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Abstract 

-

The computation of the multivariate nonparametric analysis of variance 

requires matrix manipulations that are not familiar to many researchers. It 

is shown that the multivariate test statistic for the two group case can 

easily be computed with the aid of a conventional multiple linear regression 

computer program. 

Presented at the annual AERA meeting March 19, 1982, New York City. 

Introduction 

In the randomized two group univariate analysis of variance case, situa­

tions arise where the nonparametric Mann-Whitney test is recommended in place 

of the parametric ANOVA I or! test or the corresponding regression analog. 

The choice between these parametric and nonparametric alternatives should gen­

erally be based on the nature of the population distributions and the adequacy 

of the measurement of the response variable. In the case that the population 

distributions approximate normality and the response measures are known to be
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carefully obtained, the parametric procedures are generally chosen. This is 

because the relative efficiency (both asymptotic and small sample) of the non­

parametric test relative to the parametric test is about ,95. That is, if we 

compute the ratio of the sample sizes associated with the parametric and non­

'parametric tests having the same power and probability of Type I error, we 

find that fewer subjects are required for! or J!. than for the Mann-Whitney. 

Alternatively, when the sample size is constant, the power of the parametric 

test is greater. Many data analyzers appear to discount the usefulness of 

nonparametric alternatives for this reason and because the F test is said to be 

'"robust" or insensitive to departures from distribution assumptions. It turns 

out, however, that a good case can be made for employing nonparametric statis­

tics in certain situations. 

l£ the population distributions are clearly nonnormal (e.g., exponential, 

rectangular, two-tailed exponential or long-tailed Cauchy) the parametric test 

is reasonably robust (using the typical textbook definition of robustness) but 

this does not mean that the inferences concerning the population means based 

on the sample means are equally �ood under all types of nonnormal distributions. 

The point here is that there is a difference between the effects of different 

types·of nonnormality on a test criterion (such as£_} and the effects on 

inferences made about paramaters. The former has to do with the concept of 

"criterion robustness" whereas the latter issue is that of "inference robustness". 

The reader is referred to Box and Tiao (1973) as the basic source on this distinc­

tion. The issue here is that the sa-mple arithmetic means _associated with a 

conventional parametric ANOVA may be inappropriate as estimates of the corres­

ponding population means with certain types of nonnormality. The next point 

has to do with relative efficiency under nonnormality. 
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It was pointed out earlier that parametric .E_ or! is generally preferable 

to the Mann-Whitney when normality is present because the relative efficiency 

of the latter is about .95. But what happens to the relative efficiency or 

power when the population distributions are clearly not normal? 

If the deviation from normality is one of the long-tailed distributions, 

the Mann-Whitney test is far more efficient. For example, the asymptotic rel­

ative efficiency of the Mann-Whitney when the populations are two-tailed ex­

ponential is 150%. If the population distributions are Cauchy the asymptotic 

relative efficiency o·f the Mann-Whitney is oo (infinity) and the efficiency of 

t or F is zero. 

The practical data analyzer should not conclude that there is no use for 

nonparametric tests such as the Mann-Hhitney just because he/she does not en­

counter extreme nonnormality. There is a second reason why one should consider 

the use of nonparametrics. 

It is not unusual, especially in large studies that involve many variables, 

to encounter "outliers" or scores that are extreme relative to others in the 

distribution. Sometimes these extreme scores can be attributed to instrumen­

tation failures or clerical errors. In these situations it makes sense to 

eliminate the obviously invalid scores from the analysis. But it is frequently 

the case that we don't know whether an extreme observation is the result of 

invalid measurement or not. When this happens it is not clear whether the ob-

servation should be discarded or left in the sample. A reasonable strategy 

in this situation is to transform the data in such a way that the extreme 

score(s) has less influence in the estimation of parameters than when raw data 

are employed. The ranking transformation, which is a part of the computation 

of the Mann-Whitney test, is a simple and effective·way of decreasing the in-

25 



fluence of outliers. Since the chance of encountering an outlier increases 

with the number of variables analyzed, it is argued here that nonparametric 

procedures should be given serious consideration in large exploratory studies. 

Purpose of Nonparametric Multivariate Analysis of Variance 

When multiple dependent variables are employed in a two�group study it is 

frequently suggested that a multivariate analysis of variance or the mathe­

matically equivalent Hotelling T2 be computed. These approaches are employed 

rather than (or in addition to) univariate tests on each dependent variable 

for two reasons. First, the univariate approach ignors possibly useful infor­

mation concerning the covariances among the various response measures. Second, 

the multivariate methods control the probability of Type I error for the whole 

family of response measures. That is, the probability of making one or more 

Type I errors in the whole collection of dependent variable tests is equal to 

or less than the alpha level selected for the analysis. When studies contain­

ing multiple dependent variables are analyzed using univariate tests the prob­

ability of making a Type I error is greater than the nominal alpha associated 

with each test. Hence the multivariate approach involves running an overall 

test that simultaneously considers all dependent variables at once. 

In the case of the two-group multivariate nonparametric analysis of variance, 

the null hypothesis is written as follows: 

where vii is the location parameter associated with the ith dependent 

vatiable and the jth population and·
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�and� are the vectors of the location parameters associated 
populations 1 and 2. 

This is the hypothesis that the two populations are identical with respect 

to the p response measures. If this overall hypothesis is rejected there are 

several procedures that are appropriate for the identification of the depen-
4(HlrifC.l.ti>I•#• 

dent variable(s) responsible for the overall test\ A simple approach is to 

run a Mann-Whitney test on each dependent variable. Issues associated with 

employing tests subsequent to the overall multivariate test are beyond the 

scope of the present paper. 

The nonparametric multivariate techniques are virtually unused at the 

present time because they have been developed recently and the basic references 

(e.g., Puri and Sen, 1971) have been written primarily for mathematical statis­

ticians rather than research workers. The purpose of this paper is to describe 

a simple procedure for computing the two group nonparametric multivariate 

analysis of variance with the aid of the output of a conventional multiple 

linear regression computer program. 

Conventional Computation 

The Puri and Sen nonparametric multivariate ANOVA procedure involves the 

computation of the test statistic (N - l)trBT-1 

1 is the between or among group sum of products of ranks matrix and 

T-1 is the inverse of the total sum of products of ranks matrix.

Thls test statistic* is evaluated as a chi square with p(J - 1) degrees

of freedom where p is the number of dependent variables and J is the number of 

groups. 

*While Puri and Sen (1971) have shown that their test statistic NtrBT-l

is asymptotically distributed as chi squ�re, the small sample properties are
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Regression Procedure 

The multiple regression solution requires the following steps: 

1. Construct a data matrix that contains a dummy variable to identify sub­

jects in the two groups (column 1), all other columns contain the ranks

ass.ociated wit.h the p dependent variables included in the design.

2. Regress the group membership dummy variable on the ranks of the dependent

variaole scores to obtain the multiple rank correlation coefficient Rs

3. Square Rg

4. Multiply N-1 times R; to obtain.the test statistic. That is,

It can be seen from a comparison of the conventional and regression

approaches that the test statistics are (N-l)trBT-l and (N-l)R2 respectively.s 

It follows that, 

-1 2 
trBT • R .s 

A proof is presented in the Appendix. 

not known (Puri, 1974). I have chosen to define the test statistic as 

(N - l)trBT-l because (a) this statistic is also asymptutically 

distributed as chi square with p degrees of freedom under the null hypothesis 

of identical populations and (b) this statistic reduces (exactly) to the 

Kruskal-Wallis chi square statistic in the case of one dependent variable. 

Since the small sample properties of the Kruskal-Wallis statistic have been 

found to differ little from the asymptotic results, it· would be suprising if 

the small sample properties of the multivariate generalization suggested here 

differ from the theoretical results. There will be almost no difference in 

the results obtained using these two formulas with respectable sample sizes. 
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Example Raw and Ranked Data from a Two Group Design 
with Three Dependent Variables 

Raw Scores 

Group I Group II 

Y1 Y2 Y3 Y1 Y2 >'3 

3 10 12 21 56 11 
17 17 7 27 57 10 
20 51 5 35 62 6 
70 53 0 38 63 1 

Ranked Scores 

Group I Group II 

Y2 ranks Y3 ranks Y1 ranks y2 ranks Y3 ranks 

1 8 4 5 7 
2 5 5 6 6 
3 3 6 7 4 

4 1 7 8 2 
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Computational Example 

- The computation of the multivariate test statistic for the data contained

in Table l is summarized below for the conventional and regression solutions. 

Conventional Solution 

B = 

-1T = 

BT-l =

-1tr n = 

t
8.oo
6.00
2.00

t
.12877 
. 07241 
.06746 

[
00649 
01298 
00162 

.00649 + 

16.00 2.00
U 32.00 4.00 

4.00 0.50 

-.07241 .0674
� .06857 -.02732 

-.02732 .06319 

.46319 .2288
u.92638 .45772 

.11579 .05722 and 

. 92638 + . 05722 = .99009. 

-1 The test statistic is (N - 1) trBT = (7). 99009 = 6. 93. Since the critical 

value of chi square based on p(J - l) = 3(1) • 3 degrees of freedom is 7.81 

for alpha= .05, the overall multivariate null hypothesis is retained. 

Regression Solution 

Step 1 Construct the data matrix as shown below. 

(1) (2) (3) (4)

Group Membership yl y2 y3 

Dumm:r: Variable Ranks Ranks Ranks 

1 1 1 8 
l 2 2 5 

3 3 3 
1 8 4 l 
0 4 5 7 
0 5 6 6 
0 6 7 4 

7 8 2 

It can be seen that all subjects in the first group have been assigned 

the dummy score of one and all subjects in the second group have been assigned 
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the dunnny score of zero. 

Step 2 Regress the group membership dummy variable (column 1) on the ranks

Step 3 

Step 4 

of the dependent variable scores (columns 2, 3, and 4). The resulting
multiple correlation coefficient (actually the multiple rank correlation
coefficient R )  is .99503.

s 

Square R
s

. 

2 
Multiply R

s 

R
2 

is .99009. s 

by N-1. (8-1) .99009 = 6.93 = x2
. Notice that this

is the same value obtained with the conventional computation procedure.
Since the obtained chi square does not exceed the critical value of 7.81

the following hypothesis is retained:

"o' [::j-[:::J 
lv,l v32 

There is insufficient data to conclude that the population distributions 

are not identical. Since the overall hypothesis is not rejected there is no 

justification for additional tests on the individual dependent variables. 

In conclusion, the nonparametric multivariate analysis of variance is a 

useful method for dealing with long tailed population distributions, possible 

outliers, and increased probability of Type I error associated with multiple 

response measures. It is easily computed with the aid of any multiple regres­

sion computer program. 

There is an alternative to the multivariate nonparametric analysis of 

variance for handling the problem of increased Type I error that is simple, 

effective and easily understood. This approach is described elsewhere 

(Huitema, forthcoming). 
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S!JMMAR.y 

There are two situations in which nonparametric procedures such as the
Mann-Whitney test should be considered as useful alternatives to the parametric
analogs: (1) when the population distributions are of certain nonnormal forms
and (2) when the data contain unknown outliers. If responses are obtained on
multiple dependent variables both of these problems are more likely to occur
than in the univariate case.

- �--------------·· 
An additional problem associated with the multivariate case is an increase

in the probability of Type I error; that is, as the number, of dependent vari-
ables is increased the probability of making a Type I error increases. One
method of controlling Type I error is to employ the Puri-Sen nonparametric
multivariate analysis of variance. It appears that the Puri-Sen method has
virtually never been used. This is so because (a) the original papers pre-
senting this procedure were written for mathematical statisticians (and are
inscrutable for the typical research worker), (b) there are no secondary sources
that describe the procedure, and (c) there are no widely distributed computer
programs available to carry out the analysis.

The Puri-Sen test statistic can easily be computed for the two-group case
by regressing a group membership dummy variable on the rank-transformed depen­
dent variables and multiplying the resulting R2 by N-1.
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