But even more information is available by considering what this did to the respective scatterplots. An “un-
partialled” and “partialled” scatterplot is automatically generated to allow consideration of how partialling
affected the relationship at the individual data point level. A screenshot for this example is:
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One might argue that, in this case, partialling (plot to right) introduced a bit of heteroskedasticity as it
appears that the spread of the GPA residuals is larger at lower levels of GRE-Q residual and less at higher
levels, in contrast to the raw score scatterplot (plot to left).

The usual requisite regression residual diagnostic plots are automatically generated for each regression
model. [If you have requested a semipartial correlation, the plots for the “uncontrolled” variable will be

blank, as there are no residuals.] The residual plots (reduced in size from their usual portrayal for this
proposal) for these data are below.

Residual Analysis for t and u models, unless, with iparti ion, there are no

in that case the plots are blank.
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For both the GRE-Q (t) and GPA (u) residuals, there appear to be no patterns (curvilinear, etc.) as a function
of predicted scores (plots to left). As well, both sets of P-P and Q-Q plots appear to satisfy the model
assumptions of residual normality relatively well for both models. Finally, Index plots that are often used
in consideration of independence show nothing of note.

Let’s say that you would like to know the correlation between GRE-Q with GRE-V, MAT, and AR
partialled out, with GPA, with no variables partialled out. This is a semi-partial correlation; the results (less
produced plots to reduce space) look like this.

Place a t below one variable of interest and a P below each variable to be partialled from it:

GPA GRE-Q GRE-V MAT AR
t P P P
Place a u below the other variable of interest and a P below each variable to be partialled from it:
GPA GRE-O GRE-V MAT AR
u

Semipartial r= 262, [—, —], t{25) =2.182, p =.0349.

Variance
Original Partialled % of Original
t 2367.826 1550.061 65.46%
u 360 360 100.00%

Thus, the semipartial correlation (.274) is significant with a=.05. What we have is the correlation of a
predictor (GRE-Q) with the variance of all other predictors (GRE-V, MAT, and AR) partialled out with a
criterion (GPA). That this is equivalent to a test of the contribution of GRE-Q to the regression model
predicting GPA using all four predictors; this is important illustrate to students.

Finally, let’s say that you would like to know the correlation between GRE-Q with GRE-V and MAT
partialled out, and GPA with GRE-V, MAT, and AR partialled out. This is a bipartial correlation. Excluding
the plots again, results look like this:

Flace at below one variable of interest and a P below each variable to be partialled from it:

GPA GRE-O GRE-V MAT AR
t P P
Flace a u below the other variable of interest and a P below each variable to be partialled from it:
GPA GRE-Q GRE-V MAT AR
u P P p

Bipartial r= .367, [-.015, .656], t{25) = 1.975, p = .059.

Variance
original Partialled % of Original
t 2367.820 1837.454 77.60%
u 360 154 42.81%

Thus, given an a of .05, this bipartial correlation of .367 is not significant. From the CI, note just how close
to exclusion of zero (-.015), thus significance, this correlation was; Cls are important for students to
consider. Also note that nearly 80% of the variability of GRE-Q has been removed. Because there are
multiple predictors in these models, an additional table is automatically triggered (as it was, but not shown,
in the aforementioned semipartial model) — VIFs associated with each of these models. If no regression
equation has more than one variable, this table is not produced. It is below with no VIF problems for either
model.
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Table 1. Leverage and Influence Statistics for the t model.

Influence
Leverage Studentized Residuals
PRESS or "Deleted” "Hat" Diagonal Mahalanobis D° Cook's D Internal ~ External DFFITS  COVRATIO Welsch D
Case#  Criterion Predicted Residual  PRESS Predicted Residual >2k/n, =3k/n  Prob(y2(p))<.001  >4/n,1 ||>2, 23 DFRIT | |>2V{k/n} |CR-1]23k/n || >3vk
Maximum: 605.483 100.718 602.773 105.076 A71 3.995 077 2.316 2.538 4.358 528 1.321 2.304
Minimum: 540.351 -49.759 542.167 -57.041 035 056 .ooo -1.199 -1.209 -7.282 -.463 601 -2.668
Mean: 565.367 000 566.355 -.989 100 1.933 025 -.011 .008 -.989 -.042 1.130 -.251
SD: 22.643 42,145 22321 45.299 040 1.168 023 983 1.024 3.525 274 .181 1.547
Median: 554.282 -13.609 557.041 -16.175 093 1.721 014 -.334 -.328 -1.816 -.141 1.189 -.791
1 625.000 555.549 69.451 552.683 72.317 .040 183 035 1.595 1.645 2.866 .334 866 1.836
2 575.000 595.352 -20.352 597.430 -22.430 .093 1.721 008 -.481 -474 -2.079 -151 1.203 -.856
3 520.000 540.351 -20.351 542.167 -22.167 .082 1.409 007 -478 -471 -1.816 -141 1.189 -791
4 545.000 546.141 -1141 546.256 -1.256 092 1.700 000 -.027 -.026 -116 -.008 1.233 -.048
3 520.000 547.226 -27.226 551.703 -31.703 141 3.129 024 -.661 -.634 -4.477 -.265 1242 -1.542
6 655.000 554.282 100.718 545.924 105.076 041 236 077 2.316 2.538 4.358 528 601 2.904
7 630.000 605.483 24.517 601.537 28.463 139 3.054 019 395 587 3.946 .236 1.250 1.367
8 500.000 549.759 -49.759 557.041 -57.041 128 2.736 070 -1.199 -1.209 -7.282 -.463 1.083 -2.668
9 605.000 564.414 40.586 562.930 42.070 035 056 011 930 928 1.484 177 1.053 973
10 555.000 597.885 -42.885 602.773 -47.773 102 2.001 039 -1.019 -1.020 -4.889 -.344 1.109 -1.957
11 505.000 552.473 -47.473 557.334 -52.334 .093 1.727 043 -1.122 -1.128 -4.860 -.361 1.070 -2.040
12 540.000 544.874 -4.874 545.372 -5.372 093 1721 000 -115 -113 -.498 -.036 1.232 -.204
13 520.000 546.141 -26.141 548.788 -28.788 092 1.700 013 -.618 -.610 -2.647 -.194 1182 -1.097
14 583.000 598.609 -13.609 601.175 -16.175 159 3.634 007 -.334 -.328 -2.5366 -143 1315 -.837
15 600.000 581.963 18.037 578.240 21.760 171 3.995 014 446 439 3.723 .200 1321 1.180
16 626.000 555.549 70.451 552.641 73.359 040 .183 036 1.618 L671 2.907 .339 839 1.865
17 575.000 595.352 -20.352 597.430 -22.430 .093 1.721 008 -.481 -474 -2.079 -151 1.203 -.856
18 520.000 540.351 -20.351 542.167 -22.167 .082 1.409 {007 -478 -471 -1.816 -.141 1.183 -.791
19 545.000 546.141 -1.141 546.256 -1.256 .092 1.700 .ooo -.027 -.026 -.116 -.008 1.233 -.048
20 520.000 547.226 -27.226 551.703 -31.703 141 3.129 024 -.661 -.654 -4.477 -.265 1.242 -1.542
21 655.000 554.282 100.718 545.924 105.076 041 .236 077 2.316 2.538 4.358 .528 601 2.904
22 630.000 605.483 24.517 601.537 28.463 139 3.054 019 395 587 3.946 .236 1.250 1.367
23 500.000 549.759 -49.759 557.041 -537.041 128 2.736 070 -1.199 -1.209 -7.282 -.463 1.089 -2.668
24 605.000 564.414 40.586 562.930 42,070 035 {036 011 930 928 1484 177 1.053 973
25 555.000 597.885 -42.885 602.773 -47.773 102 2.001 039 -1.019 -1.020 -4.889 -.344 1.109 -1.957
26 505.000 552.473 -47.473 557.334 -52.334 .093 1.727 043 -1.122 -1.128 -4.860 -.361 1.070 -2.040
27 540.000 544.874 -4.874 545.372 -5.372 .093 1.721 .ooo -.115 -.113 -.498 -.036 1.232 -.204
28 520.000 546.141 -26.141 548.788 -28.788 .092 1.700 013 -.618 -.610 -2.647 -.194 1.182 -1.097
29 585.000 598.609 -13.609 601.175 -16.175 159 3.634 {007 -.334 -.328 -2.566 -.143 1.315 -.837
30 600.000 581.963 18.037 578.240 21.760 A71 3.995 014 446 439 3.723 .200 1321 1.180
Note: “Large” values are generated in Lavender and Red, respectively.
Table 2. Leverage and Influence Statistics for the u model
Influence
Leverage Studentized Residuals
PRESS or "Deleted” "Hat" Diagonal Mahalanobis D* Cook's D internal  External DFFITS  COVRATIO Welsch D
Case#t  Criterion Predicted Residual  PRESS Predicted Residual »2k/n, >3k/n  Prob(y2(p))<.001  >4/n,1 ||=2,>3 DFAT | |=2V(k/n) |CR-1]23k/n | |=3vk
Maximum: 4.079 640 4.276 TJ11 244 6.108 280 1.628 1.684 071 561 1.358 3.183
Minimum: 2.714 -779 2.692 -.976 076 1229 .001 -2.104 -2.266 -197 -1.139 694 -6.864
Mean: 3313 000 3.325 -011 133 2.500 048 -.012 -.021 -011 -.044 1.161 -.295
SD: 446 386 A61 457 043 1.253 .068 1.012 1.041 .074 450 A7 2.663
Median: 3.274 .168 3.241 .187 125 2.658 .020 427 420 .018 143 1.209 811
1 3.200 2.984 216 2.966 234 076 1229 006 542 533 018 .153 1.209 857
2 4.100 3.932 168 3.913 187 103 2.031 005 427 420 019 143 1.263 811
3 3.000 2.796 204 2.767 .233 125 2.657 .010 525 517 029 196 1.281 1.126
4 2.600 2.846 -.246 2.872 -272 093 1732 .010 -.624 -.617 -.025 -.198 1.214 -1.117
5 3.700 3.274 426 3.204 496 142 3.144 051 1.109 1.114 .070 453 1123 2.632
6 4.000 3.360 640 3.289 TJ11 100 1.927 073 1.628 1.684 071 561 845 3.183
7 4.300 4.049 251 4.005 .295 150 3.381 .019 656 649 044 272 1.287 1.591
8 2.700 3.152 -452 3.241 -.541 164 3.783 .070 -1.193 -1.203 -.089 -.532 1117 -3.134
9 3.600 3.549 051 3.541 .059 141 311 .001 132 129 .008 052 1.358 304
10 4.100 3.689 411 3.622 478 141 3.127 047 1.069 1.072 .068 435 1.138 2.527
1 2.700 3.050 -.350 3.100 -.400 125 2.638 029 -.902 -.898 -.050 -.339 1177 -1.954
12 2.300 2.714 .186 2.692 .208 102 1.995 006 474 467 021 158 1.258 896
13 2.500 2.346 -.346 2.882 -.382 093 L1732 .020 -877 -.873 -.036 -.280 114 -1.582
14 3.000 3.378 -.378 3.500 -.500 244 6.108 .089 -1.048 -1.051 -122 -.397 1.302 -3.696
15 3.300 4.079 - 779 4.276 -.976 .202 4.883 .280 -2.104 -2.266 -.197 -1.139 694 -6.864
16 3.200 2.984 216 2.966 .234 076 1229 006 542 535 018 153 1.209 857
17 4.100 3.932 .168 3.913 .187 .103 2.031 005 427 420 019 143 1.269 811
18 3.000 2.796 .204 2.767 .233 125 2.857 010 525 517 029 196 1.281 1.126
19 2.600 2.846 -.246 2.872 -.272 093 L732 .010 -.624 -.617 -.025 -.198 1.214 -1117
20 3.700 3.274 426 3.204 496 142 3.144 051 1109 1114 070 453 1123 2.632
21 4.000 3.360 640 3.289 T11 .100 1927 073 1.628 1.684 071 561 845 3.183
22 4.300 4.049 251 4.005 .295 150 3.381 019 636 .649 044 272 1.287 1.591
23 2.700 3.152 -452 3.241 -541 164 3.783 070 -1.193 -1.203 -.089 -.332 1117 -3.134
24 3.600 3.549 051 3.541 059 .141 3111 001 132 129 .008 {052 1.358 304
25 4.100 3.683 411 3.622 478 141 3.127 .047 1.069 1.072 .068 435 1.138 2.527
26 2.700 3.050 -.350 3.100 -.400 125 2.658 .029 -.902 -.898 -.050 -.339 1177 -1.954
27 2.900 2.714 186 2.692 .208 102 1.995 .006 474 467 021 158 1.258 896
28 2.500 2.846 -.346 2.882 -.382 093 1732 .020 -877 -.873 -.036 -.280 1.144 -1.582
29 3.000 3.378 -.378 3.500 -.500 244 6.108 .089 -1.048 -1.051 -122 -.597 1.302 -3.696
30 3.300 4.079 - 779 4.276 -.976 .202 4.883 280 -2.104 -2.266 -.197 -1.139 694 -6.864

Note: “Large” values are generated in Lavender and Red, respectively.
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Table 3. DFBETAS for t model. Table 4. DFBETAS for u model
DFBETAS = DFBETAS =

Case J;E»L Constant GRE-W MAT Case JN Constant GRE-V MAT AR
1 1511 -.1149 -.0121 1 0439 -.0120 0414 -. 1056
2 1037 -.0911 -.0335 2 -.0897 0681 0075 0459
3 -.0809 1066 -.0275 3 0843 -.08%4 0769 -. 1148
4 -.0066 0006 0058 4 -.1560 0159 1312 -.0218
5 -.0194 2023 -. 1887 5 0314 -.3281 .3028 -.0281
] .2495 -.2095 -.0050 6 1951 -.2406 -.1856 A286
7 -.1633 1785 0160 7 -.1769 1751 -.0157 0747
a8 -.0196 3390 -.3325 g -.0035 2733 -4120 2499
9 0440 0171 -.0416 9 L0091 -.0082 -.0248 0452
10 2376 -.2236 -.0612 10 -.2682 2876 1567 -.2280
11 -.2467 -.0455 2775 11 -.2097 0048 2769 - 1721
12 -.0292 0042 0241 12 1182 -.0058 -.0701 -.0480
13 -.1533 0150 1333 13 -.2210 0281 1838 -.0308
14 .0433 -.1259 0666 14 1663 -.4963 0532 3529
15 - 1187 -.0407 751 15 5974 3127 -.6439 - 4437
16 1535 -.1167 -.0123 16 0439 -.0120 0414 -. 1056
17 1037 -.0911 -.0335 17 -.0897 0681 0075 0459
18 -.0809 1066 -.0275 18 [0843 -.08%4 0769 - 1148
19 -.0066 0006 0058 19 -.1560 0199 1312 -.0218
20 -.01%94 .2023 -.1887 20 0314 -.3281 3028 -.0281
21 2495 -.2095 -.0050 21 1951 -.2406 -.1856 286
22 -.1633 1785 0160 22 -.1769 A751 -.0157 0747
23 -.01%6 .33%0 -.3325 23 -.0055 2755 -.4120 .2499
24 0440 0171 -.0416 24 L0091 -.0082 -.0248 0452
25 2376 -.2236 -.0612 25 -.2682 2876 1567 -.2280
26 -.2467 -.0455 2775 26 -.2097 0048 2769 - 1721
27 -.0292 0042 0241 27 1182 -.0058 -.0701 -.0480
28 -.1533 0150 1333 28 -.2210 0281 1858 -.0308
29 0433 -.1259 0666 29 1663 -.4963 0532 .3529
30 - 1187 -.0407 751 30 5974 3127 -.6439 - 4437

Note: Red signifies “large” values.

Table 5. Residual vs Predictor —t model: GRE-V=predictor.
Residuals vs. X (Zscores)

z‘l.l"ariﬂl::uliz Selected
-15 -1 -05 0 05 1 15 2

Zﬂfsiduiﬂ

r= 000
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Tables 1 & 2 show the leverage and influence VIFs for Models with # predictors > 1
statistics, and Tables 3 & 4 show the DIFFS,
respectively for the t and u models. Entries are

t and u criterion

automatically highlighted in Red, if above a Predictors GRE-Q GPA
suggested criterion from the literature. Tables 5-9 GRE-V 1.221 1.294
contain the residual with individual predictor plots MAT 1.221 1.492
for each predictor for the t and u models, showing ar 1.462

no signs of patterns by individual predictor.
Table 6. Residual vs Predictor — t model: MAT=predictor.

Residuals vs. X (Zscores)

Chart Area
— 21n.lfariﬂl::ule Selected
15 -1 05 0 0.5 1 15 2 25
3
. 25
2
(] .
1.2
® . 05 I‘\JE
§ 0
: . 05
. - ol e |
: : !
15
r= L000
Table 7. Residual vs Predictor — u model: GRE-V=predictor.
Residuals vs. X (Zscores)
21l.l"ariﬂI::nIE Selected
-15 -1 0.5 0 0.5 1 15 2
2
L] -
1.2
L 1 1
* o 3
b
. 05 NE
L L ] L] 1
L]
15
. 2
25
r= L0000

Note: Red signifies data point deemed influential by DFBETAS (Table 4) for GRE-V.
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Table 8. Residual vs Predictor — u model: MAT=predictor.

Residuals vs. X (Zscores)

Chartj] z‘l.l'ariﬂl::ule Selected
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Note: Red signifies data point deemed influential by DFBETAS (Table 4) for MAT.
Table 9. Residual vs Predictor — u model: AR=predictor.

Residuals vs. X (Zscores)
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Note: Red signifies data point deemed influential by DFBETAS (Table 4) for AR.

Significance
Attendance to least squares model assumptions is our responsibility, regardless of how those models
are used. One might even argue that, as partialling depends only on residuals, which is what those
assumptions regard, that our responsibility is even more so. Thus, such examination is considered

mandatory. As commercial programs do not automatically provide such, a program to allow easy generation
of that information is offered to all who would like it.
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Responsible Partialling

The Partialling program provides a flexible integrated treatment of partialling, and a comprehensive
set of diagnostic statistics and plots, at least some of which one should consider. If you care to take a look,
a guaranteed secure, anonymized, “voiceless” video demonstration of the analysis of these data with this
software is here (make your browser full screen for the best view).
https://johnnysolarseed.com/Responsible_Partialling_Demo/Responsible_Partialling_Demo.mp4
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