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Investigations of differential treatment effects through the inclusion of moderating variables advance 

individualized treatment decisions through improved knowledge of treatment effectiveness across 

individuals and contexts. Literature has explored planning strategies for partially nested designs with 

heterogeneous treatment effects but statistical power formulas for detecting moderated effects when the 

moderator-outcome relationship varies across clusters (i.e., random slopes) are currently unavailable. We 

derive these formulas and probe the roles of the governing parameters and likely scale required for detecting 

these moderation effects. Simulation study results suggest that substantial moderation effect heterogeneity 

warrants much larger sample sizes to consistently detect moderation effects. Power formulas are 

implemented in R (see Supplemental Materials). 

 or a range of treatments frequently seen in educational research settings collaboration among 

participants in a cluster (e.g., small-group reading instruction) or a shared facilitator (e.g., patients 

with the same therapist) can produce dependencies among participant outcomes (Lohr et al. 2014; 

Roberts & Roberts, 2005; Sterba, 2017). If ignored, standard modelling typically underestimates the 

standard error of treatment effect estimates and leads to inflated Type I error (Baldwin et al., 2011; Bauer 

et al., 2008; Candlish et al., 2018; Pals et al., 2008). Despite these analytic complications, administering 

cluster or shared facilitator interventions is often more effective because participant collaborations 

frequently bolster treatment effects. The advantages of these cluster and shared facilitator interventions 

have led to widespread adoption and growing implementation (Raudenbush et al., 2007; Spybrook, Shi et 

al., 2016; Sterba, 2017).  

  A common complication in these types of experimental studies arises when randomization splits 

individuals into either a clustered treatment group or an unclustered control group (e.g., waitlist). This type 

of data structure is often referred to as partial nesting because it results in cluster-based dependence among 

individuals in the treatment group but independence among individuals in the control group. Partially nested 

data is common in the fields of education, psychotherapy, and counselling (Bauer et al., 2008; Lohr et al., 

2014; Sterba, 2017). For example, studies have compared a school-based intervention for autism and an 

individualized home-based control group (Roberts et al., 2011) and a group-therapy for high-risk 

adolescents against an individual therapy control group (Dishion et al., 2001). Partially nested study designs 

have also been utilized to study interventions involving cognitive behavioral therapy (Johnson et al., 2007) 

and other behavioral therapies (Powell et al., 2010; Rothschild et al., 2012).   

  A comprehensive collection of literature has been developed to address planning and analysis with a 

broad range of partially nested structures (Bauer et al., 2008; Cox & Kelcey, 2022; Cox et al., 2022; Lohr 

et al., 2014; Sterba, 2017; Roberts & Roberts, 2005; Lee & Thompson, 2005; Moerbeek & Wong, 2008; 

Roberts et al., 2016; Kelcey et al., 2020). For example, prior literature has established that many partially 

nested designs can be analyzed through extensions of multiple-arm multilevel models (Roberts et al., 2011; 

Sterba et al., Lachowicz et al., 2015). Literature has also outlined several study planning considerations 

including sample size and power formulas for various partially nested designs (Moerbeek & Wong, 2008; 

Roberts & Roberts, 2005; Li & Hedeker, 2017), main, moderation and mediation effects (Cox & Kelcey, 

2022; Cox et al., 2022; Kelcey et al., 2020), continuous and binary outcomes (Roberts et al., 2016), and 

optimized sample allocation strategies (Moerbeek & Wong, 2008). Recent literature has also considered a 

broad range of partially nested data structures including three-level hierarchical structures and multisite 

structures (Cox et al., 2022; Kelcey et al., 2020; Li & Hedeker, 2017).      

 Of particular interest in the field of education are techniques that better elucidate for whom and under 

what conditions an intervention, policy or, program (i.e., treatment) is effective to inform more targeted 

intervention decisions. Literature has detailed design and analysis strategies including benefiting subgroup 

identification using the credible subgroups approach (Lazar et al., 2016) and the use of subpopulation 
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treatment effect pattern plots to identify treatment effect heterogeneity (Schnell et al., 2018). We focus on 

the inclusion of individual-level moderator variables to investigate heterogeneous treatment effects. Power 

formulas and sample size requirements for detecting moderation effects have been developed for two- and 

three-level cluster randomized trials with binary and continuous moderators and multiple moderators (Dong 

et al., 2018; Dong et al., 2021; Spybrook et al., 2016; Yang et al., 2020). More recently, power formulas 

for detecting moderation effects have been extended to partially nested designs (Cox & Kelcey, 2022; Cox 

et al., 2022).  

  An important additional consideration in the design of partially nested studies targeting the effects of 

individual-level moderators is the extent to which the relationship between the individual-level moderator 

and the outcome varies across clusters or groups (i.e., random slope coefficient for the moderator variable). 

Consider the potential moderating role of gender on the effectiveness of a small-group depression therapy. 

Under a fixed effect approach (i.e., nonrandom slope) the relationship between gender and the depression 

outcome varies across clusters only as a function of treatment status whereas under a random effect 

approach (i.e., random slope) the relationship between gender and the depression outcome potentially varies 

across clusters (e.g., slope or coefficient for gender varies across therapy groups after accounting for 

treatment effect). Strategies for planning studies that include moderation effects (fixed or random moderator 

slope) have been widely developed in fully nested or cluster randomized trials (Dong et al., 2018; Dong et 

al., 2021; Mathieu, 2012) but only for moderators with fixed slopes in partially nested designs (Cox & 

Kelcey, 2022; Cox et al., 2022).  

  Omitting heterogeneity or assuming a fixed slope for the moderator may lead to spurious inferences 

about moderation because it will underestimate the standard errors (Heisig & Schaeffer, 2019; LaHuis et 

al., 2020). That is, ignoring variability in the relationship between the moderator and outcome across groups 

makes detecting the moderation effect more likely (i.e., Type I error) when, in fact no moderation effect is 

present. From a design perspective, assuming a fixed slope for the moderator will generally underestimate 

the adequate sample size for detecting the moderation effect. Additionally, previous literature involving 

fully nested designs (Dong et al., 2021) found the relationship between design parameters (e.g., individual- 

and cluster sample size) and power to detect the moderation effect can depend on moderation effect 

heterogeneity. Put differently, guidance and recommendations for detecting moderators with fixed slopes 

in partially nested designs (e.g., Cox & Kelcey, 2022) may not be applicable when the moderator has a 

random slope.  

  The primary purpose of this study is to derive power formulas for detecting moderation effects when 

the moderator-outcome relationship varies across clusters (i.e., random slopes) in partially nested designs 

and assess their accuracy using Monte Carlo simulations. Within this context, we developed statistical 

power formulas that accommodate binary or continuous moderators assessed at the individual-level, are 

applicable with unbalanced sample sizes across study arms, and can incorporate other covariates. A 

secondary purpose of this study is to outline the roles of the parameters governing power to detect these 

moderation effects. Using examples, we highlight key results related to power and adequate sample sizes 

while varying several influential factors including cluster and individual per cluster sample size, moderation 

effect heterogeneity, variance structure of the outcome (i.e., ICC), distribution of the moderator, and 

variance explained in the outcome by covariates (Cox & Kelcey, 2022; Cox et al., 2022; Dong et al., 2018; 

Dong et al., 2021; Spybrook et al., 2016; Yang et al., 2020).  

 The article is divided into sections to map out statistical power formulas based on analytic models with 

and without covariates. Formula accommodations for binary moderators and study arms with unbalanced 

sample sizes are also noted. A simulation study follows the presentation of the analytic models to assess 

the accuracy of the power formulas. Following the second simulation, we present derivatives of the 

moderation effect error variance for key parameters. The final section extends this work for partially nested 

data with a three-level structure. The paper concludes with a discussion of results and their implications for 

study design and planning. 
 

Analytical Method 

  We begin with a two/one partially nested design in which the treatment group has a two-level data 

structure and the control group has a single-level data structure. Our analyses consider designs that 

randomly assign individuals to cluster-administered treatments (e.g., small-group intervention) or 

treatments employing a shared facilitator (e.g., teacher). For two/one partial nesting the treatment induces 



Power for Moderation in Partially Nested Designs 

General Linear Model Journal, 2025, Vol. 49(1)                                                                                                         3 

a two-level data structure consisting of individuals nested within clusters while individuals in the control 

group avoid any nesting or clustering. These formulas are also applicable when treatment eliminates nesting 

or clustering such that the control group has a two-level structure and the treatment group is a single-level 

(e.g., home-based therapy versus typical group therapy control condition) but we avoid further discussion 

of this scenario for clarity.  

  We operationalize our analysis using the multiple-arm multilevel framework for partially nested data 

(MA-PN; Lachowicz et al., 2015; Lohr et al., 2014; Sterba et al., 2014). The MA-PN framework easily 

accommodates moderation effects (Sterba, 2017; Sterba et al., 2014) and the heteroscedasticity that is 

possible across study arms with partially nested data (Sterba, 2017). The treatment group analytic model 

has a continuous outcome (yij), individual-level continuous moderator (𝑚𝑖𝑗
(𝑡)) with variance 𝜎𝑚(𝑡)

2 , and a slope 

that may vary across clusters such that    
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  The treatment group is identified using the superscript t with individuals per cluster and clusters 

identified using subscripts i and j respectively. The variance term 𝜎𝑦(𝑡)
2  indicates variance in 𝑦𝑖𝑗

(𝑡) at the 

individual-level. At the cluster-level, 𝛽0𝑗
(𝑡) is decomposed into 𝛿00

(𝑡), the grand mean for the treatment group, 

and ( )

0

t

ju , the residuals with a mean of zero and variance of 𝜏00(𝑡)
2 . To capture moderated effects when the 

moderator has a random slope, the cluster-specific main effect 𝛽1𝑗
(𝑡) of the moderator variable (mij) is 

decomposed into the main effect of the moderator variable under exposure to the treatment, 𝛿00
(𝑡),  and an 

unexplained cluster specific deflection, 𝑢1𝑗
(𝑡), that has a mean of zero, a variance of 𝜏11(𝑡)

2 , and a covariance 

with the random intercept of 𝜏01(𝑡). Within the context of partially nested designs, estimates of the main 

effect draw on the contrast between the overall intercept in the treatment group, 𝛿00
(𝑡), and the overall intercept 

in the control group (see δ(c) below). Similarly, investigations of treatment effect moderation draw on the 

contrast between the overall effect of the moderator in the treatment group (𝛾10
(𝑡)) and the overall effect of 

the moderator in the control group (see 𝛽1
(𝑐) below). Randomization of individuals to conditions ensures that 

the compositions of individuals across conditions and clusters will not systematically differ. As a result, we 

assume that aggregates of the moderating variable do not further modulate the treatment effect.    

  The outcome model for the single-level control group with a moderator (𝑚𝑖
(𝑐)

) is  

       ( )

( ) ( ) ( ) ( ) ( ) 2
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~ (0, )c
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i i i i y
y m N    = + + .

 
        (3) 

Variables and parameters (e.g., y, m, δ(c), and 𝛽𝑖
(𝑐)

) retain similar meanings from the outcome model in the 

treatment group. The superscript (c) now indicates the control group setting and terms are identified using 

a single subscript i because no clustering is present. Variance components are also simplified, with 𝜎
𝑦(𝑐)
2  

representing outcome variance in the control group and 𝜀𝑖
(𝑐)

 the associated error term with mean zero. Our 

analytic interest in this investigation is on the coefficient capturing the relationship between the moderator 

and outcome in the control group, 𝛽1
(𝑐)

.   
 

Moderation Effect and Sampling Variance 

  The moderation effect in this partially nested structure can be defined as the difference between the 

overall effect of the moderator in the treatment condition and the effect of the moderator in the control 

condition. Under the MA-PN framework,  we utilize the coefficients capturing the moderator-outcome 

relationship in the treatment and control arms to estimate the moderation effect (ME) such that 

            
( ) ( )

10 1

t cME  = − .           (4) 

In terms of our example, the moderation effect is the difference between the overall effect of gender in the 

treatment condition and the effect of gender in the control condition (for more detailed discussions on 

multilevel moderation effects see Preacher et al., 2016; Bauer & Curran, 2005; Preacher et al., 2006). While 
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moderation effect estimates are not operationalized as a product term under the multiple-arm multilevel 

framework for partially nested data, follow-up procedures delineating moderation effects (e.g., plots and 

probes) remain similar.  

  In addition to the definition and size of a moderation effect, a concomitant consideration when 

designing a study is the statistical power with which a given sample size can be used to detect an effect if 

it exists. In order to predict statistical power, we must track the sampling variability of the moderation 

effect. Under the multiple-arm multilevel framework for partially nested data the control and treatment 

groups are independent such that the sampling variability of the moderation effect in Equation 4 is 

            ( ) ( ) ( ) ( )
10 1 10 1

2 2 2 2

( )
t c t cME    

   
−

= = + .

 

        (5) 

To be precise, we have the variance of the moderation effect as the variance of the difference in the estimator 

of 𝛾10
(𝑡)

  (i.e., 𝛾10
(𝑡)

) and the estimator of 𝛽1
(𝑐)

 (i.e., �̂�1
(𝑐)

). The uncertainty about a moderation effect is then the 

sum of the variance of the regression coefficients associated with the moderator in the treatment and control 

condition. Below, we unpack this error variance by connecting it to conventional random slope models 

(Dong et al., 2021; Snijders, 2001; Snijders, 2005). We then re-express the error variance as a function of 

common sample statistics that can be used to predict requisite sample sizes when designing a study.  

  The sampling variability (i.e., 𝜎
𝛾10
(𝑡)
2 ) of the relationship between the moderating variable and the outcome 

in the treatment group can be tracked using (Cox & Kelcey, 2022; Cox et al., 2022; Dong et al., 2021; 

Snijders, 2001; Snijders, 2005),  
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The formula for 𝜎
𝛾10
(𝑡)
2  includes 𝜎

𝑦(𝑡)
2 , the individual-level outcome variance and 𝜎

𝑚(𝑡)
2 , the variance of the 

moderator with 𝑛2
(𝑡) as the number of clusters and 𝑛1

(𝑡) as the number of individuals within each cluster. The  

𝜏11(𝑡)
2  term represents variance of the random slopes (i.e., variance between clusters on the effect of 𝑚𝑖𝑗

(𝑡)). 

Similarly, the sampling variability (i.e., 𝜎
𝛽1
(𝑐)
2 ) of the relationship between the moderating variable and the 

outcome in the control group is (Cox & Kelcey, 2022; Cox et al., 2022; Dong et al., 2021; Snijders, 2001; 

Snijders, 2005),   
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The terms in the formulation of 𝜎
𝛾10
(𝑡)
2  and 𝜎

𝛽1
(𝑐)
2  are similar with total sample size in the control group 

represented with n(c).  

  Substituting the expanded formulations of 𝜎
𝛾10
(𝑡)
2  and 𝜎

𝛽1
(𝑐)
2  into the 𝜎𝑀𝐸

2  formula, the predicted sampling 

variability of the moderation effect is 

          
( ) ( ) ( ) ( )

( ) ( )

( ) 2 2 2 2

1 11| | |2

( ) ( ) 2 ( ) 2

2 1( 2) ( 2)

t t t c

t c

t

m y y

t t cME

m m

n

n n n

   


 

+
= +

− − .        (8) 

We can also present a standardized version using unit variance so that 𝜏00(𝑡)
2  + 𝜎𝑦(𝑡)

2  = 1 and 𝜎𝑚(𝑡)
2  = 1. Under 

this standardization 𝜏
00(𝑡)
2  is the unconditional variance of the outcome in the treatment group at the cluster 

level and 𝜎𝑦(𝑡)
2  is the unconditional variance of the outcome in the treatment group at the individual-level. 

The 𝜏00(𝑡)
2  term is equivalent to the unconditional intraclass correlation coefficient (ρ) of the outcome in the 

treatment group such that 
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A statistical test of the null hypothesis that the ME is zero (H0) versus an alternative hypothesis that it is not 

zero (Hα) can then be formed using the ratio of the effect to its variance. The resulting ratio forms t statistic 

such that if the null hypothesis (H0) is true the statistic follows a central t-distribution and if the null 

hypothesis is false the statistic will follow a noncentral t-distribution with a non-centrality parameter of 

(Cox & Kelcey, 2022; Cox et al., 2022; Dong et al., 2021; Snijders, 2001; Snijders, 2005) 

          tME = ME/σME               (10) 
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and 𝑛2
(𝑡)

−2 degrees of freedom (df, Raudenbush & Bryk; 2002). This formula to determine df is an 

approximation with more precise formulas possible using the number of explanatory variables in the model 

or a Satterthwaite approximation. However, any discrepancy with the reference t-distribution because of 

inaccuracies in the df would be minimal (i.e., slight inaccuracies in type I error rate) and limited to small 

cluster sample sizes. Statistical power for the two-sided test is formulated as 

        P(reject H0|Hα is True) = P(|t| > tcritical)         (11) 

with t the observed value of tME in Equation 10, assumed to follow a t-distribution with 𝑛2
(𝑡)

−2 degrees of 

freedom under H0 and tcritical as the corresponding critical value for a selected type one error rate (e.g., 1.96 

in large samples).  

  To accommodate binary moderators, the proportion of the first moderator subgroup is designated Q 

with the remaining moderator subgroup (1−Q). The variance of the binary moderator follows a Bernoulli 

distribution such that bij ~ Bernoulli(Q) where the variance of the moderator in the treatment and control 

group (i.e., 𝜎𝑀(𝑡)
2  and 𝜎𝑀(𝑐)

2 ) is Q(1−Q). The separation of treatment and control groups in partially nested 

designs and the reflection of this separation in our formulation of 𝜎𝑀𝐸
2  also allows easy accommodation of 

differing sample sizes in the treatment and control conditions. Possible treatment and control sample sizes 

(i.e., 𝑛1
(𝑡), 𝑛2

(𝑡), and n(c)) can be selected assuming a balanced sample across study arms such that n(c) = 𝑛1
(𝑡)
𝑛2
(𝑡)

 

or set individually for unbalanced samples. 
 

Simulation Study I 

 A Monte Carlo simulation study was conducted in R (R Core Team, 2021) to establish the accuracy of 

the newly derived power formulas and probe several factors that influence power rates including cluster 

and individual per cluster sample size, magnitude of the moderated effect, moderation effect heterogeneity, 

and intraclass correlation coefficient of the outcome. We utilized the lm function in R (R Core Team, 2021) 

to analyze the single level models and the lme4 package with the default REML estimator (Bates et al., 

2015) when estimating the multilevel models.  

 Specifically, we generated data sets with sample sizes of 𝑛1
(𝑡) = 10, 25, 50, and 100 and 𝑛2

(𝑡) = 25, 50, 

and 100 with n(c) = 𝑛1
(𝑡)
𝑛2
(𝑡). Under a limited set of 𝑛1

(𝑡) and 𝑛12
(𝑡) values we included n(c) = 2𝑛1

(𝑡)
𝑛2
(𝑡) and n(c) = 

𝑛1
(𝑡)
𝑛2
(𝑡)/2 to investigate unbalanced sample sizes across study arms. The magnitude of the moderation effect 

was set using 𝛽1
(𝑐)

 = 0 and 𝛾10
(𝑡)

 = 0.1, 0,2 and 0, which respectively produces ME = 0.1, 0.2, and 0 (to evaluate 

formula Type I error rates at α=0.05). The core development in power formulas presented here is their 

ability to handle an individual-level moderator with a random slope so we varied 𝜏11(𝑡)
2  and 𝜏00(𝑡)

2  such that 

moderation effect heterogeneity (ω = 𝜏11(𝑡)
2 /𝜏00(𝑡)

2 ) was 0.2, 0.4, 0.6, and 0.8 with a 0.0 condition to reflect a 

moderator with a non-random slope. The range of values for ω allowed us to consider varying degrees of 

moderation effect heterogeneity and aligned with previous simulation studies (e.g., Dong et al., 2021).   

  Finally, we examined these scenarios when the unconditional intraclass correlation coefficient of the 

outcome was ρ = 0.1 and 0.2. This set of simulation conditions was examined with a continuous and binary 

moderator. Simulation conditions were guided by previous simulation literature examining partially nested 

designs (Cox & Kelcey, 2022; Esserman et al., 2013; Heo et al., 2017; Roberts, 2021; Roberts et al., 2016) 

and moderation in cluster-randomized trials (Cox & Kelcey, 2022; Dong et al., 2018; Dong et al., 2021; 

Spybrook et al., 2016; Yang et al., 2020) as well as empirical analyses of values for multilevel structures 

and variables in education (e.g., Bai et al., 2024; Hedges & Hedberg, 2006; Kelcey et al., 2016). The data 

for the simulation were generated using the previously presented analytic models with 𝜏10(𝑡) = 𝜏01(𝑡) = 0, 

𝜎𝑚(𝑡)
2  = 1, 𝜎𝑦(𝑐)

2  = 1, 𝜎𝑚(𝑐)
2  = 1, 𝛿00

(𝑡) = 0.3, and δ(c) = 0. Using these parameter values , we predicted the moderated 

effect (ME) based on Equation (4) and the respective expected sampling variance of the pertinent 

coefficients (𝜎
𝛾10
(𝑡)
2  and 𝜎

𝛽1
(𝑐)
2 ) as well as the sampling variance of the moderation effect (𝜎𝑀𝐸

2 ).    

  This process was replicated across 10,000 data sets. To estimate the observed power rate across 

simulation draws, we conducted hypothesis testing for each draw by checking whether the observed t 

exceeded tcritical. To predict the power rate using the expressions developed in this study, we substituted the  

parameter values for each condition outlined above into the applicable expressions (4-8). To assess the  

accuracy of our expressions, we compared the power and Type I error rate between the observed simulated 

power and the predicted power using the formulas under various conditions. All analyses were also 

completed using R (R Core Team, 2021).   
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Table1. Selected Comparisons of Formula-Based Statistical Power and Type I Error Rate and Monte Carlo Simulation 

Results for a Continuous Moderator without Covariates in a Design with Two/One Partially Nested Data  

Scenario 1 2 3 4 5 6 7 8 9 10 11 12 

ρ 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 

ω 0.2 0.4 0.8 0.2 0.4 0.8 0.2 0.4 0.8 0.2 0.4 0.8 

n2 25 25 25 100 100 100 25 25 25 100 100 100 

n1 100 100 100 25 25 25 100 100 100 25 25 25 

Simulation rejection rate 0.50 0.33 0.21 0.83 0.72 0.54 0.69 0.50 0.40 0.89 0.82 0.75 

Formula power rate 0.50 0.33 0.20 0.84 0.72 0.55 0.67 0.50 0.39 0.89 0.83 0.76 

 Absolute Difference 0.00 0.00 0.01 0.01 0.00 0.01 0.02 0.00 0.01 0.00 0.01 0.01 

Empirical Type I error rate 0.032 0.032 0.032 0.044 0.044 0.044 0.035 0.035 0.035 0.043 0.043 0.043 

Formula Type I error rate 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 

Absolute Difference 0.018 0.018 0.018 0.006 0.006 0.006 0.015 0.015 0.015 0.007 0.007 0.007 

Note: Results were based on 10,000 replications with balanced sample sizes in the treatment and control condition, 

𝜌 representing intraclass correlation, 𝜔 representing moderation effect heterogeneity, and ME=0.1 for power and 

ME=0.0 for Type I error. 
 

Figure 1. Statistical Power and Empirical Rejection Rates for A Moderated Effect with Two/One 

Partially Nested Data 

 
Note: This figure plots formula-based power curves to detect a moderation effect with simulation rejection rates for a 

continuous moderator with balanced sample sizes across study arms, without covariates across increasing (a) 

individuals per cluster and (b) cluster sample sizes. The dotted line represents the formula-based power curve with 

black points marking the simulation-based rejection rate at matching sample sizes. A horizontal line marks 80% power. 

For (a) n2=50 and for (b) n1=50 with remaining conditions set at ω=0.2, ME=0.1, and ρ=0.2 
 

Results 

  Power rate accuracy was considered for a continuous and binary moderator across 192 conditions with 

an additional 24 conditions to assess accuracy of the Type I error rate (see Table 1 for selected results and 

Supplemental Materials for complete results). Across all conditions, formula predicted power rates for the 

moderated effect closely approximated simulation rejection rates. Figure 1 illustrates formula accuracy with 

(a) a cluster sample size of 𝑛2
(𝑡) = 50 across various 𝑛1

(𝑡)  sample sizes and (b) an individual per cluster sample 

size of 𝑛1
(𝑡) = 50 across various 𝑛2

(𝑡) sample sizes. Simulation rejection rates (dots) track closely with formula-

based power curves across the sample size conditions with ω = 0.2, ME = 0.1, and ρ = 0.2. Our simulations 

also evaluated the Type I error rate when ME = 0. The results suggested deflated Type I error rates when 

cluster level sample sizes were small. For example, when cluster-level sample sizes were 𝑛2
(𝑡) = 25, rejection 



Power for Moderation in Partially Nested Designs 

General Linear Model Journal, 2025, Vol. 49(1)                                                                                                         7 

rates were below the designated 0.05 level. We found empirical rejection rates quickly approached the 0.05 

level as cluster-level sample sizes increased. This is likely a result of slight discrepancies in the reference 

distribution for the t-statistic based on the 𝑛2
(𝑡)−2 df formula. To ensure the accuracy of our power formulas, 

we compared simulation and formula-based moderation effect error variance values and found no 

systematic or substantial differences. These results suggest discrepancies between formula predicted Type 

I error rate and empirical rejection rate stems from difficulties with the empirical rejection rates with small 

cluster-level sample sizes and minor discrepancies in the reference t distribution rather than inaccuracies in 

our variance or power formulas. When 𝜎
𝑀(𝑡)
2  = 𝜎

𝑀(𝑐)
2  = Q(1-Q) for binary moderators, formula predicted power 

to detect the moderation effect again closely approximated simulation rejection rates (see Supplemental 

Materials for complete results).  

  We also examined power formula accuracy in partially nested designs with unbalanced sample sizes 

across study arms. While balanced sample sizes in the treatment and control condition typically maximize 

power, they are rarely achieved in practice and sometimes explicitly avoided. For example, researchers may 

plan to assign many more clusters to the treatment group to encourage study participation or limit treatment 

participation due to logistical constraints (e.g., limited resources or budget) that inflate the control group 

sample size. Following previous literature, we consider unbalanced study arm sample sizes with a larger 

sample in the control group (n(c) = 2𝑛1
(𝑡)
𝑛2
(𝑡)) and a smaller sample in the control group (n(c) = 𝑛1

(𝑡)
𝑛2
(𝑡)/2); 

Dong et al., 2018; Dong et al., 2021; Spybrook et al., 2016). Formula predicted power closely approximated 

simulation rejection rates with unbalanced sample sizes across study arms (see Supplemental Materials for 

complete results). 
 

Analytic Model with a Covariate 

  It is a common and beneficial practice in experimental studies to include prognostic covariates in the 

analytic model. Covariates that explain variation in the outcome increase the power to detect both main and 

moderation effects (Spybrook et al., 2016). Therefore, it is important for power formulas to accommodate 

the inclusion of prognostic covariates. We replicate the work presented thus far with a revised analytic 

model that includes a covariate. We again draw on the common multiple-arm multilevel framework for 

partially nested data (MA-PN). In the treatment group we again have a continuous outcome (yij) and 

individual-level moderator (𝑚𝑖𝑗
(𝑡)) with variance 𝜎𝑚(𝑡)

2  but the analytic model includes a covariate at the 

individual-level (𝑥𝑖𝑗
(𝑡)) with variance of 𝜎𝑥(𝑡)

2  such that    
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A revised error variance formulation can be expressed as (Cox & Kelcey, 2022; Cox et al., 2022; Dong et 

al., 2021) 
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where C(t) is the number of additional covariates in the analytic model and variance explained in the 

outcome at the individual-level is 𝑅
𝑦(𝑡)
2  = 1 – [𝜎

𝑦|(𝑡)
2 /𝜎

𝑦(𝑡)
2 ] again assuming standardization using unit variance 

so that 𝜏00(𝑡)
2  + 𝜎𝑦(𝑡)

2  = 1 and 𝜎𝑚(𝑡)
2  = 1 (see also Equation 9).    

  A covariate in the outcome model for the control group, 𝑥𝑖
(𝑐) ~ N(0, 𝜎𝑥(𝑐)

2 ) requires similar adjustments   

       ( )

( ) ( ) ( ) ( ) ( ) ( ) 2

1 2 |
~ (0, )c

c c c c c c

i i i i i y
y m x N     = + + +      (15) 

and an error variance formulation of (Cox & Kelcey, 2022; Cox et al., 2022; Dong et al., 2021) 
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 The subsequent expression for moderator coefficient variance in the control group is (Cox & Kelcey, 

2022; Cox et al., 2022; Dong et al., 2021) 
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and the variance explained in the outcome of the control group is 𝑅𝑦(𝑐)
2  = 1 – [𝜎𝑦|(𝑐)

2 /𝜎𝑦(𝑐)
2 ] with standardized 

unit variance such that 𝜎𝑦(𝑐)
2  = 1. The variance of the moderation effect when the model includes covariates 

is then  

     
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) 2 2 2 2 2 2

1 11| | |2

( ) ( ) 2 ( ) 2

2 ( ) 1 ( )

(1 ) (1 )

( 1) ( 1)

t t t t c c

t c

t

y ym y y

t t cME
t cm m

n R R

n C n n C

   


 

+ − −
= +

− − − −
      (18) 

 As with the previous model, we can standardize the variance terms, employ a t-statistic to conduct a 

hypothesis test for the ME, and determine power using Equation 11. An approximation of the df can be 

found using 𝑛1
(𝑡)−C(t)−1  degrees of freedom where C(t) is the number of predictor variables in the treatment 

arm outcome model. Extensions of these formulas to accommodate binary moderators and unbalanced 

sample sizes in the treatment and control condition parallel those based on the analytic model without 

covariates. 
 

Simulation Study II 

  We repeat the first simulation study but with a covariate (xij) added to the analytic model explaining 

variance in the outcome (y). Specifically, we set 𝑅𝑦(𝑡)
2  = 𝑅𝑦(𝑐)

2  = 0.4 and 0.7 reducing 𝜎𝑦(𝑡)
2  and 𝜎𝑦(𝑐)

2   and terms 

in the variance of the moderation effect formulation. We again focus on power formula accuracy while 

varying several influential factors. Simulation conditions are retained from the first study but we only 

consider a moderation effect of ME = 0.1. 

 We found predicted power rates from the formulas that accommodated covariates closely aligned to 

empirical rejection rates across a multitude of conditions including continuous and binary moderators and 

in unbalanced sample sizes across study arms. Type I error rates when ME = 0were also closely 

approximated by the formulas, though typical discrepancies arose when cluster-level sample sizes were 

limited (e.g., 𝑛2
(𝑡) ≤ 25). As with our first simulation, we found power and error variance formulas to be 

accurate. The problem again stemmed from difficulties with empirical rejection rates when 𝑛2
(𝑡) values are 

small. Table 2 presents selected results demonstrating power formula accuracy including those with 𝑅
𝑦(𝑡)
2  = 

𝑅𝑦(𝑐)
2  = 0 for comparative purposes (see Supplemental Materials for complete results). 

 

Table 2. Selected Comparisons of Formula-Based Statistical Power and Type I Error Rate and Monte Carlo Simulation 

Results for a Continuous Moderator with Covariates in a Design with Two/One Partially Nested Data. 

Scenario 1 2 3 4 5 6 7 8 9 10 11 12 

𝑅
𝑦(𝑡)
2  = 𝑅

𝑦(𝑐)
2  0 0 0 0 0.4 0.4 0.4 0.4 0.7 0.7 0.7 0.7 

ω 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8 0.2 0.8 

n2 25 25 100 100 25 25 100 100 25 25 100 100 

n1 100 100 25 25 100 100 25 25 100 100 25 25 

Simulation rejection rate 0.50 0.21 0.83 0.54 0.57 0.21 0.93 0.58 0.61 0.22 0.98 0.64 

Formula power rate 0.50 0.20 0.84 0.55 0.56 0.21 0.93 0.59 0.60 0.22 0.98 0.64 

 Absolute Difference 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.00 

Empirical Type I error rate 0.032 0.032 0.044 0.044 0.036 0.034 0.041 0.043 0.034 0.031 0.045 0.043 

Formula Type I error rate 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 

Absolute Difference 0.018 0.018 0.006 0.006 0.014 0.016 0.009 0.007 0.016 0.019 0.005 0.007 

Note: Results were based on 10,000 replications with balanced sample sizes in the treatment and control 

condition, 𝜌 = 0.2, 𝜔 representing moderation effect heterogeneity, and ME=0.1 for power and ME=0.0 

for Type I error.   
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Implications for Design 

 Prior literature has delineated the role of parameters for a broad range of designs and effects (e.g., main, 

mediation, moderation) and used those roles to develop a number of strategies that guide efficient design 

(Raudenbush et al., 2007). To outline the roles of the parameters governing design and develop design 

principles and strategies in the current moderation context, we examined how the error variance of the 

moderation effect shrinks or grows with increments in a parameter value while holding other parameters 

constant. Using derivatives of the error variance, we examined two broad categories of parameters: (a) 

potentially mutable parameters such as sample sizes (𝑛2
(𝑡), 𝑛1

(𝑡), n(c)) and outcome variance explained through 

the introduction of covariates (𝑅𝑦(𝑡)
2 , 𝑅𝑦(𝑐)

2 ) and (b) typically immutable parameters such as the variance 

decomposition of the outcome and moderator (𝜏11(𝑡), 𝜎𝑦(𝑡)
2 , 𝜎𝑦(𝑐)

2 , 𝜎𝑚(𝑡)
2 , 𝜎𝑚(𝑐)

2 ).  

  The first derivatives of the error variance in terms of each sample size were  
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These derivatives were uniformly negative replicating the well-established pattern of increases in sample 

size at any level decreasing error variance (and increasing power). The reduction of error variance by the 

level- and condition-specific sample size (𝑛2
(𝑡), 𝑛1

(𝑡)) was fairly dependent on other parameters. This result 

parallels other examinations of power to detect moderation effects with random slopes in fully nested 

designs (Dong et al., 2021). These results also highlight different sampling variances for ME estimates 

when comparing models with fixed versus random moderator slopes in partially nested designs (e.g., Cox 

& Kelcey, 2022).  

  Analysis of the parameters describing the reduction in outcome variance associated with conditioning 

on covariates (𝑅𝑦(𝑡)
2 , 𝑅𝑦(𝑐)

2 ) also consistently reduced error variance. Put differently, covariates that were 

correlated with the outcome steadily reduced the error variance of the moderated effect as explained 

variance in the outcome increased thus increasing power. Specifically, each derivative was uniformly 

negative such that 
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Similar to the disparate roles of the sample sizes, the relative contribution of these parameters to power 

rates depended heavily on the values of other parameters including variance of the moderator and the 

variance of the outcome (see Supplemental Materials for complete results). This again paralleled results for 

power to detect moderation effects with random slopes in fully nested designs (Dong et al., 2021).  

 Analysis of the variance components (𝜏11(𝑡), 𝜎𝑦(𝑡)
2 , 𝜎𝑦(𝑐)

2 , 𝜎𝑚(𝑡)
2 , 𝜎𝑚(𝑐)

2 ) demonstrated the diverse roles of these 

parameters in regards to power to detect the moderation effect. For moderation effect heterogeneity and the 

variance of the outcome in both the treatment and control group, the analysis indicated that the first 

derivatives were uniformly positive 
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As a result, increases in each of these parameters was associated with increases in the error variance (and 

decreasing power). In contrast, results suggested that increases in the moderator variance (holding other 

parameters constant) in either the treatment or the control group was associated with decreases in the error 

variance such that 
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Essentially, more variance in the moderator increases the likelihood of detecting a moderated effect. 

  Collectively, our analyses suggest the following intuitive roles for design parameters: 

• Increases in sample size (𝑛2
(𝑡), 𝑛1

(𝑡), n(c)) increase the statistical power to detect the moderation effects 

but the magnitude of these increases is dependent on other factors. 

• Increases in moderation effect heterogeneity (𝜏11(𝑡)) and outcome variance components (𝜎
𝑦(𝑡)
2  and 

𝜎
𝑦(𝑐)
2 ) decrease the statistical power to detect moderation effects. 

• Increases in moderator variance (𝜎𝑚(𝑡)
2  and 𝜎𝑚(𝑐)

2 ) increase the statistical power to detect moderation 

effects. 

Based on these roles and the totality of our results, we suggest the following strategies for the mutable 

parameters a) incorporating covariates that explain variance in the outcome, b) prioritizing cluster sample 

size (𝑛2
(𝑡)), and c) planning for an even sampling of treatment and control conditions when statistical power 

is paramount (see Supplemental Materials for an Illustrative Example).   
 

Three-Level Partially Nested Data 

 We now extend our power formulas for moderation effects from individual-level moderators with a 

random slope to studies with three-level partially nested data structures. In three/one partially nested designs 

the analytic model includes an additional level of nesting in the intervention arm compared to previously 

described models. The model with a continuous outcome (𝑦𝑖𝑗𝑘
(𝑡)), a continuous individual-level moderator,  

𝑚𝑖𝑗𝑘
(𝑡)

 ~ N(0, 𝜎𝑚(𝑡)
2 ) with random slopes (at levels two and three), and individual-level covariate, 𝑥𝑖𝑗𝑘

(𝑡)
 ~ N(0, 𝜎𝑥(𝑡)

2 ) 

is:    
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Model notation and interpretation parallel those for the two/one partially nested design with a covariate 

with the notable addition of the k subscript to identify the third level of nesting.  

  Contrasting the coefficients capturing the relationship between the moderator and outcome again 

provides an estimate of the moderation effect (ME) such that 
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t cME  = − .          (30) 

The error variance formula is also similar but the variance term for the moderator coefficient in the 

intervention arm now includes sample size and variance terms for three-levels (e.g., 𝑛1
(𝑡), 𝑛2

(𝑡), 𝑛3
(𝑡), 𝜙110(𝑡)

2 ) 

such that (Cox & Kelcey, 2022; Cox et al., 2022; Dong et al., 2021)  
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As with the models for two/one partially nested data, we can standardize the variance terms such that  

𝜙
000(𝑡)
2  + 𝜏

00(𝑡)
2  + 𝜎

𝑦(𝑡)
2  = 1 and 𝜎

𝑚(𝑡)
2  = 1. The single-level analytic model for the control arm and variance 

formula for 𝛽1
(𝑐) remains the same.  

 

Three/Two Partially Nested Designs 

  We can further extend our power formulas to accommodate three-level partially nested designs with 

two-level data structures in the control arm. The intervention arm analytic models (see Equations 29) and 

moderation effect error variance terms (see Equation 31) remain the same but a two-level analytic model 

for the control arm is now required. We again limit consideration to models with a continuous outcome 

(𝑦𝑖𝑗
(𝑐)), individual-level continuous moderator (𝑚𝑖𝑗

(𝑐)) with variance 𝜎
𝑚𝑖𝑗

(𝑐)
2 , and whose slope may vary such that   
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Model structure and interpretation parallel those for the analytic model for the two-level treatment arm of 

a two/one partially nested design although we utilize notation to parallel the corresponding three-level 

intervention arm (e.g., 𝑣00𝑘
(𝑐)  and 𝜙110(𝑐)

2  for the upper-level). The contrast of coefficients to estimate the 

moderation effect is now 

            
( ) ( )

100 100

t cME  = −                 (34) 

with the error variance term from the intervention arm (𝜎
𝜋100
(𝑡)
2 ) found in Equation 31. The error variance term 

in the control arm is formulated similar to the error variance term in the analytic model for the two-level 

treatment arm of a two/one partially nested design such that (Cox & Kelcey, 2022; Cox et al., 2022; Dong 

et al., 2021)  
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



+ −
=

− −
.         (35) 

Variance components remain the same in the treatment arm as described for three/one partial nesting. As 

for the control arm, we can standardize the variance terms such that, 𝜙
000(𝑐)
2  + 𝜎

𝑦(𝑐)
2  = 1 and 𝜎

𝑚(𝑐)
2  = 1. We 

again employ a t-statistic to conduct a hypothesis test for the ME, and determine power using Equation 11. 

Under the assumption that the null hypothesis is false, the t-statistic follows a noncentral t-distribution with 

the non-centrality parameter presented in Equation 10. An approximation of the df can be found using 

𝑛3
(𝑡)−C(t)–1 degrees of freedom where C(t) is the number of predictor variables in the treatment arm outcome 

model (Raudenbush & Bryk; 2002). Extensions of these formulas to accommodate binary moderators and 

unbalanced sampling across study arms parallel those based on previous analytic models. 
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Simulation Study III 

 We conducted a third simulation of limited scope to establish the accuracy of the power formulas for 

detecting moderation effects in three-level partially nested designs. Specifically, we consider power to 

detect moderation effects in three/one partially nested designs when the moderator-outcome relationship 

may vary across groups (i.e., random slope) and in three/two partially nested designs when the moderator-

outcome relationship may vary across groups (i.e., random slope). We utilized conditions similar to those 

in the second simulation study. Specifically, we generated data sets with sample sizes of 𝑛3
(𝑡), 𝑛2

(𝑡), and 𝑛1
(𝑡) 

of 10 and 25 with n(c) = 𝑛3
(𝑡)
𝑛2
(𝑡)
𝑛1
(𝑡) for three/one partial nesting and 𝑛1

(𝑐) = 𝑛2
(𝑡)
𝑛1
(𝑡) and 𝑛3

(𝑐) = 𝑛3
(𝑡)for three/two 

partial nesting. We varied 𝜏11
2 , 𝜏

00(𝑡)
2 , 𝜙

110(𝑡)
2 , and 𝜙

000(𝑡)
2 such that moderation effect heterogeneity at each level 

(𝜔𝐿2
(𝑡) = 𝜏11

2 /𝜏00(𝑡)
2  and 𝜔𝐿3

(𝑡) = 𝜙110(𝑡)
2 /𝜙000(𝑡)

2 ) was 0.2, 0.4, and 0.8 with a 0.0 condition to reflect moderation 

effects when the moderator had a non-random slope. For three/two partially nested data we set 𝜙110(𝑐)
2  and 

𝜙000(𝑐)
2  such that moderation effect heterogeneity (𝜔𝐿2

(𝑐) = 𝜙110(𝑐)
2 /𝜙000(𝑐)

2 ) was 0.0, 0.2, 0.4, and 0.8. As for other 

variance components, 𝜎𝑚(𝑡)
2  = 1, 𝜎𝑦(𝑡)

2  = 0.8, 𝜏00(𝑡)
2  = 0.1, 𝜙000(𝑡)

2  = 0.1, 𝜎𝑦(𝑐)
2  = 1, and 𝜎𝑚(𝑐)

2  = 1 for three/one partial 

nesting and, 𝜎𝑦(𝑐)
2  = 0.9 and 𝜙000(𝑐)

2  = 0.1 when applicable with three/two partial nesting. 

  For designs with three/one partial nesting, we found predicted power rates for detecting moderation 

effects from the formulas that accommodated covariates closely aligned to empirical rejection rates across 

a multitude of conditions (e.g., different sample sizes and degrees of moderation effect heterogeneity). 

Table 3 presents selected results demonstrating power formula accuracy for detecting moderation effects in 

three/one partially nested designs (see Supplemental Materials for complete results). Results paralleled 

those when data had a two/one partially nested structure with increases to sample size increasing power 

rates and increases in moderation effect heterogeneity decreasing power rates. Power formulas also 

accurately reflected Type I error rate when ME = 0. As with previous simulation studies, we noted some 

discrepancies between formula predicted Type I error rate and empirical rejection rate when upper-level 

sample sizes were limited (e.g., 𝑛3
(𝑡) = 10) but found these quickly dissipated as upper-level sample sizes 

increased. Accuracy of the moderation effect error variance formulas was also confirmed using a 

comparison of empirical and formula-based values. These results suggest discrepancies between formula 

predicted Type I error rate and empirical rejection rate stems from difficulties with empirical rejection rates 

when 𝑛3
(𝑡)  values are small not inaccuracies with the variance and power formulas.         

  For designs with three/two partial nesting, we found predicted power rates for detecting moderation 

effects also closely aligned to empirical rejection rates across a multitude of conditions. Table 4 presents 

selected results demonstrating power formula accuracy for three/two partially nested designs (see 

Supplemental Materials for complete results). We again found increases to sample size increased power 

rates and increases in moderation effect heterogeneity decreased power rates. Upper-level sample sizes 

(e.g., 𝑛3
(𝑡)) were the primary driver of these increases. Power formulas also accurately reflected Type I error 

rate when 0.0ME = . Selected results in Table 4 do include some discrepancies between formula predicted 

Type I error rate and empirical rejection rate when upper-level sample sizes were limited (e.g., 𝑛3
(𝑡) = 10) 

but these again quickly dissipated as upper-level sample sizes increased. 
 

Discussion 

 A more wholistic understanding of treatment effectiveness is possible through the inclusion of 

moderator variables to capture differences in treatment effects across groups and contexts (i.e., treatment 

effect heterogeneity). Unfortunately, power formulas were unavailable for detecting moderation effects 

when the relationship between the moderator and outcome varies randomly across clusters (i.e., random 

slopes) in studies with partially nested data. We derived these formulas and assessed their accuracy in three 

simulation studies that demonstrated their validity across a range of conditions including binary moderators, 

unbalanced sampling across study arms, disparate sample sizes, and covariates. The availability of these 

formulas improves study planning with partially nested designs that include important considerations 

regarding for treatment effect heterogeneity. We recommend researchers consider a range of values for 

moderation effect heterogeneity (𝜏
11(𝑡)
2 ) to capture a range of adequate sample sizes. This approach will 

provide researchers who are uncertain about the slope of the moderator (i.e., fixed or random) a general 

idea of adequate sample sizes and the consequences of moderation effect heterogeneity. Our subsequent 

moderator effect error variance derivations provide researchers with an initial understanding of the factors 

that influence power to detect these effects.  
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Table 3. Comparisons of Formula-Based Statistical Power and Type I Error Rate and Monte Carlo Simulation Results for a Continuous Moderator with 

Covariates in a Design with Three/One Partially Nested Data 

Scenario 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

ME 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0 0 0 0 

𝜔 0.2 0.2 0.2 0.2 0.4 0.4 0.4 0.4 0.8 0.8 0.8 0.8 0 0 0 0 

𝑛3 25 10 10 10 25 10 10 10 25 10 10 10 25 10 10 10 

𝑛2  25 25 10 10 25 25 10 10 25 25 10 10 25 25 10 10 

𝑛1  25 25 25 10 25 25 25 10 25 25 25 10 25 25 25 10 

Simulation rejection rate 0.89 0.45 0.39 0.32 0.64 0.26 0.24 0.21 0.36 0.15 0.15 0.13 0.04 0.02 0.02 0.02 

Formula power rate 0.88 0.44 0.38 0.32 0.63 0.26 0.24 0.22 0.36 0.15 0.15 0.14 0.05 0.05 0.05 0.05 

Absolute Difference 0.01 0.01 0.01 0.00 0.01 0.00 0.00 -0.01 0.00 0.00 0.00 -0.01 -0.01 -0.03 -0.03 -0.03 

Note: Results were based on 10,000 replications with balanced sample sizes across study arms, 𝜔 representing moderation effect heterogeneity, 

( ) ( )

2 2 0.4t cy y
R R= =  and ME=0.1 for power and ME=0 for Type I error.       

 

Table 4. Comparisons of Formula-Based Statistical Power and Type I Error Rate and Monte Carlo Simulation Results for a Continuous Moderator with 

Covariates in a Design with Three/Two Partially Nested Data 

Scenario 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

ME 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0 0 0 0 

𝜔 0.2 0.2 0.2 0.2 0.4 0.4 0.4 0.4 0.8 0.8 0.8 0.8 0 0 0 0 

𝑛3 25 10 10 10 25 10 10 10 25 10 10 10 25 10 10 10 

𝑛2  25 25 10 10 25 25 10 10 25 25 10 10 25 25 10 10 

𝑛1  25 25 25 10 25 25 25 10 25 25 25 10 25 25 25 10 

Simulation rejection rate 0.48 0.18 0.16 0.15 0.27 0.11 0.10 0.10 0.15 0.06 0.07 0.06 0.03 0.01 0.01 0.01 

Formula power rate 0.46 0.18 0.18 0.16 0.27 0.12 0.11 0.11 0.16 0.08 0.08 0.08 0.05 0.05 0.05 0.05 

Absolute Difference 0.02 0.00 -0.02 -0.01 0.00 -0.01 -0.01 -0.01 -0.01 -0.02 -0.01 -0.02 -0.02 -0.03 -0.04 -0.04 

Note: Results were based on 10,000 replications with balanced sample sizes across study arms, 𝜔 representing moderation effect heterogeneity, 

( ) ( )

2 2 0.4t cy y
R R= =  and ME=0.1 for power and ME=0 for Type I error.       
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 To conclude, we summarize six study design considerations for detecting moderation effects in partially 

nested designs: 

• The presence and increasing magnitude of moderation effect heterogeneity (𝜏11(𝑡)
2 ) reduces the 

power to detect the moderation effect (e.g., compare across three scenarios in Table 1 and between 

odd and even scenarios in Table 2). 

• Increasing intraclass correlation coefficient of the outcome (ρ) reduces the power to detect the 

moderation effect in two/one partially nested designs (e.g., compare scenarios 1-6 to 7-12 in Table 

1). 

• Cluster sample size (𝑛2
(.)) has a stronger influence on power to detect moderation effects than 

individual per cluster sample size (𝑛1
(𝑡)) and this difference increases as moderation effect 

heterogeneity increases (e.g., compare scenario 1 with 3 and 2 with 4 in Table 2). 

• Design considerations are applicable to continuous and binary moderators but studies with reduced 

moderator variance (e.g., binary moderators with a maximum variance of 0.25) require 

substantially larger sample sizes to detect moderation effects (e.g., see Table 5a in Supplemental 

Materials). 

• Only minor decreases in power are likely when the control group is half to twice the size of the 

treatment group given equal total sample sizes (see Table 9a in Supplemental Materials). 

• The use of prognostic covariates in the outcome model of treatment and control groups represents 

an effective strategy to increase the power to detect moderation effects but, like sample size, is 

dependent on the magnitude of moderation effect heterogeneity (e.g., compare scenarios 1-4, 5-8, 

and 9-12 in Table 2). 

  There are several important implications related to these design considerations. First, our newly derived 

formulas will improve the design of partially nested studies considering moderation effects as there are 

clear and substantial differences between the power to detect moderation effects with and without 

moderation effect heterogeneity. A study with partially nested data planned without regard to moderation 

effect heterogeneity will overestimate power if heterogeneity is present. Second, the influence of design 

parameters on power to detect moderation effects vary based on the magnitude of moderation effect 

heterogeneity. Study design recommendations for increasing power to detect moderation effects should 

consider the presence of moderation effect heterogeneity. Third, adequate power is still achievable with 

feasible sample sizes (e.g., 𝑛2
(𝑡) < 100 and 𝑛1

(𝑡) < 100) under a variety of conditions (i.e., various ω, ρ, and 

ME values) but larger sample sizes are needed for detecting moderation effects when moderation effect 

heterogeneity is present. We highly recommend the inclusion of covariates as a method to achieve adequate 

power with feasible sample sizes but note that the benefits of including covariates is dependent on 

moderation effect heterogeneity. Fourth, study planning should emphasize cluster sample size (𝑛2
(𝑡) or 𝑛3

(𝑡)). 

Previous literature detailing power to detect moderation effects in partially nested designs has noted 

increased power rates when increasing 𝑛1
(𝑡) (Cox & Kelcey, 2022). However, our results indicate this 

relationship is negated by moderation effect heterogeneity which aligns with the findings of Dong et al., 

(2021).  

 Our power formulas for moderated effects when the moderator-outcome relationship varies across 

clusters (i.e., random slopes) in partially nested designs accommodate continuous and binary moderators, 

analytic models with and without covariates, and balanced and unbalanced sample sizes across study arms. 

They are, however, restricted to moderation effects at the individual-level from a moderator located at the 

individual-level. Future research should examine upper-level moderation effects from aggregated 

individual-level moderators with a random slope or moderators located at the cluster-level with random 

slopes. While these investigations are not applicable for two/one or three/one partially nested designs they 

can be considered with three/two partial nested designs.  

  Our derivations of moderator effect error variance and subsequent probe of factors that influence power 

only serves as an initial investigation. We also encourage future research to more comprehensively map out 

the factors that influence these power rates and adequate sample sizes under various conditions. This should 

include examining the most efficient sample size allocation across various conditions (e.g., optimal sample 

allocation), multiple arm partially nested designs, and the influence of unequal cluster sizes. We would 

expect power rates for detecting moderation effects to decrease as severe imbalance in cluster sample sizes 

are observed (Guittet et al., 2006; Moerbeek, 2018) and for multiple arm partially nested designs to provide 
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increased efficiency and power rates compared to equivalent separate trials (Li et al, 2017; Odutayo et al., 

2020) but these relationships have not been examined. Additionally, research is needed to establish 

empirically based estimates for the design parameters necessary for planning partially nested designs that 

include moderation effects. Extensive work has been completed in this area for cluster randomized designs 

(e.g., Hedges & Hedberg, 2007) but has yet to be developed for partially nested designs. This work is 

important to better plan these types of studies and guide simulation parameters in future methodological 

research. Even considering these limitations, this work represents a significant contribution to study design 

literature. We have derived, established the accuracy of, and investigated power formulas for detecting 

individual-level moderation effects in partially nested designs. These advancements improve the planning 

of applicable studies and encourage more personalized treatment decisions by allowing researchers to 

elucidate populations or conditions in which a treatment is effective. 
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