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Since its introduction in 1970 by Arthur Hoerl, the efficacy of 

ridge regression has been vigorously debated by statisticians. Notable 

• are the debates in the Journal of the 1imerican Statistical Association,

JASA, in 1980 (Smith and Campbell) and in Technometrics in 1979 (Draper

and Van Nostrand}. Huch research among proponents of ridge regression

concentrated on c01t1parisons of various ridge regression solutions.

DempstE!r, Schatzoff, and Wermuth (1977} compared 57 varietios of ridge

regression, Galarneau-Gibbons (1981) canpared ten of the most promising

ridge algorithma. Both were silllulation studies.

Presented at AERA 1982, MLR Special Interest Group

Not rerereed by editorial starr

1 



Since the introduction of the Monte Carlo . method in 1949 by von 

Neumann and Ulam, simulation studies have been frequently used in sta­

tistics to solve problelllS otherwise difficult or expensive to solve. 

Monte Carlo simulation can be adapted to any situation for which a model 

representing reality can ·be designed and for which a mechanism to simu­

late this model can be ef fected. 

Analysis of the recent literature of ridge regression reveals 

essential agreement that ridge regression is an appropriate alter­

native to least squares regression when predictor variables are highly 

intercorrelated. Another theme is common. Many researchers from New­

house and Oman in 1971 to Galarneau-Gibboos in 1981 also suggest that 

the orientation of the beta vector ·with respect to the eigenvectors cor­

responding to the largest and the smallest eigenvalue of' the X' X matrix 

determines the relative performance of ordinary least squares estimator11 

and ridge estimators. 

Purpose of this Study 

c_ The question of the predictive values of the· orientation of beta 

and/or the average absolute intercorrelation among independent varia'"­

bles in guiding an investigator's choice of regression method is in­

teresting and i�portant. The availability of a computer simulation 

capable of producing data with given R and average absolute inter-

correlation made study of this question possible. The simulation was 

designed for the 1979 comparison of shrinkage formuli by Newman, McNeil, 

Garver, and Seymour. 

Methods 

Twelve populations of 1,000 cases were generated representing four 
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different values of intercorrelation among predictor variables (0.80, 

0.50, 0.30, 0.15) and three different values of R2 (0.50, 0.30, 0.05). 

From each population 220 samples were drawn with replacement. There 

were 50 cases per sample. 

For each sample generated, Marquette and Du Fala' s statistical 

package ADEPT (1979) was used to calculate the ordi.nary least squares 

solution, the principal components solution and three ridge solutions. 

The ridge solutions chosen were the Lawless-Wang so}ution, the McDonald­

Galarneau solution, and a Hoerl-Kennard-Baldwin solution. The Hoerl­

Kennard-Baldwin solution is important historically and because of its 

good performance in previous studies. The Lawless-Wang solution is a 

Bayesian solution derived from the assumptions 

2 2 with the ddge parameter k ,. a /a B

and 

estimated by 

The McDonald-Galarneau solution is an iterative solution 

wh;.!.ch estimates the true length of the beta vector by Q • 3•a - s2 L ).i-l

and then picks k to minimize 'i '(k) a :.(k) - Q j. This procedure defaults 

to ordinary least squares i_f Q is negative. These three methods of de­

termining k were different enough in derivation to be interesting to 

compare. 

The study was a 3 x 4 x 5 factorial design. There were three . 
2 values for R , four for average absolute intercorrelation and five 

regression methods. 

The various regression solutions were ranked on four criteria: 

1. Average variance of regression coefficients.

2. Error in regression coefficients as measured by 
(B-B)' (13-�).
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3. 

4. 

Mean square error. 
2 Shrinkage of R upon cross-validation. 

For each sample, solutions were ranked from one to five with smaller
rank indicating more desireable solut:lon. Ranks were then summed for 
each solution on all cri;teria to give an overall measure of quality of 
solution. 

The orientation of the coefficient vector, beta, with respect 
to the eigenvector associated with the largest eigenvalue of the X'X 
matrix was calculated for .each �ample. For some· populations the range 
of values· for the orientation was small enough _to cause computational
difficulty in the comput_er packages us,ed in this study. For this rea-
son, the orientation of beta was categorized and interaction between 
regression method and the orientation of beta was determined using
two-way analysis of variance. The decision to ca_tegorize the orien­
tation of beta is discussed further in the results section. 
Results 

Since this stu dy was exploratory, a significance level of .a•.05 
was used. When multiple comparisons were made, the correction suggested 
by Newman and Fry, a•.05/n, was applied (Newman and Fry, 1972). All
tests were two-tailed. 

Error in Beta 

For all populations with high average absolute intercorrelation, • ,. " rrJ •.80, the error in beta as measured by (13-13)' (a-fl) was significantly 
different for ordinary least squares regression and each of the ridge
solutions tested. For high mul ticol linearity, the error in beta f(ir 
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each' ridge solution was significantly different from that of every 

other ridge solution with only one exception: Lawless-Wang error in 

coefficients was not significantly different from that of Hoerl-Ken­

nard-Baldwin for the population with R2 ... 50 and r;i •.80. For each

of the populations with high multicollinearity, Lawless-Wang regres­

sion produced the smallest error in coefficients while ordinary least. 

squares and principal components regression accounting for 100 percent 

of the trace produced the largest error in coefficients. 

For moderate multicollinearity (0.50 and O . 30) • ther:e was always 

a significant difference between the error in beta for ordinary least 

squares and each ridge solution's error in beta. The error for the 

complete principal components solution also was significaotly different 

frQIII that of each of the ridge solutions. Error in beta did not differ 

significantly for OLS and complete principal components solutions. 

For low multicollinearity ( rr1 •.15), ordinary least squares re­

gression and complete principal components regression produced sign­

iffcantly different error of beta from each other as well as from 

e.ach ridge solution. 

For graphic representation of these results. see Figure 1. 

Variance of Betas 

For each population, for any given method, the coefficients of 

each independent variable formed a distribution. Thus if beta 1 ls 

the coefficient of the first independent variable, a distribution for 

the ordinary least squares beta would exist, as well as one for the 

Lawless-Wang beta 1, the Hoerl-Kennard-Baldwin beta 1, and the McDonald-
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TABLE 1 

Summary of,Results of Cochran's Test ·for Variance of Betas 

Population Cochran's G for 
Parameters 

R
2 
l!rl 131 132 133 134 a

s 136 87 

.50/.80 .3480 .2661 .2979 .2785 .2827 .2825 .2695 i 

.30/.80 .3537 .2881 .2509 .3113 .2950 .3081 .. 2671 

.05/ .80 .3300 .2850 .3134 .3038 .2982 .2842 ,3021 I 

.50/ .50 .3052 .2512 , 2686 .2969 .2581 .2491 .2741 

.30/.'5o .3221 .2587 .2689 .2981 .2767 .2749 .27:::6 

.05/ .50 .3322 .2759 . 3006 .3049 .3196 .2753 .2841 

.50/.30 .2785 .2485 .2718 .2638 .2512 .2415 .2621 

.30/ .30 .2870 .2534 .2805 .2710 .2535 .2706 .2697 

.�5/.30 .2983 .3099 .2903 .2862 .2644 .2666 • .2656

�50/.15 ,2506 .2831 .2873 .2738 .2571 .2728 .2473 

.30/.15 .3308 .2753 .2904 .2639 .2771 .2921 .2377 

.05/.15 .2748 .2806 .2746 .2619 .2639 .2801 .2845 
. .

All tests significant 

Critical Region: G>G = 
.05 .2360 
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Galarneau beta 1. Variances of these distributions were compared using 
Cochran's test, normality having been verified with a chi square test 
and sample size being equal. The results appear in Table 1. Cochran's

.test for each estimated beta for every population showed that the four
variances compared were not all equal. To examine the relationship
among the variances more closely, multiple comparisons a •.05/n was
used for .05 significance. This is the correction suggested by Newman
and Fry (1972). 

For high multicol linearity (0.80) the variance of the ordinary
least squares beta was significantly different fr om that of Lawless-
Wang or H"oerl -Kennard-'Baldwin beta for each independent variable. The 

ordinary least squares beta variance was higher than that of any ridge 

beta variance for each of the betas for the seven independent variables.
2 For all population (R • 0.50, 0.30, 0.05) with high muJticolli-

nearity the Lawless-Wang estimator was always significantly different 
from �ha:t of __ tlte_ McDonald���larneau estimator and for a

2 • 0�05, it 
was significantly different from both of the other two ridge !!Stima­
tors. See Figure 2 for gr aphic representation of this information.

Shrinkage Upon Cross-Validation 
2 The shrinkage in R upon cross-validation was not significantly

different among the various regression solutions for eight of the
2 twelve populations including the population with R • 0.50 and high

average absolute intercorrelation (0.80). For the other two popula-
2 2 tions (R • 0.30, and R • 0.05) with high llllllticollinearity there 

2 was a significant difference in shrinkage of R upon cross-validation
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between ordinary least squares and at least some of the ridge solutions. 

For R2 • 0.30, the ordinary least squares R2 shrunk nt0re than the

ridge solutions and for R2 • 0.�5, - the ordinary least squares R.2 shrunk 

less than the other estimators. 

There - is no evidence in the results of this study indicating 

that the ridge regression R2 shrunk less than the ordinary least squares

a
2 for populations with high tUUlticol linearity, a situation in which 

ridge regression is commonly used. 2 The actual value of the shrunken R 

may be more useful than the value of the shrinkage of R2 upon cross-vali­

dation. 

See Figure 3 for graphic representation of shrinkage for varying 

a
2 and average absolute intercorrelation. 

2 Means of R Before and After Cross-Validation

2 Knowledge of the shrinkage in R upon cross-validation may be 

less valuable than knowledge of the final value of a
2 upon cross-

2 validation. The value of the shrun�n R gives

• 2 Shrinkage in R is of less interest. For this 

a lower bound on a
2. 

reason, means of R2 

before and after ·cross-validation were calculated for the ordinary 

least squares solution and the ridge solutions for each population. 

2 _Before cross-val'ida tion, R for the ordinary least squares solution

was greatest. The values of a
2 for the ridge solutions were only 

slightly smaller. After cross-validation values for R2 among the 

solutions were again close in value. McDonald-Galarneau ridge re­

gression produced the largest R2 after cross:-validation for six of 

the twelve populations. Ordinary least squares regression and Lawless-
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Wang regression produced the highest R2 for· three populations each.

MSE 

As expected, the mean square error for ordinary least squares 

regression was significantly different from that of the rid ge solu­

tions for all populations. General ly, the MSE for the rid ge solutions 

were significantly different from each other. For only three popula-

2 □ . 2 � 2 � tions (R -0.50, 1r1 -0.80, R •0.30, 1 r 1 -0.50; R -0.30, 1 r1 -0.15), was.

there no significant difference aioong rid ge MS�. Of the rid ge sol­

ution, the Lawless-Wang solutions had the lowest MSE for six of the 

twelve populations, McDonald-Galarneau for five, and the Hoerl-Kennard­

Baldwin solution for only one of the twelve populations. Graphic repre-

2 sentation of MSE for various values of R and r is seen in Figure 4.

Overall Solution Quality 

If overall quality is measured by the sum of ranks, analyses 

of variance indicated' a significant F-ratio with a probability of 

0.00000 for all populations. Representation of overall quality of 

solution as a function of a
2 and average absolute intercorrelation 

occurs in Figure 5. 

A good sol�tion was operationally defined as one whose sum of 

ranks was less than the mean sum of ranks. The number of good solu­

tions for each method for each population are given in Table 2. For 

2 average absolute intercorrelation of 0.80 and R • 0.50, 2 14 of 200 

Lawless-Wang solutions were considered good compared w1 th 157 of 2 20 

Hoerl-Kennard-Baldwin solutions and 108 McDonald -Galarneau solutions. 

For all other highly multicollinear populations, results were .similar. 
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NUMBER OF GO O D,SOLt.rrIONS i. 

Population 1: 2 
!rl =.80R =.50, 

l Number of Samples: 214 'i 

T;x:ee of Solution Number of Good Solutions 
'J.: 
:!j.' 

Ordinary Least Squares (OLS) 27 
''I r

• 

Principal Components (PC) 13 
1,

. 

Lawless and Wang Ridge (LW) 214 .. , 
Hoerl, Kennard and Baldwin Ridge (HKB) 157 ,{ 

McDonald and Galarnea11 (MG) 108 i' 

/t 

Population 2: 2 R : .30, lrl =.80

Number of Samples: 212 

T;x:£e of Solution Number of Good Solutions 

OLS 23 
PC 
LW 211 

HKB 163 
MG 91 

Population 3: 2 R ::.05, Ir! =.80

Number of Samples: 216 

.Type of Solution Number of Good Solutions 

OLS 22 
PC 10 
LW 216 
HKB 152 
MG 135 

PoeuJation 4: 2 R =.50, lrl =.50

Number of Samples: 215 

T;nie of Solution Number of Good Solutions 

OLS 33 
PC 4 
LW 81 
UKB 177 

MG 184 

15 



NUMBER OF GOOD SOLUTIONS 

Population 5: R2=.30,lrl m.50 

Number of Samples: 2 15 

OLS 
pc 
LW 
HKB 
MG 

Type of Solution 

Population 6: R2= .OS, !rl =.50 

Number of Samples: 2 19 

OLS 
pc 
LW 
HKB 
MG 

Type of Solution 

Population 7: i-;50, Jr! =.30 

Uumbe r of Samples: 2 19 

OLS 
PC 
LW 
HKB 
MG 

Type of Solution 

Population 8: 1/=.JO, Ir! .:..30 

Nt1111ber ot Samples: 217 

OI,S 
re 
LW 
HKB 
MG 

·rype of Soi ut ion

16 

Number of Good Solutions 

33 
-3
165
214
100

Number of Good Solutions 

Number of 

Numher of 

0 
69 

217 
169 
43 

Good 

38 

7 

109 
163 
204 

Solutions 

Good Soluttons 

27 

5 
H3 
2013 
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TABLE 2 

NUMBER OF GOOD SOLUTIONS 

Population 9: R2=.05� Ir! •.30 

Number of Samples: 219 

OLS 
PC 
LW 
HKB 
MG 

Type of Solution 

Population 10: R2=.50, Ir! •.15 

Number of Sampl es: 219 

OLS 

PC 

LW 

HKB 
M 

Type of Solution 

Population 11: R2•.30, Ir! -.15 

Number.of Samples:. 219 

OLS 
PC 
LW 
HKB 
MG 

Type of Solution 

Population 12: R2•.05, lrl •�15 

Number of Samples: 219 

OLS 
PC 
LW 
HKB 
MG 

Type of Solution 

17 

Number of Good Solutions 

39 
8 

217 
166 

Nbmber of Good Solutions 

40 

4 

115 

216 

Number of Good Solutions 

45 
7 

121 
208 
65 

Number of Good Solutions 

27 
8 

174 
217 
tOl 



with Lawless-Wang regression producing the largest number of good solu­

tions. For these same populations, in every case, principal components 

accounting for 100 percent of the trace produced the fewest good solu­

tions followed by ordinary least squares regression. 

One must be cautious in interpreting overall quality of solu­

tion done as a sum of ranks. In summing ranks, equal weighting is 

imposed on .the criteria for good solution: variance of beta error 

in beta, shrinkage upon cross-validation, 'and MSE. This stacks the 

deck against the OLS solution and the principal components solution 

accounting for 100 percent of the trace. Theory tel ls us that ridge 

should·outperform OLS on two of the four criteria used. 

Orientation of the Beta Vector 

To test for interaction of the orientation of the beta vector 

and method of regression solution, the orientation of beta was cate­

gorized and two-way analyses of variance were run. Categorization of 

the orientation became necessary because the smal 1 range the orienta­

tion exhibited in some populations presented serious computational 

difficulties using the ADEPT model comparison and DPLINEAR. For highly 

multicollinear data the interaction between the orientation of beta and 

2 method was nonsignificant. Significant interaction occurred for R =0.05,

- 2 r:, Ir! •0.30, and R �0.50, and 1r1 •0.15 only. For these levels of inter-

correlation, ridge regression would rarely be considered the method of 

choice. Orientation of the beta vector appears of little usefulness 

in choosing among ridge regression methods for highly mul ticollinear 

data. 
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Conclusions 

The results of this study indicate that for high degrees of multico­

llinearity, when stability and interpretability of coefficients is impor­

tant, ridge regression is an attractive alternative to least squares regre-· 

ssion. Low error and small variance of coefficients make ridge regression 

a useful device for anyone wanting to interpret beta weights for any rea­

son, a device that should prove useful to social science investigators 

attempting to look at "causation" through correlation as in path analysis . 

Lawless-Wang ridge regression performed especially well on criteria for 

stability of coefficients in this study. 

The major advantage to ridge regression is � in prediction 

nor in hypothesis testing but in applications for which the sign or 

interpretability of coefficients is important. 

Principal components using all components was equivalent to the 

2 A OLS solution in production of R , Y, and MSE. It was not equivalent 

in variance· or error of regression coefficients. For the principal 

component solution variance of coefficients increa·sed rapidly as com­

ponents associated with lower eigenvalues were added. Evidence from 

this experiment supports the use of a cut-off in using principal com­

ponents regression (Rummel, 1970). More work needs to be done concern­

ing appropriate pl�cement of such a cut-off. 

Values for R2 before cross-validation and values for R2 after

cross-validation were close for ordinary least squares and the ridge 

solutions tested in this study. The value of R2 after cross-validation

seems a more appropriate way of comparing solutions than shrinkage in 

2 R upon cross-validation. 
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The orientation of the eigenvector associated with the largest 
eigenvalue of the X lX matrix with respect to the population beta 
vector does not appear to be useful in choosing among ordinary least 
squares regression, principal components regression accounting for 
100 percent of the trace, Lawless-Wang ridge regression, Hoerl-Ken-
nard-Baldwin ridge regression, or McDonald-Galarneau ridge regres-
sion. 

It is clear from this study that the quality of a solution as 
determined by error in coefficients, variance of coefficients; MSE or 2 
R after cross-validation depends upon the characteristics of the pop-
ulation. There is a strong dependence upon- the degree of multico-1-
linearity. Within a given multicollinearity, there is a dependence 
upon the R

2 
of the population. 

Ridge regression has a distinct advantage over OLS -when stabi-
lity and interpretibility of coefficients is important but not for
purposes �f prediction or hypothesis testing. 

20 



lt 

a 

t 

REFERENCES 

Draper, Norman and Van Nostrand, R. Craig Ridge regression and James 
Stein estimaton: review and comments. Technometrics, 1979, ll_, 
451-465.

Gibbons, Diane Galarneau A simulation study of some ridge estimators. 
Journal of the American Statistical Associatfon, 1981, J.!!.., 131-9. 

Marquette, Jesse and Du Fala, Margaret ADEPT: Advanced Date Enquiry 
Package Time-Shared, 1979. 

Newhouse, Joseph and Oman, Samuel An Evaluation of Ridge Estimators, 
Santa Monica, CA: Rand, 1971, (R-716 PR). 

Newman, Isadore, and Fry J. A response to "A Note on Multiple Compar..: 
isons" and a comment on shrinkage. Multiple Linear Regression 
Viewpoints, 1972, l,., 36-38. 

Newman, Isadore, McNeil, Keith A., Garver, Thomas & Seymour, Gayle A. 
A Monte Carlo evaluation of estimated parameters of five shrink­
age formuli. American Educational Research Association, 1979, 
1-18. 

Rummel, Rudolph J. Applied Factor Analysis, 
Northwestern University Press, 1970. 

Evanston, Illino 1.s: 

Smith, Gary and Campbel 1, Frank A critique of some ridge regression 
methods. Journal of the American Statistical Association, 1980, 
11, 74-81. 

21 




