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In multiple regression, the coefficient of determination (or R

square) has a very useful interpretation. The statistic Is the ratio of 

the variation. that is explained by the regression equation to the total 

variation of the dependent variable. For example, a coefficient of 

determination equal to .45 indicates that the, Independent variables can 

explain 45 percent of the variation In the dependent variable. 

It follows Immediately that a person's next Instinct Is to want to 

allocate among the several Independent variables the explained variation 

In the dependent variable. For example, many people would like to say 

that If the regreulon of a dependent variable on three Independent 

variables explalna 45 percent of the variance, that (say) 25 percent wu 

duo to tho first Independent variable, 15 percent to the second, and 5 

percent to the third, While this Interpretation Is tempting, It should be 

avoided. Tho reason for avoiding It Is that there Is no unique way of 

decomposing the explained variance, and If there is no unique way of 

doing so, then there Is no meaningful way of doing so. 

For example, consider the regression of fne dependent variable,

Y, on two independent variables: 

Y = a • bX + cZ • u, 
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where Y is the dependent variable, X and .Z are independent variables, 

"a" is the intercept, "b" and "c" are partial regression coefficients, and 

"u" is the disturbance or error term. From this regression, one would 

obtain the coefficient of determination, R2y.xz, which is merely a 

convenient notation for R-square of Y regressed on X and Z. By the 

• method of part correlations, it may be shown that:

R2y.xz = R2y.x • R2y(z:x) 

where R2y. x . is the squared zero-order correlation of Y and X, and 

R2y(z. x) Is the squared part correlation of Y with Z residualized for X.

(This equation is analogous to formula 5.10 in Kerlinger and Pedhazur, 

1973.) 

But it is also true that: 

R2y.xz = R2y.� + R2y(x,z), 

and in general R2y.x does not equal R2y(x.z). If these two quantities 

are not eq�al, by which quantity therefore does one measure the unique 

contribution of X to the explained variation In Y? Because there are two 

answers, two different answers, there ls no unique solution, 

These quantities may appear mysterious In symbolic form, but they 

are familiar quantities, which appear in the SPSS regreulon output. 

They appear In the summary table In a column of numbers entitled, "R

Square Change." People often want to Interpret these quantities as 

measuring the amount of variance explained by each Independent 

variable, This temptation 1hould be avoided. 

Suppose, for example, that one regresses educational attainment on 

two Independent variables, father', education and father's occupational 
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status. Suppose the coefficient of determination for th is equation is 

equal to .31. If father's education was added to the regression as the 

first independent variable, then one would learn from the SPSS summary 

table that the R-Square Change for father's education was .27 and for 

father's occupation was .04. If, however, father's occupation were to 

have been listed first, then one would learn that the R-Square Change 

for father's occupation was .23 and for father's education was .08. 

Question: Does father's education explain 27 percent of variation in son's 

education, or does it explain 8 percent? The answer is, "Yes, it does." 

That is, without a unique way to decompose the explained variance, 

there is no unique answer to the question. 

Let us try another approach. It is well known (e.g., Kerlinger 

and Pedhazur, 1973, formula 4.17) that the coefficient of determination 

may be decomposed Into the sum of the products of the zero-order 

correlations and their associated beta-weights. One may, therefore, be 

tempted to Interpret the product of say Ryx times Byx. z (where Ryx Is 

the zero-order correlation of Y and X, and Byx. z is the beta-weight of 

Y regreued on X controlling for Z) as the amount of variance in Y 

explained by X. The problem with this approach, however, 11 that the 

zero-order correlation and the beta-weight are not constrained to have 

the ume 1lgn. In such cases, one would have to Interpret tho product 

as being a negative component to the explalned variance, which 11 a very 

troubleaome concept. 

For example, consider the regression of son's occupational status 

on his educational attainment, his father's ed1.1cation, and his father's
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• occupational status. The correlations of son's occupation with these

three independent variables are in one sample, .respectively, .47, .38,

and • 73. The corresponding beta-weights are, respectively, . 21, -. 11,

and .69. The coefficient of determination may be decomposed:

R2 = .56 = (.21)(.47) + (-.11)(.38) + (.69)(.73) or 

R2 = .56 = .10 - .04 + .50. 

It is with no relish whatsoever that one should interpret the amount of 

variance explained by father's education as being minus 4 percent. That 

is equivalent to saying that the addition of father's education to the 

regression equation takes away four percent of the variance in son's 

occupational status. Not only does that interpretation not make any 

sense In a substantive way, It is mathematically impossible. 

Finally, consider the decomposition: 

R2y,xz = B2y.x + B2y.z + 2(By.x)(By.z)(Rxz), 

In which B2y. x Is the square of the beta-weight of Y regressed on X 

controlling for Z (and analogously for B2y. z), By. x Is the beta-weight 

of Y regreued on X, and Rxz Is the zero-order correlation between X 

and Z. Thl1 decomposition teemingly contain• a portion (the 1quared 

beta-weight) that can be uniquely attributed to the Independent variable, 

but the decompo1itlon also contains an explicit term (or more than one 

term If there are more than two Independent variables) repreuntlng the 

contribution to the explained variance In Y that Is shared by both 

Independent variables. What this decomposition Indicates 11 that the 

explained variance In Y cannot be decomposed Into unique separate 

components due to each Independent variable (unless Rxz = 0, a very 

rare occurrence). 
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If the coefficient of determination cannot be uniquely partitioned 

into amounts of variance explained by each independent variable, how 

then does one measure the contribution of each independent variable to 

the dependent variable? The solution would appear to be to use either: 

(1) the metric partial regression coefficients; or

(2) the standardized partial regression coefficients,

or beta-weights.

Notice that neither of these are interpretable as components of explained 

variance. Metric partial regression coefficients are to be interpreted as 

the amount Y changes for a one-unit increase in one independent 

variable while the other independent variables are held constant. 

Standardized pc1rtial regression coefficients are interpretable as the 

number of standard deviations Y changes for a one standard deviation 

increase In one independent . variable while the other independent 

varlables are held constant. 

The standardized regression coefficients have the advantage of 

being standardized. That Is, the size of the metric regression 

coefficients depend upon the metric In which the Independent varlables 

have been measured. If one of the Independent varlables Is Income, for 

example, the metric regression coefficients will be different If Income l1 

measured In Increments of thousand dollars versus Increments of slngle 

dollars, In any event, these coofflclonh will be different from those of 

another Independent varlable measured In, say, years of schooling, 

Standardized coefficients get around this problem by measuring all the 

variables In standard deviation units. Thus, the standardized 
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coefficients are comparable among independent variables. A beta-weight 

of • 5 for one independent variable means that Y changes twice as much 

as it does when another variable, which has a beta-weight of .25, 

changes. 

Seemingly, 

better than the 

therefore, the standardized 

metric coefficient. But 

regression coefficient is 

wait( The. standardized 

coefficient has to be standardized . in terms of something, and that 

"something" turns out to be a quantity which is not invariant across 

either samples or populations. I am referring to the ratio of the 

standard deviations of the Independent to the dependent variables. That 

is, 

BETA = B (Sx/Sy), 

where BETA is a beta-weight and B is the corresponding metric 

regression coefficient. If, for example, one is interested In comparing 

the effects of one independent variable on a dependent variable, and 

wants to compare the size of this effect across two populations (e.g., 

freshman versus sophomores, men versus women, blacks versus whites, 

etc,) then the beta-weights can change as a function of a change In the 

ratio of atand�rd deviations; oven while the structural coofflclenta, tho 

metric coefficients, remain conatant acrou populations, 

Therefore, In reporting regression results one should always 

report both the standardized and the metric coefficients. The former are 

useful In comparing the relative effects of Independent variables within a 

sample or population, while the latter are useful for comparing the 

relative effects of independent variables across samples or populations . 
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In any event, the amount of variance explained by each independent 

variable is not a quantity that can be uniquely estimated; the use of 

such estimates is to be discouraged. 

(Kerlinger and Pedhazur, 1973, pp. 297-305, discuss a method 

called "Commonality Analysis," which can sometimes be used to estimate 

amounts of variance explained by each independent variable. In 

essence, the approach measures the portion of explained variance for a 

single independent variable as that portion unexplained by all of the 

other independent variables. The method results in measures of unique 

contributions and common contributions. In most real-life cases, the 

common portions far outweigh the unique portions. Another problem is 

the proliferation of higher-order commonalities. With five independent 

variables, commonality analysis produces five unique components, and 26 

common components. In my view, metric and standardized regression 

coefficients are to be preferred in reporting the results of regression 

analyses.) 
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