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Abstract
The computation‘of the multivariate nonparametric analysis of wvariance
requires matrix manipulations that are not familiar to many researchers.‘ It
is shown that the multivariate test statistic for the two group case can
easily be computed with the aid of a conventionai multiple linear regression

computer program.
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Introduction

In the randomized two group univariate analysis of variance case, situa-
tions arise where the nonparametric Mann-Whitney test is recommended in place
of the parametrié ANQOVA F or t test or the corresponding fegression analog.
The choice between these parametric and nonparametric alternatives should geh-

erally be based on the nature of the population distributions and the adequacy

of the measurement of the response variable. In the case that the population

distributions approximate normality and the response measures are known to be
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carefully obtained, the parametrié p:ocedures are generally chaseﬁ; This is
because the relative effic;encf (both asyﬁptotic and small sample) of the non-
parametrié test relative to fhé parametric test is about .95. That 1s,.if;we
c@mpute the-tatio'&f the sample sizes associated with the parametric and non-
‘parametric  tests having the_éame'pdwef and‘prbbability of Type I érrdr,,we
find that fewer subjects are required for t or E than for the Mann-Whitney.
Alternatively, when the sample size is cbnstant, the power of the parametric
test is greater. Many data'analyzers appear to discount the uéefulness of
nonparametric alternatives for this reason and:because the E{test is said to be
"~ M"robust" or insensitive to departures from distribution aésumptioné. ’It’tu:ns
.out, however, that a good case can bé made for employing nonparametric s;étis—
tics in certain situations. /

1f the population distributions are‘clearly ﬁonnormal (e.g., exponential,
recténgular, t%o-tailed exponential or-long-tgiled Cauchy) the parametric test
is reasonably‘robust tusing the typical textbook definition of robustness) but
this does not mean that the inferences concerning the population means based
on‘the sample means are equally good under all types of nonnormal disﬁfibutiohs}
’The point here is that there is a differénce between the effects of different

types of nonnormality on a test criterion.(such as F) and the effects on

inferences made about paramaters. The former has to do with the concept of

"criterion robustness' whereas the latter issue is that of "inference robustness'.
The reader is referred to Box and Tiao (1.9_73) as the basic source on this distinc-
tion. The issue here is tﬁat‘the sample arithmetic means associated with a
_conventional'parametric ANOVA may be inappropriate as estimates of the corres-
pbndingjpopulation means with.certain types of‘ndnnormality. The next point.

has to do with relative efficiency under nonnormality;.
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It was pointed out earliér that parametric t or F is generally preferable
to thé Mann-Whitney when normality is present because the relative efficiency
of the'lﬁtter is about .95. But what happens to the relative efficiency or
power when the population distributions are clearly not normal?

If the deviation from normélity is one of the long-tailed distributions,
the Mann-Whitney test is far more efficient. TFor example, the asymptotic rel-
ative efficiency of the Mann-Whitney when the populations are two-tailed ex-
ponential is 150%. If the population distributions are Cauchy the asymptotic
relative efficiency of the Mann-Whitney is « (infinity) and the efficiency of
E'orlz is zero.

The practical data analyzer should not conclude that there is no use for
nonparametric tests such as the Mananhitney just because he/she does not en-
counter extreme nonnormality. There is a second reason why one should consider
the use of nonparametrics.

It is not unnsual, especially in large studies that involve many variables,
to encounter "outliers” or scores that are extreme relative to others in the
distribution. Sometimes these extreme scores canlbe attributed to instrumen-
tation failures or clerical errors. In these situations it makes sense to
eliminate the obviously invalid scores from the analysis. But it is frequently
the case that we don't know whether an extreme observation is the result of
inva%id measurement or not. When this happens it is not clear whether the ob-

servation éhéuld be discarded or left in the sample. A reasonable strategy

in this situation is to transform the data in such a way that the extreme
score(s) has less influence in the estimation of parameters than when raw data
are employed. " The ranking transformation, which is a part of the computation

of the Mann-Whitney test, is a simple and effective way of decreasing the in-
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fluence of outliers. Since the chance of encountering an outlier increases
with the number of variables analyzed, it is'argued here that nonparametric

procedures should be given serious consideration in large exploratory studies.

Purpose of Nonparametri¢ Multivariate Analysis of Variance

When mul;iple‘dependentrvariables are employed'in a twoégroﬁp study it 'is
frequently suggested that a multivariate analysis of variance or thé mathe-
"matically equivalent Hotelling T2 be computed. These approaches afe employed
rathér than (or in additién tp) univariate tests on each dependent variable
for two reasomns. First, ;he univariate approach ignors possibly useful infor-
mation Céncerning the covariances among the various response measures. Second,
the multivariate methods control the probability of Type I error foér the whole
family of résponse measures. That is, the probability of making one or more
Type I errors in the whole collection of'depéndent variable tests is equal to
or less than.thé aipha level selected for the analysis. When studies contain-
ing multiple dependent variables are.analyzed using univériate tests the prob-
ébility of making a Type I error is gfeater than the nominal alpha associated
with each test. Hence the multivariate'approéchVinvolves ruﬁning an overall
test that simultaneously consideré all dependent variables at once.

In the case of the two-group multivariate nonparametric analysis of variance,

the null hypothesis is written as follows:

\)11 F\)lz .
V21 V22
HO .}.)...1 = '\')-2 or - = .
\)pl \)PZ |

is the location parameter associated with the ith dependen

where vy 1
va}iable and the jth population and "
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v] and v, are the vectors of the location parameters associated
populations 1 and 2.

This is the hypothesis that the two populations are identical with respect
to the p response measures, If this overall hypothesis is rejected there are
several procedures that are appropriate for the identification of the depen-

"dent vériable(s) responsible' for the overall tég:‘“’g‘éimple approach is to
run a Mann-Whitney test on each dependent variable. Issues associated with
employing tests subsequent to the overall multivariate test are beyond the
scope of the present paper.

The nonparametric multivariate techniques are virtually unused at the
present time because they have been developed recently and the basic references
(e.g., Puri and Sen, 1971) have been written primarily for mathematical statis-
ticians rather than research workers. The purpose of this paper is to describe
a simple procedure for computing the two group nonparametric multivariate
analysis of variance with the aid of the output of a conventional multiple
linear fegression-computer program.

Conventional Computation

The Puri and Seﬁ-nonparametric multivariate ANOVA procedure involves the
computation of the fest statisti; (N - 1)trBT-1

§;is the between or among group sum of products of ranks matrix and

Ifl is the inverse of the total sum of products of ranks matrix.

This test statistic* is evaluated as a chi square with p(J - 1) degrees

of freedom where p is the number of dependent variables and J is the number.of

groups.

*While Puri and Sen (1971) have shown that their test statistic thngl

is asymptatically distributed as chi square, the small sample properties are
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Regression Procedure

The-multiple regression solution requires the‘follbwing steps:-

1. Construct a data matrix that contains a dummy variable to identify sub-

jects in the two groups (column 1), all other columms contain the ranks
.~ associated with theip'dependént,variables included in';he design.
2. Regress the group mémbérship dummy variable on the ranks of the dependent
variaBle scores to 6btain the:mdltiple‘ragk correlation‘coéfficient Rg
3. ‘SQuare'Rs
4, Multiply N-1 timéﬁ Rg‘to obtéinlthe tést statistic. Tﬁaﬁ"is; (N—i)Rgfé xz.
It can be seen from é_comparison of the conventional aﬁd regression

1

approaches that the test statistics are (N-l)t;EIf, and (N-l)Ri fespectively.

It follows that,
trBT-l = Rz;
—_— s

A proof is presented in the Appendix.

not known (Puri, 1974): I have chosen to define‘the test'statistié és

(N - l)tqgl'l because (a) this statistic is ;lso asymptutically
distributed as chi square with p degrees of freedom under the null hyppﬁhesis
of identical populations and (b) this statistic reduces (exa;tly) t§ the
Kruskal-Wallis chi square.statistic in the case of one dependent variable.
Since the small sample pfopertiés of the Kruskal-Wallis staﬁistic_have been
found to differ little from the-asymptqtic results, it~would.be suprising if
the small sample properties'of the multivariaﬁe generalization suggested here
differ froﬁ the theoretical results. There will be almost‘no diffé}ence in

the results obtained using these two formulas with respectable sémple sizés.

s
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Table 1 Example Raw and Ranked Data from a Two Group Design
' with Three Dependent Variables

Raw Scores

Group I ' Group II

i Y Bl oY, N

21 56 11

- 3. 10 12
17 17 7 27 57 10
20 51 5 35 62 6
0 38 63 1

70 53

Ranked Scores

" Group I . Group II .

71 ranks Y, ranks Y3 ranks yi ranks Y, ranks )S ranks

0 wN
S Wi
= W Wwv
~NoOvwbnm &
[o IR NN WV, I
NSOV
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Computational Example

The computation of the multivariate test statistic for the data contained

in Table. 1l is summarized below for the conventional and regression solutiouns.

Conventional Solution

8.00 16.00  2.00
B = |16.00 32.00 4.00
2.00 4.00 0.50
_ |
1 .12877 -.07241 .06746]
T = |-.07241 .06857 -.02732
.06746 -.02732 .06319
o, [-00649 .46319 .22886)
BT ~ = | .01298 .92638 45772
| 00162 .11579 .05722 and
tr BL © =  .00649 + .92638 + .05722 = .99009.

‘The test statistic is (N - l)trBTfl = (7).99009 = 6.93. Since the critical
value of chi square based on p(J - 1) = 3(1) = 3 degrees of freedom is 7.81

for alpha = .05, the overall multivariate null hypothesis is retained.

Regression Solution

Step 1 Construct the data matrix as shown below.

1) _ N ¢)) (3) (4)
Group.Membership 7 Yl : Y2 Y3
Dummy Variable Ranks Ranks Ranks

1 1 1 8
1 2 2 5
1 3 3 3
1 8 4 1
0 4 5 7
0 5 6 6
0 6 7 4
0 7 8 2

It can be seen that all subjects in the first group have been assigned

the dummy score of one and all subjects in the second group have been assigned
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the dummy score of zero.
Step 2 Regress the group membership dummy variable (column 1) on the ranks
of the dependent variable scores (columns 2, S, apo 4). The resulting
multiple correlation coefficient (actoally the multiple rank correlation
coefficient Rs) is .99503.
Step 3° | Square Rs- Rz is .99009.
Step 4 Multiply R2 bf N-1. (8-1) .99009 = 6.93 = 2. Notice that this .
is the same value obtained with the conventional. computation procedure
Since the obtained chi square does not exceed the critical value of 7. 81
the following hypothesis is retained:
— _7 - =

V11 | | V12

HO: \)21 = \)22

AY \Y
31 32
R B e .
There is insufficient data to conclude that the population distributions

are not identical. Since the overall hypothesis is not rejected there is no

justification for additional tests on the individual_dependent variables.
In'conclusion, the nonparametric multivariate analysis of variance is a
useful method for dealing with long tailed population distributions, possible

outliers, and increased probability of Type I error associated with multiple

response measures. It is easily computed with the aid of any multiple regres-

sion computer program.

Epilog

There is an alternative to the multivariate nonparametric analysis of

variance for handling the problem of increased Type I error that is simple,

effective and easily understood. This approach is described elsewhere

(Huitema, forthcoming).
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Mann-Whitney test should be considered as useFul alternatives to the parametric |
analogs: (1) when the population distributions are of certain nonnormal forms -
and (2) when the data contain unknown outliers, If responses are obtained on
multiple dependent variables both of these problems are more likely to occur"

than in the univariate case.

e s “_—.\——.‘. - —

An additional problem associated with the multivariate case is an increase
in the probability of Type I error; that is, as the number of dependent vari-
ables is increased the probability of making a Type I error increases. One
method of controlling Type I error is to employ the Duri Sen nonparametric
multivariate ‘analysis of variance It appears that the Puri-Sen method has
virtually never been used. This is so because (a) the. original papers pre—
senting this procedure were written for mathematical statisticians (and are
inscrutable for the typical research worker), (b) there are no secondary sources
that describe the procedure, and (c) there are no widely distributed computer
programs available to carry out the analysis.

The puri Sen test. statistic can easily be computed for the two-group case
by regressing a group membership dummy variable on the rank-transformed depen—

dent variables and multiplying the resulting R2 by N-1.
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