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ABSTRACT 

The Interpretation of partial regression coefficients In the presence 
correlated regressors causes difficulty for students In the social sciences. 

�ce correlation among regressors Is the typical case In the social sciences, 
11s presents a considerable Instructional problem. This article presents an 
,planatlon of the partial �egresslon coefficient In th� presence of correlated 
·gressors that Is a 1lmple and direct extension of the case where regressors
<! mutually orthogonal. The Interpretation presented emphasizes the rela-
1nshlp between the partial regression coefficient and the 1lmple regreulon
offlclent, An example using SAS computer package Is provided,

, t reduction 

The extension of tho principles and techniques of simple llncar 
•groulon to multiple llnOllr regression frequently results In confusion and
i1undorstandlng for students In the social 1clenco9, The major problem
011 concerns the u11dor1tnndlng of tho regression coefficients when regres­
s ore moderately correlated, In most texts on regression nnalysls (Cohen
1d Cohon, 1975; Draper and Smith, 1966; Kerllnger and Pedhazur, 1973)
10 extension from slmplo to multiple regression Is discussed via the special
1sc where the. regressors are uncorrelated. Pedagogically, this Is appro­
riate since It requires the Introduction of a minimum of new concepts.
,iwever, In the actual analysis of data In the social sciences, correlated
•gressors are far more the rule than the exception. Unfortunately, It ls 

the conceptual leap from Independent regressors to corrt!lated regressors
1at there exists the greatest lack of clarity In explanation. An example of
lis confusion Is the belief displayed not only be beginning students, but
, practicing researchers, that the order of entry of the variables into a
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stepwise regression procedure affects the resultant regression weights when 
the full model is estimated! This confusion is exacerbated by the treatment 
of stepwise regression output in statistical computer packages such as SPSS 
(although, to the credit of the SPSS authors, they provide the best explana­
tion we have found to date on the problem of correlated regressors) ( Nie, 
et al., 1975). 

The purpose of this paper is to present a lucid explanation of 
partial regression coefficients In the presence of correlation among the re­
gressors. Our goal is to bridge the gap between a purely verbal explana­
tion such as "· . .  the increase in Y for a unit increase in X holding all 
other variables constant. . . " and a purely mathematical explanation such as: . 
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Although both of these approaches are technically correct, neither provides 
a particularly good intuitive understanding of what Is Involved In multiple 
regression with correlated regressors. 

Simple and Partial Regression Coefficients 

It 11 our experience that the 1lmple regression coefficient Is read­
ily comprehended by students as they approach multiple regression, and that .. 
an explanation of the partial regression coefficient In tgrm

5 
of a simple reg-

ression coefficient 11 heurl1tlcally appealing to students, uch a transl tlon Is 
•

clear and direct In the case of mutually orthogonal regre11or1. This multiple 
regreulon setting reduces to a series of simple regreuion equations ( as In 
Draper and Smith, 1966, pp. 107-115), That 11, the partlal regreulon coef­
ficient 11 Identical to what It would be In a 1lmple regre11lon. 

Our purpose here 11 to show that a similar reduction can be used 
even when regressors are correlated. The presentation below demonstrates 
how this would be done. It might reasonably follow the mutually orthogonal 
setting In a regre11lon course. 

Consider a regreulon with· dependent variable Y, and throe mod­
erately correlated regressors x1, X2, and x 3:
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:iince the regressors are correlated, It is obvious that the coefficient 81 will
1ot have the same value as a simple regression coefficient from the regression 
JfY 

.
on X 1 (alone). However, 8 

\ 
� be identical to the coefficient obtained 

from a simple regression of Y on he residuals of X 
1 

(say, X 1 ') after the col­
linearity with x, and X

,._ 
has been removed. This can be accomplished by 

regressing x
1 

ol'I X
2 

ana X3: 

then 
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The same procedure is followed for x
2 

and x
3

. A new equation: 

( 2) 

can be shown to yield exactly the same regression coefficients as equation ( 1). 
That is, �• = �- The pedagogical advantage gained by cre,atlng equation (2) Is 
that the X 's are mutually orthogonal and the B 's cari be understood as In the 
mutually o�thogonal case. Thus, the partial re�resslon coefficient ls the simple 
regression coefficient of Y on the residuals of X 1 after the effects of X 2 and
X 3 have been removed from X 1. 

The utility of this approach to understanding regression coefficients 
Is that It allows the student to link his comprehension of the partial regression 
coefficient to the firmer ground of the simple regression coefficient. This Is 
particularly useful when such concepts as suppressqr variables, multlcolllnearl ty, 
and shrinkage In r-squared are discussed. 

An Example 

An example of this approach with three regressors using the SAS 
statistical package Is presented below: 

(JCL) 

DATA SAMPA; 

INPUT Y Xl X2 X3; 

CARDS; 

( in sort data) 

PROC GLM; MODEL Y = X1 X2 X3; 

PROC GLM; MODEL X 1 = X2 X3; 



ti 

72 

OUTPUT OUT = SAMPB RESIDUAL = RESID; 

DATA SAMPC; MERGE SAMPA SAMPB; 

.PROC GLM; MODEL Y = RESID; 

,DATA SAMPA; 

,PROC GLM; MODEL X2 = Xt X3; 

OUTPUT OUT = SAMPO RESIDUAL = RESID; 

• DATA SAMPE; MERGE SAMPA. SAMPO;

PROC GLM; MODEL Y = RESID;

DATA SAMPA;

PROC GLM; MODEL X3 = Xt X2;

OUTPUT 9UT = SAMPF RESIDUAL = RESID;

DATA SAMPG; MERGE SAMPA SAMPF;

PROC CLM; MODEL' V • RESID;

II 

The first PROC CLM statement result• In the standard multiple 
regreulon output for tho full model. The socond PROC CLM rogre11os X 1 on the remaining Independent varlablo1 and calculatos the rosldual1,. whlle the
third PROC CLM perform, the regreulon of V on the re,ldual of X • Students 
can now verify that the regreulon coefficient for reslduals 11 ldentlcal to that 
for XJ In the orlglnal model, The remaining PROC CLM statement, calculate
tho c efficients for X and X In tho ,amo manner, Althouoh the layout for 
calculatlng all regres�on coerl1c1ent1 11 presented here for completenou, cal­
culatlon of only one or two of thHe may be 1ufflclont for ln1tructlon. 
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