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ABSTRACT

The interpretation of partial regression coefficients in the presence

correlated regressors causes difficulty for students in the social sciences.
nce correlation among regressors is the typical case in the social sciences,

is presents a considerable instructional problem. This article presents an
:planatlon of the partial regression coefficient in the presence of correlated
‘gressors that is a sImple and direct extension of the case where regressors
e mutually orthogonal, The interpretation presented emphasizes the rela-
nship between the partial regression coefficient and the simple regression
offlclent. An example using SAS computer package is provided.

1troduction

The oxtension of the principles and techniques of simple lInear
‘grossion to multiple linear regression frequently results in confusion and
isundorstanding for students in the social sclences. The major problem
‘0a concerns the undorstanding of tho regression cocfficients when regres-
‘s aro moderately correlated. in most texts on regression analysls (Cohen
1d Cohon, 1975; Draper and Smith, 1966; Kerlinger and Pedhazur, 1973)
e extension from simple to multiple regression is discussed via the special
1se whore the regressors are uncorrclated. Pedagogically, this is appro-
riate since it requires the introduction of a minimum of new concepts.
owever, in the actual analysis of data in the soclal sclences, correlated
'gressors are far more the rule than the exception. Unfortunately, it Is
' the conceptual leap from Independent regressors to corrtlated regressors
1at there exists the greatest lack of clarity in explanation. An example of
lis confuslon Is the belief displayed not only be beginning students, but
/ practicing researchers, that the order of entry of the variables Into a
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stepwise regression procedure affects the resultant regression weights when
the full model is estimated! This confusion is exacerbated by the treatment
of stepwise regression output in statistical computer packages such as SPSS
(although, to the credit of the SPSS authors, they provide the best explana-
tion we have found to date on the problem of correlated regressors) (Nle

et al., 1975).

The purpose of this paper is to present a lucid explanation of
partial regression coefficients in the presence of correlation among the re-
gressors, Our goal is to bridge the gap between a purely verbal explana-
tion such as ". . . the increase.in Y for a unit increase in X holding all

other variables constant. . ." and a .purely mathematical explanation such as:
_fvi T "va"na Sy
- B = 7 (_)
~Y1.2 1-r S
o 1

‘Although both of these approaches are technically correct, neither provides
a particularly good intuitive understanding of what is involved in multiple
regression with -correlated regressors.

Simple and Partial Regression Coefficients

It Is our experience that the simple regression coefficient is read-
ily comprehended by students as they approach multiple regression, and that .
an explanation of the partial regression coefficient in terms of a simple reg-
ression coefficient Is heurlstically appealing to students. Such a transition is
clear and direct In the case of mutually orthogonal regressors. This multiple
regression setting reduces to a series of simple regression equations (as in
Draper and Smith, 1966, pp. 107-118), That |s, the partlal regression coef-
ficient |s Identical to what It would be In a simple regression.

Our purpose here Is to show that a similar reduction can be used
evon when regressors are correlated. The prescntation below domonstrates
how this would be done. It might reasonably follow the mutually orthogonal
setting In a regression course.

Conslder a regression with dependent variable Y, and threc mod-
erately correlated regressors X,, Xz. and X3:

(N Y = B.X, + B,X, + B,X; + B,
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since the regressors are correlated, it is obvious that the coefficient B, will
1ot have the same value as a simple regression coefficient from the regr_]e.'f;sion
>f Y on X, (alone). However, B, will be identical to the coefficient obtained
from a simble regression of Y on ke residuals of X (say, X,') after the col-
linearity with X_ and X, has been removed. This can be accomplished by
regressing X' oh X2 ana X3:

R :
X‘=a2X2+aX + a

373 0
then‘ X”' = X'i - X‘i
The same procedure is followed for X2 and X3. A new equation:
- ty ! G iyt '
(2) Y = By'X, +Bz)<2 +B3)(3 +B0

can be shown to yield exactly the same regression coefficients as equation (1).
That is, B'= B. The pedagogical advantage gained by creatlng equation (2) Is
that the X,'s are mutually orthogonal and the B,'s can be understood as in the
mutually oclthogonal case. Thus, the partial reé;resslon coefficient Is the simple
regression coefficient of Y on the residuals of X‘ after the effects of X2 and
X3 have been removed from X‘.

The utility of this approach to understanding regression coefficients
is that It allows the student to link his comprehension of the partial regression .
coefficient to the firmer ground of the simple regression coefficient. This Is
particularly useful when such concepts as suppressor variables, multicolllnearlty,
and shrinkage In r-squared are discussed.

An Example

, An example of this approach with three regressors using the SAS
statistical package Is presented below: . :

(JcL)

DATA SAMPA;

INPUT Y X1 X2 X3;

CARDS;

_ - (insert data)l
. PROC GLM; MODEL Y = X1 X2 X3;
_'ﬁj PROC GLM; MODEL X1 = X2 X3
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"OUTPUT OUT = SAMPB RESIDUAL = RESID;
DATA SAMPC; MERGE SAMPA SAMPB;

| ?hoc GLM; MODEL Y = RE$|0;

DATA SAMPA;

PROC GLM; MODEL X2 = X1 X3;

OUTPUT OUT = SAMPD RESIDUAL = RESID;

~DATA SAMPE; MERGE SAMPA SAMPD;
PROC GLM; MODEL Y = RESID;
DATA SAMPA:

PROC GLM; MODEL X3 = X1 X2; |
'OUTPUT QUT = SAMPF RESIDUAL = RESID;
DATA SAMPG; MERGE SAMPA SAMPF;
PROC GLM; MODEL' Y = RESID;
A |

' The first PROC GLM statement results in the standard multiple
regression output for the full model. The second PROC GLM regresses X‘

on the remaining Independent varlables and calculates the residuals, while the
third PROC GLM performs the regression of Y on the residual of X,. Students
can now verify that the regression coefficlent for residuals Is ldent'cal to that
for X, in the original model. The remaining PROC GLM statements calculate
the cdefficients for X, and X, In the same manner. Although the layout for
calculating all regresﬁon cooﬁlclents Ils presented here for completeness, cal-
culation of only one or two of these may be sufficlent for Instructlon,



73

References

n, J. and Cohen, P. (1975) Applied Multiple Regression/Correlation
\nalysis for the Behavioral Sciences. Hillsdale, NJ: Lawrence Erlbaum

\ssociates, Publishers.

er, N.R. and Smith, H. (1966) . Applied Regressinn Analysis.
New York: John Wiley and Sons.

nger, F.N. and Pedhazur, E..I.l (1973) Multiple Regression in Behavioral
Research. New York: Holt, Rinehart, and Winston, lnc.

N.H. et al. (1975) Statistical Package for the Social Sciencés,Second
cdition. New York: McGraw-Hill Book Company.:






