
MUL I ll"L� LINEAR REt3RESSION VIEWPOINTS 

VOLUME 12, NUMBER 1 SPRING 1983 

A METHOD FOR EST/MA TING INDIRECT 

EFFECTS IN PA TH ANALYSIS 

Lee M. Wolfle 

Virginia Polytechnlc Institute and State _University 

In an earlier paper, Wolfle (1980) considered four kinds of causal 

models: recursive, block, block-recursive, and nonrecursive. By applying 

the first law of path analysis, he decomposed zero-order correlations among 

variables in causal models, and discussed the circumstances under which the 

components of the decompositions could be interpreted as direct, indirect, 

and spurious causal effects, plus a component he called joint associations.

Since the publication of that paper, a number of people have inquired about 

the availability of a computer program to compute the components of

decompositions explicated in the original paper. There is no computer 

program to calculate these components, but there is a means by which 

direct and indirect effects may be calculated with a minimum of effort. 

(Earlier papers by Griliches and Mason [1972] and Alwin and Hauser [1975] 

inform this discussion.) 

Since joint associations, which involve components of a decomposition 

that include correlations among exogenous variables, and spurious effects 
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may be considered to be noncausal components of a correlation between 

variables in a causal model, let us call the sum of direct and indirect 

effects the "total effect/' The purpose of this paper is to demonstrate 

algebraically that total effects may be obtained through reduced-form 

regression equations, and the indirect effects may be calculated by, 

taking the �ifference between the reduced-form regression coefficients and 

the direct effect. Following the algebraic proof, an empirical illustration 

will aid in understanding how the method works in practice. 
To begin, consider a four-variable, fully recursive path model in 

which: 

( 1) •

( 2). 

( 3). 

in which xi (1 • 1,2,3;4) are standardized variables; pij are standardized

regression (path) coefficients from xj to xi; and u, v, and w are

unmeasured disturbance terms assumed to be independent of the x1 on the

same side of the equality. Thus, 

E(x4u) • E(x3v) • E(x4v) • E(x2w) • E(x3w) • E(x4w) • 0 (4).

That the xi are assumed to be standardized is a convenience which simplifies

the algebra to follow. The conclusions to be drawn from the following 

presentation apply without loss of generalization to metric regression 

coeffi cf ents. 

If one multiplies eq. l by x4, and takes expectations, one obtains:

E(X3X4) • P34E(x:) + P3uE(x4u) (5). 

in which E(x3x4) • p34, and E(x�) • 1, since these are standardized

variables, and E(x4u) •Ob� the assumptions in eq. 4. Thus,

- .

E(X3X4) • P34 • P
34 
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In analytic tenns. eq. 6 indicates that�he direct effect, p
34

, of x4 on

x3 1s measured by the correlation, p
34

.

Now consider eq. 2, but instead of estimating eq. 2 as is, ·consider: 

(7). 

_____ w_h_ic_h-""7
is

�
me_rely the re�ression of _x2 on x4• If one multiplies eq. 7 by

x4, and takes expectations, one obtains: 

E(x2x4) • P24E(x:) + P2vE(X4V) (8)�

which reduces to: 

E(x2x4) • P24

Substituting eq. 2 into eq. 9 yields: 

P24 • E[( P23X3 + P24X4 + P2vv) X4 J

multiplying the parenthetical expression by x4 yields:

P24. P23E(X3X4) + P24E(x:) + P2vE(X4V)

which 1s equal to: 

P24 • P23P34 + P24 

because E(X3X4) • P34• E(x:) •,.and E(X4V) • o.

(9). 

(10); 

( 11). 

(12). 

Thus, regressing x2 on x4 yields a coefficient which is equal to the

sum of the direct (p24) and indirect effects (p23p34). By using a normal

regression routine, one can re·gress x2 on x4, and thereby obtain the

total effect from x4 to x2. The regression of x2 on both x3 and x4 yields

the direct effects of x3 and x4 on x2 (p23 and p24, respectively). The

difference between Pz4 and p24 ( Pz4 - p24 • p23p34) therefore gives the

indirect effect of x4 on x2 through x3. In other words, while the

indirect effect of x4 on x2 may not be calculated directly, the product,

p23p34, is obtainable by first regressipg x2 on x4, then regressing �2 on

both x3 and x4, and calculating the difference between the two coefficients

for x4.
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� Now consider eq. 3, but instead of estimating eq. 3 as is, one 

estimates: 
xl • P14X4 + Piw

w

Multiplying eq. 13 by x4, and taking expectations, yielHs:

E(X1X4). P14E(x:> + Piw
E(x4w) 

which is equal to: 

E(x1x4) • p14 

Substituting eq. 3 into eq. 15 yields: 

(13). 

( 14), 

(15). 

P14 • E[{p12x2 + P13X3 + P14X4 + P1w
w) X4] (l6h 

multiplying the parenthetical expression by x4 yields: 

Pj4 • P12E<x2x4) + P13E(X3X4) + P1i<x:) .+ P1w
E(X4W) (17). 

Because E(x:) • 1, and E(x4w) • O, one obtains:

Pj4 • P12E(x2x4) + P13E(X3X4) + P14 (lB). 

By substituting eq. 12 and eq. 6 for E(x2x4) and E(x3x4), respective�y.

one obtains: 

. (19). 

Thus, were one to obtain p14 by regressing x1 on x4, and then obtain 

p14 by regressing x1 on x2, x3 and x4, the difference would equal:

P14. P14 • P12P23P34 � P12P24 + P13P34 (20), 

which 1s the sum of all the indirect effects thro�gh x2 and x3•

Now consider the regression of x1 on x3 and x4: 

Xl • P13X3 + P14X4 + P1w
w

Multiplying eq. 21 by x4• and taking expectations, yields:

E(x1x4) • p13E(x3x4) + p14E(x:) + PlwE(x4w) 

_____ .... W1 th a s 11 ght rearrangement of terms, eq. 22 reduces to: 

- .

P14. E(x,x4) - P13E(X3X4) 
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Swstituting eq. 6 for E(x;r4). and eq. 3 for x1, yields:

Pj4 • E[(plr2 + P13X3 + P14X4 + Plww) X4] - P13P34 
(24), 

mt eta becoaes; 

'14 • P1f(x2x4) + P13E(X3X4) + P14E(x:) + P1wE{x4w). . 

It can be shoNn that p13 • p13 + p12p23; also E{x4w} • O, and E(x!> •1;

substituting these quantities, and eq. 12 for E(Xr4}, and eq. 6 for

E(:1jt4}. yields:

P]4 • PJzCPz4 + P23P34
) + P13P34 + P14 

- CPJ3 + P1zP23>P34 

mich recllces to: 

'14 • P1zPz4 + P14 

(25). 

(26), 

{27). 

Remeaber that 1>]4 is obtained by regressing x1 on the exogenous variable,

x4; Pj4 is obtained by regressing x1 on the exogenous variable, x4• and

the first endogenous variable. x
3

; p14 (the direct effect of x
4 

on x
1) is

obtained by regressing x1 on all o� its antecedent causes. llith esti•tes

of these coefficients, taking the differences aaong them yields the 

esti•tes of the indirect effects. Thus, 

' (28). 

lda1da 1s die s111111 of all the indirect effects fn111 x4 to x1 tlaroagfl

"2 and x
3 

together, through x
2

• and through x
3

• respectively; 

Pi°4 - P14 • PJzPz4 (Z,) • 

ldltda ts ttne indirect effect ,,_ x4 to x1 through x2; and

'14 - Pj4 • P1 -J'34 + P1zPz3'134 

waich are the indirect effects frOII x4 to x1 through x3• and through

x3 and x2 together.
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These results are not model specific; they are applicabl� to any 

hierarchical causal model. To obtain the total effect of any variable, 

xj'• in a causal model on any s�bsequent variable, xi, in the model, simply

regress xi on xj and all other variables that precede xj' or occur causally

in the same block with xj (e.g., the set of exogenous variables). To

obtain the direct effect of xj on xi, regress xi on all of its causal

antecedents. To obtain the sum of the indirect effects from xj to xi'

take the difference between the total effect and the direct effect. 

AN ILLUSTRATION 

To illustrate these algebraic principles in practice, consider the 

block-recursive path model shown in Figure 1.· This is the most general of 

the hierarchical models· considered by Wolfle (1980), and was taken originally 

from Heyns}l974). She was interested in the degree to which stratification 

within schools mediates the effect of socioeconomic background on educational 
'·t

i,'· -3 

outcomes of students. The model shown in Figure 1 indicates that the 

ex�genous variables, PaEduc, PaOcc, and SIBS are correlated for reasons 

unanalyzed in the present model. A measure of verbal ability is considered 

to be dependent upon the three exogenous variables, plus an error term 

assumed to be uncorrelated with the independent variables. Grades and 
curriculum track membership are thought to be dependent upon the four 

precedfng manifest variables, but no causal nexus is assumed between grades 

and curriculum. Their disturbance terms, however, are assumed to be 

correlated with each other, but not with the four preceding manifest 

variables. Finally, educational aspirations is dependent upon the six 

causally antecedent variables. In algebraic terms, the regression 

equations implied by Figure 1 are: 

x , • P12X2 + P13X3 + P14X4 + P15X5 + P16x6 + P17X7 

- .
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X3 ■ P34X4 + P35X5 + P36X6 + P37X7 + P3vV

X4 ■ P45
X

5 + P46
X

6 + P47X7 + P4tt

Estimating eq. 34 yields the total effects of x5, x6, and x7 on

x4. These are equal to the direct effects, because no variables

intervene between the exogenous variables and x4; thus there can be no

indirect effects.

The reduced-fonn regression of x3 on x5, x6, and x7 would yield

the total effects of these exogenous variables on x3; adding x4 to the

( 32), 

(33), 

( 34), 

equation (1.e,, eq. 33) would yield the direct effects, and the differences

between the coefficients for x
5
, x

6
, and x

7 
in the reduced-fonn equation

and the fully specified equation yield the· indirect effects of the 
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,-:;respective,exogenous variables on x3 through the intervening variable. x4.

Estimation of the remainder of the model would proceed accordingly; 

the numeric results for this model are shown in Table 1. The zero-order 

correlations for these data are available in Heyns (1974. p. 1441). 

Table 1. Sumiar.l'..£.!IJ:!1.resslon AnaJrus for ,tdel of Educational Aspirations 

lnderendent Varlablet 
Dependent 

Pa Educ (x5J Pa 0cc (x6} SIBS (x7J Verbal (x4} Grades (x
2

J Currie. (x3} Variables Cl 

Standard I zed Coefficients 
Verbal (x4} .148 .114 -.1M 
Grades 1•21 .106 ,092 -.083 
Grarles x2 .0�5 ,OSJ -.026 .342 
Currie. �•JI . 176 , 140 • .121 
Currie. x3 .111 ,090 • ,049 ,440 
llsplr. 

,
x1 ! 

.201 .132 -.108 
Asp Ir. X • 147 .091 -.0411 • J6J 
Asfllr. •l ,0?5 ,048 -,025 .148 .091 .419 

Rcqrenlon Coefficients• 
Verbal (x4} .561 ,078 •,931 28.45 

(,033} (.006} (,044) 
Grades l•z> .028 ,004 •,033 2,94 

(,002) (.000) ( .003) 
Grades (xzl ,015 ,OOJ -.011 ,024 

2,25 
(.002) (,000) (,003) (.001) 

Currie. (x3) .026 .004 -.021 .009 
( ,001) (.000) ( .002) 

Currie. (x3) ,016 .002 •,011 ,017 •,398 
(,001) ( .000) ( ,0021 (.000) 

Asplr, (x1) ,131 ,016 ., 106 
12,93 

(,006) (,001) (,008) 
As11tr. (x1) ,095 .011 •,047 ,063 11.14 

( ,005) (.001) (.007) (.001} 
Asptr. (x1) ,0(,2 ,006 -.025 ,026 ,223 1.M4 11. 30 

L.29JL----L..OOJl I ,P.Q.�_LOOIJ ,.2m l,!!�l 
• Standard error, •re shown In parentht1t1. 

u 

R2 

.090 

.040 

.147 

.099 

,275 

, 104 

.m 

.367 



If one happens to be interested in the extent to which two variables 

are causally related ( total effect) in comparison to their total 

association {zero-order correlation), one compares the zero-ord,er 

correlation with the reduced�form standardized coefficient. For example, 

the correlation of verbal ability, x4, and educational aspirations, x1•

was .425; the reduced-form coefficient was .363 ; thus ( .425 - .363)/ .425 

= .15 proportion of the correlation was due to spurious causal effects 

and joint associations among the exogenous variables. 

Indirect effects may be calculated from the coefficients in Table 1. 

For example, the direct effect of father's education,_ x5, on grades, x2,

is .055, and the indirect effect of x5 on x2 through verbal ability, x4,

is (.106- .055) = .051 . Notice that these components could also be 

calculated from the metric regression coefficients, which enjoy a more 

, substantively pleasing interpretation. Thus, a one-year increase in 

l father's education produces an increase in grades of .028 units, .015 of

r which is a direct causal effect, and ( .028- .015) a .013 of which is an
ifC 

i· indirect effect through verbal ability. Notice that the ratios of
l 
I 

direct and indirect effects are identical whether one uses standardized or
l• 

metric coefficients. Thus, .055/.106 • ,015/.028, within rounding error

(see Wolfle, 1977, p. 47, for proof),

Consider the effects of father's education, x5, on educational

aspirations, x1. The total effect 1s .201; the <lirect effect Is .095.

The sum of al 1 1ndfrect effects 1s ( .201 - .095) • .106 ; the ind1 rect 

effects of x5 on x1 throul)h verbal ability, x4, are (,201-.147) 11 .054

(note that this component includes ill indirect effects through x4, numely

P14P45 + P12P24P45 + p13p34p45 ); and the indirect effects of x5 on x1

through grades, x2, and curriculum, x3, are ( .1.47 - .095) • ,052.
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CONCLUSION 

The decamposition of causal components into direct and indirect 

effects may'be substantively important, because the decomposition allows 

the consideration of how causal effects occur. for example, when indirect 

effects oven,helm direct effects, one has in essence described the social 

mechanism through which the causal relationship operates. For example, 

father's and son's occupational statuses,are moderately correlated in 

samples of U.S. men. But the indirect effect of father's occupation on 

son's occupation through son's educational attainment is often greater in 

magnitude than the direct effect. In substantive·terms, the reason father's 

and son's statuses are correlated is because sons acquire educational levels· 

which lead to their acquiring occupational levels ,near those of their 

father's. 

Causal models are useful analytic tools because they allow both the 

author and reader to understand explicitly the assuned order of effects. 

lhe interpretations of decompositions calculated as a part of the analysis 

depend on the assumed causal order of variables. Which associations are 

to be decomposed depends on the purpose of the analysis and the presentation 

of results. It would serve little purpose to use the methods explicated in 

this paper to calculate a wholesale collection of indirect effects; unless. 

of course, these were required by the research questions which motivated 

the analysis. The methods explicated herein should ease the burden•of 

of analyzing causal models, but they are not substitutes for reflective

analyses of social data. 
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