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Statistical power is important in meta-analysis as in primary studies to detect the existing treatment effects 

in target populations. The mathematical computation of the approximated power (i.e., analytical power) in 

meta-analysis has been developed. Alternatively, Monte Carlo simulation can be used to estimate statistical 

power. The current study was conducted to identify the discrepancy between analytical power and simulated 

statistical power for the hypothesis test of two group means. Results indicated noticeable discrepancies 

between analytical and statistical power under certain conditions. To conclude, recommendations for the 

average sample size and number of studies were provided to practical researchers who seek to meet the 

desired statistical power in meta-analysis. We provided R code for applied researchers to obtain power 

estimates through simulation. 

 eta-analysis is a quantitative analysis method that synthesizes the results of multiple empirical 

studies on the same topic. Researchers combine the effect size estimates from a set of primary 

studies to obtain a common effect size estimate for a summary result (Hedges & Pigott, 2001). 

Meta-analysis has gained popularity in social sciences because it demonstrates the potential to overcome 

the shortcomings of a single primary study which may be limited in sample size, estimate precision, and 

generalizability (Ellis, 2010).  

  In inferential statistics, statistical power is defined as the probability of rejecting a false null hypothesis. 

A higher statistical power represents a higher probability of detecting statistical differences in hypothesis 

testing. Statistical power can be applied to diverse statistical tests, and researchers have expressed their 

concerns over power in meta-analysis. Cafri, Kromrey, and Brannick (2010) asserted that “power analysis 

is more important in meta-analysis because such studies quantitatively summarize a whole body of research 

and influence more on theory and practice.”  

 Power in meta-analysis is influenced by multiple factors: population effect size, Type I error rate, 

sample size, and number of studies (Borenstein et al., 2011; Cohen, 1988; Ellis, 2010; Liu, 2013). Low 

statistical power in meta-analysis is a concern that has been widely discussed by considering the influencing 

factors (e.g., Cook & Hatala, 2014; Jackson & Tuner, 2017; Quintana, 2023; Valentine et al., 2010). The 

number of studies does not always increase statistical power and between-study variances should be 

considered with varied population effect sizes across studies (Cohen & Becker, 2003). Low statistical power 

was presented in regression models and rank correlation tests in small studies (Stern et al., 2000). Field 

(2001) investigated different meta-analytical models for correlation coefficient studies and concluded that 

power could be low with a small number of studies, sample sizes and/or population effect sizes. The results 

can be biased if researchers run an analysis with insufficient statistical power (Ellis, 2010). One difficulty 

in estimating power is to identify population effect size (Hedges & Pigott, 2001) as researchers rarely know 

the “true” population effect size in practice.  

  Hedges and Pigott (2001) used the averaged variance across studies to approximate the combined 

variance estimate to simplify the power computation. However, researchers rarely identify primary studies 

with equal variances in a research scenario. The power estimation accuracy in the approximate procedure 

has never been thoroughly vetted. An alternative way to estimate statistical power in meta-analysis is 

through simulation, which does not need to average variance across studies and is considered a more 

accurate method compared with the existing power approximation functions. However, practical 

researchers may be impeded by the required technical expertise in simulation compared to the use of power 

formulas. Therefore, the current study was conducted to show the discrepancy between analytical power 

and simulated statistical power under various conditions. Afterward, recommendations of average sample 

size and number of studies were provided to practical researchers who seek to meet the desired statistical 

power in meta-analysis. Finally, we provided R code to applied researchers to obtain power estimates 

through simulation. In the next section, we reviewed the key concepts of estimating power in meta-analysis.  
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Prospective and Retrospective Power 

  There are two main types of power analyses – prospective and retrospective power analysis (O’Keefe, 

2007). A prospective power analysis is a part of research planning and is completed prior to implementing 

a study. It is normally used to estimate the required sample size by considering the other parameters in 

hypothesis testing. For instance, when researchers intend to conduct a replicated study, they need to search 

past research to determine the potential population effect sizes. Together with the pre-specified type I error 

rate and power, the necessary sample needed for error control is determined in the retrospective power 

analysis. A retrospective power analysis is conducted after a study. For example, low statistical power could 

be the reason for a research scenario in which we fail to reject a null hypothesis yet claim the existence of 

a treatment effect. Moreover, scholars are cautious about the retrospective power analysis and suggest that 

the power estimate is not accurate based on the effect size obtained from the sample due to the possible 

large sampling error. The retrospective power analysis should utilize the population effect sizes from 

previous studies of a similar nature (Thomas, 1997).  
 

Fixed and Random Effects Models 

  A fixed-effects model assumes an equal population effect size across individual studies. By contrast, a 

random-effects model treats the population effect sizes from individual studies as a random sample of all 

possible effect sizes with an underlying distribution (e.g., normal distribution). In the fixed-effects model, 

the only reason that the effect size varies is the random error (within-study variances). In a random-effects 

model, the effect size can be influenced by the random error (within-study variances) and the effects of 

different studies (between-study variances).A fixed-effects model is designed to make inferences about a 

population from the sampled studies, referred to as a conditional inference, while a random-effects model 

is designed to draw inferences about a population that is larger than the sampled studies, referred to as an 

unconditional inference (Hedges & Vevea, 1998).  
 

Effect Size  

  Researchers often use a p-value to determine whether to reject the null hypothesis, referred to as 

statistical significance. Effect size is used to measure the magnitude of an effect, which is referred to as 

practical significance. As suggested by Cohen (1990, page 1310), “the primary product of a research inquiry 

is one or more measures of effect size, not p values. “Effect size is important not only in primary studies 

but also in meta-analysis studies as scholars combine effect sizes from primary studies to obtain an overall 

estimate of the treatment effect. There are two major families of effect size: d (e.g., odds ratio, Cohen’s d; 

differences between groups) and r (e.g., Pearson correlation, Cohen’s f; measure of association) (Ellis, 

2010). The current study focuses on two independent group tests that are applicable to research scenarios 

in experimental designs. In a meta-analysis, the test statistics is computed by the mean and the variance of 

the effect sizes from primary studies. One then can make a statistical conclusion about whether to reject or 

fail to reject the null hypothesis based on the test statistic. 

  Cohen’s d is the effect size index of each study used to investigate the mean differences between two 

groups. The formula to calculate Cohen’s d is:  

            𝑑 =
�̅�1−�̅�2

𝑠𝑝
              (1) 

In this formula �̅�1 and �̅�2 are the means for two groups, and 𝑠𝑝 is the pooled standard deviation of two 

groups. 

  Note that the assumption of pooled standard deviation is not always met in practice, especially when 

the sample sizes of two groups are not equal. In addition, d tends to overestimate the population variance. 

The bias can be removed by Hedge’s g, which weighs the standard deviation by its sample size (Hedges, 

1981). It can then be converted from d by multiplying the following correction index:  

            𝐽 = 1 −
3

4𝑑𝑓−1
             (2) 

where the df as the degree of freedom is equal to the overall sample size – 2. 

            𝑔 = 𝐽 ∗  𝑑.            (3) 

Analytical Statistical Power 

  One of the major meta-analysis methods was developed by Hedges and his colleagues (Hedges & 

Vevea, 1998). The analytical power formulas were developed by Hedges and Pigott (2001). The fixed and 
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random-effects models were discussed separately using these resources (Hedges & Pigott, 2001; Hedges 

&Vevea, 1998; Liu, 2013).  
 

Fixed-effects Meta-analysis. The common effect size estimate for the ith individual study is equal to the 

standardized mean difference between the treatment condition and control condition (Cohen, 1988) 

            𝑑𝑖 =
�̅�1−�̅�2

𝑠𝑝
.             (4) 

In this formula �̅�1 and �̅�2 are the means for two groups, and 𝑠𝑝 is the pooled standard deviation in a two 

independent sample t- test. The effect size estimate d𝑖 corresponds to a population effect size of 𝜃𝑖. 

  The t-statistics for the ith study ti is computed as 

            𝑡𝑖 =
�̅�1−�̅�2

𝑠𝑝√
1

�̅�1𝑖
+

1

�̅�2𝑖

             (5) 

where �̅�1𝑖 and �̅�2𝑖 are the treatment group size and the control group size of the ith study in a meta-analysis. 

The effect size for the ith study d𝑖 can be expressed in terms of ti,  

            𝑑𝑖 = 𝑡𝑖√
1

𝑛1𝑖
+

1

𝑛2𝑖
.             (6) 

Effect size variances within each individual study (𝑣𝑖) are approximately estimated by the pre-existing 

formulas in analytical and simulated power (Goulet-Pelletier et al., 2018; Hedges & Vevea, 1998; Hedges 

& Pigott, 2001). Previous research has addressed the major bias caused by using approximated variance 

formulas, especially in small samples (Goulet-Pelletier et al., 2018). The actual formula of effect size 

variance should be utilized in both procedures to provide more accurate estimates (Hedges, 1981). 

         𝑣𝑖 =
𝜈

𝑣−2
∗

2

�̃�
(1 + 𝑃𝐸𝑆2 ∗

�̃�

2
) −

𝑃𝐸𝑆2

𝐽2           (7) 

where 𝑣 is the degree of freedom equal to the overall sample size – 2, �̃� is the harmonic mean of the sample 

sizes in two groups, 𝑃𝐸𝑆 is the standardized population effect size and 𝐽 is the correction formula (Equation 

(2)). Equation (7) is used in the current study for both analytical and simulated statistical power to improve 

the estimation accuracy.  

  The corrected variance of Hedge’s g is  

            𝑣𝑔𝑖 = 𝐽2 ∗ 𝑣𝑖 .             (8) 

 The null hypothesis for the population effect size for each individual study is  

 𝜃1 = 𝜃2 … = 𝜃𝑖 = ⋯ = 𝜃 = 0. The fixed-effects model then becomes  

            𝑑𝑖 = 𝜃 + 𝑒𝑖             (9) 

Where ei has a mean of zero and a variance of vi. The common effect size can be estimated by pooling the 

estimates from individual studies, where the effect size estimates from those studies are weighted by the 

sampling variances of individual studies. An effect size estimate from a study with a larger sample size will 

receive more weight because the estimate is more precise and with a smaller sampling variance. The weight 

wi is the reciprocal of the variance term vi (wi = 1/vi). The estimate of the common effect size �̂� is the 

weighted average: 

          𝜃 = �̅� = ∑ 𝑤𝑖𝑑𝑖
𝐼
𝑖=1 / ∑ 𝑤𝑖

𝐼
𝑖=1                (10) 

The variance of the weighted average 𝑣 is simply the reciprocal of the sum of weights.  

            𝑣 = 1/ ∑ 𝑤𝑖
𝐼
𝑖=1                  (11) 

  An approximate Z-test can be used to test the null hypothesis in which the common effect size 𝜃 is zero, 

using the weighted average estimate.  

            𝑍 =
�̅�−0

√𝑣
                 (12) 

  The p-value in a two-sided test is the probability of obtaining a z statistic at least deviant from the center 

of the standard normal distribution as the computed one. A small p-value less than or equal to five percent 

will result in the rejection of the null hypothesis, which is followed by a pronouncement of a non-zero 

common effect size. A confidence interval can be computed to accompany the significance test for the 

common effect size. 

  The 95% confidence interval for the common effect size is estimated as:  

            �̅� ± 1.96 ∗ √𝑣.                 (13) 
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  When the alternative hypothesis is true, the common effect size is equal to a non-zero constant 𝜃𝑎. The 

Z statistics follows a non-central normal distribution Z’ with a non-centrality parameter 𝜆:  

            𝜆 =
𝜃𝑎

√𝑣𝜃𝑎

.                 (14) 

  The current procedure assumes a common variance in all studies (�̅�𝑖) to simplify the 𝑣 for power 

computation because it can greatly simplify the variance formula. Variances of all the studies are considered 

to be approximately equal, that is, 𝑣1 = 𝑣2 … = 𝑣𝑖 = ⋯ = 𝑣𝐼. It is noted that this an ideal assumption 

because the variances of individual studies are not identical. This approximation results in the 

underestimation of statistical power (Hedges & Pigott, 2001).  

  The variance 𝑣 can be simplified to 

            𝑣𝜃𝑎
=

�̅�𝑖

𝐼
 ,                   (15) 

where �̅�𝑖 is the average of the overall variance for all studies. �̅�𝑖can be computed by using the average 

sample sizes for 𝑛𝑒𝑖 and 𝑛𝑐𝑖 and the estimated 𝑑𝑖 = 𝜃𝑎. The variance thus computed is an approximation 

of the actual variance (Hedges & Pigott, 2001), 

          𝜆 =
𝜃𝑎

√𝑣𝜃𝑎

≈
𝜃𝑎

√
�̅�𝑖
𝐼

=
√𝐼𝜃𝑎

√�̅�𝑖
.                 (16) 

  In order to simplify the calculation, the treatment group and control group sample sizes are assumed to 

be equal (�̅�1𝑖 = �̅�2𝑖 = 𝑛): 

          �̅�𝑖 ≈
�̅�1𝑖+�̅�2𝑖

�̅�1𝑖�̅�2𝑖
+

𝜃𝑎
2

2(�̅�1𝑖+�̅�2𝑖)
.               (17) 

The non-centrality parameter in the meta-analysis can be changed to 

            λ =
√𝐼𝜃𝑎

√2

𝑛
+

𝜃𝑎
2

4𝑛

 ,                  (18) 

where 𝜃𝑎 is the standardized mean difference common to all individual studies.The term 𝜃𝑎
2/4𝑛 is very 

small, especially when the population effect size (𝜃𝑎) is small and the sample size for each group (𝑛) is 

large. Dropping the negligible term in λ yields 

            λ ≈ √𝐼𝜃𝑎√
𝑛

2
 .                 (19) 

The power function for the two-sided test is, therefore,  

          1 − β ≈ 𝑃[|𝑍′(𝜆)| ≥ 𝑍0] 
               = 1 − Φ(𝑍0 − 𝜆) + Φ(−𝑍0 − 𝜆).            (20) 
 

  Random-Effects Meta-analysis. In the random-effects model, the effect size estimates from 

individual studies have an underlying distribution. The effect size estimate di follows a normal 

distribution with the mean of 𝜃𝑖 and the variance of 𝑣𝑖, that is, 

            𝑑𝑖 = 𝜃𝑖 + 𝑒𝑖.                (21) 

The parameter 𝜃𝑖 has an underlying distribution with a mean 𝜃 and a variance of 𝜏. It is assumed that the 

population effect sizes from individual studies follow a normal distribution. Unlike the fixed-effects model, 

the random-effects model suggests that the effect sizes bounce around the grand average effect size 𝜃. Thus, 

di becomes 

            𝑑𝑖 = 𝜃 + 𝛼𝑖 + 𝑒𝑖.                (22) 

The random effect 𝛼𝑖 is due to different individual studies with its variance 𝜏.The random effect 𝑒𝑖 is the 

sampling error of d𝑖 with its variance of 𝑣𝑖. 

The random-effects model can be reformulated so that the same procedure can be applied to the fixed-

effects model. The random-effects 𝛼𝑖 and 𝑒𝑖can be combined into a single error term 𝑒𝑖
∗. Thus 𝑑𝑖 becomes 

            𝑑𝑖 = 𝜃 + 𝑒𝑖
∗ ,                 (23) 

where, 

            𝑒𝑖
∗ = 𝛼𝑖 + 𝑒𝑖,                 (24) 

            𝑣𝑖
∗ = 𝑉𝑎𝑟(𝑒𝑖

∗) = 𝑣𝑖 +  𝜏.             (25) 

Now the random-effects model can be treated as a special case of the fixed-effects model with a more 

complex variance 𝑣𝑖
∗. An approach that is similar to that used for the fixed-effects can be followed. The 

weight 𝑤𝑖
∗in the random-effects model is the reciprocal of the variance term 𝑣𝑖

∗ (𝑤𝑖
∗ = 1/𝑣𝑖

∗).  
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The weighted mean of the random-effects model can be computed: 

            �̅� =
∑ 𝑤𝑖

∗𝑑𝑖
𝐼
𝑖=1

∑ 𝑤𝑖
∗𝐼

𝑖=1

.                (26) 

The variance of �̅� is:  

            𝑣∗ =
1

∑ 𝑤𝑖
∗𝐼

𝑖=1

                 (27) 

where 𝑣𝑖 is estimated as before. Hedge’s g correction is used for the random-effects model and is similar 

to the fixed-effects model. The varince 𝜏 can be estimated, according to Hedges and Vevea (1998):  

            𝜏 =
𝑄−(𝑘−1)

𝑐
                 (28) 

where,           𝑄 = ∑ 𝑤𝑖
𝐼
𝑖=1 (𝑑𝑖 − d̅)2,              (29) 

            𝑐 = ∑ 𝑤𝑖
𝐼
𝑖=1 −

∑ 𝑤𝑖
2𝐼

𝑖=1

∑ 𝑤𝑖
𝐼
𝑖=1

0.              (30) 

  An approximate Z test can be used to test the null hypothesis(𝜃 = 0), based on the weighted average 

estimate: 

            𝑍 =
�̅�−0

√𝑣∗  .                  (31) 

A small p-value less than or equal to five percent will result in the rejection of the null hypothesis, which 

is followed by a declaration of a non-zero common effect size. A confidence interval can be computed to 

accompany the significance test for the common effect size. The 95% confidence interval for summary 

effect is estimated as  

           �̅� ± 1.96 ∗ √𝑣∗ .                 (32) 

Under the alternative hypothesis, the common (grand average) effect size is equal to a non-zero 

constant 𝜃𝑎. The Z test follows a non-central normal distribution Z’ with a non-centrality parameter 𝜆, 

            𝜆 =
𝜃𝑎

√𝑣∗
𝜃𝑎

 .                  (33) 

Conjectures are needed to approximate 𝑣∗
𝜃𝑎

.One assumes that the sample sizes are equal among 

individual studies, following Hedges and Pigott (2001). So one obtains 𝑣1
∗ = 𝑣2

∗ … = 𝑣𝑖
∗ … = 𝑣𝐼

∗. The 

variance 𝑣∗ can be computed as: 

            𝑣∗
𝜃𝑎

=
�̅�𝑖

∗

𝐼
 .                  (34) 

Then the non-centrality parameter can be rewritten as 

            𝜆 =
√𝐼𝜃𝑎

√�̅�𝑖
∗
                  (35) 

where the overall variance for all studies is equal to 

         �̅�𝑖
∗ = �̅�𝑖 + 𝜏 ≈

�̅�1𝑖+�̅�2𝑖

�̅�1𝑖�̅�2𝑖
+

𝜃𝑎
2

2(�̅�1𝑖+�̅�2𝑖)
+ 𝜏 .              (36) 

The 𝜆 in the random-effects model is usually smaller compared with the non-centrality parameter in 

fixed-effects model. The ratio of �̅�𝑖 (within-study variance) and 𝜏 (between-study variance) can be denoted 

by 𝑝 = 𝜏/�̅�𝑖0. Thus the non-centrality parameter can be expressed in this way, 

          𝜆 =
√𝐼𝜃𝑎

√�̅�𝑖+𝜏
=  

√𝐼𝜃𝑎

√�̅�𝑖(1+𝑝)
 .                 (37) 

After setting up the 𝑝 ratio, 𝜆can be calculated in the same way as in the fixed-effects model. Although the 

research findings from the random-effects model can be generalized within a broader context, the fixed-

effects meta-analysis tends to have higher power than the random-effects meta-analysis as the between-

study variance is under consideration. The power function for a two-sided test is the same as the fixed-

effects model: 

          1 − β ≈ 𝑃[|𝑍′(𝜆)| ≥ 𝑍0] 
               = 1 − Φ(𝑍0 − 𝜆) + Φ(−𝑍0 − 𝜆).            (38) 
 

Simulated Statistical Power 

  The Monte Carlo simulation studies involve generating data from computer programs to study the 

performance of the statistical estimates under different conditions (Hutchinson & Bandalos, 1997). The 

idea of simulating statistical power uses the same logic of hypothesis testing. If there is no real effect, 

researchers expect to retain the null hypothesis most of the time and control the Type I error. If there is a 
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real existing effect, researchers expect to have a high power to reject the null hypothesis. The simulation 

can be used to check the performance of Type I error and power by repeating the same statistical procedures 

many times under model assumptions. Following the typical analytical procedures of meta-analysis 

described above, the effect size can be simulated by assuming a fixed population effect size. The rejection 

rates can be computed by averaging the results obtained from the replications. In each replication, a p-value 

is retained to make a statistical decision (reject or retain the null hypothesis). Finally, all simulated p-values 

are stored in the output. To verify the Type I error, we used 5% as the alpha level to decide whether the 

population effect is nonzero. The same strategy applies to simulated statistical power or one minus the Type 

II error. The simulated statistical power equals the proportion of the rejected null hypotheses among all the 

simulated tests when the treatment effect is non-zero. Simulated statistical power has been used by 

researchers in meta-analysis and other research designs (Arnold et al., 2011; Field, 2001).  

  The power guidance of meta-analysis has been provided by researchers (Valentine et al., 2010) with 

analytical power functions. SAS macros or R functions have been developed to facilitate power computation 

(Cafri et al., 2009; Borenstein et al., 2011) in meta-analysis. However, the accuracy of such guidance 

remains unclear with the approximation of variance across studies as well as the unadjusted effect size and 

the effect size variances. Although power of other effect sizes, such as r, has been investigated using 

simulation in meta-analysis (Field, 2001). The study did not investigate the discrepancy between analytical 

and simulated power. Recently, researchers have noted a discrepancy between simulated and analytical 

power in meta-analysis in retrospective power analysis and have recommended to use simulated power as 

it is more accurate by considering the uncertainty of between-study variances using effect size of log-risk 

ratio (Jackson & Turner, 2017). However, no studies have been conducted to investigate simulated 

statistical power with the effect size d and to identify its discrepancy with analytical power. In this study, 

we addressed the influence of unbalanced design on power in meta-analysis. We also aimed to improve the 

accuracy of power functions by using Hedge’s g and true effect size variances. Power guidance was 

provided after accurate power estimates were obtained. 

  The following simulation conditions were defined based on similar studies (e.g., Field, 2003) utilizing 

effect size r and researchers’ pilot study:  

  (1) Sample size: The average sample size varied in different meta-analysis studies. In the 

current study, the sample size ranged from 30 to 100 (i.e., 30, 40, 50, 60, 80, and 100). The 

average sample size in the real meta-analysis is usually large, but this study was intended to check 

the influence of a small sample size, which was more likely to be associated with low statistical 

power. Thus, a sample size larger than 100 was not considered. In practice, the sample sizes 

among individual studies are unequal. Therefore, a truncated binomial distribution was used to 

generate integer positive numbers to meet the requirements of a sample size. The sample sizes for 

the two groups in an individual study were assumed to be equal (i.e., balanced design) initially 

and then the sample size of two groups varied based on a ratio of 1:2 to study the influence of 

unbalanced design on statistical power.  

  (2) Effect size: We used no effect (0), a small effect (0.1, 0.2, and 0.3), a moderate effect (0.5), 

and a large effect (0.8). These effect sizes were selected based on Cohen’s guidelines (1988). In 

addition, small effect sizes were common in practice. Hattie (2009) synthesized over 800 meta-

analyses related to achievement. The overall distribution of all the effect sizes indicated that many 

of the effect sizes were small, i.e., under 0.4 (72 out of 138 studies). Therefore, the population 

effect size in the lower range was studied more carefully.  

  (3) Number of studies: The number of studies ranged from 5 to 80 (i.e., 5, 10, 20, 50, 80). 

These numbers were chosen based on the real meta-analysis datasets. For instance, studies of 

children’s self-conscious emotions (Else-Quest et al., 2012) had different numbers of studies with 

different emotion aspects ranging from 17 to 307. Different study numbers were used to cover 

most of the practical situations, and the number of studies higher than 80 were normally with 

satisfactory statistical power and were not considered in the simulation. 

  (4) Fixed- and random-effects: The fixed-effects model and two random-effects models were 

considered separately following these procedures. The population effect size across studies was 

the same in the fixed-effects model, while the population effect size of the random-effects model 

was assumed to follow a normal distribution with a mean of the average population effect size 

and a standard deviation of 0.1. In addition, the simulated and analytical power used the same 
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between-study and within-study variance ratio to guarantee the comparability of simulated and 

analytical power in the random-effects model. 

  The total simulated scenarios were based on these factors: 6 population effect sizes (0, 0.1, 0.2, 0.3, 

0.5, 0.8), 6 average sample sizes (30, 40, 50, 60, 80, 100), 2 group size ratios (balanced or unbalanced), 5 

studies (5, 10, 20, 50, 80) and 2 models (fixed-effects model, random-effects model). The Type I error rate 

was set to 0.05 and power of 0.8 was considered the optimal cut-off point. The study was conducted using 

R software (2021). 

  There were two layers of simulation to report the stability of the simulation results. First, in each meta-

analysis, a p-value was saved. This process was repeated 1,000 times to obtain one estimate (number of 

runs that reject the null hypothesis/100) based on the assigned Type I error rate of 0.05. When the population 

effect size was not zero, the percentage of rejecting the null hypothesis was equal to statistical power. When 

the population effect size was zero, the percentage of rejecting the null hypothesis was equal to the actual 

Type I error rate. This process was repeated 1000 times to obtain standard error (i.e., standard deviation of 

the power or Type I error estimates).  

  Before power estimation, Type I error rates were examined with the population effect size of 0 for 

simulated statistical power. This check was necessary because the Type I error can affect Type II error and, 

in turn, the statistical power. After that, the analytical power was computed by the formulas in Hedges and 

Pigott (2001) and the simulated power was computed following the above-mentioned procedure. Analytical 

power and simulated power were saved within tables under different conditions described above. The 

standard error was only applicable to simulated power. The discrepancy between statistical and analytical 

power was interpreted by calculating differences between two estimates under the same condition. We 

expected to find that simulated power was higher than analytical power which underestimates statistical 

power (Hedges & Pigott, 2001).  

  Next, power guidance was provided based on the simulated statistical power in tables. Under various 

population effect sizes and average sample sizes per study, the minimum number of studies needed was 

suggested to reach the power of 0.8. Under various population effect sizes and number of studies, average 

sample sizes per study were suggested to reach the power of 0.8. The results for the balanced- and 

unbalanced-designs were displayed separately. Such guidance provided suggestions to practical researchers 

at the initial stage of planning a meta-analysis study. Finally, by utilizing real data resources in the meta-

analysis, we illustrated how researchers could use the provided R code to estimate the statistical power of 

a meta-analysis with standard deviation.  
 

Results 

Discrepancy between Analytical and Simulated Power  

  The actual Type I error rate was checked through power simulation before investigating the discrepancy 

between simulated and analytical power. Using a nominal α=0.05, it was clear that Type I errors were under 

control and limited to the purported five percent under all conditions.  

  Table 1 to Table 4 show the simulated power values with standard errors and analytical power values 

across population effect size, average sample size, number of studies for fixed effects, and random effects 

models under balanced and unbalanced designs. The standard errors were minimal across all conditions 

indicating the stability of power estimation, so average power estimates were used in the following analysis.  

  First, the general patterns of statistical power were interpreted. Statistical power was understandably 

higher when the population effect size, the average sample size, and the number of studies were larger in 

general. When the population effect size was at 0.8, the simulated power and analytical power estimates 

were close to 1 without any discrepancy no matter what sample size, number of studies, or designs were 

used. In other words, the influence of other parameters became inconsequential under such conditions. 

However, this was not true for the average sample size or number of studies. The largest average sample 

size (100) itself was not enough to reach a power of 0.8 when the number of studies and the population 

effect size were small. Similar conclusions were obtained for the largest number of studies. As expected, 

fixed-effects models had higher power estimates than random-effects models when other parameters were 

held constant (Tables 1 and 2; Tables 3 and 4). Multiple conditions showed noticeable differences of higher 

than 0.1. The unbalanced design was associated with lower statistical power in fixed-effects models and 

random effects models across conditions compared to balanced design (Table 1 and Table 3; Table 2 and   
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Table 1. Statistical Power of the Fixed-Effects Model (Balanced Design). 

Average Power Simulation Power Function 

Sample Number of Studies Number of Studies 

Size 5 10 20 50 80 5 10 20 50 80 

Population Effect Size = 0.1 

  30 .095 (.009) .141(.011) .233 (.013) .488 (.015) .684 (.015) .089 .128 .209 .442 .631 

  40 .110 (.010) .171 (.012) .293 (.014) .606 (.016) .804 (.012) .104 .159 .271 .568 .769 

  50 .125 (.010) .201 (.013) .352 (.015) .703 (.015) .883 (.010) .119 .190 .331 .673 .861 

  60 .139 (.011) .232 (.013) .410 (.016) .781 (.014) .932 (.008) .134 .221 .389 .756 .919 

  80 .171 (.012) .293 (.014) .516 (.015 .884 (.010) .979 (.005) .165 .282 .497 .871 .974 

100 .201 (.012) .352 (.015) .608 (.015) .943 (.007) .994 (.003) .195 .342 .593 .935 .992 

Population Effect Size = 0.2 

  30 .230 (.013) .405 (.016) .681 (.015) .970 (.006) 1 (<.001) .209 .367 .629 .952 1 

  40 .290 (.015) .511 (.016) .802 (.012) .993 (.003) 1 (<.001) .270 .478 .768 .989 1 

  50 .350 (.015) .605 (.015) .882 (.010) .999 (.001) 1 (<.001) .330 .575 .860 .998 1 

  60 .406 (.015) .683 (.015) .931 (.008) 1 (<.001) 1 (<.001) .389 .659 .918 1 1 

  80 .513 (.016) .804 (.013) .978 (.005) 1 (<.001) 1 (<.001) .496 .788 .974 1 1 

100 .605 (.015) .883 (.011) .994 (.003) 1 (<.001) 1 (<.001) .591 .872 .992 1 1 

Population Effect Size = 0.3 

  30 .442 (.016) .728 (.014) .952 (.007) 1 (<.001) 1 (<.001) .402 .678 .928 1 1 

  40 .555 (.016) .844 (.012) .988 (.004) 1 (<.001) 1 (<.001) .521 .812 .981 1 1 

  50 .651 (.014) .914 (.009) .997 (.002) 1 (<.001) 1 (<.001) .623 .895 .995 1 1 

  60 .731 (.014) .954 (.007) .999 (.001) 1 (<.001) 1 (<.001) .707 .943 1 1 1 

  80 .845 (.012) .988 (.003) 1 (<.001) 1 (<.001) 1 (<.001) .830 .985 1 1 1 

100 .915 (.009) .997 (.002) 1 (<.001) 1 (<.001) 1 (<.001) .906 .996 1 1 1 

Population Effect Size = 0.5 

  30 .850 (.012) .989 (.003) 1 (<.001) 1 (<.001) 1 (<.001) .806 .979 1 1 1 

  40 .935 (.008) 1.00 (.001) 1 (<.001) 1 (<.001) 1 (<.001) .913 1 1 1 1 

  50 .973 (.005) 1 (<.001) 1 (<.001) 1 (<.001) 1 (<.001) .963 1 1 1 1 

  60 .989 (.003) 1 (<.001) 1 (<.001) 1 (<.001) 1 (<.001) .985 1 1 1 1 

  80 .998 (.001) 1 (<.001) 1 (<.001) 1 (<.001) 1 (<.001) .998 1 1 1 1 

100 1 (<.001) 1 (<.001) 1 (<.001) 1 (<.001) 1 (<.001) 1.000 1 1 1 1 

Population Effect Size = 0.8 

  30 .997 (.002) 1 (<.001) 1 (<.001) 1 (<.001) 1 (<.001) .993 1 1 1 1 

  40 1 (<.001) 1 (<.001) 1 (<.001) 1 (<.001) 1 (<.001) .999 1 1 1 1 

  50 1 (<.001) 1 (<.001) 1 (<.001) 1 (<.001) 1 (<.001) 1.000 1 1 1 1 

  60 1 (<.001) 1 (<.001) 1 (<.001) 1 (<.001) 1 (<.001) 1.000 1 1 1 1 

  80 1 (<.001) 1 (<.001) 1 (<.001) 1 (<.001) 1 (<.001) 1.000 1 1 1 1 

100 1 (<.001) 1 (<.001) 1 (<.001) 1 (<.001) 1 (<.001) 1.000 1 1 1 1 

 

Table 4). Overall, the unbalanced design did not significantly influence the statistical power when other 

conditions were fixed. 

  The simulated power was systemically higher than the analytical power in most conditions, which 

aligned with the hypothesis of underestimation of the analytical power. Next, the discrepancy patterns in 

the fixed and random-effects models were discussed. The discrepancies between the simulated power and 

the analytical power for the fixed-effects model were generally minimal, as shown in Tables 1 and 3. Most 

of the discrepancies were equal to or less than 0.05. The discrepancy levels were similarly low in the 

random-effects models (Tables 2 and 4). The discrepancy of simulated and analytical power was larger for 

balanced designs compared with unbalanced designs in both fixed- and random-effects models. The 

random-effects model with balanced designs (Table 2) displayed the largest power discrepancies with six 

conditions above 0.05. The fixed-effects model with balanced designs (Table 1) had power discrepancies   
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Table 2. Statistical Power of the Random-Effects Model (Balanced Design) 

Average Power Simulation Power Function 

Sample Number of Studies Number of Studies 

Size 5 10 20 50 80 5 10 20 50 80 

Population Effect Size = 0.1 

  30 .075 (.008) .114 (.010) .196 (.013) .437 (.016) .634 (.015) .079 .112 .183 .397 .581 

  40 .089 (.009) .140 (.011) .249 (.014) .547 (.016) .753 (.014) .089 .136 .233 .509 .714 

  50 .102 (.010) .165 (.012) .298 (.015) .636 (.015) .834 (.012) .100 .159 .281 .604 .808 

  60 .115 (.010) .191 (.012) .346 (.015) .708 (.014) .890 (.010) .110 .181 .327 .682 .872 

  80 .140 (.011) .239 (.014) .430 (.015) .813 (.012) .951 (.007) .130 .224 .410 .796 .943 

100 .164 (.012) .282 (.014) .502 (.015) .878 (.010) .977 (.005) .149 .264 .483 .868 .974 

Population Effect Size = 0.2 

  30 .181 (.012) .339 (.015) .612 (.016) .952 (.007) .996 (.002) .167 .305 .555 .924 .991 

  40 .232 (.013) .433 (.016) .734 (.014) .986 (.004) 1 (.001) .211 .395 .689 .977 .999 

  50 .280 (.014) .513 (.016) .820 (.012) .996 (.002) 1 (<.001) .255 .476 .786 .993 1.000 

  60 .326 (.015) .584 (.015) .878 (.010) .999 (.001) 1 (<.001) .296 .549 .854 .998 1.000 

  80 .407 (.015) .696 (.015) .943 (.008) 1 (<.001) 1 (<.001) .373 .667 .933 1.000 1.000 

100 .479 (.017) .776 (.013) .973 (.005) 1 (<.001) 1 (<.001) .442 .755 .969 1.000 1.000 

Population Effect Size = 0.3 

  30 .359 (.015) .647 (.014) .922 (.009) 1 (.001) 1 (<.001) .315 .581 .880 .999 1.000 

  40 .458 (.016) .767 (.013) .973 (.005) 1 (<.001) 1 (<.001) .408 .716 .956 1.000 1.000 

  50 .543 (.016) .848 (.012) .991 (.003) 1 (<.001) 1 (<.001) .493 .811 .984 1.000 1.000 

  60 .615 (.016) .901 (.009) .997 (.002) 1 (<.001) 1 (<.001) .566 .876 .995 1.000 1.000 

  80 .725 (.014) .957 (.007) 1 (.001) 1 (<.001) 1 (<.001) .687 .947 .999 1.000 1.000 

100 .801 (.013) .981 (.005) 1 (<.001) 1 (<.001) 1 (<.001) .774 .977 1.000 1.000 1.000 

Population Effect Size = 0.5 

  30 .762 (.013) .973 (.005) 1 (<.001) 1 (<.001) 1 (<.001) .683 .946 .999 1.000 1.000 

  40 .866 (.010) .994 (.002) 1 (<.001) 1 (<.001) 1 (<.001) .813 .987 1.000 1.000 1.000 

  50 .924 (.008) .998 (.001) 1 (<.001) 1 (<.001) 1 (<.001) .893 .997 1.000 1.000 1.000 

  60 .956 (.007) 1 (.001) 1 (<.001) 1 (<.001) 1 (<.001) .940 .999 1.000 1.000 1.000 

  80 .985 (.004) 1 (<.001) 1 (<.001) 1 (<.001) 1 (<.001) .981 1.000 1.000 1.000 1.000 

100 .994 (.002) 1 (<.001) 1 (<.001) 1 (<.001) 1 (<.001) .994 1.000 1.000 1.000 1.000 

Population Effect Size = 0.8 

  30 .986 (.004) 1 (<.001) 1 (<.001) 1 (<.001) 1 (<.001) .967 1.000 1.000 1.000 1.000 

  40 .997 (.002) 1 (<.001) 1 (<.001) 1 (<.001) 1 (<.001) .994 1.000 1.000 1.000 1.000 

  50 .999 (.001) 1 (<.001) 1 (<.001) 1 (<.001) 1 (<.001) .999 1.000 1.000 1.000 1.000 

  60 1 (<.001) 1 (<.001) 1 (<.001) 1 (<.001) 1 (<.001) 1.000 1.000 1.000 1.000 1.000 

  80 1 (<.001) 1 (<.001) 1 (<.001) 1 (<.001) 1 (<.001) 1.000 1.000 1.000 1.000 1.000 

100 1 (<.001) 1 (<.001) 1 (<.001) 1 (<.001) 1 (<.001) 1.000 1.000 1.000 1.000 1.000 
 

above 0.05 in three conditions. The random-effects model with unbalanced designs (Table 4) had power 

discrepancies above 0.05 in one condition, while the fixed-effects model with unbalanced designs (Table 

3) had power discrepancies below0.05 in all conditions. These conditions were highlighted in the tables. 

When the average sample size was small and the number of studies was limited, highest discrepancies in 

balanced designs for small population effect sizes were identified (Tables 1 and 3). For instance, simulated 

power was 0.53 higher than analytical power when the average sample size was 30 and the number of 

studies was 80 in both fixed- and random-effects models.  

  Overall, analytical power was close to the simulated power with acceptable discrepancies when the 

average sample size, the population effect size, and the number of studies varied in most conditions. No 

discussion of power discrepancies was necessary when power estimates were close to 1. A few conditions 

showed a discrepancy higher than 0.05.  
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Table 3. Statistical Power of the Fixed-Effects Model (Unbalanced Design) 

Average Power Simulation Power Function 

Sample Number of Studies Number of Studies 

Size 5 10 20 50 80 5 10 20 50 80 

Population Effect Size = 0.1 

  30 .079 (.009) .116 (.010) .193 (.012) .418 (.015) .607 (.015) .084 .119 .191 .402 .581 

  40 .094 (.009) .145 (.011) .250 (.013) .537 (.016) .741 (.014) .097 .147 .246 .520 .720 

  50 .109 (.010) .173 (.012) .304 (.014) .637 (.016) .834 (.012) .111 .174 .300 .622 .819 

  60 .122 (.011) .202 (.014) .360 (.015) .720 (.015) .896 (.010) .124 .201 .353 .706 .886 

  80 .151 (.012) .258 (.014) .461 (.016) .840 (.011) .962 (.006) .151 .256 .453 .830 .958 

100 .179 (.012) .313 (.015) .551 (.016) .912 (.009) .987 (.004) .179 .310 .544 .905 .985 

Population Effect Size = 0.2 

  30 .191 (.013) .343 (.015) .605 (.015) .945 (.007) .995 (<.001) .191 .333 .580 .927 .991 

  40 .247 (.014) .447 (.016) .739 (.014) .985 (.004) .999 (<.001) .245 .434 .718 .980 .999 

  50 .304 (.015) .539 (.016) .833 (.011) .996 (.002) 1 (<.001) .300 .527 .818 .995 1 

  60 .356 (.015) .620 (.016) .896 (.009) .999 (.001) 1 (<.001) .352 .608 .885 .999 1 

  80 .458 (.016) .749 (.014) .962 (.006) 1 (<.001) 1 (<.001) .452 .739 .957 1 1 

100 .548 (.016) .840 (.012) .987 (.004) 1 (<.001) 1 (<.001) .542 .832 .985 1 1 

Population Effect Size = 0.3 

  30 .376 (.015) .653 (.015) .918 (<.001) 1 (<.001) 1 (<.001) .365 .627 .898 .999 1 

  40 .487 (.015) .786 (.013) .975 (<.001) 1 (<.001) 1 (<.001) .475 .767 .967 1 1 

  50 .585 (.015) .872 (.010) .993 (<.001) 1 (<.001) 1 (<.001) .573 .858 .990 1 1 

  60 .669 (.015) .926 (.008) .998 (<.001) 1 (<.001) 1 (<.001) .657 .917 .997 1 1 

  80 .794 (.013) .977 (.005) 1 (<.001) 1 (<.001) 1 (<.001) .786 .973 1 1 1 

100 .877 (.010) .993 (.003) 1 (<.001) 1 (<.001) 1 (<.001) .871 .992 1 1 1 

Population Effect Size = 0.5 

  30 .787 (.013) .976 (.005) 1 (<.001) 1 (<.001) 1 (<.001) .760 .965 1 1 1 

  40 .900 (.009) .996 (.002) 1 (<.001) 1 (<.001) 1 (<.001) .880 .993 1 1 1 

  50 .952 (.007) .999 (.001) 1 (<.001) 1 (<.001) 1 (<.001) .943 .999 1 1 1 

  60 .979 (.005) 1 (<.001) 1 (<.001) 1 (<.001) 1 (<.001) .974 1 1 1 1 

  80 .996 (.002) 1 (<.001) 1 (<.001) 1 (<.001) 1 (<.001) .995 1 1 1 1 

100 .999 (.001) 1 (<.001) 1 (<.001) 1 (<.001) 1 (<.001) .999 1 1 1 1 

Population Effect Size = 0.8 

  30 .992 (<.001) 1 (<.001) 1 (<.001) 1 (<.001) 1 (<.001) .987 1 1 1 1 

  40 .999 (<.001) 1 (<.001) 1 (<.001) 1 (<.001) 1 (<.001) .998 1 1 1 1 

  50 1 (<.001) 1 (<.001) 1 (<.001) 1 (<.001) 1 (<.001) 1 1 1 1 1 

  60 1 (<.001) 1 (<.001) 1 (<.001) 1 (<.001) 1 (<.001) 1 1 1 1 1 

  80 1 (<.001) 1 (<.001) 1 (<.001) 1 (<.001) 1 (<.001) 1 1 1 1 1 

100 1 (<.001) 1 (<.001) 1 (<.001) 1 (<.001) 1 (<.001) 1 1 1 1 1 
 

Power Guide 

  Based on the above results, we proceeded next to develop a power guide to help researchers make 

practical decisions. We utilized simulated power results in this section due to the estimation accuracy in 

theory. Tables 5 and 6 were developed using the simulation codes to identify the average sample size and 

number of studies needed to receive a power of 0.8 in retrospective power analysis. The population effect 

size of 0.8 was not included since the estimates of power would likely be 1 in the most relevant conditions. 

Researchers need to acquire an average sample size of 80 when the population effect size is 0.3 and the 

number of studies is 5 in a fixed-effects model with balanced designs (Table 5). Researchers need to find 

25 studies when the population effect size is 0.2 and the average sample size is 40 in a random-effects 

model with balanced designs (Table 6).  

  Next, we illustrated how to use both tables to guide the sample selection process in meta-analysis. At 

the beginning of a meta-analytic study, researchers may need to determine the number of studies and   
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Table 4. Statistical Power of the Random-Effects Model (Unbalanced Design) 

Average Power Simulation Power Function 

Sample Number of Studies Number of Studies 

Size 5 10 20 50 80 5 10 20 50 80 

Population Effect Size = 0.1 

  30 .064 (.008) .098 (.009) .169 (.012) .387 (.016) .575 (.015) .077 .108 .174 .375 .552 

  40 .078 (.008) .123 (.010) .219 (.013) .495 (.016) .701 (.014) .086 .129 .219 .479 .682 

  50 .091 (.009) .146 (.011) .266 (.014) .585 (.015) .790 (.013) .096 .150 .262 .570 .777 

  60 .103 (.009) .170 (.012) .311 (.014) .659 (.015) .855 (.011) .105 .170 .304 .646 .845 

  80 .126 (.011) .215 (.013) .391 (.015) .771 (.014) .929 (.008) .123 .209 .382 .763 .926 

100 .149 (.011) .256 (.013) .461 (.016) .845 (.011) .965 (.006) .140 .246 .451 .840 .964 

Population Effect Size = 0.2 

  30 .154 (.011) .293 (.014) .551 (.016) .925 (.009) .992 (.003) .159 .287 .525 .905 .987 

  40 .202 (.013) .384 (.016) .679 (.015) .976 (.005) .999 (.001) .199 .369 .654 .968 .998 

  50 .247 (.014) .462 (.016) .773 (.014) .992 (.003) 1 (<.001) .238 .445 .752 .989 1.000 

  60 .290 (.015) .533 (.015) .840 (.011) .997 (.002) 1 (<.001) .275 .514 .824 .997 1.000 

  80 .368 (.015) .648 (.015) .920 (.009) 1 (.001) 1 (<.001) .347 .629 .912 1.000 1.000 

100 .437 (.017) .734 (.014) .959 (.006) 1 (<.001) 1 (<.001) .411 .718 .956 1.000 1.000 

Population Effect Size = 0.3 

  30 .310 (.014) .585 (.015) .886 (.01) .999 (.001) 1 (<.001) .297 .551 .857 .998 1.000 

  40 .406 (.015) .714 (.014) .955 (.006) 1 (<.001) 1 (<.001) .382 .681 .941 1.000 1.000 

  50 .490 (.016) .804 (.013) .983 (.004) 1 (<.001) 1 (<.001) .461 .778 .977 1.000 1.000 

  60 .563 (.015) .867 (.011) .993 (.003) 1 (<.001) 1 (<.001) .531 .847 .991 1.000 1.000 

  80 .678 (.015) .937 (.008) .999 (.001) 1 (<.001) 1 (<.001) .648 .928 .999 1.000 1.000 

100 .761 (.014) .970 (.005) 1 (<.001) 1 (<.001) 1 (<.001) .737 .967 1.000 1.000 1.000 

Population Effect Size = 0.5 

  30 .703 (.014) .955 (.006) 1 (.001) 1 (<.001) 1 (<.001) .652 .931 .999 1.000 1.000 

  40 .823 (.012) .988 (.004) 1 (<.001) 1 (<.001) 1 (<.001) .782 .980 1.000 1.000 1.000 

  50 .894 (.010) .997 (.002) 1 (<.001) 1 (<.001) 1 (<.001) .867 .995 1.000 1.000 1.000 

  60 .936 (.008) .999 (.001) 1 (<.001) 1 (<.001) 1 (<.001) .920 .999 1.000 1.000 1.000 

  80 .975 (.005) 1 (<.001) 1 (<.001) 1 (<.001) 1 (<.001) .972 1.000 1.000 1.000 1.000 

100 .990 (.003) 1 (<.001) 1 (<.001) 1 (<.001) 1 (<.001) .990 1.000 1.000 1.000 1.000 

Population Effect Size = 0.8 

  30 .976 (.005) 1 (<.001) 1 (<.001) 1 (<.001) 1 (<.001) .957 1.000 1.000 1.000 1.000 

  40 .995 (.002) 1 (<.001) 1 (<.001) 1 (<.001) 1 (<.001) .990 1.000 1.000 1.000 1.000 

  50 .999 (.001) 1 (<.001) 1 (<.001) 1 (<.001) 1 (<.001) .998 1.000 1.000 1.000 1.000 

  60 1 (.001) 1 (<.001) 1 (<.001) 1 (<.001) 1 (<.001) 1.000 1.000 1.000 1.000 1.000 

  80 1 (<.001) 1 (<.001) 1 (<.001) 1 (<.001) 1 (<.001) 1.000 1.000 1.000 1.000 1.000 

100 1 (<.001) 1 (<.001) 1 (<.001) 1 (<.001) 1 (<.001) 1.000 1.000 1.000 1.000 1.000 
 

average sample sizes that are needed to achieve the optimal statistical power. One difficulty in power 

estimation is to identify population effect size, which is unknown to researchers in practice. Instead, 

researchers could refer to prior meta-analysis studies on similar topics to obtain a general idea of population 

effect size. A similar example that summarized meta-analysis results of previous research on various topics 

related to student achievement can be found in Hattie (2009).  

  Another example could be if researchers are interested in studying the summative effects of distance 

education after the outbreak of COVID-19. Distance education has a small effect size of 0.09. An average 

sample size of more than 1000 is needed if only a small number of studies are available (5 or 10) in the 

random-effects model. On the other hand, parental involvement is of interest since students need parental 

support with distance education. With a moderate effect size of 0.51, an average sample size of 40 is enough 

if we have five or more studies, no matter what models we use. We suggest that researchers go through 

both tables under different conditions to obtain a general idea of what samples are needed to achieve a 

statistical power of 0.8.   
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Table 5. Sample Size Needed to Receive Power of 0.8. 

                          Fixed Effects Model 

 Balanced Design Unbalanced Design 

Population Number of Studies Number of Studies 

Effect Size 5 10 20 50 80 5 10 20 50 80 

0.5 30 < 30 < 30 < 30 < 30 40 < 30 < 30 < 30 < 30 

0.3 80 40 <30 < 30 < 30 100 50 <30 < 30 < 30 

0.2 160 80 40 < 30 < 30 180 100 50 < 30 < 30 

0.1 640 320 160 80 40 720 360 240 100 50 

                       Random Effects Model 

 Balanced Design Unbalanced Design 

Population Number of Studies Number of Studies 

Effect Size 5 10 20 50 80 5 10 20 50 80 

0.5 40 <30 <30 <30 <30 40 <30 <30 <30 <30 

0.3 100 50 <30 <30 <30 120 50 <30 <30 <30 

0.2 300 120 50 <30 <30 340 140 60 <30 <30 

0.1 >1000 >1000 300 80 50 >1000 >1000 320 90 60 
 

Table 6 Number of Studies Needed to Receive Power of 0.8 

                           Fixed Effects Model 

 Balanced Design Unbalanced Design 

Population Average Sample Size Average Sample Size 

Effect Size 30 40 50 60 80 100 30 40 50 60 80 100 

0.5 5 <5 <5 <5 <5 <5 6 <5 <5 <5 <5 <5 

0.3 12 10 8 6 5 <5 17 11 9 7 6 <5 

0.2 30 20 16 14 10 8 35 25 19 16 12 9 

0.1 115 80 65 55 40 35 150 95 75 65 50 40 

                       Random Effects Model 

 Balanced Design Unbalanced Design 

Population Number of Studies Number of Studies 

Effect Size 30 40 50 60 80 100 30 40 50 60 80 100 

0.5 6 <5 <5 <5 <5 <5 7 5 <5 <5 <5 <5 

0.3 14 11 9 8 6 5 16 13 10 9 7 6 

0.2 35 25 20 17 13 11 40 30 25 19 15 12 

0.1 120 90 75 65 50 45 135 105 85 70 55 45 
 

 

Estimating Statistical Power Using R codes 

  If researchers have obtained a sample data file, they may be concerned as to whether or not the available 

data resource has optimal statistical power. The sample dataset was taken from studies on gender 

differences in mental rotation and cognitive abilities (Voyer, 2011). Prior research had well documented 

that men were better at mental rotation and cognitive abilities, as compared with women. Six studies were 

included in the meta-analysis to examine the gender differences in mental rotation tasks with long time 

limits. Table 7 shows the sample size of two groups in each study. We did not provide sample standardized 

effect size estimates as population effect size is needed for power estimation. Gender differences were very 

small in math &science with an average effect size of 0.12 (Hattie, 2009). We obtained simulated power 

estimates with the R codes provided in the Appendix. The statistical power using the fixed-effects model 

was 0.62 with a standard deviation of 0.02; the statistical power using the random-effects model was 0.42 

with a standard deviation of 0.02. More studies might be needed before researchers can conduct the meta-

analysis to increase statistical power. Researchers can use the codes in the Appendix to estimate statistical 

power for their own studies.  
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Discussion 

  Meta-analysis has been used for several decades to synthesize research results of similar nature. There 

has been an increasing interest in using meta-analysis because it enables researchers to reconcile 

inconsistent findings from small studies on the same topic and reach a definitive answer pertaining to the 

research question of interest.  

  The current study investigated the discrepancy between the simulated power and the analytical 

approximated power for the Hedge’s g (corrected from Cohen’s effect size d) and the true formula of effect 

size variances under various conditions (i.e., sample size, design balance, number of studies, population 

effect size and models). The findings can potentially inform educational researchers about the accuracy of 

statistical power in a planned meta-analysis.  

  No prior studies have been conducted to analyze the discrepancies between analytical and simulated 

statistical power. Therefore, we interpreted the results based on what we found from the results. The power 

discrepancies between simulated and analytical power were below 0.05 in most conditions. Certain 

conditions had noticeable discrepancies. In addition, the unbalanced design seems to have had less 

discrepancy with the balanced design in both types of models. The possible explanation is that the process 

of randomizing sample sizes between two groups in an unbalanced design could lead to very small sample 

sizes, which may decrease statistical power. Therefore, smaller discrepancies were observed.  

  In the process of computing the analytical statistical power for the random-effects model, we used the 

ratio of between and within-study effect size variances generated from the simulation to improve the 

comparability between analytical and simulated statistical power. This could explain why minimal 

discrepancies were observed in most of the random-effects model conditions. Typically, researchers assume 

a ratio of between and within-study variances in analytical power (Liu, 2013), which could influence the 

accuracy of the power estimates. Therefore, simulation is necessary to obtain relatively accurate power 

estimates for the random-effects model even when we utilized the analytical procedures.  

  The accuracy of analytical power procedures has improved because Hedge’s g and true effect size 

variance formula of each study were utilized. This information helps to provide more accurate results, 

especially for studies with small sample sizes (Goulet-Pelletier et al., 2018). Finally, we recommend the 

usage of simulated power to increase cost-effectiveness levels in meta-analysis. As analytical power 

underestimates power (Hedges & Pigott, 2001), researchers only need a smaller number of studies or 

smaller average sample sizes to reach optimal simulated statistical power. In addition, the stability of power 

estimates can only be obtained in simulated statistical power.  

  In order to apply the study results in a practical meta-analysis, the first decision is to select an 

appropriate model. The literature review reveals that the random-effects models have become increasingly 

popular (Hall & Brannick, 2002). As cited by Field (2001), it is more likely to have datasets with varied 

effect sizes across studies. The assumption of fixed population effect size is tenable only when researchers 

do not intend to generalize the results beyond the datasets. For example, if the researchers include most of 

the representative datasets in their meta-analysis, they do not need to generalize the results. When the 

population effect sizes vary by study, the random-effect model should be used. Otherwise, the Type I error 

rate is not controlled properly (Liu, 2015). This is especially true when there is a large amount of variation 

in the effect sizes among studies. Researchers may choose a fixed-effects model or random-effects model 

by calculating the Q statistics, which can be used as a reference to decide if the population effect sizes are 

fixed across studies. However, it should be considered in conjunction with other criteria, such as the 

generalizability of the meta-analysis results. Researchers could also opt to conduct a power analysis, using 

both fixed and random-effects models. By doing so, they can make an informed decision if they are not 

sure about the heterogeneity of the dataset.  

  One difficulty in power analysis is the correct estimation of the population effect size. In theory, 

researchers cannot obtain a 100% accurate population effect size, but a relatively accurate estimate can be 

obtained. There are reference books and research articles on different research topics. The current study 

referred to Hattie’s (2009) book, which synthesized over 800 meta-analysis studies related to student 

achievement. The effect size varies greatly, ranging from negative values to large positive values as 

indicated by the author. Estimating the population effect size from the sample dataset may either cause an 

underestimation or overestimation of power if the samples are biased. An alternative approach is to report 

the confidence interval of the effect size estimates from the dataset. The upper and lower bounds can be 

used to calculate the confidence interval for the statistical power.  
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  Thirdly, researchers can easily obtain sample sizes of individual studies and the number of studies, as 

long as they have access to the primary research articles. Researchers can have a general idea of the average 

sample size and the number of studies they need to obtain after they select a model and estimate the 

population effect size. As suggested, power is more of a concern for studies with small population effect 

sizes. Under such situations, researchers should plan to obtain more studies or utilize large-scale studies to 

increase power. Finally, they also need to consider the influence of an unbalanced design on power by 

calculating the average sample size ratio between the two groups. 

  The following are recommendations to be considered. If researchers are certain about the large 

population effect size in a meta-analysis project (0.8 or above), researchers are likely to attain sufficient 

statistical power no matter what other parameters they have in their studies. They do not need to consider 

the probability of making Type II errors. Low statistical power may be a concern when the population effect 

size is 0.5 or below. The simulated power is recommended on top of analytical power. Practical researchers 

could refer to Tables 6 and 7 to obtain the guidance of the required average sample size or number of studies 

under different population effect sizes. Finally, simulation methods offer a flexible tool to estimate 

statistical power for evaluating study designs in social science research (Arnold et al., 2011). R codes are 

available for researchers if they have access to the data files which are needed to obtain an accurate power 

estimation with standard deviations.  

  The following research limitations have been identified. The effect sizes are generated from the t 

distribution. The assumptions of the t distribution may not hold true for a small sample size under 30. Thus, 

the results of an average sample size of fewer than 30 were not considered in the current study. It is hoped 

that the current study will motivate further research which is aimed at examining statistical power in more 

complicated meta-analyses. Further research can examine statistical power in testing moderator effects. For 

example, there are differences in math achievement between female and male students, but such differences 

may depend on grade levels. The moderating effect of grade levels on gender differences can be of great 

interest, and so is the statistical power for testing the moderating effect.  

  This study provides a brief guide for researchers who are interested in estimating the statistical power 

of meta-analysis. Simulation was introduced as an alternative and accurate way to estimate statistical power. 

The discrepancies between analytical and simulated statistical power were noted. General power guidance 

and R code is provided for practical researchers who want to obtain accurate power estimates. 
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Appendix 

Fixed- Effects Model  
rm(list=ls()) 

##### Note: Practical Researchers need to input their sample sizes of 

each study ##### number of studies and population effect size. 

#sample size 

N1<- c(53,117,153,63,431,29) N2<- c(32,97,106,43,312,48) 

#Number of studies  

I<- 6 

# Set Type I error rate as .05  

alpha <- 0.05 

# number of simulation iterations (fixed)  

sims <- 1000 

#Population effect size (set as 0,.1,.2,.3,.4,.5) 

PES<-0.12 

#number of replications  

nrep <- 100 

# define the seed number  

set.seed(xxx) 
############################################################## 

main<-function(N1,N2, I, PES, sims, alpha) 

{ 

# set up the output significant.experiments <- rep(NA, sims)  

p.value<-as.numeric(rep(NA,sims)) 

#Simulation loop for (i in 1:sims){ 

# In each simulation run, perform the meta-analysis  

Nvary<-N1+N2 

# Sample size between two groups in each study are equal  

tdist <- rt(I,Nvary-2,PES/sqrt(1/N1+1/N2)) 

d<-tdist*sqrt(1/N1+1/N2) J<-1-(3/(4*(Nvary-2)-1))  

ES<- d*J 

PESg<-PES*J 

#Calculate the Z-test statistics - get combined effect size and 

variance of all studies  

Variancewithin<-((Nvary-2)/(Nvary-4))*(Nvary/(N1*N2))+((Nvary-

2)/(Nvary-4))*PESg*PESg-((PESg*PESg)/(J*J)) 

Weight<-1/Variancewithin SumWeight<-sum(Weight) SumWd<-sum(Weight*ES) 

WeightedD<- SumWd/SumWeight SEM<-sqrt(1/SumWeight) 

Zstat<- WeightedD/SEM 
 

#Return the p values of all simulations 

#Return the significant test result (retain/reject the null 

hypothesis)  

p.value[i]<- 2*pnorm(-abs(Zstat)) 

significant.experiments[i] <- ifelse(p.value[i] <= alpha,1,0) 

{ 

prob<- mean(significant.experiments)  

out <- prob 

out 

{ 

power.array <-rep(NA,nrep) for(r in 1:nrep){ 

set.seed(r) 

power.array[r] = main(N1,N2,I, PES, sims, alpha) 

(power_fix_m = round(mean(power.array),digits=3))  

(power_fix_sd = round(sd(power.array),digits=3)) 
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Random Effects Model  
rm(list=ls()) 

##### Note: Practical Researchers need to input their sample sizes of 

each study 

##### number of studies and population effect size. 

#sample size 

N1 <- c(53,117,153,63,431,29)  

N2 <- c(32,97,106,43,312,48) 

#Number of studies  

I <- 6 

# Set Type I error rate as .05  

alpha <- 0.05 

# number of simulation iterations (fixed)  

sims <- 1000 

#Population effect size (set as 0,.1,.2,.3,.4,.5) 

PES <- 0.12 

#number of replicatons  

nrep <- 100 

# define the seed number  

set.seed (xxx) 

############################################################## 

main<-function(N1,N2, I, PES, sims, alpha) 

{ 

# set up the output significant.experiments  

<- rep(NA, sims) p.value<-as.numeric(rep(NA,sims))  

#Simulation loop 

for (i in 1:sims){ 

# In each simulation run, perform the meta-analysis 

Nvary<-N1+N2 

# Simulate the effect size using t distribution 

### Vary the population effect size of each study to meet the random-

effects model assumption 

PESVARY<-rnorm(I,PES,0.1) 

# Sample size between two groups in each study are equal  

tdist <- rt(I,Nvary-2,0.5*PESVARY/sqrt(1/Nvary)) 

d<-tdist*2*sqrt(1/(Nvary-2)) J<-1-(3/(4*(Nvary-2)-1)) ES<- d*J 

PESg<-PESVARY*J 

#Calculate the Z-test statistics - get combined effect size and 

variance of all studies  

Variancewithin<-((Nvary-2)/(Nvary-

4))*(4/Nvary)*(1+PESg*PESg*Nvary*0.25)-((PESg*PESg)/(J*J)) 

Weight<-1/Variancewithin SumWeight<-sum(Weight)  

SumWd<-sum(Weight*ES) 

SumWdsquare<-sum(Weight*ES*ES)  

SumWsquare<-sum(Weight*Weight) 

Qstat<- SumWdsquare-(SumWd*SumWd)/SumWeight  

Cstat<-SumWeight-(SumWsquare/SumWeight) 

df<- I -1 

#Use if function to define Tsquare(between-study variance) 

if(Qstat-df>0){Tsquare<-(Qstat-df)/Cstat} else {Tsquare<-0} 

BetweenStudyVariance<-rep(Tsquare,I) 

VarianceTotal<- BetweenStudyVariance+ Variancewithin  

WeightRandom<- 1/VarianceTotal 

SumWeightRandom<-sum(WeightRandom)  
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SumWeightRandomd<-sum(WeightRandom*ES)  

WeightdRandom<- SumWeightRandomd/SumWeightRandom  

SEMRandom<-sqrt(1/SumWeightRandom) 

ZstatRandom<- WeightdRandom/SEMRandom  

#Return the p values of all simulations 

#Return the significant test result (retain/reject the null 

hypothesis)  

p.value[i]<- 2*pnorm(-abs(ZstatRandom))  

significant.experiments[i] <- ifelse(p.value[i] <= alpha,1,0) 

} 

prob<- mean(significant.experiments)  

out <- prob 

#names(out) <- c("Real Type I error rate & Power") out 

} 

power.array <-rep(NA,nrep) for(r in 1:nrep){ 

set.seed(r) 

power.array[r] = main(N1,N2,I, PES, sims, alpha) 

} 

(power_random_m = round(mean(power.array),digits=3))  

(power_random_sd = round(sd(power.array),digits=3)) 

 


