
Figure 1 – ReadMe 

 

Introduction            

Criterion.xlsx is a general-purpose linear modeling program.  It was written for my students to 1) remedy some difficulties seen  

in typical commercial computer package output, e.g., SPSS, SAS, Stata, Minitab, etc., 2) provide theoretical narrative for   
consideration that is specific to each result, 3) provide relevant results in APA tables and 4) provide relief from the necessity of   

commercial packages.  It is available for you to use as desired; all I ask is that citations to the work that led to    

this program be provided.  REDACTED.          
 

            
Input             

The program is currently set up to accommodate up to 1,000 cases, and 20 predictor variables.  On the “Input” tab, the number  

of predictors must be entered in cell C2 and the number of cases in C3.  In addition, the α used for inferential testing is entered  

in C4.  As it is so common, I have “.05” there, but 1) feel free to change it, and realize that no decision is a decision for .05.  
Starting with the criterion (or “dependent” if you wish) variable, enter short variable names in row 8 starting in column C (“C” for  

Criterion).  Then enter the scores for each of those variables for each case.  You can also cut and paste all of these values from  

elsewhere if desired.  In column A, starting in row 8 an "ok" will be rendered if the row meets the number of variables criterion  

in C2, and a green “OK” will be rendered in A5 if all rows thusly check out.  Only then will any analysis take place.  So, until there  

is an OK, check your input.  As well, unlike in aforementioned software packages, if you enter intractable data (e.g., a variable’s  

variance is zero, or a set of predictors includes a perfect linear dependency), you will get a red message to that effect and no  

relevant results until you fix the issue.  Rather than arbitrarily omitting variables due to one of these problems (as is common is  

commercial packages), I consider it your responsibility to consider these issues, diagnose, and make appropriate choices.  

             
Output             

Various sheets contain the results of the analyses, where appropriate in APA tabular or text format, and annotations to help clarify  

certain mistakes that are commonly made.  Keep in mind that, except for analyses that require your further input,  all relevant  

analyses are automatically calculated, thus relax, depending on the data set size, this may take some time.   
             

The “APA rs” and “APA rs Bon” sheets include an intercorrelation matrix with embedded means and standard deviations, and the  

same using Bonferroni-type corrections.           

             

A “Scatterplot” tab allows easy plotting of all bivariate relationships by selection of the variable number (“1”, “2”, etc.).  A  

legend of numbers and names is provided for that selection.  You can change these to get a scatterplot of any variable pair you like; 

it will be rendered automatically.  As well, histograms and all potentially useful univariate statistics  for each variable are calculated. 
            

 

The “APA Model” tab includes both the typical table for overall regression model performance and a textual entry (in bold), as  

either may be preferred.             



             

The “APA Coefficients” tab includes a typical table for consideration of regression coefficients.  Because of the common   

misinterpretation of these inferential tests, the bivariate correlations of variables with the criterion are also shown as what is not  

being tested, but are, of course, not to be included in the table.       
             

The “APA Generalizability” tab includes a variety of estimators that regard the generalizability of the regression model, with  

extensive discussion dedicated to the distinction between the goals of Explanation (ρ2) and Prediction (ρcv
2).   

             
The “Residuals” tab gives the usual regression residuals, but also the resampling PRESS residuals and diagnostics.   

             

The “ps” tab gives all the p-values for the bivariate correlations.  These will usually not be needed as the * type table note is  

used in the aforementioned APA correlation tables.  This is included for rare situations in which it is needed.   

             

The "R2 Increment" tab gives a flexible mechanism for investigating the unique contribution of any proper subset of predictors  

to the accuracy of the total model.  This is done "real-time" with as many such tests as desired. (This should be R2 Increment, but  

I have found no way to control fonts in tabs.)         

             
The "Moderation" tab allows testing first order moderations including any two predictors.  Again, this is done "real-time" so, as 

many such tests as desired can be accomplished.  Non-dichotomous variables are automatically centered.  In the moderation  

test of the product term, which variable is logically considered the "Moderator" is irrelevant, but, given a significant moderation  

test, it does matter for subsequent "split-sample" correlations, so you must specify which variable is the moderator (M).  Then, if  

the test is significant, the correlation (and plots) between the other variable (X) and the criterion are automatically calculated for  

subjects at or below, and above, the median of the moderator . You can also specify an alternative split-point, other than the median.  

If the moderator is dichotomous, then the median, and any value you input are ignored, and the split is for subjects at   
each level of the dichotomy.           

             

The "Mediation" tab allows testing of a simple mediation  (X => M => Y) effect.  Sobel's test (Aroian adjusted SE) is used.  The  

indirect and direct effects are also apportioned as percentages.       

             

The "Ridge" tab provides a ridge regression including plots of 1) the ridge trace, 2) reduction in R2, 3) reduction in Beta variance, 

and 4) increase in correlation between the Betas and the original predictor- criterion correlations.  Solutions for user input ks are also  

supported.            
 

            

If the criterion variable is determined to be  dichotomous (automatic) the "MANDDA" tab provides two-group contrasts for all  

multivariate (MANOVA) as well as univariate questions.  All know effect sizes are also produced.  As well, the mathematical  



linkage between the regression results, the multivariate tests, and the LDF are demonstrated.  On the univariate side, all   
univariate contrasts are automatically presented with a Bonferroni adjustment for multiple hypothesis testing as suggested by  

Huberty and Morris (1989).           
 

            

PDA Casewise, given a dichotomous criterion variable, renders a variety of classification models.      

Regression classification accuracy assigns Ss to groups to which their regression predicted score is closest.  This is the same as a  

linear PDA with prior probabilities estimated by group size and equal costs of misclassification.      

A linear PDA is also produced which renders the probabilities of group membership, p(group│X), highlighted in red if the case  

was a “miss.”  As well, the “typicality” probability p(X│group) is produced. This is only of interest if small as a metric of the case  

being an outlier.  Finally, for you to get a “feel” for how it works, exploration of unequal prior probabilities and costs of   
misclassification is available interactively, with resulting group probabilities and classification accuracies presented.   
This analysis is with L-O-O [Huberty’s (1994) label] cross-validated hits, using Lachenbruch's matrix shortcut.  As far as I know,  

this joint ability is not available in commercial software packages, yet we statisticians often tell users to consider unequal costs 

 of misclassification 😊           
 

            

PDA Summary gives the inferential tests of hit-rate in respect to both the proportional and maximum chance criteria, as well as  

the I index of Huberty (1994).  This is done for classification by 1) regression, 2) the PRESS cross-validated regression   
(equivalent to “L-O-O” or Lachenbruch U), 3) the linear PDA, 4) the linear PDA  with input priors and cost of   

misclassification, and  5) the L-O-O cross-validated linear PDA  with input priors and costs.  All the casewise classifications  

for these are on the PDA Casewise sheet.         

             

PDA Increment offers the same flexible format to investigate the contribution of any proper subset of variables to the   
classification accuracy of the full model as in the R2 Increment page for regression.  The difference, as introduced in Morris &  

Huberty (1995), is that  the joint distribution of hits and misses for the full and restricted model is needed, as the correct test  

statistic regards a correlated proportion McNemar's (1947) z, with more precise binomial mid-p (Fagerland, Lydersen & Laake,  

2013) probabilities used.  Moreover, for the two-group design treated herein, there are three such tests of increment to   
classification accuracy available -- that for each group as well as all subjects.      

             

LR, given a dichotomous criterion, produces a logistic regression using the Newton-Raphson iteration method.  If iteration fails  

because there is not a solution, such is noted, and no results are presented.  This is unlike some commercial packages that have  

the misleading practice of producing the last iterated solution as a result with a small footnote that says that the maximum   
number of iterations allowed has been exceeded.  All popular metrics of effect size are also included.    

             

LR Firth presents Firth's (1993) penalized LR.  This is done with the same tolerance as in LR, and regardless of LR's successful iteration. 

Iteration with Firth's penalized LR will converge regardless of complete or quasi-complete separation.    

             



LR Increment is isomorphic to the PDA Increment tab, producing the same sort of results based on classification accuracy, but using a  

different mathematical model:  maximum-likelihood for LR, rather than least-squares in PDA.  The more traditional full vs. restricted  

contrast of the Log Likelihood is also produced, but I encourage you to also consider classification accuracy, which is, in my opinion  

given too little consideration in LR use.          

             

PDA LR Comp renders a contrast between the classification performance of PDA and LR using the same technique as in the    
PDA Increment sheet, but this time the contrast is between mathematical algorithms rather than between variable subsets within  

algorithm.            

             
Many other pages are only for calculations and are thus hidden.  As well, the spreadsheet is locked so that we (I include myself)  

will not be able to destroy formulas.          
 

  



Figure 2 – Input (Regression) 

 



 

 

Figure 3 – APA R 

 

 

  

This is the standard APA format for presentation of an intercorrelation matrix.  This would be true even if interest is only in the 

correlations among variables, with no regression.  If that is the case, then you may simply enter your variables ignoring which is 

designated “Criterion” in the Input tab. Then ignore all other tabs except "APA rs Bon."  You may find need to adjust column widths

for your particular data in any table, but  the basic structure and "lines" will remain the same.

 Table 1

   Variable M SD 1 2 3 4 5

 1. GPA 3.31 .60 —

 2. GREV 565.37 48.66 .61* —

 3. GREQ 575.33 83.03 .58* .47* —

 4. MAT 67.00 9.25 .60* .27  .43* —

 5. AFR 3.57 .84 .62* .51* .41* .52* —

 *p < .05

 Title such as:  Correlation of Criterion with all Predictor Variables



Figure 4 – APA R Bon (Bonferroni adjustment and alternative suggestions) 
 

 

  

This is the intercorrelation matrix using Bonferonni corrected ps for all correlations.

With p variables, there are p (p - 1) / 2 correlations, thus the corrected α= .00500

Possibilities in addition to Bonferroni (Holm, Hochberg, Sidak, FDR, etc.) are available 

and should also be considered as contenders.

 Table 1

   Variable M SD 1 2 3 4 5

 1. GPA 3.31 .60 —

 2. GREV 565.37 48.66 .61* —

 3. GREQ 575.33 83.03 .58* .47  —

 4. MAT 67.00 9.25 .60* .27  .43  —

 5. AFR 3.57 .84 .62* .51* .41  .52* —

*p < .00500

 Title such as:  Correlation of Criterion with all Predictor Variables



Figure 5 – Scatterplot (of any pair of variables) 
 

  



 

Figure 6 – APA Model 

 

 
  

Presentation of information regarding accuracy of the total regression model is often included in text, rather than in a table. If

such a table is deemed necessary, it is provided below. In respect to SPSS’s version, the R2 is added, as this is the effect that is 

being tested.  Cohen’s f2, a usual index of effect size, is also included.  Note that the "Adjusted R Square" of SPSS is NOT to be

included, at least with that name.  The explanation and all “generalization” information, more correctly documented, is in a 

separate table in the "Generalization" tab.

The presentation in text is usually something like:

Table 1

 Title such as:  R
2

, Sum of and Mean Squares, dfs, F, p and Cohen's f
2

 Source Sum of Squares df Mean Square R
2

F p f
2

    Regression 6.682 4 1.671 .640 11.129 <.001 1.781

    Residual 3.753 25 .150

    Total 10.435 29

"The model predicted a significant percentage of criterion variance, R² = .640, F(4,25) = 11.129, p < .001, f² = 1.781."



 

Figure 7 – APA Coefficients 
 

 

  

This table includes information about individual coefficients and is usually included in regression publications. Take special care in 

discussing the tests of the coefficients. These tests are for partial  slopes (the Bs); stated alternately, for each predictor, it is a test of 

whether that predictor adds significant predictive accuracy to the model, in addition to that afforded by the remaining predictors. For 

this reason, an additional statistic, ΔR2, is added to this table in respect to that which SPSS includes.  This represents the increment to R2 

afforded by the addition of the respective variable to the model having all the remaining predictors in it.  This, after all, is that which is 

being tested.  This is not a test of the predictive accuracy afforded by only that row variable. If you simply wish to attend to whether a 

variable, by itself, is a significant predictor, the bivariate correlation should be used. Those are in the intercorrelation matrix (APA rs or 

APA rs Bon tabs). This interpretive mistake occurs so often in the literature that those rxys are included here for contrast, but they should 

not be in the table as they are not tested there.  The βs are hidden in column D if you wish them, however the CI is in respect to B, not β.

The βs are not in the APA (v 7) regression example table.

Table 1

Title such as:  Regression Weights, R
2

 Increments, Tests, and VIFs.

Variable B SE ΔR
2

t(25) p VIF

LL UL

 Constant -1.734 .950 -3.691 .222 -1.826 .080 rxy

 GREV .004 .002 .068 .000 .008 2.182 .039 1.5 .61*

 GREQ .002 .001 .030 -.001 .004 1.453 .159 1.5 .58*

 MAT .021 .010 .069 .001 .041 2.187 .038 1.5 .60*

 AFR .145 .113 .024 -.088 .377 1.281 .212 1.7 .62*

Note. CI = confidence interval; LL = lower limit; UL = upperlimit.

95% CI



Figure 8 – APA Generalizability 
 

 



 

Figure 9 – R2 Increment 

 

 
 

  

Consideration of the contribution of a subset of variables to the predictive accuracy of a model that contains other variables is one of the most important theory 

building tools we have.  The question is, for a model containing k1 variables, what is the contribution of a subset of those variables containing k2 variables? The k2 

variables need to constitute a “proper” subset; therefore, all the k2 variables are among the k1 variables, but there are also variables among the k1 that are not 

among the k2, therefore k1>k2.  This theory testing method is valid for consideration of any model (logically with at least two variables), but in the case of 

multiple regression an F statistic is available:   F(k1-k2),(N-k1-1) = (Rk1
2 – Rk2

2)/((1-Rk1
2)/(N-k1-1)).

This sheet allows you to test the contribution of any proper subset of variables to the full model introduced in the Input sheet.  The variables’ names for the 

model are automatically listed in row 15.  Simply enter an “X” under each variable (row 16) to be included in the subset to be tested, and an "Enter" after each.   

This is "real-time"; as you add or omit Xs, the ΔR2 (the difference in R2s between the “k1” and “k2” models, an appropriate Effect Size), F and p change accordingly.  

Therefore, you may consider any subsets of interest.

Place an X below variables for which Increment test is sought:

GRE-Q GRE-V MAT AR

X X

ΔR² (ES) F(2,25) p

.1481 5.146 .013



Figure 10 – Moderation 

 

In its simplest form, a Moderation question regards whether the relationship between two variables, X and Y, is consistent across the range of a third 

variable, M.  Interaction is a synonym that tends to be used more in ANOVA;  however, ANOVA can only be used with nominal variables, whereas the more 

general least-squares linear model employed in regression can be used with predictors manifesting any scale of measurement. This Moderation sheet is for 

exploring possible moderating effects of predictors on other predictors. The mathematics of testing a moderation is through a product term, thus, to 

consider whether M moderates the relationship between X and Y, we would create a three-predictor regression model predicting Y from X, M and X*M.  It is the 

test of the product term (highlighted in green) that is a test of moderation.  To control multicollinearity incurred in using variables and functions of variables in the 

same model, we often “center” the predictors; this simply means subtracting the mean from the variable.  This can be done with a transformation in statistical 

packages but is done automatically here. (The necessity of centering is not without argument, for instance see Kromrey & Foster-Johnson, 1998; I typically fall on 

the side of centering.)  If a moderation term is significant, we usually explore more deeply to consider the exact magnitude of the relationship between X and Y 

at “high” and “low” levels of M.  These levels are often determined with a median split on M, but the split can be done at any interesting level you wish if group 

sizes do not become too small.  You can also consider the relationship at multiple split levels.

     To obtain a Moderation analysis all you need to do is to put one  "X" and and one  "M" (denoting the variable’s role) under (Row 16) for any two of your predictors 

(listed here).  You may explore as many moderation analyses with different variables and split points as you wish; the calculations are automatically updated.

Place an X and an M (the Moderator) below two variables for which a moderation test is sought:

GRE-Q GRE-V MAT AR

  x m

3.40

                            (Ignored if M dichotomous.)

Table 1

Title such as:  Moderation Test for predictors "X" and "Z," Regression Weights, R
2

 Increments, Tests, and VIFs.

Variable B SE β ΔR
2

t(22) p VIF

LL UL

 Constant 3.404 .088 3.224 3.583 38.534 .000

 MAT .028 .010 .430 .131 .008 .048 2.791 .010 1.409

 AR .350 .112 .489 .165 .122 .577 3.130 .004 1.449

Product -.023 .011 -.284 .070 -.046 .000 -2.044 .051 1.146

Note . CI = confidence interval; LL = lower limit; UL = upper limit.

As moderation term is significant, correlations at or below, and above, Moderator Split (input or median):

Split OK

 r(MAT,GPA) .4128

95% CI

If desired, alternative to median for split on AR (E22):

AR Median:

< Split (N=14)<= Split (N=16)

.6145
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Figure 11 – Mediation 

  



Figure 12 – Ridge Regression (part 1:  Contextual discussion and calculations) 

 

 
 



 

Figure 13 – Ridge Regression (part 2:  Plots) 
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Figure 14 – Ridge Regression (Plots for Longley Data) 
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Figure 15 – Input (Dropout with 8 predictors) 

 

 

  



Figure 16 – MANDDA 

 

If the criterion is dichotomous, that fact will automatically be detected, as well as the indices that determine the two groups established. If dichotomous, this sheet calculates 

1) all multivariate tests (including a test of homogeneous covariance matrices) and effect sizes for a MANOVA between the two groups, 2) all univariate tests (selection 

denoted by a test of HOV) and effect sizes, and 3) the DDA LDF.  The parallel between the multivariate tests and regression on this dichotomous criterion (imported from 

other sheets, as such is automatically calculated) is illustrated; the test of that R2 is necessarily the same as all multivariate tests.  As well, all known multivariate effect size 

estimates (except ω2, which is based on unbiased variance estimators, and is thus, also  different in the univariate case) are shown to be the same as R2 in the two-group case.  

In addition, that the DDA LDF is proportional to the regression weights is also demonstrated.  Results for the appropriate t-test (Gosset as “Student”, 1908; or Welch, 1947) is 

highlighted in green.  Although multivariate and univariate contrasts are both provided, in no case should one consider the multivariate “MANO A” test as omnibus in 

respect to the univariate tests.  As well, if multiple univariate tests are the interest, the accumulated error-rate in respect to α must be controlled (Huberty & Morris, 1989).  

As mentioned in the “APA rs Bon” sheet, there are several alternatives (Bonferroni, Holm, Hochberg, Sidak, FDR, etc.).  All ps that are < the Bonferroni adjusted α entered on 

the “Input” sheet are bolded and italicized .  You may use alternative corrections; the use of Bonferroni is because it is simple, and to guide you to do something.  

Multivariate tests require each group N to be greater than the number of predictors, thus, if this is not the case, multivariate results will not be provided.  Univariate tests 

require each group N > 2, else they will not be provided.  Obviously, larger Ns are required for stable inference.

Box M: 64.541485 df1 36 Wilks' F: 7.163209

Box "c": .063870 df2 34679.3 B-Pillai F: 7.163209

c': .005175 b 38.49889 Roy F: 7.163209

c'-c^2: .001096 Hot F 7.163209

dostat N

1 51 Mean SD Mean SD Bartlett χ2(1) p t(160) p t df pd (pooled) rxy² LDF B/LDF

2 111 schools8 2.31 1.05 3.40 1.42 5.653 .017 4.877 <.001 5.439 128.03 <.001 .8250 .129 -.6227 -.1589

Total 162 repeats8 .24 .89 .68 .80 .723 .395 3.147 .002 3.030 88.84 .003 .3456 .058 -.4067 -.1589

reading8 3.29 .76 2.67 .99 4.723 .030 4.005 <.001 4.425 125.07 <.001 .5028 .091 .5545 -.1589

math8 3.35 .96 2.79 .90 .290 .590 3.620 <.001 3.534 91.72 <.001 .4343 .076 -.0320 -.1589

R² (Canonical r²): .2725 lang8 3.49 .92 2.77 1.01 .477 .490 4.309 <.001 4.447 105.08 <.001 .5577 .104 .2987 -.1589

Statistic p science8 3.22 .99 2.65 .97 .021 .885 3.440 <.001 3.418 95.65 <.001 .4372 .069 .0270 -.1589

F(8,153): 7.1632 <.001 socst8 3.25 1.07 2.70 1.06 .015 .902 3.070 .003 3.053 95.88 .003 .4187 .056 -.3096 -.1589

dsfs8 1.31 1.56 2.92 2.26 8.559 .003 4.592 <.001 5.250 135.95 <.001 1.0987 .116 -.2950 -.1589

Box M 64.541 —

χ2(36): 60.419 .007

F(36,34679): 1.676 .007

Tests of equal mean vector

Hotelling T²: 59.927 <.001

Wilks' Λ: .728 <.001

Bartlett-Pillai: .272 <.001

Roy: .375 <.001

η² (Eta²): .2725 —

τ² (Tau²): .2725 —

ζ² (Zeta²): .2725 —

ξ² (Xi²): .2725 —

ω² (Omega²): .2667 —

Mahalanobis D²: 1.715 —

Mean LDF Grp 1: 1.175 —

Mean LDF Grp 2: -.540 —

Univariate Tests

dostat=1 dostat=2 DDA α RegressionHOV? Gosset (=σ²) Welch (≠σ²) Univariate ES

Multivariate Test

Regression (Imported)

Multivariate Effect Sizes

= Covariance Matrix Test

Multivariate Distance between groups



 

 

Figure 17 – PDA Casewise 

 

  

PDA Casewise, given a dichotomous criterion variable, renders regression classification accuracy – assigning Ss to groups to which their regression 

predicted score is closest.  This is the same as a linear PDA with prior probabilities estimated by group size and equal costs of misclassification.  A 

linear PDA is also produced which renders the probabilities of group membership, p(group│X), highlighted in red if the case was a “miss.”  As well, 

the “typicality” probability p(X│group) is produced. This is only of interest if small as a metric of the case being an outlier.  Finally, exploration of 

unequal prior probabilities and costs of misclassification is available interactively, with resulting group probabilities and classification accuracies 

presented.  This is done with L-O-O cross-validated classification.

Predicted Predicted

Actual (Not CV) PRESS CV 'Typicality' L-O-O CV 1 2

S # dostat dostat dostat Distance p(group│X) Distance p(group│X) LDF Score p(X│group) Predicted .5000 .5000

1 2 2 2 4.1544 .1793 1.1119 .8207 -1.2037 .6122 2 1.0000 1.0000

2 2 2 2 8.9459 .2352 6.5879 .7648 -0.8614 .8060 2

3 2 2 2 7.6496 .1679 4.4490 .8321 -1.2827 .5706 2

4 2 2 2 13.8054 .0461 7.7474 .9539 -2.7114 .0973 2

5 2 2 2 3.5360 .2419 1.2516 .7581 -0.8246 .8279 2 dostat 1 2 Total

6 2 2 2 10.3020 .0831 5.4990 .9169 -2.0839 .2384 2 Hit # 1 38 13 51

7 2 2 2 11.9492 .1040 7.6420 .8960 -1.8360 .3223 2 2 39 72 111

8 2 2 2 9.7352 .3196 8.2238 .6804 -0.4381 .9380 2 Actual Total Hit #= 110 162

9 2 2 2 10.1959 .3106 8.6017 .6894 -0.4795 .9632 2 Hit % 1 74.51% 25.49% 31.48%

10 2 2 2 4.8036 .1462 1.2739 .8538 -1.4473 .4884 2 2 35.14% 64.86% 68.52%

11 2 2 2 7.5544 .2047 4.8394 .7953 -1.0399 .7026 2 Total Hit %= 67.90% 100.00%

12 2 2 2 6.0671 .2568 3.9422 .7432 -0.7449 .8756 2

13 2 2 2 13.7562 .5859 14.4503 .4141 0.6646 .3577 1

14 2 2 2 12.5546 .0630 7.1546 .9370 -2.3824 .1594 2

15 2 2 2 11.8796 .0541 6.1578 .9459 -2.5433 .1261 2

16 2 2 2 13.5217 .0756 8.5130 .9244 -2.1868 .2085 2

From Regression

Priors α to group size

1

dostat =

2

Linear PDA (not CV) - Equal Priors, Covariance Matrices, & Costs

Predicted

Prior Probabilities

Cost of Misclassification

dostat

L-O-O CV Classification - Input Priors and Costs



Figure 18 – PDA Summary 

 

If the criterion is dichotomous, PDA Summary gives the inferential tests of hit-rate in respect to both the proportional and maximum chance criteria, as well as the I  index of 

Huberty (1994).  This is done for the regression classification (equivalent to a PDA with priors established by group size and equal costs of misclassification), and the PRESS 

cross-validated regression classification (equivalent to “L-O-O” or Lachenbruch U), and the linear PDA with and without cross-validation.  All the case-wise classifications are on 

the PDA Casewise sheet.

Regression -- priors from group sizes and costs of missclassification assumed.

Group N # Hits Hit Rate Chance Exp z p I Chance Exp z p I

1 51 28 54.90% 16.06 3.60 <.001 34.18% Proportional 92.11 5.53 <.001 49.92%

2 111 99 89.19% 76.06 4.69 <.001 65.66% Maximum 111.00 2.71 .003 31.37%

Total 162 127 78.40%

PRESS CV regression -- priors from group sizes and costs of missclassification assumed.

Group N # Hits Hit Rate Chance Exp z p I Chance Exp z p I

1 51 23 45.10% 16.06 2.09 .018 19.87% Proportional 92.11 4.27 <.001 38.47%

2 111 96 86.49% 76.06 4.08 <.001 57.07% Maximum 111.00 1.35 .088 15.69%

Total 162 119 73.46%

Linear PDA (Not CV)-- equal priors and costs of missclassification assumed.

Group N # Hits Hit Rate Chance Exp z p I Chance Exp z p I

1 51 42 82.35% 16.06 7.82 <.001 74.24% Proportional 92.11 3.63 <.001 32.75%

2 111 73 65.77% 76.06 .00 .500 -8.74% Maximum 111.00 .68 .249 7.84%

Total 162 115 70.99%

Group N # Hits Hit Rate Chance Exp z p I Chance Exp z p I

1 51 42 82.35% 16.06 7.82 <.001 74.24% Proportional 92.11 3.63 <.001 32.75%

2 111 73 65.77% 76.06 .00 .500 -8.74% Maximum 111.00 .68 .249 7.84%

Total 162 115 70.99%

Linear PDA L-O-O CV -- priors and costs of missclassification input.

Group N # Hits Hit Rate Chance Exp z p I Chance Exp z p I

1 51 38 74.51% 16.06 6.62 <.001 62.80% Proportional 92.11 2.84 .002 25.60%

2 111 72 64.86% 76.06 .00 .500 -11.61% Maximum 111.00 .00 .500 -1.96%

Total 162 110 67.90%

For Each Group For Total Sample

For Each Group For Total Sample

For Total SampleFor Each Group

For Each Group For Total Sample

Linear PDA (Not CV) -- priors and costs of missclassification input.

For Each Group For Total Sample



Figure 19 – PDA Increment 

 

Consideration of the contribution of a subset of variables to the predictive accuracy of a classification model containing other variables is just as useful in theory building as in 

the case of a criterion variable that is continuous.  The question is isomorphic to the multiple regression case – simply with a different criterion, thus objective. For a model 

containing k1 variables, what is the contribution of a subset of those variables containing k2 variables?  Indeed, the ΔR
2 with a dichotomous criterion can be legitimately 

tested, but, in general, it is not the gain in percentage of prediction accuracy that is of interest, rather it is the increment to classification accuracy afforded by the 

hypothesized variables that one wishes to know.  That which makes the computation more difficult, and not available from simple classification analyses for the full and 

restricted models from commercial software, is that, as the same subjects are involved, the effects are correlated.  Therein, a four-fold table containing the conditional hits 

and misses from both the full and restricted model is necessary.  Further, to allow consideration of the effect of the increment to classification accuracy in each group and the 

total sample, such a table is needed for each.  This method and associated software were introduced by Morris and Huberty (1995).  Working just like the R 2 Increment sheet, 

this sheet allows you to test the contribution of any proper subset of variables to the full model introduced in the Input sheet.  The variables’ names for the model are 

automatically listed in row 15.  Simply enter an “X” under each variable (row 16) to be included in the subset to be tested.  This is real-time; as you add or omit Xs, the tabled 

hit-rates and the McNemar’s z change accordingly.  Therefore, you may consider any subsets of interest.

Place an X below variables for which Increment test is sought:

schools8 repeats8 reading8 math8 lang8 science8 socst8 dsfs8

X X    X

Hit-rate (as %)for both full and restricted models

1 2 Total

Full 82.35% 65.77% 70.99%

Restricted 60.78% 68.47% 66.05%

Misses Hits Misses Hits Misses Hits

Restricted 5 variable model (less Hits 1 30 Hits 14 62 Hits 15 92

the 3 variables you selected). Misses 8 12 Misses 24 11 Misses 32 23

McNemar p = .002 McNemar p = .557 McNemar p = .200

Hit-rate (as %)for both full and restricted models

1 2 Total

Full 74.51% 64.86% 67.90%

Restricted 54.90% 68.47% 64.20%

Misses Hits Misses Hits Misses Hits

Restricted 5 variable model (less Hits 2 26 Hits 15 61 Hits 17 87

the 3 variables you selected). Misses 11 12 Misses 24 11 Misses 35 23

McNemar p = .007 McNemar p = .442 McNemar p = .349

... for Total

Full 8 variable model

Groups

Full 8 variable model

Hit/Miss Matrix for Group 1

Full 8 variable model

... for Group 2

Resubstitution Contrasts (Not Cross-validated)  -- Input Priors and Costs of Misclassification

L-O-O Cross-Validated Contrasts -- Input Priors and Costs of Misclassification

Groups

Hit/Miss Matrix for Group 1

Full 8 variable model

... for Group 2

Full 8 variable model

... for Total

Full 8 variable model



Figure 20 – LR Logistic Regression 

 

Logistic regression and discriminant analysis treat the same classification problem, but with different mathematical models; least-squares for discriminant analysis and 

maximum likelihood for logistic regression.  Logistic regression directly produces probabilities of group membership, although as you can see ( PDA Casewise), these are 

available as well in discriminant analysis.  Discriminant analysis is the older technique being originally invented, in the two-group case, by Fisher (1936). The maximum 

likelihood solution cannot be presented as a formula; iterated must be employed to derive a solution.  There are two ways to do this; in LR the Newton-Raphson method is 

used.  The iteration usually works just fine, but in some circumstances, it may fail (with “complete” or “quasi-complete”) group separation.  In such a case, it doesn’t matter 

how many iterations you pursue, a solution is not mathematically possible.  One problem in commercial software is that a solution is often given in any case.  SPSS is flagrant 

in this regard; weights are given as if they are the logistic weights, and only a tiny footnote about iterations being exceeded is a clue to the failure.  Most don’t see this and 

believe that they have a logistic solution, when indeed, it does not exist.  This page calculates an LR solution if possible, else reports its failure if not.

Input Iteration tolerance: .00100

# Iterations = 6

Table 1

Title such as: Logistic Regression Weights, Tests, and VIFs. Logistic Regression Classification Summary.

Variable B SE Exp(B) Wald z p VIF

LL UL (OLS) Group N # Hits Hit Rate Chance Exp z p I Chance Exp z p I

 Constant -.975 1.241 .377 -.786 .432 1 51 31 60.78% 16.06 4.51 <.001 42.77% Proportional 92.11 5.69 <.001 51.35%

 schools8 .796 .204 1.493 3.294 2.217 3.911 <.001 1.0 2 111 97 87.39% 76.06 4.28 <.001 59.94% Maximum 111.00 2.88 .002 33.33%

 repeats8 .479 .306 .890 2.925 1.614 1.563 .118 1.1 Total 162 128 79.01%

 reading8 -.579 .322 .300 1.048 .561 -1.798 .072 2.5

 math8 -.047 .351 .482 1.888 .954 -.135 .893 2.7 Model Fit:

 lang8 -.265 .337 .399 1.476 .767 -.787 .431 2.9 -201.819

 science8 .047 .338 .544 2.020 1.048 .138 .890 3.0 -146.013 p

 socst8 .386 .329 .776 2.785 1.470 1.173 .241 3.3 χ2(8) = 55.807 .001

 dsfs8 .383 .144 1.108 1.940 1.466 2.656 .008 1.4 36.364 .001

Note. CI = confidence interval; LL = lower limit; UL = upper limit.

"Psuedo" R2s -- Careful, estimates different notions of fit; can't be considered in the metric of an OLS R2

.2765 Efron = .3219

.1873 Tjur = .3164

.2914 Count = .7901 (Same as cell  M20/N)

.4091 Adj Count = .3333

.5011

Information Criteria

AIC = 164.0125

AIC/N = 1.0124

BIC = 191.8009

Full model -2*Log Likelihood = 

Null model -2*Log Likelihood = 

McFadden = 

McFadden Adjusted = 

 Wald (Full with intercept) χ2(9) = 

Cragg-Uhler/Naglekerke = 

McKelvey & Zavoina = 

95% CI for EXP(B) For Each Group For Total Sample

Cox &Snell = 



Figure 21 – LR Firth 

  

     Maximum Likelihood Estimation (MLE) is an asymptotic estimator; it, thus LR, requires large N.  How large in a generic sense is as bit difficult to posit; there are several 

hotly contested rules of thumb for LR.  In any case, keep in mind that it isn’t just the N that is of concern, but the smaller n among the two groups.  Maximum likelihood has 

specific problems modeling a dichotomous grouping in which one of the ns is small (see literature under “rare events.”).  So, a typical rule of thumb is from 10 to 20 subjects 

(in the smaller group)/predictor, but there are many opinions, and the case is that the answer isn’t simple. 

     Firth’s (1993) method was to overcome the small sample bias of the MLE solution with a “penalty” for small sample size, with that penalty disappearing for larger samples. 

An artifact of the method is that even with data that manifest “complete” or “quasi-complete” separation, iteration converges yielding weights.  For that reason, many see 

(e.g., Heinze & Schemper, 2002 – see title) this as a “second level” analysis if LR iteration fails.  I would prefer to see this as Firth originally intended – a generic method to 

overcome the effect of small samples on MLE (in this case, LR).  Therefore, this sheet produces the Firth results, regardless of whether convergence obtains on the LR sheet.

Note:  Heinze & Schemper (2002) suggest caution in use of the Wald z for variables that present complete separation.

# Iterations = 6

Table 1

Title such as: Firth Penalized Logistic Regression Weights, Tests, and VIFs. Firth Penalized Logistic Regression Classification Summary.

Variable B SE Exp(B) Wald z p VIF

LL UL (OLS) Group N # Hits Hit Rate Chance Exp z p I Chance Exp z p I

 Constant -.875 1.206 .039 4.432 .417 -.725 .468 1 51 31 60.78% 16.06 4.51 <.001 42.77% Proportional 92.11 5.69 <.001 51.35%

 schools8 .733 .194 1.421 3.046 2.081 3.768 <.001 1.0 2 111 97 87.39% 76.06 4.28 <.001 59.94% Maximum 111.00 2.88 .002 33.33%

 repeats8 .386 .279 .852 2.543 1.471 1.384 .166 1.1 Total 162 128 79.01%

 reading8 -.545 .314 .314 1.072 .580 -1.737 .082 2.5

 math8 -.041 .344 .489 1.884 .960 -.120 .905 2.7 Firth Model Fit:

 lang8 -.244 .329 .411 1.494 .783 -.742 .458 2.9 -201.819

 science8 .040 .332 .542 1.996 1.040 .119 .905 3.0 -146.320 p

 socst8 .364 .323 .764 2.709 1.439 1.128 .259 3.3 χ2(8) = 55.499 <.001

 dsfs8 .358 .138 1.092 1.874 1.430 2.600 .009 1.4 35.869 <.001

Note. CI = confidence interval; LL = lower limit; UL = upper limit.

Firth "Pseudo" R2s -- Careful, estimates different notions of fit; can't be considered in the metric of an OLS R2

.2750 Efron = .3192

.1858 Tjur = .3030

.2901 Count = .7901 (Same as cell  M20/N)

.4072 Adj Count = .3333

.4569

Firth Information Criteria

AIC = 164.3205

AIC/N = 1.0143

BIC = 192.1088

 Wald (Full with intercept) χ2(9) = 

McFadden = 

McFadden Adjusted = 

Cox &Snell = 

McKelvey & Zavoina = 

95% CI for EXP(B) For Each Group For Total Sample

Null model -2*Log Likelihood = 

Full model -2*Log Likelihood = 

Cragg-Uhler/Naglekerke = 



Figure 22 – LR Increment 

 



Figure 23 – PDA LR Comp 

 

More interest in logistic regression vs. Discriminant Analysis is apparent currently.  This appears to be due to the novelty of logistic regression and due to its theoretical 

dependance on fewer assumptions.  It is certainly a viable technique to use, but there is clear evidence that it should not wholly replace discriminant analysis. First, see 

the work of Efron (1975) showing discriminant analysis at an advantage.  As well, in addition to the aforementioned potential iteration failures on the LR page, there are 

occasions in which logistic regression renders a solution that has very disproportionate accuracies for the two groups, sometimes rendering it useless.  For these reasons, I 

suggest an empirical comparison between the classification accuracies of PDA and LR.  This page performs that comparison.  This is done by the same procedure as 

developed for Full vs. Restricted model testing (Morris & Huberty, 1995), so it will look familiar.

Hit-rate (as %)for both full and restricted models

1 2 Total

PDA 82.35% 65.77% 70.99%

LR 60.78% 87.39% 79.01%

Misses Hits Misses Hits Misses Hits

Logistic Hits 0 31 Hits 24 73 Hits 24 104

Regression Misses 9 11 Misses 14 0 Misses 23 11

McNemar p = <.001 McNemar p = <.001 McNemar p = .029

PDA PDAPDA

Groups

Hit/Miss Matrix for Group 1 ... for Group 2 ... for Total



Figure 24 
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Table 1             

              

Student Comments on Criterion.                     

Please provide any additional comments or suggestions related to your experience with Criterion. You may use as much space as you wish. 
              

 #1 Using it through one drive was fantastic and worked like a charm. Loved using it.       
              

 #2 Criterion is user friendly, easy to use and a better system than SPSS. I did not have a great experience working with SPSS in my 

 first stats class (I was required to use without another option). My classmates experienced the same    
              

 #3 Criterion saved this course and should replace spss.        

              

 #4 The only issue I had with criterion was the fact that I was unable to import/export data from the web version   
              

 #5 So much easier to use than SPSS.  I spend a lot of time connecting and reconnecting to FAU virtual apps (timeouts, etc.) to use 

 SPSS and then trying to remember what boxes to check.  Thanksyou for this tools.      
              

 #6 I enjoyed working in Criterion during the semester and will continue using this program in the future.     

 The program is very intuitive to use and makes all necessary tests and even more in seconds.  The tables are prepared in the  

 APA style.  A very useful statistical program to use for all majors!       
              

 #7 I don't know of any other program that formats your output into an APA style table. I am sure this will save people incredible  

 

amounts of 
time!            

              

 #8 Not having the appropriate Excel was an issue for me.        
              

 #9 Honestly, I am truly grateful to you for sharing Criterion with us.  It really is such a comprehensive and easy to use package.  

  The fact that you have gone as far as to have the tables already in APA format is incredibly helpful.  Thank you!   
              

 #10 Great program, made the concepts in class easier to understand.        
              

 #11 CrCriterion is much more user friendly than SPSS. By running statistical analysis through criterion I was able  to get all of the  

  information much faster than SPSS.          
              

 #12 Was much simpler to use and understand.                 

 


