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The article points out the disparity in findings when only testing group mean differences over time rather 

than individual differences over time. Too often individual differences are masked within the group mean 
thus not identifying individual changes. The results using the general linear model and multilevel regression 

models with an example clarifies this discrepancy in analyzing and interpreting social science research. 

 ast research applications have consistently tested mean group differences. This is commonly done in 

t-tests, analysis of variance, and analysis of covariance applications, among others. The experimental 
design, for example, conducts a test of control group versus experimental group mean differences 

using analysis of variance statistical tests (Maxwell & Delaney, 2004). This methodology is also referred 

to as a randomized clinical trial when testing for group mean differences (Machin & Fayers, 2010). 

Oftentimes a true experimental design is not possible, so the researcher uses a quasi-experimental design. 
A quasi-experimental design uses a comparison group rather than a control group. The typical quasi-

experimental design considers a pre-test measure, followed by treatment, and then a similar post-test 

measure for the subjects in the comparison group and the experimental group. In the statistical analysis, 
individual post-test mean differences are adjusted for individual pre-test mean differences to control for 

bias. This adjustment is referred to as analysis of covariance and expressed in the general linear model as: 
 

YPost = b0 + b1X Pr e + e ; 

where: 

  YPost = post-test measures 
  XPre = pre-test measures   

   b0 = estimated sample intercept 

   b1 = estimated sample regression weight, and 
   e = residual error. 
 

The computation of the adjusted post-test group means is shown as (Hinkle, Wiersma & Jurs, 2003, p. 

504): 

𝑌̄𝑘
𝑖 = 𝑌̄𝑘 − 𝑏𝑤(𝑋̄𝑘 − 𝑋̄) 

where:  

   𝑌̄𝑘
𝑖 =adjusted group mean on the dependent variable (post-test measure) 

   𝑌̄𝑘 =original group mean on dependent variable (post-test measure) 

   𝑏𝑤 =pooled within group regression coefficient 

   𝑋̄𝑘 =group mean on the covariate (pre-test measure) 

   𝑋̄ = grand mean on the covariate (pre-test measure) 
 

 The analysis of covariance methodology however has been criticized for several reasons. One important 

reason is that the assumption of a linear relation between the covariate variable (pre-test measure) and the 

dependent variable (post-test measure) is rarely met. Another reason, is that the research question no longer 
relates to the original post-test group mean differences, rather interprets the adjusted post-test mean 

differences (Tracz et al., 2005). These authors contended that the analysis of covariance approach changes 

the hypothesis, Type I error, and interpretation. 
 There are further drawbacks in only testing for mean differences between groups, whether adjusted or 

not. One reason is the selection of comparison group subjects, e.g. matching, blocking. A popular approach 

termed propensity score matching (Polkinghorne et al., 2004; Holmes, 2014) has proven useful in choosing 
cohort subjects for the comparison group. Another important reason is that individual differences can mask 

the average mean values obtained in each group. Some subjects may improve given treatment, others might 

stay the same, or some subjects may decline. These individual subject outcomes would not be identified 

when only testing for group mean differences. 

P 
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  Researchers using the general linear model have expanded testing only mean differences to comparing 
slope differences between two or more groups using separate regression equations. The null hypothesis in 

an experimental versus control group design would be specified as Ho: βcontrol = βexperimental, where β is the 

population regression slope coefficient of each group. The permits an F-test to determine the statistical 

significance between the two regression model R2 values. If the F-test is statistically significant then the 
regression slopes of the two regression lines would be significantly different. The F- test for difference in 

R2 values is given by:  

𝐹 =
(𝑅1

2 − 𝑅2
2)/𝑑𝑓1

(1 − 𝑅1
2)/𝑑𝑓2

 

  Although this analysis is relevant in testing whether change (slopes) between the two groups (control 
and experimental) are statistically significantly different, it still does not indicate individual subjects change 

over time. Our interest is not in testing the group mean difference or slope difference, rather determining 

individual subject change over time. We therefore approach the problem differently by computing a 

separate regression equation for each subject. This can be accomplished using the general linear model or 
multilevel regression model application. 

  The general linear model equation yields a R2 value which is interpreted as a variance accounted for 

effect size (Schumacker, 2015). This is appropriate when testing for a linear trend over time. If a subject’s 
dependent variable increases over time but then decreases over time after treatment, a curvilinear trend is 

present. In this instance, the eta-squared (η2) or partial eta-squared (η2
Y1.12) is appropriate for a non-linear 

trend over time (Pedhazur, 1973). In many instances, η2 = R2 when linear. The variance explained in the 

treatment outcome from a general linear model equation is tested for statistical significance using the F-
test ( Hinkle, Wiersma & Jurs, 2013). The F-test is given as: 

𝐹 =
𝑅2/𝑘

(1 − 𝑅2)/(𝑛 − 𝑘 − 1)
 

where:  

   R2
 = multiple correlation squared 

   k = number of predictor variables 

   n = sample size 
 

  The F-test is simultaneously testing whether all the regression coefficients (b values) are statistically 

significant in the equation. Individual subject slope values are not interpreted. We therefore propose the 

testing of whether individual subject b values are significant using the general linear model, that is 
statistically different from zero while controlling for the effects of the other predictor variables (Pedhazur, 

1973). The general linear regression model can calculate individual regression coefficients to indicate 

change due to treatment. The general linear model b coefficient computation can be expressed in matrix 
form as: 

𝐛 = (𝐗′𝐗)−𝟏𝐗′𝐲 

where:  

   b = column vector a (intercept) plus bk regression coefficients 

   X = n by 1 + k matrix with unit vector and k column vector of scores 

   𝐗′ = transpose of matrix X 

   y = n by one column of dependent variable scores 

   (𝐗′𝐗)−𝟏= inverse of (𝐗′𝐗)  

A test of the statistical significance of the individual subjects b regression coefficients is obtained by:  
 

             𝑡 =
𝑏

𝑆𝐸𝑏
 

 

  The general linear model has been used for testing slope differences or rate of change in repeated 

measure designs (Schumacker, 2015). Therefore, testing only mean differences (intercepts) has been 
expanded using the general linear model to include testing for slope differences, i.e. differences in the rate 

of change. Newman & Schumacker (2012) demonstrated the use of regression-discontinuity techniques to 

test for slope differences, intercept differences, and to examine change in individuals. In past developments, 
researchers have applied discrete-time survival analysis techniques to investigate the duration and timing 
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of event occurrence (Singer & Willett, 1993). The modeling of change and event occurrence has become 
more popular over the years in the statistical analysis of data (Singer & Willett, 2003).  

  The interpretation of an individual’s change over time should have a more meaningful application in 

statistical analysis. The key design issue in testing for individual change is that it requires three measures 

over time, hence the basic pre-test and post-test design does not yield important subject change 
interpretations. The regression coefficients however can provide a meaningful individual interpretation. A 

positive b coefficient would indicate an increase, a negative b coefficient would indicate a decrease, and a 

zero b coefficient would indicate no individual change. 
  Bickel (2007) provided data examples for different multilevel regression models. Basically, when 

ordinary linear regression is not suitable, then the general linear model can be expanded to capture the 

various nested design effects. Moreover, the ability to estimate intercept and slope differences in individuals 
or groups is possible in multilevel regression models. Ordinary least squares is still used as a base model, 

after which multilevel regression models are added. 
 

Regression Analysis 

  The regression approach involves computing the intercept and slope of each subject using separate 
general linear model equations. A regression program was written using R (R Core Team, 2020) to estimate 

individual regression coefficients and is listed in the Appendix. The regression program computes a 

subject’s regression coefficient over repeated measures. The statistical analysis can therefore report 

individual subject coefficients, standard errors, test of statistical significance, and level of statistical 
significance (p-value). The general linear model equation can be expressed as: 
 

            Yi = b0 + biXi + ei ; 

where: 
   Yi = individual measures 

   Xi = individual subject treatment time   

   b0’s = estimated individual subject intercept coefficients 
   bi’s = estimated individual subject slope coefficients, and 

   ei = residual error 
 

Multilevel Analysis  

 Multilevel analysis is an extension of several regression models. For example, in R, the expression: 

lm(y ~ x) or lmer(y ~ x) is the base linear regression model. Next, the expression:  

glm(y ~ x, family = binomial) is the extension to the general linear model. The expression: 

lmer(y ~ x + (1|group)) is the extension to a multilevel model with group as the nested effect. 

The lmer function is seen as the lm function for multilevel modeling applications. Finally,  

glmer(y ~ x + (1|group), family = binomial) is the extension for the general linear 

multilevel model. These expressions clearly show the regression model extensions to multilevel modeling. 
  Multilevel modeling extends ordinary least squares (OLS) regression models to models that have 

additional variance terms for handling non-independence due to group membership. The OLS regression 

models assume that the relationship between the independent variable and dependent variable is constant 
across groups. This assumption is generally tested using a scatterplot and/or the ICC interpretation (Shrout 

& Fleiss, 1979). The key to multilevel models is to understand how nesting individuals within groups can 

produce additional sources of variance in the data.  
  The first variance term that distinguishes a multilevel model from an OLS regression model is a term 

that indicates the degree to which groups differ in their mean values (intercepts) on the dependent variable 

(00). Group-level variables differ across groups but are consistent for individuals within the same group. 

For example, a group-level variable could be used to predict group-level variance (00) in treatment 

outcomes between experimental and control groups.  

  The second variance term that distinguishes a multilevel model from an OLS regression model is a term 

that indicates the degree to which slopes between independent and dependent variables vary across groups 

(11). Multilevel models permit testing whether the slope values vary between groups. If slopes vary 
between groups, then we know that the rate of change is different. For example, the treatment outcome 

desired occurs faster in one group than another. 
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  A third variance term is common to both multilevel models and OLS regression models. This variance 

term, 2, reflects the degree to which an individual score differs from its predicted value within a specific 

group. These are considered level-1 values in the multilevel model equation. Level-1 variables differ among 
members of the same group.  

  The multilevel regression model with intercept (𝛾00) and slope ( 𝛾11) estimation is shown as:   
 

          𝑌𝑖𝑗= 𝛾00 +  𝛾11𝑋𝑖𝑗 + 𝑈𝑖𝑗 + 𝑒𝑖𝑗  
 

Multilevel regression models can include fixed or random intercept and slope variance estimation. We are 

only interested in conducting level-1 individual intercept and slope differences.  
 

Methods and Procedures 

Data and Method 

  An experimental design would randomly assign subjects to a control group and an experimental group. 
A heuristic data set was created with the first five subjects in the control group (1 to 5) and the last five 

subjects in the experimental group (6 to 10). The heuristic data set of 10 subjects has six (6) smoking 

measures per subject as shown in Appendix. The data set shows the 6 measurements for each group with 3 
measures before treatment and 3 measures after treatment. Treatment consisted of counseling to quit 

smoking for subjects in the treatment group and a distribution of stop smoking pamphlets in the control 

group.  

  Our interest was in computing individual subject intercept and slope regression coefficients over time. 
In the regression analysis (R program in Appendix), it is hypothesized that the control group subjects who 

received only a stop smoking pamphlet would indicate no increase or a modest change (not statistically 

significant), while the experimental group subjects would have a statistically significant decrease in 
smoking after counseling, hence negative slope coefficients. In the multilevel regression analysis (R 

program in Appendix) we compared the baseline model to the intercept only model and the intercept and 

slope model. The group effect for experimental versus control was not included in the analysis to better 
demonstrate individual change.  The multilevel regression model comparisons indicate how the base 

regression model is compared to models that test intercept only and both intercept and slope.  
 

Results 

Multiple Regression Analysis 

  The individual subject regression analysis provided individual subject intercept and slope values. The 

results in Table 1 indicated that 4 out of 5 subjects in the control group did not change significantly, while 
each subject in the experimental group did show a decreased change in smoking.  
 

Table 1.  Subject Intercept and Slope Regression Coefficients 

Subject Group Intercept Slope SE t p 

  1 Control 83   -0.14 1.39  -0.10 0.92 

  2 Control 81   -0.14 1.56  -0.09 0.93 

  3 Control 86   -0.28 1.45  -0.19 0.85 

  4 Control 90   -6.85 0.38 -17.73 0.0001 

  5 Control 78    1.42 1.18    1.21 0.29 

  6 Experimental 55   -7.57 0.50 -15.09 0.0001 

  7 Experimental 71 -10.71 0.41 -25.98 0.00001 

  8 Experimental 49   -7.42 0.50 -14.81 0.0001 

  9 Experimental 70 -10.00 0.0005 -19.23 0.00001 

10 Experimental 81 -10.71 0.42 -25.98 0.00001 
 

The results permit a determination of whether any subject in either group increased or decreased their 
smoking behavior. Our example showed that the slope values decreased significantly for subjects in the 

treatment group. One subject (ID = 4) in the control group decreased smoking behavior significantly after 

receiving a quit smoking pamphlet. Individual statistical analysis would clearly show better results for 

interpretation than simply testing group mean differences. The regression coefficients listed in Table 1 can 
be displayed using a simple EXCEL scatter plot (Figure 1) that visually displays their slope values, where 

b-values above and below a 0 value would indicate change.  
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 The issue is how can we analyze our 
research data to test for individual 

subject change due to treatment rather 

than interpret only group mean 

differences. This can be accomplished by 
computing individual subject regression 

equations. The general linear model can 

compute the intercept and slope for each 
subject. The intercept value for each 

subject can be interpreted as a baseline 

measure or starting point. The slope 
value for each subject can be interpreted 

as a rate of change. The computed 

individual subject slope value is divided 

by its standard error to compute a t-value 
with an accompanying p-value for 

statistical significance. The practical interpretation is readily available since a positive regression 

coefficient (b-value) indicates an increase in the measured outcome variable; a negative regression 
coefficient indicates a decrease; and a zero regression coefficient indicates no change. The regression 

coefficient interpretation can also be made in the context of change from an intercept value (baseline 

measure).  
 Our results indicated a subject in the control group had a significant negative regression coefficient, 

thus changed. In contrast, all subjects in the experimental group had significant negative regression 

coefficients. We can therefore examine each individual subject to know whether one, a few, or all benefited 

in a study; thus, whether individual subjects change in either the control or experimental group can easily 
be tested and interpreted. This is more advantageous than simply having significant mean differences 

between groups where individual results are not readily interpreted.  
 

Multilevel Analysis 

 The multilevel program R script in the Appendix compares three different multilevel model 

equations. The equations are expressed as:  
 

         Multilevel Models: 

         base: Y ~ (1 | Subject) 

         int1: Y ~ Time + (1 | Subject) 

         slope1: Y ~ Time + (Time | Subject) 
 

The first equation (base) tests for a common intercept and common slope for all individuals. The second 

equation (int1) tests for intercept differences in individuals. The third equation (slope1) tests for intercept 
and slope differences in individuals across time.  

 A statistical comparison of the three multilevel regression equations indicated that there are intercept 

differences (int1: p < 0.0001) and slope differences (slope1: p < 0.0001). These results are output as: 
 

Model  npar  AIC    BIC    logLik   Chisq        df     p 

base      3 515.50 521.78 -254.75  509.50           

int1      4 487.72 496.10 -239.86  479.72 29.777  1 0.00000004847 

slope1    6 419.40 431.96 -203.70  407.40 72.328  2 0.0000000000000002 
 

The results are presented in Table 2 for the three multilevel regression models. The level-1 individual 

prediction error was less for the intercept and slope model (σ2 reduced from 169.17 to 16.65) and ICC 

increased from 0.80 to 0.98.  
  A comparison of the individual person intercepts and slopes across time is displayed in Figure 2. The 

R script for graphing the individual intercepts and slopes is in the Appendix. The individual graphs clearly 

show that individuals do not have a common intercept and slope (base regression model), nor a common 
intercept with varying individual slopes (int1), rather different individual intercepts and slopes (slope1). 

The individual graphs point out that individual treatment varied among patients across time.  

 
Figure 1. Excel Graph of Individual Regression Coefficients 
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Table 2. Multilevel Model Comparisons (Intercept and Slope – Time) 

 Y   Y   Y   

Predictors Estimate 95% CI p-value Estimate 95% CI p-value Estimate 95% CI p-value 

Intercept 58.17 41.15 – 75.18 <0.001 74.47 56.68 – 92.26 <0.001 74.47 66.26 – 82.67 <0.001 

Time    -4.66 -6.13 – -3.18 <0.001 -4.66 -7.85 – -1.46   0.005 

 Random Effects        

 σ2 169.17   95.16   16.65  

 τ00 693.84 ID   706.18 ID   153.00 ID  

 τ11       24.42 ID.Time  

 ρ01       0.62 ID  

 ICC 0.80   0.88   0.98  

 N 10 ID   10 ID   10 ID  

Observations 60   60   60  

 

 
Figure 2. R plot of individual patient intercepts and slopes 
 

Summary and Discussion 

  There have been a few statistical approaches used to analyze mean differences between groups, the 

most popular being t-test, analysis of variance; and analysis of covariance. There have been substantiated 

published articles over the past several decades criticizing the use of analysis of covariance. The use of 
analysis of variance in true experimental designs therefore has been the gold-standard of research designs. 

Unfortunately, researchers have not always been able to conduct true experimental designs and struggled 

with creating comparison groups in quasi-experimental designs. The use of an experimental design or a 

quasi-experimental design using propensity score matching for the cohort of subjects in a comparison group 
would indicate group mean treatment outcomes. However, the design analysis does not indicate individual 

subject treatment effectiveness. 
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  Another emerging analysis method, regression-discontinuity, was developed for program evaluation 
(Trochim, 1984). This methodology was eventually extended to randomized clinical trials to test slope 

differences between control and experimental groups (Trochim, 1992). This proved to be a useful method 

to determine whether a program or treatment was effective. The test of slope differences between groups 

via regression-discontinuity however did not provide the individual subject treatment results. Individual 
change can still show individual gains, losses, or no change in treatment. The ability to examine individual 

subject treatment status can be deduced from a regression-discontinuity design if proper dummy coding of 

subject vectors is employed. This is generally not done in applied social research studies, so the emphasis 
is still not on the individual subject change, rather only group outcomes. For example, was a certain stop 

smoking program effective? 

  Multilevel modeling (Bickel, 2007; Schumacker & Lomax, 2016) has demonstrated the use of the 
general linear model and multilevel regression models to generate individual intercept and slope values 

across time. It is recommended that the intra-class correlation coefficient be interpreted to determine 

whether a common regression line or individual regression lines should be interpreted (Shrout & Fleiss, 

1979). In addition, the design effect adjustment is used in some studies where cluster randomized control 
trials are conducted (Bland, 2004). The design effect uses the intra-cluster correlation (Deff = 1 + (m - 1)p 

to assess the effect of clustering, where m is the sample size in a cluster and p (ICC) is the intra-cluster 

correlation. Clustering may result in p-values and confidence intervals which are biased if cluster size is 
large, the number of clusters is small, or the intra-cluster correlation coefficient is large.  

  A SAS approach, varying time estimation method (VTEM), estimates regression coefficients in a time-

varying effect model (TVEM SAS Macro, 2017). It provides an end user SAS macro (%VTEM) to make 
longitudinal analysis using regression equations easier to execute (Li, Dziak, Tan, Huang, Wagner, & Yang, 

2017). This SAS macro permits fixed or time varying variables in the equations and highlights the pivotal 

work by Singer & Willet (1993; 2003) who earlier demonstrated SAS code for time varying variables in 

longitudinal data analysis. Additionally, the centering approach in VTEM, which is used in the graphical 
display of b-value deviations around zero (0) supports the earlier work by Aiken & West (1991). Basically, 

if the graph shows b-values with confidence intervals not capturing the zero point, then the fixed or time 

varying variable effect is statistically significant. The model selection fit function criteria are based on 
Akaike information criterion (AIC; non-parametric) and Bayesian information criterion (BIC - parametric), 

although VTEM is considered a non-parametric approach. These two fit functions are commonly used for 

choosing the best predictor subset models in regression where lower values suggest a model closer to a true 

model. A new parametricness index (PI) has been introduced to assess whether the best regression model 
selected should be judged by AIC or BIC fit criteria in estimating the regression function (Liu & Wang, 

2011). 

  All of the aforementioned approaches are important techniques used to assess change over time. The 
importance of analyzing individual subject change over time needs a more prominent place in our social 

science research. It should be the most important practical question in longitudinal modeling. We feel that 

individual treatment effectiveness is more important than group mean or group slope differences. Several 
methods test group mean differences (t-test, analysis of variance, analysis of covariance); however, more 

suitable methods should be used that provide individual intercept and slope values (multilevel modeling, 

survival analysis, longitudinal analysis). The basic R programs in the Appendix makes it easy to compute 

individual subject treatment results over time. Any statistical analysis that masks individual contribution 

by only computing and interpreting group mean and/or group slope differences are not recommended. 
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Appendix 

Smoking Data (Heuristic Person-Period Data) 

Control Subjects   Treatment Subjects 

ID Y Time ID Y Time 

1 80 1 6 50 1 

1 85 2 6 40 2 

1 90 3 6 30 3 

1 75 4 6 25 4 

1 80 5 6 20 5 

1 85 6 6 10 6 

2 75 1 7 60 1 

2 80 2 7 50 2 

2 90 3 7 40 3 

2 85 4 7 30 4 

2 80 5 7 20 5 

2 75 6 7 5 6 

3 90 1 8 40 1 

3 85 2 8 35 2 

3 85 3 8 30 3 

3 75 4 8 20 4 

3 85 5 8 10 5 

3 90 6 8 5 6 

4 85 1 9 60 1 

4 75 2 9 50 2 

4 70 3 9 40 3 

4 65 4 9 30 4 

4 55 5 9 20 5 

4 50 6 9 10 6 

5 85 1 10 70 1 

5 75 2 10 60 2 

5 80 3 10 50 3 

5 85 4 10 40 4 

5 90 5 10 30 5 

5 85 6 10 15 6 
 

Regression Program R Script 
# Smoking data 

# Compute intercept and slope of each subject 

# ID = subject id;   Y = number of cigarettes smoked ; Time = months of 

treatment ( 1 to 6) 

# CTRL = control ;TRT = treatment; CT = 1,2,3; TT = 4,5,6; P1 to P10 are 

dummy coded 

# Input data 

mydata=read.table("c:/regression.csv",header=TRUE,sep=",") 

mydata 

# Compute individual intercept and slope values 

# All subjects  ( i = 10 subjects) 

K = 1 

L = 6 

for (i in 1:10) { 

j = lm(Y[K:L] ~ Time[K:L],data = mydata) 

z = summary(j) 

print(z) 

K = K + 6 

L = L + 6          }              Note:  Individual regression results copied into Table 1  
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Multilevel Model Program R Script  
# Smoking data 

# Compute intercept and slope of each subject 

# Subject = patient id   Y = number of cigarettes smoked  Time = 

months of treatment  

# Input data 

 

install.packages("tidyverse"); install.packages("sjPlot"); 

install.packages("lme4") 

library(tidyverse);library(sjPlot);library(lme4) 

 

# Read in data file  

 

patient = read.csv("C:/regression.csv”,header=TRUE,sep=”,”) 

attach(patient) 

 

# Base null model 

base = lmer(Y ~ (1|Subject),data=patient) 

 

# Intercept only model 

int1 = lmer(Y~Time +(1|Subject), data = patient) 

 

# Slope and Intercept model 

slope1 = lmer(Y~Time + (Time|Subject),data = patient) 

 

# Compare models 

options(scipen=999) 

anova(base,int1,slope1) 

 

 # Table results  

tab_model(base,int1,slope1) 

 
Note:  Multilevel Model results in Table 2 

 
Multilevel Model Graph R Script  

install.packages("lme4") 

library(lme4) 

require(lme4) 

require(lattice) 

 

patient = read.csv("C:/Documents/Articles2024/Multilevel Model 

Article/regression.csv", header=TRUE, sep=",") 

attach(patient) 

 

xyplot(Y ~ Time | Subject, patient, type = c("p","r"),  

       index = function(x,y) coef(lm(y ~ x))[1], 

       xlab = "Months of Treatment", 

       ylab = "Number of Cigarettes Smoked", aspect = "xy") 

(fm1 <- lmer(Y ~ Time + (Time|Subject), patient, subset=Time >=0)) 

 
Note:  Multilevel Model Graph Output in Figure 2 


