Figure 1 — ReadMe

Introduction

Criterion.xlIsx is a general-purpose linear modeling program. It was written for my students to 1) remedy some difficulties seen
in typical commercial computer package output, e.g., SPSS, SAS, Stata, Minitab, etc., 2) provide theoretical narrative for
consideration that is specific to each result, 3) provide relevant results in APA tables and 4) provide relief from the necessity of
commercial packages. It is available for you to use as desired; all | ask is that citations to the work that led to

this program be provided. REDACTED.

Input

The program is currently set up to accommodate up to 1,000 cases, and 20 predictor variables. On the “Input” tab, the number
of predictors must be entered in cell C2 and the number of cases in C3. In addition, the a used for inferential testing is entered
in C4. As it is so common, | have “.05” there, but 1) feel free to change it, and realize that no decision is a decision for .05.
Starting with the criterion (or “dependent” if you wish) variable, enter short variable names in row 8 starting in column C (“C” for
Criterion). Then enter the scores for each of those variables for each case. You can also cut and paste all of these values from
elsewhere if desired. In column A, starting in row 8 an "ok" will be rendered if the row meets the number of variables criterion
in C2, and a green “OK” will be rendered in A5 if all rows thusly check out. Only then will any analysis take place. So, until there
is an OK, check your input. As well, unlike in aforementioned software packages, if you enter intractable data (e.g., a variable’s
variance is zero, or a set of predictors includes a perfect linear dependency), you will get a red message to that effect and no
relevant results until you fix the issue. Rather than arbitrarily omitting variables due to one of these problems (as is common is
commercial packages), | consider it your responsibility to consider these issues, diagnose, and make appropriate choices.

Output

Various sheets contain the results of the analyses, where appropriate in APA tabular or text format, and annotations to help clarify
certain mistakes that are commonly made. Keep in mind that, except for analyses that require your further input, all relevant
analyses are automatically calculated, thus relax, depending on the data set size, this may take some time.

The “APA rs” and “APA rs Bon” sheets include an intercorrelation matrix with embedded means and standard deviations, and the
same using Bonferroni-type corrections.

A “Scatterplot” tab allows easy plotting of all bivariate relationships by selection of the variable number (“1”, “2”, etc.). A
legend of numbers and names is provided for that selection. You can change these to get a scatterplot of any variable pair you like;
it will be rendered automatically. As well, histograms and all potentially useful univariate statistics for each variable are calculated.

The “APA Model” tab includes both the typical table for overall regression model performance and a textual entry (in bold), as
either may be preferred.



The “APA Coefficients” tab includes a typical table for consideration of regression coefficients. Because of the common
misinterpretation of these inferential tests, the bivariate correlations of variables with the criterion are also shown as what is not
being tested, but are, of course, not to be included in the table.

The “APA Generalizability” tab includes a variety of estimators that regard the generalizability of the regression model, with
extensive discussion dedicated to the distinction between the goals of Explanation (p?) and Prediction (p..?).

The “Residuals” tab gives the usual regression residuals, but also the resampling PRESS residuals and diagnostics.

The “ps” tab gives all the p-values for the bivariate correlations. These will usually not be needed as the * type table note is
used in the aforementioned APA correlation tables. This is included for rare situations in which it is needed.

The "R2 Increment" tab gives a flexible mechanism for investigating the unique contribution of any proper subset of predictors

to the accuracy of the total model. This is done "real-time" with as many such tests as desired. (This should be R? Increment, but
| have found no way to control fonts in tabs.)

The "Moderation" tab allows testing first order moderations including any two predictors. Again, this is done "real-time" so, as
many such tests as desired can be accomplished. Non-dichotomous variables are automatically centered. In the moderation

test of the product term, which variable is logically considered the "Moderator" is irrelevant, but, given a significant moderation

test, it does matter for subsequent "split-sample" correlations, so you must specify which variable is the moderator (M). Then, if

the test is significant, the correlation (and plots) between the other variable (X) and the criterion are automatically calculated for
subjects at or below, and above, the median of the moderator . You can also specify an alternative split-point, other than the median.
If the moderator is dichotomous, then the median, and any value you input are ignored, and the split is for subjects at

each level of the dichotomy.

The "Mediation" tab allows testing of a simple mediation (X => M =>Y) effect. Sobel's test (Aroian adjusted SE) is used. The
indirect and direct effects are also apportioned as percentages.

The "Ridge" tab provides a ridge regression including plots of 1) the ridge trace, 2) reduction in R%, 3) reduction in Beta variance,
and 4) increase in correlation between the Betas and the original predictor- criterion correlations. Solutions for user input ks are also
supported.

If the criterion variable is determined to be dichotomous (automatic) the "MANDDA" tab provides two-group contrasts for all
multivariate (MANOVA) as well as univariate questions. All know effect sizes are also produced. As well, the mathematical



linkage between the regression results, the multivariate tests, and the LDF are demonstrated. On the univariate side, all
univariate contrasts are automatically presented with a Bonferroni adjustment for multiple hypothesis testing as suggested by
Huberty and Morris (1989).

PDA Casewise, given a dichotomous criterion variable, renders a variety of classification models.

Regression classification accuracy assigns Ss to groups to which their regression predicted score is closest. This is the same as a
linear PDA with prior probabilities estimated by group size and equal costs of misclassification.

A linear PDA is also produced which renders the probabilities of group membership, p(group | X), highlighted in red if the case
was a “miss.” As well, the “typicality” probability p(X|group) is produced. This is only of interest if small as a metric of the case
being an outlier. Finally, for you to get a “feel” for how it works, exploration of unequal prior probabilities and costs of
misclassification is available interactively, with resulting group probabilities and classification accuracies presented.

This analysis is with L-O-O [Huberty’s (1994) label] cross-validated hits, using Lachenbruch's matrix shortcut. As far as | know,
this joint ability is not available in commercial software packages, yet we statisticians often tell users to consider unequal costs
of misclassification

PDA Summary gives the inferential tests of hit-rate in respect to both the proportional and maximum chance criteria, as well as
the Iindex of Huberty (1994). This is done for classification by 1) regression, 2) the PRESS cross-validated regression
(equivalent to “L-O-0” or Lachenbruch U), 3) the linear PDA, 4) the linear PDA with input priors and cost of

misclassification, and 5) the L-O-O cross-validated linear PDA with input priors and costs. All the casewise classifications

for these are on the PDA Casewise sheet.

PDA Increment offers the same flexible format to investigate the contribution of any proper subset of variables to the
classification accuracy of the full model as in the R2 Increment page for regression. The difference, as introduced in Morris &
Huberty (1995), is that the joint distribution of hits and misses for the full and restricted model is needed, as the correct test
statistic regards a correlated proportion McNemar's (1947) z, with more precise binomial mid-p (Fagerland, Lydersen & Laake,
2013) probabilities used. Moreover, for the two-group design treated herein, there are three such tests of increment to
classification accuracy available -- that for each group as well as all subjects.

LR, given a dichotomous criterion, produces a logistic regression using the Newton-Raphson iteration method. If iteration fails
because there is not a solution, such is noted, and no results are presented. This is unlike some commercial packages that have
the misleading practice of producing the last iterated solution as a result with a small footnote that says that the maximum
number of iterations allowed has been exceeded. All popular metrics of effect size are also included.

LR Firth presents Firth's (1993) penalized LR. This is done with the same tolerance as in LR, and regardless of LR's successful iteration.
Iteration with Firth's penalized LR will converge regardless of complete or quasi-complete separation.



LR Increment is isomorphic to the PDA Increment tab, producing the same sort of results based on classification accuracy, but using a
different mathematical model: maximum-likelihood for LR, rather than least-squares in PDA. The more traditional full vs. restricted
contrast of the Log Likelihood is also produced, but | encourage you to also consider classification accuracy, which is, in my opinion
given too little consideration in LR use.

PDA LR Comp renders a contrast between the classification performance of PDA and LR using the same technique as in the
PDA Increment sheet, but this time the contrast is between mathematical algorithms rather than between variable subsets within
algorithm.

Many other pages are only for calculations and are thus hidden. As well, the spreadsheet is locked so that we (Il include myself)
will not be able to destroy formulas.



Figure 2 — Input (Regression)

A | B C D E F . G
2 | # Predictors = a4
3 | N (cases) = 30
4 a= .050
3 oK
B : Enter Short Variable names in Row & ; Criterion in column C, Predictors in D and on =
7 | Check: Criterion Predictors =
8 ok Case # |- GPA GRE-Q GRE-V MAT AR
9 | ok 1 3.2 625 540 65 2.7
1{]_ ok 2 4.1 575 680 75 4.5
11 | ok 3 3 520 AB0 65 2.5
12_ ok 4 2.6 545 520 55 3.1
13 | ok 5 3.7 520 490 75 3.0
14_ ok [ 4 655 535 65 4.3
15 | ok 7 4.3 630 720 75 4.6
16_ ok 8 2.7 500 500 75 3
17 | ok 9 N 605 575 65 4.7
18_ ok 10 4.1 555 690 75 3.4
19 | ok 11 2.7 505 545 55 3.7
2{]_ ok 12 2.9 540 515 55 2.6
21 | ok 13 2.5 520 520 55 3.1
22_ ok 14 3 585 710 65 2.7
23 | ok 15 3.3 600 610 85 5
24_ ok 16 3.2 626 540 65 2.7
25 | ok 17 4.1 575 620 75 4.5
26_ ok 18 3 520 430 65 2.5
27 | ok 19 2.6 545 520 55 3.1
28_ ok 20 3.7 520 490 75 3.6
29 | ok 21 i | 655 535 65 4.3
30_ ok 22 4.3 630 720 75 4.6
31 | ok 23 2.7 500 500 75 3
32_ ok 24 3.6 605 575 65 4.7
23 | ok 25 4.1 555 690 75 3.4
34_ ok 26 2.7 505 545 55 3.7
33 | ok 27 2.9 540 515 55 2.6
36_ ok 28 2.5 520 520 55 3.1
37 | ok 29 3 585 710 65 2.7
38_ ok 30 3.3 600 610 B85 5

» Read Me Input APA 1S APA rs Bon Scatterplot APA Model APA Coefficients



Figure 3— APAR

This is the standard APA format for presentation of an intercorrelation matrix. This would be true even if interest is only in the
correlations among variables, with no regression. If that is the case, then you may simply enter your variables ignoring which is
designated “Criterion” in the Input tab. Thenignore all other tabs except "APA rs Bon." You may find need to adjust column widths
for your particular datain any table, but the basic structure and "lines" will remain the same.

Table 1

Title such as: Correlation of Criterion with all Predictor Variables

Variable M SD 1 2 3 4 5
1. GPA 331 .60 —

2. GREV 565.37 4866  .61* —

3. GREQ 57533  83.03  58* 47* —

4, MAT 67.00 9.25 60* 27  43* —

5. AFR 3.57 84 62* 51*  41* 52* —

*n<.05



Figure 4 — APA R Bon (Bonferroni adjustment and alternative suggestions)

This is the intercorrelation matrix using Bonferonni corrected ps for all correlations.

With p variables, there are p (p - 1) / 2 correlations, thus the corrected o= .00500
Possibilities in addition to Bonferroni (Holm, Hochberg, Sidak, FDR, etc.) are available
and should also be considered as contenders.

Table 1

Title such as: Correlation of Criterion with all Predictor Variables

Variable M SD 1 2 3 4 5
1. GPA 3.31 .60 —

2. GREV 565.37 48.66 61* —

3. GREQ 575.33 83.03 b58* 47—

4, MAT 67.00 9.25 60* 27 43 —

5. AFR 3.57 .84 .62* 51* 41  52* —

*p < .00500



Figure 5 — Scatterplot (of any pair of variables)
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Figure 6 — APA Model

Presentation of information regarding accuracy of the total regression model is often included in text, rather than in a table. If
such a table is deemed necessary, it is provided below. In respect to SPSS’s version, the R?is added, as this is the effect that is
being tested. Cohen’s f%, a usual index of effect size, is also included. Note that the "Adjusted R Square" of SPSS is NOT to be
included, at least with that name. The explanation and all “generalization” information, more correctly documented, isina
separate table in the "Generalization" tab.

The presentation in text is usually something like:
""The model predicted a significant percentage of criterion variance, R = .640, F(4,25) = 11.129, p<.001, 2= 1.781."

Table 1

Title such as: R?, Sum of and Mean Squares, dfs, F, p and Cohen's f 2

Source  Sumof Squares df Mean Square R? F p f
Regression 6.682 4 1.671 640 11129 <001 1781
Residual 3753 25 150

Total 10435 29




Figure 7 — APA Coefficients

This table includes information about individual coefficients and is usually included in regression publications. Take special care in
discussing the tests of the coefficients. These tests are for partial slopes (the Bs); stated alternately, for each predictor, it is a test of
whether that predictor adds significant predictive accuracy to the model, in addition to that afforded by the remaining predictors. For
this reason, an additional statistic, AR?, is added to this table in respect to that which SPSS includes. This represents the increment to R?
afforded by the addition of the respective variable to the model having all the remaining predictors in it. This, after all, is that which is
being tested. This is not a test of the predictive accuracy afforded by only that row variable. If you simply wish to attend to whether a
variable, by itself, is a significant predictor, the bivariate correlation should be used. Those are in the intercorrelation matrix (APA rs or
APA rs Bon tabs). This interpretive mistake occurs so often in the literature that those r,,s are included here for contrast, but they should
not be in the table as they are not tested there. The Bs are hidden in column D if you wish them, however the Cl is in respect to B, not B.
The Bs are not in the APA (v 7) regression example table.

Table 1

Title such as: Regression Weights, R? Increments, Tests, and VIFs.

Variable B SE AR? 95% ClI t(25) D VIF
LL uL
Constant 1.734 950 -3.691 222 -1.826 .080 My
GREV .004 .002 .068 .000 .008 2182 .039 15 61*
GREQ .002 .001 .030 -.001 .004 1.453 159 15 58*
MAT 021 .010 .069 .001 041 2187 .038 15 .60*
AFR 145 113 024 -.088 377 1.281 212 1.7 62%

Note. Cl = confidence interval; LL = lower limit; UL = upperlimit.



Figure 8 — APA Generalizability

R is the proportion of variance in the criterion predicted by the multiple regression model in the sample at hand. Because we are
almost always interested in applying the model outside of our sample, the question quite naturally arises as to how well the model
will generalize. However, we must be precise in our meaning of "generalize." One question regards how accurately our sample

based R” estimates the population “R* (herein labeled p*). That is, what R® would we obtain if the entire population were available?
Another guestion regards how accurately our sample weights will be able to predict the criterion if applied to the population (labeled

Po,.— “cv” for cross validated). These are often regarded, as goals of explanation and prediction, respectively. These generalizability

guestions apparently appear similar, as they are often confused in the literature (see documentation in Huberty & Mourad, 1980), but they
are indeed different. My experience has been that researchers are most often interested in prediction, but frequently present an

estimator of p* rather than p,,” due to this confusion; perhaps because a p® estimator is readily available. There are several
estimators for p® and p,,’. This page provides essentially all these estimators. | strongly advise against naively using SPSS's

"adjusted R Square” simply because it is available. It is an estimator of p® due to Ezekiel (1930); if explanation is your goal, then it is
fine. In my view, part of the problem arises from a name [Adjusted R Square) that communicates nothing about the rationale of the index.

Other contender estimators of p® included herein are those of Olkin and Pratt {1958) and Wherry {1931).

However, if your goal is to estimate how accurately your regression weights will predict the criterion upon application to new
samples, then use one of the formula estimators of pﬂ,Z (Browne, 1975; Darlington, 1968; Lord, 1950; Nicholson, 1948; Rozeboom,

1978; Stein, 1960), or alternatively, and in my opinion preferably, you can use the distribution free resampling estimate of cross-
validated prediction accuracy, “PRESS,” by Allen (1971). You could also offer all the relevant estimators. The most important lesson

here is to know what you are estimating, use the appropriate estimator(s), and document what they are. If you elect to use this table in a
publication, you will need to set this Word page to landscape. As PRESS is from raw data, an MSE is also available; itis = .1881

Table 1

Title such as: Generalizability in respect to pr2 and ;::rm.2 for model

Estimators
] 2 H
P’ o (Prediction) p~ (Explanation)
2 2 2 2 2 2 2 2
P L P s P B PR R P E(5P5S vs=s) P w P op
Micholson(1942) Stein [1960) Browne(1975)  Rozeboom(1978) Allen[1971) Ezekiel[1930) Wherry(1931) Olkin &
Lord (1950) Carlington (1968) using g’ Pratt[1958)

5133 4971 5564 5297 4765 5828 5089 6013




Figure 9 — R? Increment

Consideration of the contribution of a subset of variables to the predictive accuracy of a model that contains other variables is one of the most important theory
building tools we have. The question is, for a model containing k, variables, what is the contribution of a subset of those variables containing k, variables? The k,

variables need to constitute a “proper” subset; therefore, all the k, variables are among the k; variables, but there are also variables among the k; that are not
among the k,, therefore k;>k,. This theory testing method is valid for consideration of any model (logically with at least two variables), but in the case of

multiple regression an F statisticis available: F(k;-k,),(N-k;-1) = (Rklz— szz)/((1-Rk12)/(N-k1-1)).

This sheet allows you to test the contribution of any proper subset of variables to the full model introduced in the Input sheet. The variables’ names for the
model are automatically listed in row 15. Simply enter an “X” under each variable (row 16) to be included in the subset to be tested, and an "Enter" after each.

This is "real-time"; as you add or omit Xs, the AR? (the difference in R% between the “k,” and “k,” models, an appropriate Effect Size), F and p change accordingly.
Therefore, you may consider any subsets of interest.

Place an X below variables for which Increment test is sought:

GRE-Q GRE-V MAT AR
X X
AR? (ES) F(2,25) P

.1481 5.146 .013



Figure 10 — Moderation
In its simplest form, a Moderation question regards whether the relationship between two variables, X and Y, is consistent across the range of a third
variable, M. Interaction is a synonym that tends to be used more in ANOVA; however, ANOVA can only be used with nominal variables, whereas the more
general least-squares linear model employed in regression can be used with predictors manifesting any scale of measurement. This Moderation sheet is for
exploring possible moderating effects of predictors on other predictors. The mathematics of testing a moderation is through a product term, thus, to
consider whether M moderates the relationship between X and Y, we would create a three-predictor regression model predicting Y from X, M and X*M. Itis the
test of the product term (highlighted in green) that is a test of moderation. To control multicollinearity incurred in using variables and functions of variables in the
same model, we often “center” the predictors; this simply means subtracting the mean from the variable. This can be done with a transformation in statistical
packages but is done automatically here. (The necessity of centering is not without argument, for instance see Kromrey & Foster-Johnson, 1998; | typically fall on
the side of centering.) If a moderation term is significant, we usually explore more deeply to consider the exact magnitude of the relationship between Xand Y
at “high” and “low” levels of M. These levels are often determined with a median split on M, but the split can be done at any interesting level you wish if group
sizes do not become too small. You can also consider the relationship at multiple split levels.

To obtain a Moderation analysis all you need to do is to put one "X" and and one "M" (denoting the variable’s role) under (Row 16) for any two of your predictors
(listed here). You may explore as many moderation analyses with different variables and split points as you wish; the calculations are automatically updated.

Place an X and an M (the Moderator) below two variables for which a moderation test is sought:

GRE-Q GRE-V MAT AR
X m
AR Median: 3.40

If desired, alternative to median for split on AR (E22):
(Ignored if M dichotomous.)

Table 1

Title such as: Moderation Test for predictors " X" and "Z," Regression Weights, R 2 Increments, Tests, and VIFs.

Variable B SE B AR? 95% ClI 1(22) p VIF
LL UL
Constant 3.404 .088 3.224 3.583 38.534 .000
MAT .028 .010 430 131 .008 .048 2.791 .010 1.409
AR .350 112 .489 .165 122 577 3.130 .004 1.449
Product -.023 .011 -.284 .070 -.046 .000 -2.044 .051 1.146

Note . Cl = confidence interval; LL = lower limit; UL = upper limit.

As moderation term is significant, correlations at or below, and above, Moderator Split (input or median):

Split OK <= Split (N=16) < Split (N=14)
r(MAT,GPA) Pl (N )
<= Split =
2.5 . 1-5
o
2 | |
1-5 : [ ———
TR L
>- | > O | reeeeeenenanneeeeee e
05 . ......................... K |
I . iy @ oottt :
. ................
S0.5 | eeeseeenttt . 715
| : -2 [ J
: -2.5
-1.5 -1 -0.5 o 0.5 1 1.5 2 -2 -1.5 -1 -0.5 (0] 0.5 1 . :



Figure 11 — Mediation

Like moderation, a Mediation question always involves at least three variables. An important distinction is that mediation always posits a causal proposition,
whereas moderation does not depend on such. In its simplest form, this entails the premise that a variable, X, causes variation in ¥, but that the variation arises,
at least partially, “through” a mediating variable, M. That is, the model proposes that at least part of the influence of X on Y is indirect; it occurs because X
affects M, and then, due to X's influence on M, M affects Y. Referring to the usual mediation graphic (available in the Mediation pdf), whether there is such an
indirect effect (a*b) or not, X may also influence ¥ directly (c'). Parsing the total influence of X on ¥ (¢} into the indirect and direct “paths” is the point.

There are several methods used to test mediation. Barron and Kenny's (1986} approach involves multiple steps. Sobel (1982) produced a single direct test of
mediation, and variants (in respect to the SE) of that test have been proffered. Preacher and Hayes (2008) proposed use of the bootstrap. Mone of these tests
are natively available in statistical packages (e.g., SPSS, SAS), although Hayes (2013) offers a macro for SPSS and SAS that will accomplish both the Sobel test and
the bootstrapped estimation. This sheet allows you to select any two variables to be X and M. A mediation test (p in green -- Sobel, with a SE consistent with Aroian,
1944,/1947), estimates and tests all parameters, and parsing the proportion of effect that is indirect and direct (except in the case of “Inconsistent” mediation,
MacKinnon, Fairchild & Fritz, 2007), will then be accomplished. This is done "real-time", so you may serially select as many X and M combinations as you like,

receiving the result for each.

Place an X and an M (the Mediator) below two variables for which a mediation test is sought:

GRE-Q GRE-V MAT AR
X M
Effect t o
a 0476 3.2622 .0029
b .2998 2.6013 L0149
c' .0249 2.3858 .0243
C .0392 4.0126 L0004

Test of Mediation (Indirect) Effect: MAT => AR => GPA
Effect SE z p
0143 0072 1.9778 0479

Direct % = 63.61%
Indirect % = 36.39%



Figure 12 — Ridge Regression (part 1: Contextual discussion and calculations)

Ridge regression stabilizes the Bs by reducing their variance, which led Darlington (1978} to helpfully dub the technigque (among others) as “Reduced Variance
Regression.” The cost of that bias (in respect to Ordinary Least Squares) is a commensurate reduction in Rzy_gl,}gE:. In “generalized ridge,” this is done by
adding a small constant “k” to the predictor intercorrelation matrix before inversion as p* = (R, + k)%, where B* are the ridge estimated Betas. Of course, if
k=0, p=p* you are back to OLS. Articles and presentations, most frequently regarding the estimation of k, are far too numerous to include. Hoerl and

Kennard (1970}, the originators of ridge regression, used a graphical method, the “Ridge Trace,” to consider where stabilization occurs. This is simply a plot

of the B*s as a function of k. Of interest is that, as k increases and the variance of the B*s decreases, at some point (the trend is not necessarily monotonic) the
B*s become more and more closely proportional to the simple correlations, r,,, between predictors and the criterion (Darlington, 1978). Philosophically,

one can see this as movement away from least-squares to naive weighting by simple predictor-criterion “validities” wherein multicollinearity has less and

less effect. Here, as is traditional, the range of k plotted is [0,1]. In addition, row (#37) illustrates an inordinately large k=100. Row (#38) uses r,,
and a "k” as ““T*co” to signify “as k increases to infinity” as these are the B* to which ridge is proportionately asymptotic. Row (#39) uses an easy to calculate
k (1/F) proposed by Lawless and Wang (1976). The final row {40} is for you to explore. Putin any positive k you wish -- see what happens:-) Mote thatin
addition to ridge regression, the Lasso and Elastic Met technigues are also used for taming unruly least-squares Bs.

as weights

Predictor 8%s—>»

riB.re,) Var(B) R’ jirsze k GRE-Q GRE-V MAT AR

166 03372 640373 00 .32348 21124 .32195 20226

133 02506 640303 .05 30961 21146 30810 20615

.199 001922 640150 .10 29781 21070 29631 20812

215 001511 .B39965 .15 28752 20929 28602 20880

.231 001212 639771 .20 27838 .20745 27689 20857

246 00990 .639579 .25 27015 .20531 26865 20772

.261 L00s20 .639396 .30 26264 .20297 26115 20641

276 000683 639224 .35 .25574 20051 .25425 20477

.290 000583 639062 A0 .24935 19797 24786 20290

304 LQ00S00 .638912 45 .24339 19538 .24191 20087

318 00432 638772 .30 23781 9277 .23633 19871

331 00376 638643 .35 .23256 19016 23108 19648

344 000330 638522 .60 22760 18756 22613 19419

357 000291 638410 .65 22290 18499 22144 19188

370 000253 638306 0 .21844 18245 21698 18955

L3383 00230 638209 .75 .21419 17994 21274 18721

.395 00206 638118 .80 21013 AT7AB 20869 13489

A07 00186 638033 .B5 20625 17506 20482 18258

419 000168 637953 .90 20254 17268 20111 18030

430 000152 637879 .95 19898 17035 19756 17804

442 00139 637308 1.00 19555 16807 19415 17582

Very large k (100): .999 < 000001 6353650 100 L0597 00568 00591 00606
Iy, 8s coefficients: 1.000 inapt .635616 T™o0 .51048 58145 .650423 62072
Lawless & Wang k: 196 002024 640185 0899 30006 .21092 29856 20784
Explore Enter your k: 176 002810 .640345 .03 31487 .21152 31335 20487



Figure 13 — Ridge Regression (part 2: Plots)
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Figure 14 — Ridge Regression (Plots for Longley Data)
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Figure 15 — Input (Dropout with 8 predictors)
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Figure 16 — MANDDA

If the criterion is dichotomous, that fact will automatically be detected, as well as the indices that determine the two groups established. If dichotomous, this sheet calculates
1) all multivariate tests (including a test of homogeneous covariance matrices) and effect sizes fora MANOVA between the two groups, 2) all univariate tests (selection
denoted by a test of HOV) and effect sizes, and 3) the DDA LDF. The parallel between the multivariate tests and regression on this dichotomous criterion (imported from
other sheets, as such is automatically calculated) is illustrated; the test of that R? is necessarily the same as all multivariate tests. As well, all known multivariate effect size
estimates (except w?® which is based on unbiased variance estimators, and is thus, also different in the univariate case) are shown to be the same as R%in the two-group case.
In addition, that the DDA LDF is proportional to the regression weights is also demonstrated. Results for the appropriate t-test (Gosset as “Student”, 1908; or Welch, 1947) is
highlighted in green. Although multivariate and univariate contrasts are both provided, in no case should one consider the multivariate “MANOVA” test as omnibus in
respect to the univariate tests. As well, if multiple univariate tests are the interest, the accumulated error-rate in respect to a must be controlled (Huberty & Morris, 1989).
As mentioned in the “APA rs Bon” sheet, there are several alternatives (Bonferroni, Holm, Hochberg, Sidak, FDR, etc.). All ps that are <the Bonferroni adjusted a entered on
the “Input” sheet are bolded and italicized . You may use alternative corrections; the use of Bonferroni is because it is simple, and to guide you to do something.
Multivariate tests require each group N to be greater than the number of predictors, thus, if this is not the case, multivariate results will not be provided. Univariate tests
require each group N > 2, else they will not be provided. Obviously, larger Ns are required for stable inference.

Box M: 64.541485 dfi 36 Wilks' F: 7.163209

Box "c": .063870 df2  34679.3 B-Pillai F: 7.163209

c": .005175 b 38.49889 Roy F: 7.163209

c'-ch2: .001096 Hot F 7.163209
Univariate Tests

dostat N | dostat=1 | dostat=2 HOV? I Gosset (=0?) | Welch (#0?) Univariate ES |DDA a Regressior{
1 51 Mean SD Mean SD Bartlett x2(1) P t(160) ) t df pi(pooled) rxy? LDF B/LDF
2 111 schools8 2.31 1.05 3.40 1.42 5.653 .017 4.877 <.001 5.439 128.03 <.001 .8250 .129 -.6227 -.1589
Total 162 repeats8 .24 .89 .68 .80 .723 .395 3.147 .002 3.030 88.84 .003 .3456 .058 -.4067 -.1589
reading8 3.29 .76 2.67 .99 4.723 .030 4.005 <.001 4.425 125.07 <.001 .5028 .091 .5545 -.1589
Regression (Imported) math8 3.35 .96 2.79 .90 .290 .590 3.620 <.001 3.534 91.72 <.001 .4343 .076 -.0320 -.1589
2 (Canonical r?): .2725 lang8 3.49 .92 2.77 1.01 477 .490 4.309 <.001 4.447 105.08 <.001 .5577 .104 .2987 -.1589
Statistic p science8 3.22 .99 2.65 .97 .021 .885 3.440 <.001 3.418 95.65 <.001 4372 .069 .0270 -.1589
F(8,153): 7.1632 <.001 socst8 3.25 1.07 2.70 1.06 .015 .902 3.070 .003 3.053 95.88 .003 4187 .056 -.3096 -.1589
dsfs8 1.31 1.56 2.92 2.26 8.559 .003 4.592 <.001 5.250 135.95 <.001 1.0987 .116 -.2950 -.1589

Multivariate Test
= Covariance Matrix Test

Box M 64.541 —
x2(36): 60.419 .007
F(36,34679): 1.676 .007

Tests of equal mean vector

Hotelling T2: 59.927 <.001
Wilks' A: .728 <.001
Bartlett-Pillai: .272 <.001
Roy: .375 <.001

Multivariate Effect Sizes

n? (Eta?): .2725 —

w2 (Tau?): 2725 —
 (Zeta?): .2725 —

£2 (Xi2): .2725 —

w? (Omega?): .2667 —

Multivariate Distance between group
Mahalanobis D?: 1.715 —
Mean LDF Grp 1: 1.175 —
Mean LDF Grp 2: -.540 —_




Figure 17 — PDA Casewise

PDA Casewise, given a dichotomous criterion variable, renders regression classification accuracy —assigning Ss to groups to which their regression
predicted score is closest. This is the same as a linear PDA with prior probabilities estimated by group size and equal costs of misclassification. A
linear PDA is also produced which renders the probabilities of group membership, p(group| X), highlighted in red if the case was a “miss.” As well,
the “typicality” probability p(X| group) is produced. This is only of interest if small as a metric of the case being an outlier. Finally, exploration of
unequal prior probabilities and costs of misclassification is available interactively, with resulting group probabilities and classification accuracies
presented. Thisis done with L-O-O cross-validated classification.

Priors a to group size Linear PDA (not CV) - Equal Priors, Covariance Matrices, & Costs

dostat =

1793
.2352
.1679
.0461
2419
.0831
.1040
.3196
.3106
.1462
.2047
.2568
.5859
.0630
.0541

From Regression
Predicted Predicted
Actual (NotCV) PRESSCV

S# dostat  dostat  dostat| | Distance p(group|X)

1 2 2 2 4.1544

2 2 2 2 8.9459

3 2 2 2 7.6496

4 2 2 2 13.8054

5 2 2 2 3.5360

6 2 2 2 10.3020

7 2 2 2 11.9492

8 2 2 2 9.7352

9 2 2 2 10.1959
10 2 2 2 4.8036
11 2 2 2 7.5544
12 2 2 2 6.0671
13 2 2 2 13.7562
14 2 2 2 12.5546
15 2 2 2 11.8796
16 2 2 2 13.5217

.0756

2 Typicality'
Distance p(group|X) LDF Score p(X|group)
1.1119 8207 -1.2037 .6122
6.5879 .7648  -0.8614 .8060
4.4490 8321 -1.2827 .5706
7.7474 9539 -2.7114 .0973
1.2516 7581 -0.8246 .8279
5.4990 9169 -2.0839 .2384
7.6420 8960  -1.8360 .3223
8.2238 .6804  -0.4381 .9380
8.6017 .6894  -0.4795 .9632
1.2739 8538  -1.4473 4884
4.8394 7953 -1.0399 .7026
3.9422 7432 -0.7449 .8756
14.4503 4141 0.6646 3577
7.1546 9370  -2.3824 .1594
6.1578 9459 -2.5433 .1261
8.5130 9244 -2.1868 .2085

L-0-0CV
Predicted

2

N NN R DD DNDNDNDNDNDNDNDDNDNDNDDNDNDDN

dostat
1 2
Prior Probabilities .5000 .5000
Cost of Misclassification 1.0000 1.0000

L-0-0 CV Classification - Input Priors and Costs

Predicted
dostat 1 2 Total
Hit # 1 38 13 51
2 39 72 111
Actual Total Hit #= 110 162
Hit % 1| 7451%  25.49%| 31.48%
2| 35.14% 64.86%| 68.52%
Total Hit %= 67.90% 100.00%



Figure 18 — PDA Summary

If the criterion is dichotomous, PDA Summary gives the inferential tests of hit-rate in respect to both the proportional and maximum chance criteria, as well as the I index of
Huberty (1994). This is done for the regression classification (equivalent to a PDA with priors established by group size and equal costs of misclassification), and the PRESS
cross-validated regression classification (equivalent to “L-O-0” or Lachenbruch U), and the linear PDA with and without cross-validation. All the case-wise classifications are on
the PDA Casewise sheet.

Regression -- priors from group sizes and costs of missclassification assumed.

For Each Group For Total Sample
Group N #Hits HitRate Chance Exp z p I Chance Exp z p I
1 51 28  54.90% 16.06 3.60 <.001 34.18% Proportional 92.11 5.53 <.001 49.92%
2 111 99  89.19% 76.06 4.69 <.001 65.66% Maximum 111.00 2.71 .003 31.37%
Total 162 127  78.40%
PRESS CV regression -- priors from group sizes and costs of missclassification assumed.
For Each Group For Total Sample
Group N #Hits HitRate Chance Exp z p | Chance Exp z p |
1 51 23 45.10% 16.06 2.09 .018 19.87% Proportional 92.11 4.27 <.001 38.47%
2 111 96  86.49% 76.06 4.08 <.001 57.07% Maximum 111.00 1.35 .088 15.69%
Total 162 119  73.46%
Linear PDA (Not CV)-- equal priors and costs of missclassification assumed.
For Each Group For Total Sample
Group N #Hits HitRate Chance Exp z p I Chance Exp z p I
1 51 42 82.35% 16.06 7.82 <.001 74.24% Proportional 92.11 3.63 <.001 32.75%
2 111 73 65.77% 76.06 .00 .500 -8.74% Maximum 111.00 .68 .249 7.84%
Total 162 115  70.99%
Linear PDA (Not CV) -- priors and costs of missclassification input.
For Each Group For Total Sample
Group N #Hits HitRate Chance Exp z p I Chance Exp z p I
1 51 42 82.35% 16.06 7.82 <.001 74.24% Proportional 92.11 3.63 <.001 32.75%
2 111 73 65.77% 76.06 .00 .500 -8.74% Maximum 111.00 .68 .249 7.84%
Total 162 115  70.99%
Linear PDA L-O-O CV -- priors and costs of missclassification input.
For Each Group For Total Sample
Group N #Hits HitRate Chance Exp z p I Chance Exp z p I
1 51 38 74.51% 16.06 6.62 <.001 62.80% Proportional 92.11 2.84 .002 25.60%
2 111 72 64.86% 76.06 .00 .500 -11.61%  Maximum 111.00 .00 .500 -1.96%
Total 162 110 67.90%




Figure 19 — PDA Increment

Consideration of the contribution of a subset of variables to the predictive accuracy of a classification model containing other variables is just as useful in theory building as in
the case of a criterion variable that is continuous. The question is isomorphic to the multiple regression case —simply with a different criterion, thus objective. For a model
containing k, variables, what is the contribution of a subset of those variables containing k, variables? Indeed, the AR? with a dichotomous criterion can be legitimately
tested, but, in general, itis not the gain in percentage of prediction accuracy that is of interest, rather it is the increment to classification accuracy afforded by the
hypothesized variables that one wishes to know. That which makes the computation more difficult, and not available from simple classification analyses for the full and
restricted models from commercial software, is that, as the same subjects are involved, the effects are correlated. Therein, a four-fold table containing the conditional hits
and misses from both the full and restricted model is necessary. Further, to allow consideration of the effect of the increment to classification accuracy in each group and the
total sample, such a table is needed for each. This method and associated software were introduced by Morris and Huberty (1995). Working just like the R? Increment sheet,
this sheet allows you to test the contribution of any proper subset of variables to the full model introduced in the Input sheet. The variables’ names for the model are
automatically listed in row 15. Simply enter an “X” under each variable (row 16) to be included in the subset to be tested. This is real-time; as you add or omit Xs, the tabled
hit-rates and the McNemar’s z change accordingly. Therefore, you may consider any subsets of interest.

Place an X below variables for which Increment test is sought:
schools8 repeats8 reading8 math8 lang8 science8 socst8 dsfs8
X X X

Resubstitution Contrasts (Not Cross-validated) -- Input Priors and Costs of Misclassification

Hit-rate (as %)for both full and restricted models

Groups
1 2 Total
Full 82.35% 65.77% 70.99%
Restricted 60.78% 68.47% 66.05%
Hit/Miss Matrix for Group 1 ... for Group 2 ... for Total
Full 8 variable model Full 8 variable model Full 8 variable model
Misses Hits Misses Hits Misses Hits
Restricted 5 variable model (less Hits 1 30 Hits 14 62 Hits 15 92
the 3 variables you selected). Misses 8 12 Misses 24 11 Misses 32 23
McNemar p = .002 McNemarp = .557 McNemar p = .200
L-O-0 Cross-Validated Contrasts -- Input Priors and Costs of Misclassification
Hit-rate (as %)for both full and restricted models
Groups
1 2 Total
Full 74.51% 64.86% 67.90%
Restricted 54.90% 68.47% 64.20%
Hit/Miss Matrix for Group 1 ... for Group 2 ... for Total
Full 8 variable model Full 8 variable model Full 8 variable model
Misses Hits Misses Hits Misses Hits
Restricted 5 variable model (less Hits 2 26 Hits 15 61 Hits 17 87
the 3 variables you selected). Misses 11 12 Misses 24 11 Misses 35 23
McNemar p = .007 McNemarp = 442 McNemar p = .349




Figure 20 — LR Logistic Regression

Logistic regression and discriminant analysis treat the same classification problem, but with different mathematical models; least-squares for discriminant analysis and
maximum likelihood for logistic regression. Logistic regression directly produces probabilities of group membership, although as you can see ( PDA Casewise), these are
available as well in discriminant analysis. Discriminant analysis is the older technique being originally invented, in the two-group case, by Fisher (1936). The maximum
likelihood solution cannot be presented as a formula; iterated must be employed to derive a solution. There are two ways to do this; in LR the Newton-Raphson method is
used. The iteration usually works just fine, but in some circumstances, it may fail (with “complete” or “quasi-complete”) group separation. Insuch a case, it doesn't matter
how many iterations you pursue, a solution is not mathematically possible. One problem in commercial software is that a solution is often given in any case. SPSSis flagrant
in this regard; weights are given as if they are the logistic weights, and only a tiny footnote about iterations being exceeded is a clue to the failure. Most don’t see this and
believe that they have a logistic solution, when indeed, it does not exist. This page calculates an LR solution if possible, else reports its failure if not.

Input Iteration tolerance: | .00100

#lterations = 6
Table 1
Title such as: Logistic Regression Weights, Tests, and VIFs. Logistic Regression Classification Summary.
Variable B SE 95%ClforEXP(B) Exp(B) Waldz VIF For Each Group For Total Sample
LL uL (OLS) Group N  #Hits HitRate ChanceExp  z P | ChanceExp 2 P |
Constant -975 1241 31 =786 432 1 51 31 60.78% 16.06 451 <001 4277%  Proportional 92.11 5.69 <001  51.35%
schools8 .796 204 1493 3294 2217 3911 <001 1.0 2 111 97  87.39% 76.06 428 <001 59.94%  Maximum 111.00 2.88 002 33.33%
repeatss 479 306 890 2925 1614 1563 118 11 Total 162 128 79.01%
reading8 -519 32 300 1048 561 -1798 072 25
math8 -047 351 482 1888 .94 -135 893 2.1 Model Fit:
lang8 -206 337 399 1416 767 -787 431 29 Null model -2*Log Likelihood = -201.819
science8 047 338 544 2020 1048 138 890 3.0 Full model -2*Log Likelihood = -146.013 p
socst8 38 329 776 2785 1470 1173 241 3.3 ¥28)=  55.807 .001
dsfs8 383 144 1108 1940 1466 2656  .008 14 Wald (Full with intercept) x2(9) = 36.364 .001

Note. CI = confidence interval; LL = lower limit; UL = upper limit.

"Psuedo” R% -- Careful, estimates different notions of fit; can't be considered in the metric of an OLS R?

McFadden= .2765 Efron= 3219
McFadden Adjusted=  .1873 Tur= 3164
Cox &Snell = 2914 Count= .7901 (Sameas cell M20/N)
Cragg-Uhler/Naglekerke= 4091  AdjCount= 3333
McKelvey & Zavoina= 5011

Information Criteria

AIC= 164.0125
AIC/N= 10124
BIC= 191.8009




Figure 21 — LR Firth

Maximum Likelihood Estimation (MLE) is an asymptotic estimator; it, thus LR, requires large N. How large in a generic sense is as bit difficult to posit; there are several
hotly contested rules of thumb for LR. Inany case, keep in mind that itisn’t just the N that is of concern, but the smaller n among the two groups. Maximum likelihood has
specific problems modeling a dichotomous grouping in which one of the ns is small (see literature under “rare events.”). So, a typical rule of thumb is from 10to 20 subjects
(in the smaller group)/predictor, but there are many opinions, and the case is that the answer isn’t simple.

Firth’s (1993) method was to overcome the small sample bias of the MLE solution with a “penalty” for small sample size, with that penalty disappearing for larger samples.
An artifact of the method is that even with data that manifest “complete” or “quasi-complete” separation, iteration converges yielding weights. For that reason, many see
(e.g., Heinze & Schemper, 2002 - see title) this as a “second level” analysis if LR iteration fails. | would prefer to see this as Firth originally intended - a generic method to
overcome the effect of small samples on MLE (in this case, LR). Therefore, this sheet produces the Firth results, regardless of whether convergence obtains on the LR sheet.
Note: Heinze & Schemper (2002) suggest caution in use of the Wald z for variables that present complete separation.

#lterations = 6
Table 1

Title such as: Firth Penalized Logistic Regression Weights, Tests, and VIFs. Firth Penalized Logistic Regression Classification Summary.

Variable B SE 95%CIforEXP(B) Exp(B) Waldz  p VIF For Each Group For Total Sample
LL uL (OLS) Group N  #Hits HitRate ChanceExp  z p I ChanceExp 2 P [

Constant -85 1206 039 4432 417 -T2 468 1 51 31 60.78% 16.06 451 <001 42.77%  Proportional 92.11 569 <001 51.35%
schook8 733 194 1421 3046 2081 3768 <001 10 2 m 97  81.3% 76.06 428 <001 59.94%  Maximum 111.00 2.88 002 33.33%
repeatss 386 219 852 2543 1471 1384 166 11 Total 162 128 79.00%
reading8 -545 314 314 1072 580 -L737 082 25
math8 -041 344 489 1884 960 -120 905 27 Firth Model Fit:
lang8 -84 0329 411 1494 783 -742 458 29 Null model -2*Log Likelihood = -201.819
science8 040 332 542 196 1040 119 905 30 Full model -2*Log Likelihood = -146.320 p
socst8 364 323 764 2709 1439 1128 259 33 2(8)= 5549 <001
dsfs8 358 138 1092 1874 1430 2600 009 @ 14 Wald (Full withintercept) y2(9) =  35.869  <.001

Note. CI = conficence interval, LL = lower limit; UL = upper limi.

Firth "Pseudo" R2s -- Careful, estimates different notions of fit; can't be considered in the metric of an OLS R2

McFadden = 2750 Efron= 3192
McFadden Adjusted= 1858 Tjur=" 3030
Cox &Snell = .2901 Count = .7901 (Same as cell M20/N)
Cragg-Uhler/Naglekerke= 4072 AdjCount= 3333
McKelvey & Zavoina = 4569

Firth Information Criteria

AIC= 164.3205
AIC/N= 10143
BIC= 192.1088




Figure 22 — LR Increment

RConsideration of the contribution of a subset of variables to the predictive accuracy of a classification model containing ather variahles is just as useful in theory building as in ©ohn D. Morris

the case of a criterion variable that is continuous. The question is isomorphic to the multiple regression case - simply with a different criterion, thus objective. For a model mailto:jdmorris@fau.edu

contining k,variables, what isthe contribution of a subset ofthose variables containing k. Variables? Indee, the AR” with a dichotomous erterion can be legttimately
tested, but, in general,itis not the gain in percentage of prediction accuracy that is of interest, rather it is the increment to classification accuracy afforded by the
hypothesized variables that one wishes to know. That which makes the computation more cifficult, and nat available from simple classification analyses for the full and
restricted models from commercial software, is that, a5 the same subjects are invalved, the effects are correlated. Therein, a four-fold table containing the conditional hits
and misses from both the full and restricted model is necessary. Further, toallow consideration of the effect of the increment to classification accuracy in each group and the
totalsample, uch  table is needed for each, This method and assocated software were introduced by Moris and Huberty (1995). Workingjust like the R Increment sheet,
this sheet allows you to test the contribution of any proper subset of variables to the full model introduced in the Input sheet, The variables” names for the model re
automatically listed in row 15, Simply enter an ‘X" under each varizble (row 16) to be included in the subset to be tested. This s real-time; as you add or omit Xs, the tabled
hit-rates and the McNemar's 2 change accordingly. Therefora, you may consider any subsets of inferest.
Place an X below variables for which Increment test is sought:
sthools§ ~ repeatsd  readingd mathd langB scienced socstd i
X X X
Full/Restricted Contrast Resubstitution Classification Contrasts (Not CV)
FullModel  Restricted ~ y2(3) i Hit-rate (as %)for both Full and Restricted models
-2*Log Likelihood = 146013 180051 34038 <001 Groups
McFadden= 2765 107 1 2 Total
McFadden Adjusted = BLIE (484 Fulll  60.78% §7.38% 79.00%
Con BSnell = 29 107 Restricted) ~ 20.49% §8.25% 68.52%
Cragg-Unler/Naglekerke = il 765
Mekelvey & Zavoina = S0t 197 Hit/Miss Matrix for Group 1 . forGroup? .. forTotal
Efron= 3 1160 Full 8 varizble model Full §variable model Full 8 varizble model
Tjur= Jld 13 Misses Hits Misses Hits Misses Hits
Count = J90L 0832 Restricted 3 Hits 1 2 Hits 1 i Hits § 103
AdjCount = REEE 0000 variable model Misses 19 19 Misses 1 6 Misses 26 5]
AlC= 1640125 192.030 McNemarp= <01 McNemarp = T McNemarp= 03
AIC/N = L0124 L1853
BIC-= 191.3009 20,5761




Figure 23 — PDA LR Comp

More interest in logistic regression vs. Discriminant Analysis is apparent currently. This appears to be due to the novelty of logistic regression and due to its theoretical
dependance on fewer assumptions. Itis certainly a viable technique to use, but there is clear evidence that it should not wholly replace discriminant analysis. First, see
the work of Efron (1975) showing discriminant analysis at an advantage. Aswel, in addition to the aforementioned potential iteration failures on the LR page, there are
occasions in which logistic regression renders a solution that has very disproportionate accuracies for the two groups, sometimes rendering it useless. For these reasons,
suggest an empirical comparison between the classification accuracies of PDA and LR This page performs that comparison. This is done by the same procedure as
developed for Full vs. Restricted model testing (Morris & Huberty, 1995), soit will look familiar,

Hit-rate (as %)for both full and restricted models

Groups
1 2 Total
PDA|  82.35% 65.77% 70.99%
IRl 60.78% 81.39% 79.00%
Hit/Miss Matrix for Group 1
PDA
Misses Hits
Logistic Hits 0 31
Regression Misses 9 11
McNemarp = <001

... or Group 2
PDA
Misses Hits
Hitsg 24 i3
Misses 14 0
McNemaryp = <001

...for Total
PDA
Misses Hits
Hitsg 24 104
Missesy 23 11

McNemaryp = 029




Figure 24
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Table 1

Student Comments on Criterion.

Please provide any additional comments or suggestions related to your experience with Criterion. You may use as much space as you wish.

#1 Using it through one drive was fantastic and worked like a charm. Loved using it.

#2 Criterion is user friendly, easy to use and a better system than SPSS. | did not have a great experience working with SPSS in my
first stats class (I was required to use without another option). My classmates experienced the same

#3 Criterion saved this course and should replace spss.
#4 The only issue | had with criterion was the fact that | was unable to import/export data from the web version
#5 So much easier to use than SPSS. | spend a lot of time connecting and reconnecting to FAU virtual apps (timeouts, etc.) to use

SPSS and then trying to remember what boxes to check. Thanksyou for this tools.

#6 | enjoyed working in Criterion during the semester and will continue using this program in the future.
The program is very intuitive to use and makes all necessary tests and even more in seconds. The tables are prepared in the
APA style. A very useful statistical program to use for all majors!

#7 | don't know of any other program that formats your output into an APA style table. | am sure this will save people incredible
amounts of
time!

#8 Not having the appropriate Excel was an issue for me.

#9 Honestly, | am truly grateful to you for sharing Criterion with us. It really is such a comprehensive and easy to use package.

The fact that you have gone as far as to have the tables already in APA format is incredibly helpful. Thank you!
#10 Great program, made the concepts in class easier to understand.

#11 CrCriterion is much more user friendly than SPSS. By running statistical analysis through criterion | was able to get all of the
information much faster than SPSS.

#12 Was much simpler to use and understand.




