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as an Index of Curvilinearity

Keith A. McNeil
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The objective of this paper is to discuss the eta coefficient and

to point out some limitations and misconceptions about the coefficient.

Specifically, we will discuss the fact that; 1) the eta coefficient is

a global measure of curvilinearity; 2) the eta coefficient has limited

interpretability; 3) there are a number of other curvilinear relation­

ships that might be of more significance and of more interpretability;

4) these other curvilinear relationships do not suggest nor encourage

grouping of data as does the eta coefficient; and 5) these other curvi­

linear relationships may tend to be more amenable to replication than

is the eta coefficient.

The eta coefficient

The eta coefficient indicates the general or global relationship

between two variables. Essentially, the "line" of the best fit is

drawn through the means of each separate predictor (X) score. The

mean Y value of all of the Y values for those subjects who received a

value of, say, 3 on the X variable is calculated and used as the

predicted Y score for those subjects. The squares of the deviations

of the actual Y values from the predicted Y value gives the error sum

of squares remaining in the data. This error sum of squares can be 
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compared to the error sum of squares due to the linear prediction to

indicate the extent of global curvilinearity existing in the data, over

and above the linear relationship in the data. The implication of

significant curvilinearity is that the Pearson Product Moment Cor­

relation (the measure of linear relationship) is underestimating the

degree of relationship between the two variables. Note that this

conclusion does not say that the Pearson Product Moment is inappropriate,

as many users and even some statisticians would have us believe, but

that we are underestimating the degree of relationship in our data when

we report the Pearson Product Moment coefficient when, in fact, curvi­

linearity exists.

The eta coefficient as a global measure of curvilinearity

We are saying that the eta coefficient is a general measure of the

degree of curvilinearity because it includes a number of different kinds of

curves. The eta coefficient includes the linear fit of the data, the

second degree fit, the third degree fit, the fourth degree fit, and so

on, up to the (K-l)^ degree of fit, where K is the number of different

values along the X axis. Once we have a significant eta coefficient,

we are not aware of what kind of a curve we really have which explains

that data, just that some kinds of curvilinearity exist in the data.

The interpretation of an eta coefficient

A statistical index has little value unless one can interpret it

and we are proposing that the eta coefficient has extremely limited

interpretability. Because the single coefficient includes all of the

various degrees of curvilinearity, one is not told the exact nature of

the curve. All that one is told is that a non-linear model fits the

data better than a linear model. But the specific non-linear model

is not divulged.
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The eta coefficient has often been used in a negative sense, in

that it is used to disqualify the application of the Pearson Product

Moment Correlation. Very seldom does a researcher get excited when

he finds a significant eta coefficient. Too many researchers have

been brought up under the guise that all X's and Y’s are inherently

rectilinearly related! We are suggesting that the eta coefficient should

be discarded in favor of other models wherein more specific curvilinear

relationships are investigated — models that will more likely yield

interpretable results and have some empirical or theoretical import

(McNeil & Spaner, 1970).

Other curvilinear models

The simplest curvilinear model is one that involves a second degree

polynomial. That kind of model allows for either a continually ac­

celerating curve, or a continually decelerating curve (Figure 1).

Curves that have either maximums or minimums require a third degree

component, as well as possibly a second degree component and a linear

component (Figure 2) . We would prefer to have our data fit by these

models because they indicate a predictable pattern more clearly than

does the eta coefficient. A more objective reason for prefering the

above models rests upon the ability of these models to predict Y scores

for X values which might not have been observed in the original sample.

This kind of flexibility is not available with the eta coefficient.

Furthermore, the significance of the second degree model might be

greater than the significance of the eta coefficient. The second degree

model might even be significant when the eta coefficient is not signi­

ficant. This could occur when the number of X values is relatively

large and when the data tend to fit a second degree curve. The ficti­

cious data in’Figure 3 is an extreme case of the above two conditions.
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, „Ki,r host be depicted in multiple linearThe above notions can probably best De aeyiu

regression terminology (See Kelly, Beggs, McNeil, Eichelberger, & Lyon,

1969 or Bottenberg & Ward, 1963). The model which simulates an eta

coefficient by allowing each predictor variable to have its own mean 

value is:

(Model 1) + boXo + b^ + b2X2 + b3X3 + b4X4 + b5X5 + b6X6 + b7X7 + bgX8

Where: Yl=
U =
Xo=
xi=
x2=
x3=
x4=
x5=
X6=
X7=
x8=

the criterion to be predicted
a "1" for all subjects
1 if the X value is 0;
1 if the X value is 1;
1 if the X value is 2;
1 if the X value is 3;
1 if the X value is 4;
1 if the X value is 5;
1 if the X value is 6;
1 if the X value is 7;
1 if the X value is 8;

0 otherwise
0 otherwise
0 otherwise
0 otherwise
0 otherwise
0 otherwise
0 otherwise
0 otherwise
0 otherwise

aQ, b ,...bg are weighting coefficients selected so as to
minimize the sum of the squared components in E^.

E^ is the difference between the predicted Yj_ value and the
actual Y-^ value.

The linear model which allows only a linear fit to the data is:

(Model 2) Yx= aQU + a-jXg + E2

Where: Y]= the criterion to be predicted
U = 1 for all subjects
X9= the X score for all subjects 

ao and alt are weighting coefficients selected so as to
minimize the sum of the squared components in E2.

E2 is the difference between the predicted Yn value and the
actual Y-^ value. x

Model 1 can be statistically compared to Model 2 via the general

F test for regression models: p = zR2 r2 \ /,
—-___ (RF~Rn) ,

( 7(N-m^ )

Where R2p and R2R Indicates the proportion of criterion variance accounted

for by the full and restricted codeia, respectively, and and m2 Indicate
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the number of linearly independently vectors in the full and restricted

models, respectively. The full model in this case is Model 1 and the

restricted model is Model 2.

The degrees of freedom for the numerator of the F ratio is

and the degrees of freedom for the denominator is (N-m-^). In comparing

Model 1 against Model 2, we determine that the degrees of freedom are

(9-2) or 7 and (18-9) or 9.

The reader should note that an equally good full regression model

would be of the following form:

(Model 3) Yx=

Where: Yj,

x 29

XX9

ap ’ I ' o - -
minimize the sum of the squared components in E^.

E^ is the difference between the predicted Y-^ value and the
actual Y^ value.

The restriction in going from Model 3 to Model 2 may be more obvious

than in going from model 1 to model 2. If the higher order polynomials

are not needed to fit the data, then a2 = 0; a^ = 0; a^ = 0; a^ = 0;

a6 = 0; a7 = 0; and ag = 0. These 7 restrictions are reflected by the

7 degrees of freedom in the numerator of the F ratio. The F ratio

resulting from testing either Model 3 against Model 2 or Model 1

against Model 2 is 1.76. With 7 and 9 degree of freedom, this is not

significant at the .05 level of significance. We would thus conclude

aQU + aiX9 + a2Xg^ + agXg3 + a^4 + a^ + a6Xg° + a?Xg' +a8Xg° +E3

U, and Xg are defined as in Model 2.

is the squared value of the corresponding value in Xg

is the cubed value of the corresponding value in Xg

etc.

a- .. . . ao are weighting coefficients selected so as to

that there is no significant eta coefficient in this data. That we
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cannot conclude that there Is no significant curvilinear relationship

should be obvious from the data and from the test of significance of

the fallowing irtodeli

-• *. *’-* *.'•«' * ■ *' ■’* * . v'
(Model 4) t a. U + a_X + a„X 2 + E,
. \ , 1 .0 JL y Z 27

Where: All symbols are defined as In Model 3, except E >• which will
be the error in prediction using the particular set of
predictor vectors and their associated weights.

Model 4 has 3 linearly independent vectors and allows for a second

degree curve. Another look at the data in Figure 3 should satisfy the

reader that the line of best fit produced by model 4 is a relatively good

fit. As can be seen in Table 1, the R2 produced by Model 4 is as high

as the R2 produced by the eta coefficient model (Model 1 or Model 3).

Comparison of Model 4 to Model 2 will in this case result in a lower

probability value than will the comparison of either Model 1 or Model 3

to Model 2. The comparison of Model 4 to Model 2 is significant at the

.05 level of significance (F = 20.53, probability < .001).

The grouping of data in the eta coefficient model

The eta coefficient does not demand the scores along the predictor

axis be grouped, but most examples in statistical books and most appli­

cations do involve grouping. Whenever data are grouped, some error is

probably going to be introduced, particularly if there is some kind of

continuous function in the data. Grouping of data is introduced in

order to minimize the computational problems, but with the computer

available, computation no longer is a problem.

There is one advantage to grouping of data that needs to be discussed.

The advantage lies in the fewer number of predictor values, and conse­

quently fewer degrees of freedom in the numerator of F and more in the

denominator of F. Thus, with a constant R2 and r2„
F R, we will more
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likely find a significant eta coefficient. But the grouping along

the predictor axis will most likely (not necessarily) reduce the

R F and R R. The Rzp will be reduced drastically by grouping if there

is a systematic function, and thus the apparent advantage turns out to

be a distinct disadvantage.

Replicability of curvilinear models

We have already indicated that the eta coefficient cannot predict

Y values for X scores that are not observed in the original sample.

Indeed, the eta coefficient produces the maximum overfit to the data.

Because of this, the eta coefficient is less likely to yield a high

coefficient of replicability, unless of course, the phenomenon under

investigation is relatively stable. If the phenomenon is stable,

the curvilinear models which fit the data as well as does the eta

coefficient model, but yet require fewer predictor variables, are

preferable because they are more parsimonious. That is, these models

require fewer pieces of information about the data. As scientists,

we expect some orderly fashibn in our data, but the eta coefficient

does not encourage an orderly investigation of the data.

Discussion and implications

We have tried to demonstrate the inapplicability of the eta coef­

ficient for most behavioral science research. We have tried to demon­

strate that the eta coefficient does not help the researcher, but

actually hinders him by reducing the liklihood of finding significance,

by discouraging the orderly explanation of the data, by encouraging the

researcher to arbitrarily group his data, and by producing a model which

is extremely difficult to interpret and extremely difficult to replicate. 
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i j - Q fov rh-iq paper was an article by Hawk (1970).The original impetus for this papei

..... rrot-ori a laree number of General Aptitude TestHawk systematically investigated a larg

Battery (GATB) validation studies to determine the frequency of non­

linear relationships. He computed the eta coefficient and tested the

eta against the linear relationship. He found that the number of

significant non-linear relationships fell very close to the chance level.

Hawk coarsely grouped the GATB scores into five intervals and excluded

scores which deviated more than 2 1/2 standard deviations from the mean.

We don't approve of grouping data nor of eliminating Ss from the face

of the Earth, but that is his preference.

What we would like to criticize is the conclusion that Hawk arrives

at, mainly: "The author's inclination is to assume that, especially in

GATB validation studies, the relationships are linear unless there is

some theoretical or empirical reason to believe otherwise" Hawk (1970,

p. 251).

At best, the author demonstrated that the eta coefficient model

was not applicable to GATB. But as the data in Figure 3 indicates, there

might well be some extremely significant, specific, non-linear relation­

ship between GATB and the particular validation criterion. As McNeil

and Kelly (1970) have pointed out, we can never see most of the variables

in behavioral science research, and as a consequence, it is quite

inappropriate to think that all the variables are rectilinearly related.

As a consequence, researchers should investigate specific non-linear

relationships, while realizing the limitations of the eta coefficient.
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Table 1
Information Relevant to the Various Models

Model #' Model Name R2 linearly independent vector

Model 1 "Grouped X values" .9485 9

Model 2 "Linear Model" .8781 2

Model 3 "Polynomial Model" .9485 9

Model 4 "Second degree Model" .9485 3

Model 5 "Unit vector modei" .0000 1

F Ratios

Full Restricted F dfi df2 P

Model 1 Model ? 1.7596 7 9 >.2111

Model 3 Model 2 1.7596 7 9 <2111

Model 4 Model 2 20.5333 1 15 <.0004

Model 1 Model 5 20.7400 8 9 *.0001

Model 2 Model 5 115.2720 1 16 <.0001
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Figure la Continuously accelerating curve

Figure lb Continuously decellerating curve

Figure 2 One possible situation depicted by a third degree curve

Figure 3 Ficticious data depicting the situation wherein the
eta coefficient is not significant and the second
degree coefficient is significant.


