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Since its introduction in 1970 by Arthur Hoerl, the efficacY‘bf'
ridge'regression has been vigqxously debated by statisticians. Notable
"are the debates in the Journal of the American Statistical Association, -

JASA, in 1980 (smith and Campbell) and in Technometrics in 1979 (Draper

and Van_ndstraﬁd). .Much fesearéh among p:oponents_of ridge regression
concentrated oh éomparisons of-v#rious ri&ge regression solutions.
Dempstex, Schatzoff, and Wetmuthl(1977)‘c0mpared 57_§arietios of ridge
reéression; Galarneau;cibbons'(1981) compared ten of the most promising

ridge algorithma. Both were simulation studies.
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Since the introduction of the Monte Carlo method in 1949 by von
Neumann and Ulam, simulation _studies have ‘b_een frequ_ently. used in sta-
tistics to solve problems otherwise difficnlt or expensive to solve.
Monte Carlo simulation -can be adap_ted to any situation for which a mooel
representing reality can "be designed‘and_ for which a mechanism to simu-
late this molc‘ieli can be effected. |

Ana'lys-is of the recent_ literature of ridge regression ‘reveals
essential agreement that ridge regression is an appropriate alter- .
'native to least souares regression when predictor variables are highly
- intercorrelated. Another theme 1is common. Many researchers from New-
house and Oman in 1971 to Galarneau-Gib-bons' in 71981 also suggest that‘
‘the orientation of the beta vector with respect to the eigenvectors cor-
‘responding to the largest and the smallest eigenvalue of' the X'X natrix
determines the relative performance of ordinary least squares estimators
~and ridge estimators.

Purpose of this Study

-.The question of the predictive. values of the orientation of beta
and/or the average absolute 1intercorrelation among independent varia- -
bles in gulding an investigator's choice of regression method 1s 'in-
teresting and important. The availability of a computer simulation
capable of producing data with given R2 and average absolute inter-
correlation made study of this question possible. -The ‘simulation was
designed for the 1979 comparison of shrinicage formuli by Newman, McNeil,

Garver, and Seymour.

Methods

Twelve populations of 1,000 cases were generated representing four “



different values of intercorrelation among predictor varieb]es (0.80,
0.50, 0.30, 0.15) and three different values of R (0.50, 0.30, 0.05).
_Froin' each” population 220 samples were 'dra‘v'mb_' with replaceuent‘. There
were 50 cases per sampl'e'."

For each sample generated Marquette and Du Fala s statistin.al
package ADEPT (1979) was used to calculate the ordinary least sgquares
solution, the principal components solution and three ridge solutions.
The ridge solutions chosen ,were the Lawless;wang so}ution, the McDonald-
Galarneau solution, and a _'Hoerl-l(ennard-Ba'ldwin’soiution. The Hoerl-
Kennard-Baldwin'solution .is imnortant_ histori,c_,ally;.'and becaus'e of its
_good:perform;ance'. in- pre\'rio_us studies. .'I'he Laﬁless-wanglsoiution is a
- Bayesian solution derived from the assumptions Y"-N(.XB,'CI.ZI.) and
B'N(O,agl’) ' with the tidge 'lparameter k = ‘oz /°§ estima:te,d by
k = pszl Z A iyi. The McDonsld-Galarneau solution is an iterat'iue so:lution
which estimates the true length of the heta Vect-or-hy Q = 3'?3 - .sz-_z 11.1
and then nicks k to minimize l'é?(k) a'_,(k_)' - Q|. This proeedure defaults
to'o'rdi‘nary least squares i{f Q is negative.. These three methods of de-
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Jtermining k were different enough in derivation to be interesting to
compare. .

The study was a 3 x 4 x 5 factorial design. There were three.
values f'or Rz, four for average ebsolute intercorrelation and five
regression -.methods . | |

The various regression solutions were ranked .on four .criteria: 7-

1. Average variance of re.gression coefficients-. |

2. Error in regression coefficients as measured by
(B-B) (B-B)-



3. Mean square error.

4, Shrinkage of R2 upon croSs—va}idation.

o For each sample, solutions were ranked from one to five with smaller

rank indicating more desireable solutlon. Ranks were then summed for
each solution on all criteria to glve an. overall measure of quality of
solution. | |

The orientation of the coefficient vector, beta, vith respect
to the eigenvector agsocilated with the largest eigenvalue of the X X
matrix was calculated for each sample. For some'populations the range ‘
“of values for the orientation was small enough to cause computational
difficulty in the computer packages used in this study. For this rea-
son, the orientation of beta was categorized and interaction between
‘regression method and the orientation. of beta was determined using
two-way analysis of variance. The decision to categorize the orien-
‘tation of beta 1s discussed further in the results section.f
Results

Since this“study was exploratory, a significance level of .G =,05
was used. When multiple comparisons were made, the correction suggested
by Newman and Fry, a=.05/n, was applied (Newman and Fry, 1972). All

tests were two-tailed.

Error in Beta

For all populations with high average absolute'intercorrelation,

- A AL .
I:q =.80, the error in.beta as measured by (B-f)'(B-8) was significantly
g.different for ordinary least squares regression and each of the ridge

solutions tested For high mnlticollinearity, the error in'beta for



‘each ridge solution was sig'nificantly different from ‘that of euery
- other ridge solution with only one exception: Lawless-Wang-‘. error in
" coefficients uas not  significantly different. from that of Hoerl-Ken-
nard-Baldwin - for the population with R2=.50 and m --.80{ -For each.
of the populations with high multicollinearity, Lawles's'-'-Wang regres-
sion produced the smallest error in coefficients while ordinary least .
squares and principal components. reéression accounting for 100 percent
of the trace produced the largest error in coefficients.
For moderate multicollinearity (0.50 and 0O .30), there was _always
a s'ign_ifican"t difference between the error in beta for ordinary. least
squares and ‘each ridge solution's error in beta. 'l'he error_ for the
com_plete principal components solution 'aliso Iwas significantly_ di_ff_erent
from that of each of the ridge solutions. Error in beta‘di‘d not differ -
significantly 'for OLS“ and complete ‘principal coinponents .soluti_ons'.
For low multicollinearity (rr.[ =.15); ordinary least 's-qua_re..s‘ re-
gression -and V_conxpl_ete_ ‘princi‘p»al _components regression produced‘r_sign-'.
ificantly different error_-of' ..‘b‘eta from- each ,other as well as from
" each ridge solution. '

For graphic representation of these results, see Figure 1.

Variance of Betas

’

For each populati‘on, for ‘any. given .method', ~the coefficients of

-e'ach independent' variable - formed a distribution-.‘ Thusf'if beta 1 is

"+ the coefficient of the first independent variable, a distribution for

the ordinary least squares beta would exist, as well as one for the.‘

Lawl_ess-Wang-beta' 1, the Iloerl—Kennard—Baldwin b_eta 1, and the McDonald- ;



~ FIGURE I
Error in Regression Coefficients as a
Function of Solution Type, R?.'and r|
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TABLE 1

Summary of Results of Cochran's Test for Variance of Betas

Population | '_'j - Cochran's G for

Parameters -~

R || 8, B, B, 8, B, B 8,
.50/.80  .3480  .2661  .2979  .2785  .2827  .2825  .2695

.30/.80 3537 .2881  .2509  .3113  .2950  .3081  .2671
.05/.80  .3300  .2850  .3134  .3038  .2982 L2842 3021
.50/.50  .3052  .2512  .2686  .2969  .2581  .2491 L2741
.30/.)50  .3221  .2587  .2689  .2981.  .2767  .2749  .2726
.05/.50  .3322  .2759  .3006 - .3049  .3196  .2753 L2841
.50/.30  .2785  .2485  .2718  .2638  .2512  .2415  ..2621
30730 .2870  .253% .2805  .2710 | 2535 .2706  .2697
.05/.30  .2983  .3099 2903 L2862 .2644  .2666 2656
:50/.15 2506  .2831 - .2873  .2738  .2571  .2728 2473}
30/.15 3308 L2753 .2904 2639 2771 L2921 L2377
.05/.15  .2748 2806 .2746  .2619  .2639  .2801  .2845

All tests significant

Critical Region: G>G 05 = .2360 .




: . FIGURE 2
Average Variance of Regression goefficiqgts as
& Function of Solytion Type, R%, and NE|
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Galarneau beta 1. Variances of these=distributions were 'compared using
Cochran’'s test, normality having been verified with a chl square test
and sample size being equal. The results appear in Table 1. Cochran's
test for each estimated beta for every Population showed that the four
variances compared were not all equal. To examine the relationship
among the varlances more closely, multiple comparisons ®=,05/n was
used for ;05 significance'. This is the correction su.ggested by Newman
and_ Fry (1972). |

For high multicollinearity (0. 80) the variance of . the ordinary
least squares beta was significantly different from that of Lawless-
Wang or Hoerl-Kennard-Baldwin beta for each- independent varlable. The
ordinary least squares beta variance was higher than that of any ridge
beta variance for each of the betas for the seven independent variables.

For all population (R = 0.50, 0.30, O. 05) with high multicolli-
nearity the Lawless-Wang estimator was always significantly different_
from that of the McDonald-Galarneau estimat__or_l and for R2 = 0.05, 1t
vas significantly different from both of the other two ridge estima-

tors. See Figure 2 for graphic representation of this infomation.

Shri__nka e Upon Crogg-

The shrinkage in R2 upon cros_s-validation was not significantly

different among the various regression solutions for eight of the
‘twelve ‘populations. including the population vith ‘Rz = 0.50 and high
average absolute intercorrelation (0.80). For the other two popula~-
tions (R2 = 0.30, and R2 - 0.05) with high mlticollinearity there

was a significant difference in shrinkage of R2 upon cross-validation



'FIGURE 3

-Shrinkage in R2 upon-Cross-Validatioh ﬁ a

3.3

3.2

N AV} U
Y - [ ] -
o Q -

N
.
[o]

ge in R? upon Cross-Validation (Rank)
NN NN
R R
i T

Shrinka
N »
- )
T 1

N
.
. =3
-0

- Function of Solution Type, R2, and [T

Key

0=0LS Solution
P=PC Solution
- W=LW Solution
H=HKB Solution
G=MG Solution

1 2 3 4 5 6 7 8 9 10 11 12

.50 .30 .05 .50 .30 .05 .50 .30 .05 .50 .30 .05

.80 .80 .80 .50 .50 .50 .30 .30 .30 .15 .15 .15

Population

10



, FIGURE
Average Rank of Mean
Function of Solution
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oetween ordinsry least squares and at least some of the ridge solutioms.
For Rz = 0.3'0; the- 'or‘dinaryl‘leas_t. squares R2 shrunkt more ‘than the
ridge solntions and for R2 = 0.05, the ord_in_ary least squares Rz'shrunk
less than the other estimators. |

There is no evidence 1in ‘the results of this study indicating
that the ridge regression R2 shrunk 1ess than the ordinary least squares
' Rz for populations ‘with lhig_h nn_xlticollinearity, s situation in which
"ridge ‘regression is -eommonly used. The actualr yal'ue of the shrunken _Rz-
- may be more usefull. than the value of the shrinkage of R2 upon_ cro,ss-vali-.
dation. |

See "'l_"igure 3 for graphic. representation of 'shrinksge-. for varying

RZ and average absolute inter'eorrelation,.

Heans of Rz Before and After Cros's-Val.idation- |

Knowledge of the ."shrinksge in R2 upon ‘cross-vslidstion may be
le_ss' valusble_ than knowledge of the final value of R2 upon 'cross.-
.valida‘tion. The value of the shrunken R2 gives a iower bound on Rz.
Shrinkage in .Rz is of. less interest. For this reason, means of_R2
before and afteri 'cross'-validation were_calculated’for the ordinary
least squares solutlon and the ridge solutlons for each population.
~ Before cross-‘}al‘idation, Rz'forr the ordinary least squares solution
was greatest. The values of RZ for the ridge so'lutions were only
slightly smaller. After cross-validation values for -R2 among the
solutions were again close in value. McDonald-Galarneau ridge re-
gression nroduced the largest R2 after cross—validation for six of

the twelve populations. Ordinary least squares regression and Lawless-
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FIGURE 5.
Quality of Solution as a Function

of Solution Type, R2, and ];T

Key

0=0LS Solution

' o : P=PC Solution
154 _ : W=LW Solution
H=HKB Solution
G=MG Solution

144

134

12

L]

10%

Quality of Solution  (Sum of Ranks)

o
8-; - '
Tt

01 2 3 4 5 6 7 8 9 10 11 12

R2 .50 .30 .05 .50 .30 .05 .50 .30 .03 .50 30 .05

= .80 .80 .80 .50 .05 .50 .30 .30 .30 .15 .15 .15
Populations '

13



Wang regression produced the h-ighest Rz for threé. populations each.

MSE

As expected, the wean square error for oirdinaty least squares
regressiﬁn was significantly different from .that of the ridge solu-
tions for ‘all populations. Generally, the MSE for the ridge solutions
were siign..lficantly diffe;ent from each other. ‘For only three ‘popula-
tlons (R2=0.50, [T] =0.80; R%=0.30, [T] =0.50; R2=0.30,[ %] =0.15), was.
there no significant difference among ridge MS.EA. bf the 'ridge -sol-
utj.on,- the. Lawless~Wang solutions had the lowest MSE for six of the
twelve populations, ;McDonald-Galarneau for f_:l.ve, and the Hoerl-Kenhard— '

Baldwin solution for only one of the twelve populations. Graphic repre-

sentation of MSE for various values of R% and r 1is seen in Figure 4.

Overall So] ution Quality

If ove_;all quality 1s weasured by the sum of ranks, analyses
of varignce indica_.j_:edi a significant .F—‘-r_ati'o with a probébility of
0.00000 for all populatlioms. 'Répre?.entation 'of overall quality of
solution as a function of R2 and ;ver:.a‘;a -absolut;a Vintetéorrelation
occurs 1in Figure S.

A good s’olgt:lon w#s operationally d.efined.a-s one whose sum of
ranks was less than the mean sum of ranks. The number of good solu-
tions for each mef.hod for each pdpulation are given in Table ‘2. For

average absolute intercorrelation of 0.80. and Rz

= 0.50, 214 of 200
Lawless~Wang solutions wére considered good compared with 157 of 220
Hoerl-Kennard-Baldwin solutions and 108 McDonald-Galarneau solutions.

For all other highly multicollinear populations, results were .similar.

14



TABIE 2

NUMBER OF GOOD. SOLUTIONS

Population 1: ‘R2=.50,[r, =.80

Number of Samplesi 214

Type of Solution

Number of

- Number of Good Solutions
Ordinary Least Squareé (0oLS) 27
Principal Components (PC) 13-
Lawless and Wang Ridge (LW) 214
Hoerl, Kennard and Baldwin Ridge (HKB) 157
McDonald and Galarnean (MG) 108
2
Population 2: R":.30, [r]| =.80
- Number of Samples: 212
Type of Solution __Number of Good Solutions:
OLS 23
PC 9
LW 211
_ HKB 163
MG - 91
Population 3: R2=.05LJ;1 =.80
- Number of Samples: 216
.Type of Solution . Number of Good Solutions
OLS . 22
PC 10
LW 216
HKB 152
MG 135
9 _
Population 4: R"=.50, |r| =.50.
Number of Samples: 215 |

Good Solutions

Type of Solution

OLS
‘PC
LW
HKB
MG

33
4
81
177
184
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g

. NUMBER OF GOOD .SOLUTIONS

Population 5: R2=.30,|r|-#.50

Number of Samples: 215

Type of Solution Number of Good Solutions
OLS _ : 33
pC .3
LW - 165 -
HKB S ' : B 214
MG - ’ - . : ‘ 100

Population 6: Rza 05, 1rl=,50

Number of Saﬁples: 219 .

Type- of Solution . | . .Number Oé-GQOd Solutions
oLs . - | 0
pC ) : _ - . 69
LW 7 : 217
HKB o ' : 169

MG o ' _ _ ‘ 43

Population 7: R?a;SO, frf=.30

Number of Samples: 219

Typé of Solution ' Number of Good Solutions
oLs | | 38
pC 7 : 7
LW _ 109
HKB o 163

MG . | ‘ 204

Populaﬁion.B: R2=.30, le] =.30

Numbér'of Samples: 217

A AT iAte. S & G

Type of Solution Number of Good Solutions
oLS | | 27
PC ' ' 5
LW 313
RKS : : : 206
MG , : - 157

16



TABLIE 2

'NUMBER OF GOOQD.SOLUTIONS

Population 9: R2=.05;lrl =.30

Numbér of Samples: 219

Type of Solution. -  Number of Good Sojutions

OLS | : R : 39
PC \ - | .8
LW S o - 217
HKB , : o ' | 166
MG _ _ o L 99

-PogulationIIO: _R2=;50,]rl'=.15

. Numbér of Sampiesi_'219i

-rype of Solution 5 -_ ‘ thber of Good Solutions

OLS - : R ; S 40
PC . : SR 4
HKB ' o 1216
MG | X TR S 153

Popglation 11: . 32=.30,l:17=.15

Numberfpf‘Samples:‘ 219

N Type of Solution . . B Number of Good Solutions

. OLS : - ' I 45
- PC o S 7
LW | ; : R L o 121"
HKB - o 208
MG _ o . o 65

Population 12: R>=.05, |r] =.15

Number of Samples: 219

‘Type of Solution ~ Number of Good Solutions

oLs | . o - 27
PC . ' 5 ' 8
LW | - - SR | 174
" HKB | R 217

17



with Lawless—Wang,regression.ptbducing'the largest number of good solu-
tions. For these Samg_populations, in every case, p:;ntipgl'cbwpdﬁénts
accduﬁting-for 100 péréent'of‘thé trace produéed the fewest good solu-
tions followéd by opdinarylleast squares regression.

| One must be cautious in interpreting overall quality_ of 'solu-
tion done as a suin o ranks. In .summing ranks, equal weighting 1is
imposed pni,ﬁhe criteria for good solution: variance of beta error
‘in beta, shrink&ge upoﬁ crossfvalidation, and MSE. This stacks the
dgék -agéinst the OLS solution and the ptincip;i compongnté.-éolﬁtion
accodnting for 100 peréent of the trace. Théo;y tellg us th#f ridge

should“outpetform OLS on two of the four criteria used.

Orientation of the Beta Vector

To test for interaction of the orientation of the beta vector
and method of regression solution, the orientation of beta was cate-
gorized and two-way analyses of variance were run. Categorizatidn @f

the orientation became necessary because the small tangé the orienta-

tion exhibited in some mpopulations “;fésént;&w‘serious cbﬁputatiéﬁ;im
‘difficulties using the ADEPT model éomparison and DPLINEAR. For highly
multicollinear data the interaction between the orientation of‘beta and
method was nonsignificant. Significant interaction occurred for R2=0.05,
r;] =0.30, and R2 =0.50, and r;] =0.15 only. For these levels of inter-
correlation, ridge regfession would_rarely be considered ﬁhe.method of
choice. Orientatlon pf the beta vector appears of little gsefulness
1n‘chdosing among ridge regression méthods for highlyimulticollinear

data.'
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Conclusions

- The results of this study indicate that for high degrees of multico-
llinearity, when stability and 1nterpretab111ty of coefficients is impor-
tant, ridge regression is an attractive alternative to leést squares regre=-
ssion. Low error and small variance of coefficients make ridge regressiop
a useful device for anyone wanting to interpret beta weights for any rea-
son, a device tﬁat should prove useful to social science investigators
attempting to look at "causation" thrOugh'correlaﬁion as in path analysis.
Lawless-Wang ridge reéreséion pertormed especially well on criteria fof
stability of coefficients'in this.study.

The major advantage to  ridge regreséiqn‘ is not 1in prediction
nor in hypothesis testing but in applications for which‘the sign or
interpretability of coefficientsis important. |

Principal components using all compox;lents was equi"va]ent to the
OLS solution in'producflon of RZ"Q’ and MSE. It wa§ not equivalent
in variance or error of regression coefficlents. For the principal
compopent solution varlance of coefficieﬁts increased rapidly as com=-
ponents associated with lower eigenvalues were added. Evidence from
this experiment supports the use of a cut-off in using principal com-
ponents regréssion (Rummel,1970). More work needs to be done concern-
ing appropriate plgcement ofvsucha cut-off.

Values for RZ- befo;e cross-validation and ‘values for R2 af ter
cfoss-validation were close for ordinary least _équares and the ridge
solutions tested in this study. The value of R2 after cross-validation
seems a more appropriate way of comparing solutions than shrinkage in

R2 upon cross-validation.
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The orientation of the eigenvector assoclated with the largest
eigenvalue of the' X*X matrix with respect to the population beta
vector does not appear to be useful in choosing among ordinary. 1east
squares Aregtession, principal Components regression accounting for -
100 .percen't of the trace, Lawless-Wang ‘ridge regression, Hoerl-Ken-
nard~Baldwin ridge regression, or McDonald-Galarneau ridge regres-
aion.l | |

It is clear from this study that the quality of a solution as.

determined by error in coefficients, variance of coefficients, MSE or

Rz after cross-validation depends upon the characteristics of the pop-
ulation. There is a strong dependence upon.- the degree of multicol-
linearity. Within a given niulticollineatity, there is a dependence
upon the R2 of the population.

| Ridge regtession has a distinct advantage over OLS when stabi—
lity and intetpretibility of coefficients-is important but not forl

purposes of prediction or hypothesis testing.
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