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The principal objective of this paper is to demonstrate 

conceptually the rela�ionship between,variouc modelling techniques 
canioonly employed in data analysis in social Md behavioral 

r�aearch. The paper focuses on the co11111onalities between such 

multivariate technique• •• path analysi1, re9re1aion analysis, 

panel models, longitudinal models, common factor analysia, higher 

order facto� analyais, factorial model• (eg multitrait•mult!method 

n10&1la), test score IIIOdels, error structure analysis model• and the 

ANCOV A 1110&1 l • 

It shO',la how the covariance structure model which underlie• the 

LISREL modol can be employed to reconceptualise and para111eterise 

each ot the above models in terms ot a more general tramevork. In 

p•rticular, theae model• can be conceptualised aa a specific 

configuration ot the sub-models which comprise the LISRJ!!L model. 

Thtt .!!!!•�� and structural models of the .general covariance 

model are employed u the basic building blocks to reconceptualise 

the specific models on which each of the varioua techniques are 
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has been chosen as for 

den1onstrating these conceptual coamonalities because it is the most 

widely used general covariance structure model. • Although other 

mo�'t! su�h:�;;•���1J (�cDonald, 1978), EQS (Bentler;''°:1982 ) and 

LACCI (Muthen,�·,(1983) .·are similar to. the LISREL model and .will thus 

·also allow for the parameterisation of the models discussed in this

paper, the associated computer programs for estimating them are not

as yet as widely used as the LISREL program.

sig�ificant advances have been incorporated 
J ' < 

' 

released version V of • the LISREL program .. 

into the recently 

In particular, the 

program now includes a procedure which automatically estimates a

set of initial start values for the iteration proceaa in the 

maximlllll liklihood method of eatimation. The provision of these 

start values by the user had been a major obstacle to the use of. 

the program in previous versions. Version V also provides a wider 

range of statistics for judging the fit of the model, in addition 

to an option for estimating relationships between 'discrete' 

variables and another for using a least squares eatimation 

procedure where tbe assumptions underlying the maximum liklihood 

model are not met' by the data and model under inve•tigati'on, 

Further, the LISRJ:L program is soon to be interfaced to one of 
I ' 

the moat widely used paclcage• available in the social_, b•havioral

and medical scienc:ea. It is expeoted that this will mean a much· 

wider availability and use of th•' program than.has be�n the case 

hitherto. 

• The paper is written and prHented in a schematic' and didactic

style suited to novioe modellers in social and behavioral research. 

The only requirement is that readers have an idea of and some 

previous experience with at least one or two of the multivariate 

techniques mentioned ,in the opening paragraph above. They are not 

required to have an understandin g of matrix algebra or statistics 
in general. Path diagrams are employed as visual representations 

of the conceptual models, 



1.00 Introduction 

'l'his article aims to till a major lacuna in the social science 

literature covering the general linear model upon which several 

types of statistical analysis are based. Statistical models such 

as factor analysis, test theory models, regression models, analysis 

of covariance etc. ican be shown to be spec.l&lisations of a more 

general mathematical and statistical framework. By explicating 

these submodels in· terms of a more general model it is poaaible to 

gain greater insight into the particular similarities and 

difLerences between individual aubmod�ls. 

'l'he general model .is not new, but its development has received 

much greater attention over the last decade and it has been used in 

a wide. range of application• in education, 

soci�logy, • �d related sub-disciplines. 

psychology, • economics, 
However, due to the 

technical sophistication re4Uired to use the computer program and 

to P4ramateriae the models its application h«s remained an elite 

speciality, Althou9h various forma of the' 99neral model have been 

advanced in the literature (McDonald, 19781 Bentler� 1982, Weeks, 

19781 Joreskoq and &orbom, 1977, 1978, 1981), I tocua on the 

particular formulation which appear·• to h«ve 9ained the widest 

ourrency. This model, now connonly referred to aa the LISR!L 

modttl, i• accolllJHlnied by a burgeonin9 technical literature 

raport:il\9 the atatistical and mathematical theory on which it ia 

based and 'state ot the art' application• of it. This literature 

is acceasible to only a small aubgroup of apecialists who are 

familiar with the statistical and mathematical theory underlying 

advanced multivariate statistical analysea, however, an elementary 

ovetview for the leaa technically minded rejearcher is not readily 

available in the published literature. It is this lacuna in the 
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are to be found in Bentler (1980) and Bielby and Ha�ser,'(1977) 

while general expositions of the statistical model can be found in 

Joreskog ( 1973, 1974, 1977, 198 1), Joreskog and Sorbom ( 1977, 

19 78) • Carmines and Mciver ( 198 1) and Rindskopf ( 198 1) provide the 

most readable general introduction to covariance structure models 

while Bentler (1980) provides a lucid discussion of methodological 
issues. Woofle (1982) and Loll\ax (1982) Joreskog and sorbom (1981) 

provide introductions to the application of LISREL-

My aim is to provide an didactic introductory overview of the 

general mo4�1 and some of its specialisations, so that,� ,much �ider

group of· ·researchers may appreciate th� scope and na1:ure of the 

method within a context of the more familiar multivariate data 

analysis methods found in the aocial science■• 

Although multi-equation linear models have been uaed widely in 

social acience reaearch over the laat two decades or so, their 

parentage and developnent in other disciplines now spana 111ore than 
'l 

half a century. The biolo9ist Sewell Wri9ht, is usually crodited 

with the first substantive use of such 111odels in a paper published 

in 1925. The us G011ern111ent aponsored Cowles COl'llllliasion •et up in 

the ate 1930 1 s reco9nised the potential for their application in 

econanica and early vork in educational psychology also produced 

variants of such models. Durin9 the 1950 1 s and 1960's the 

sub-diaciplines of econometrics and paych01Mttrics were fostered and 

developed by a sur9e of interest in the applic�tion of the•• 1110.:-1s 

in economics and psychology, respectively. Their application in 

education and sociology also connenced durin9 the 1960's, however, 

it was not until late in the decade that researchers in these 

latter disciplines generally became aware of the extent to which 

similar models had been developed and applied in psychology and 

econanics. The seminal article by Goldberger (1971) explicated the 

relationship between the variants of the model employed in 

econanics and psychology and indicated how an approach based on the 



merging of these could provide models of more general interest. 
Today the most sophisticated development of the model is known 
through the generic terms of covariance structure analysis and 

structural equation modelling. The work of Joreskog and sorbom 

C 1976, 1977, 1978, 1981) has largely been responsible for 

solving the complex mathematical and statistical problems 

associated with the model so that it is now possible to use it in a 
wide variety of general applications. 

The computer program LISREL V has been specifically designed for 

the estimation of these models. Other similar programs have been 

developed by McDonald (COSAN), Bentler and Weeks (EQS) and Muthen 
(LACCI) but they are not yet as well docmented and developed as 

LISREL, nor are they as widely available. Each program has 

slightly different features and capabiiities but LISREL is the most 
widely uaed in the research reported in current academic journals. 

2 .oo Structural Modelling, .!!!! General Framework 

The topics to be discussed here can be slllllllarised in the 

following distinctions, 

( 1) exploratory v•s confirmatory analysis,

(2) fallible v's assumed infallible data,

(3) latent (unobserved) variables v's observed variables,

(4) linear v's non-linear models,

(5) model fitting v's parameter estimation, 
•

(6) over-identified v's just-identified models.



:,will be employed Jto' 1 ellucidate 

dif�._ren�e�. �nd 1iinilarities ,between the : more . ., general covariance 

struct:�•t! I' model and .i those which underlie the more familiar 
11:·

• 

multivariate ·methods in coamon use. 

(1) Exploratory v•s Confirmatory Analy•is

When the level of knowledge available about a given problem is 

relatively underdeveloped one has to proceed to analyse and 

intexpret that problem with elementary methods (Wold, 1966, 1969). 
The methods are ·elementary only in the sense that they embody 
little accumulated knowledge about the phenomena of interest, ie 

they are not baaed on .an .,elaborated formal •theory of .the phenomena. 
Such methods can be described as exploratory ,since they take as 

their only criterion, the 1tandard of 'whether or not they provide 

a mean, to make 1ome 1ort of 1ense of the dat•' • When the method 

employed.produces a non-interpretable or unexpected finding, it is 

either discarded or 9iven. • post � interpret•tion. Since 
disc•rding a tindin9 leads to the process ot searchin9 or exploring 

the data tor another, more appropriate, interpretation, this 

procedure al,o .re,ulta in a�� explanation ot the pattern• 

existi� in the data, The problem with auch explanation, ia that 
there is, in principle, an unlimited number ot them which de1crib4i 

the data equally well (on atati1tical criteria) tor any 9iven 

situation. In the limitin g aituation where we ,tart from • 

position ot 'no theory', not even a conncn ,en•• one, no formal 

statistical procedure will choo,e between the lo9ical or 

explanatory validity of oompetin9 po1t � explanation• on the 

basi• ot 1tatistical analy••• ot the data. Hence we need to have 

recour•• to a method ot c:ontirmation, or in the parlance ot

•tati•tics, a method ot 'testing' the various competing 

explanations.



Confirmatory analysis is the procedure used in such a situation. 

In order to conduct a confirmatory analysis it is necessary to 

come to the data armed with a 'theory' of what may have generated 

the grid of relationships which exist in that data. This theory 

may cane from many sources, scholarly, conmon sense, exploratory 

analysis of other data, etc, and may be more, or less, well 

developed. The one requirement which the theory must be able to 

satisfy, however, is that is must be amenable to formulation in a 

testable form. This may be based on a weak specification - eg 

variables x1 ••.•••• xs are related to each other in a non-random way 

or, on a strong specification - eg X1 causes X3 but not X2, or some 

combination of options in such a range of specificationr.. Once the 

theory is formulated in a testable specification it.is possible to 

conduct such tests as appropriate to confirm or reject the 

particular hypotheses. 

the overall theory 

A collection of hypotheses which describe 

in greater detail can also be tested 

llimultaneously. In such a case we say that the overall � which 

describes the theory is being tested. Since model testing is 

usually based on several individual hypotheses which are 

simultaneously tested, it provides a greater degree of rejection or 

confirmation of the theory than independent teats of individual 

hypotheses. structural modelling is specificaly aimed at such 

confirmatory analysis of theories. 

However, the distinction between exploratory and confirmatory 

analy1i1 11 not as marked aa I have presented it 10 far, We 

probably alway, have at leaat one rudimentary theory in mind when 

we plan a atudy. At the aimplist level, a theory of measurement is 

required just to collect data on a particular variable. If we put 

a little effort into constr uctin9 a theory on the basis of what is 

already known about the phenomena of interest, we will usually be 

able to provide one or more potential explanations on the basis of 

this pr ior knowledge, These hypothesised models can then be tested 

against the data to see if they could have generated the patterns 

therein. 
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"If a model provides an a�c�ptable fit to the

0

data, then we have 

an :i:idependent oonfirmation of the. theory, although it is possible 

thattother models (possibly unknown) could also fit the data 

equally well, Where the model is not' oonfirmed we can test 

alternative models in a similar fashion, and 1n··the' event that none 

of them fits the data, explore the data·· by making modifications to 

these rejected models, Exploratory analyses aimed at providing 
refinements and changes to the models may suggest appropriate 
respecifications which can then be teated against new data, or 

validated against a sample of the data held back for such purposes. 

( 2) Fallible v' a Aaaumed Infallible Data

'l'he foregoing has assumed that we • can actually measure the

theoretical variables of interest in order to 'teat the theory. We 

still have a problem to face, even if such variables are directly 

measurable. When we measure an item or variable of interest two 
que•ti�na ,immediately arise, (a) Ia the measurement valid? (b) Ia 

it reliable? 'l'heH two iaauea are ·•tudied under the rubric of 

'measurement error', Any aophiaticated mathematical or atatiatical 
analyses will want to be able to take account of such error, so 

that w. can model the pattern of relationahipa betw.en the 

underlying true acorea for each variable in the data, The problem 
of measurement error has been atudied in educational psychology in 

the development of I teat ac:ore theory' and in economic• u the 

'errora in variables' problem, The eaaential component of both 

approaches is an attempt to diatill out the 'true score' of the 
variable from the meaaurement error, The sub-model underlying thh 

aspect of the LISRZL model ia illustrated in Figure 2,1, It 1tate1 
merely that the obaerved(meaaured) variable(X) consists of two 
parts, a true score represented as a latent variable((), plus an 

error of meaaurement(6), (See Figure 4,1 for a deacription of the 

symbols employed in the figures,) 
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Figure 2.1· 
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LISREI. Measurement Error Model 
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a range of influenc��• other than that of the true score, which 

produce �e: observed score. Influences such as questionnaire

method ef!ects, respondents self ima ge, etc, which vary across 

individuals and influence their responses, are included. The 

measurement model thua posits the existence of a true score for the 

particular theoretical variables of a theory, however, the effects 

of measurement error mean that it is not possible to directly 

observe these true scores. The notion of a latent (unmeasured) 

variable is introduced to represent the true score. The variable � 

in Figure 2.1 is of this type. 

(3) Latent (unob served) Variables v's Observed Variables

The preceeding section has indicated one situation in which a 

latent variable is introduced into the model so as to provide a 
more informative analysis of theoretical models against (observed) 

data. 

Another situation in which it is necessary to introduce latent 
variables ie when th• theory e111ploya concepts which are, in 

principle, not directly observable, e9 social class, anxiety, 

intelligence, In order to ob tain a measurement on these variables 

it is necessary to measure observable variables which are 

designated as indicator• ot them, Essentially, this amounts to 

saying that the measurement theory ot these variables is more 

canplex than for directly observable variables, For instance, 
simplistic measurement ot the variable social class may aaaWlle that 
a single observed variable, tathera occupation, 1ay, is a suitable 

measure of it, More complex meaaurement ot social class may take 

account of other aspects of the concept , also. In this caae, a 

wider range of variables which are held to be more representative 

of the total 'conceptual domain' of the concept (eg relationship to 

the mode of production, mothers' and father■' education,family 

wealth,etc.) may be employed as complementary indicators of the 
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theoretical variable. In such a situation it is necessary to 

expand Figure 2.1 to include more than one observed measure 

(indicator) of the latent variable, ao that the theoretical 

variable ia represented by the conmon variation across the set of 

designated indicators of it. This is represented in Figure 2 .2 and 

the latent variable in such cases is referred to as a conmon 

factor. 

We note that the form of the relationship between the parts of 

the model in Figure 2.2 is formally the same as that in Figure 2.1, 

thua they are represented in the same way in the LISREL model. 

Whether the variable f; is to be interpreted as a latent variable 

or canmon factor ia dictated by its particular theoretical purpoae 

and not by atatistical or mathematical conaiderations. When it is 

intexpreted as a coamon factor (aa in factor analysia),the error 

terms(cS1 - cS3) may be interpreted as the unique part of each observed

variable and the coamon fac�or itaelf aa the shared part or conmon 

conatruct underlying the aet of them. The term � construct 

will be employed to refer to both common factors and latent 

variable• when there is no particular need to diatinguiah between 

them, Thia uaage helps us to keep in mind the fact that such 

variables are forully •constructed' meaaurea of theoretical 

variables, •• oppoaed to direct measurements on the variable, 

Direct meaaurementa on• variable •••um• that it takea the aame 

scale of meaaurement •• the meaauring inatrument, however, indirect 

meaauroment means that the scale of measurement for the constructed 

va riable depends on the 'wei9ht' of each particular obaerved 

indicator in the oonatructed variable, in addition to the scale of 

measurement for each indicator. Thus, constructed variables will 

often have 'arb itrary' scales of meaaurement and these may change, 

depending on the membership of the particular ob served variable set 

employed as indicators of the construct. 
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( 4) Linear v• s Non-Linear Models •

Linear models have become 'popular for analysing. the·· 

relationships between variables because they afford a tractable 
solution 

analyses. 
to the numerical and statistical problems in such 

The true relationships between variables may not be 

linear, thus the use of linear models necessarily implies a·more or 
leas approximate fit to reality. Ad � procedures are· available 

for linearising the relationships between variables through the 

application of non-linear mathematical transformations to the data 
when these are well behaved • relationships,· but·· parametric 
technicJues ·for linearising non-well behaved relationships· are more 

canplex (see Xendell and Stuart, '19731 ·aox '"and Cox,· .. 1964) • The 
I 

property of ""•continuity' in' measurement :.acales"'ia 'an"important: 
aspect ot. linear relationships.··; A· measurement scale·, for 'a variab:le • 
must be 'baseif on an assumed 'underlylng cohtinwm•:.if 'it �-is •:�o··· have'"'',, •• 

the potential \of:� line� relationahfj, with other variables. 

This." aspect • of measurement ha• been 'aingl�d' ·out for:' 'parti1::uiar 
I' I ' •i ' 

attention b ecauae it·t• 'one·of·the···stronc;er aeai.unptlon••· made' •·in'' 
linen models., Variables which are ·oi a categorical nature ·are·'°l)y', "1' 

detinition not "COntinuous. • If the-;�nderlyinq theoretical ·vartlbh 

is, however,' "Continuous in nature then 'the otise�ved variable''i'a� 

often treated as if.it 

include a an option 

were 

to 

continuous. ' The iISIUfL • v pro'9ram ,• ,I ' 

implement this type o'f. analysis. 
!ssential.ly, it rHCalH the meuurin9 instrument ·on the aHumption

that the underlying theoretical variable is continuous ·and normally

distributed in the population. Th••• .reacaled variables are then 

used to calculate the correlations, etc, for the analysis of the

relationa hips between variabl••• Where the theoretical variable ia 

not continuous in character, then ·the aaaumption of linearity is 

inappropr late. For such categorical theoretical variables, the 

correct procedure ia to analyse the data for each categorical group 

separately and then compare model estimates between groups or to 

include a (binary) d1.111111y variable in the model to rep resent 

membership/non-membership in a group. In the latter case it is 
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assumed that ·· the groups defined by the cfuamy variable sha_re �e

same structure of relationshiP,s ( ie • same slopes .for their 
• regres�ion .. : lines') but that their regression lines __ 111ay be

non-coincident.

When the data to be analysed contain a mixture of interval and 
ordinal (discrete) measures the LISREL approach can be used to 

estimate the relationships between the variables .. _in the data. The 
LISR!!L program calculates different types of •correlation 
coefficient' between the different types of variable pairs 

(interval, discrete polytomoua, discrete dichotomous) depending on 

the particular pairing of variable types involved in each instance. 

The matrix of these mixed 'correlation coefficients' is then used 

to estimate the relationships between the variables in a model. 

However, where all, or almo-1: all, of the variables in a data set 
are of a dichotot110U11 categorical type it may be ·more appropriate to 

use other methods specifically developed for this caae ( eg log 

linear models, latent structure models). Muthen (1983) and Bock 

and Aitkin (1981) have also developed programs which can estimate 
structural models tor this case. The Nuthen program is based on a 

tr&11111WOrk similar to the LISREL 110del. IXaq,les of the application 

of these methQC!a can ba found in Nuthen( 1H 1) an4, Aitkin,Anderson 

and Hinde( 1981). In the oue wMre the data contain a mixture of 

the variable types noted above, the UH of theH .latter .. thod• may 

result in a conaiderable lo•• of information if all the variable• 

are collapaed into dichotomi••• It i• po .. ible to avoid thi• lo•• 

of infontation by creating dUllllly variables to repreaent each of the 

categories in th� polyt01110us and interval variables in the data. 

This procedure, however, resultl in n-1 dunny variables for n 
categories in a measurement scale, thu• it can result in a very 

large number of variables in the raw data ••t which forlNI the input 

into these progralNI, Also, formal inequality conatraints have to 

be included in the structure of the model if theae sets of 

transfonned variables are to retain the information contained in 

the ordering of categories in the original measurement scale. The 

LISR!!L approach can thus be seen as a compromise 1olution for 



_analyses in data where the variable• are meaaured with mixed types 

of measurement scales. This compromise is achieved at the cost of 

assuming that the distribution of the true. score for the observed 
variable is normally distributed in the population. 

(5) Model Fitting v•s Parameter Estimation

Prior to the development of the general LISREL model it was, not 

possible to. routinely teat how we,ll the, ,st:1,mates of, the parameters 
in a structural model had reproduced the observed correlation or 

, ' t,..f ' , ' ' • •  "'"'"· 

covariance matrix for the . data. :rypica�lfythe,,, reaearc�er ... w�s

interested. ,,in , ••�ma.ting., the ,,p.ara.�e,::.er�s .. :R.f, ea_c}t1equ_�ti?n in ttl� l; 

model independently of ,e:o�straints .across., �quati_o!l•r .. contrary. to.

what is, usually . 111ugg•1!.��d by .. ,th.• aubatan�_i ve th�?ry und��lying

social science models., Relationships between variables were 
usually v���•d as being _all of the same causal or relational 

status, For_ exampl,e, p&r�l'\�al education and students' eduf��iona_l
aepiratipne as. det•r�fents of achievement would be entered into 

the same regreeaion equation. However, moat th.eori•• _would suggest 

that one variable ahould have caus�l priority �ver the other. 

In general, it i• always poasible to estimate parameters for 

relationship• betw.en variables when an unconstrained, ie 
saturated, model ia poaited. ror inatance, any aet of variables 
can be factor analyaed to derive an eatimate of their comon factor 

variation. In more complex, ie formally conatrained, model• the 

eatimation proce11 attempt• to provide the beat aet of eatimatea 

given the theory derived conatraint• placed on the relationahipa 
between conatructed (latent) variable• in the model. In an 

unconstrained situation, of which the first order co11111on factor 
modal ia a aimple case, the model estimates will exactly reproduce 

the pattern of variances and covariances in the �•ta. However, in 

a constrained model (ie one in which certain parameters are fixed 

in value, say, set to &ero) it is problematic as to how closely the 



. estilllated',i,arameters reproduce the relationships in the data. The 

fit of the'model is a measure of how well the parameter estimates 
of a particular constrained model reproduce the relationships in 

the data'•• represented by the correlation or covariance matrix. 

If a particular theory is a poor description of the processes which 
produced the data, then the constrained model which represents that 

theory will result in a poor fit between the model and the data. 

The issues of parameter estimation and model fit are 

conceptually quite distinct. � fil indicates how well a 

particular.!!! of parameter estimates describe the first and second 

order moments (correlations or variances and covariances) in the 

data, while parameter estimation relates to the estimation of the 

magnitude of individual parameters • such as factor loacUn99 or 

regression coefficients. The maximum liklihood method of 

estimation is based en an iterative process which employs a 

criterion of how well a particular set of estimates fit the data at 
each iteration in order to derive a solution which fits better at 

the next step, 9iven the constraints imposed on the model. The 

capacity to test tor fit is an advance over methods which provide 
only the opportunity to estimate parameters. For instance, none of 

the multivariate statistical procedures in the widely used SPSS 

canputer pack•� provide tor testin9 the tit of models based on 

their parameter estimates, In part this is justified, since the 

procedures therin are all desiqned tor estimatin9 unconstrained 

(saturated) model•, hence the models will all have an exact tit to 
the data. However, the methodoloqy of usin9 such models often 
calls tor modifications to the e1timated solution, e9 a standard 

recanmendation is that variables with a factor loadin9 of less than 

0,3 should be deleted from the particular factor when usin9 them to 
build a compo1ite measure from the factor, Such rules of thumb 

raise the question of how well th••• constrained composites then 
tit the data, Th• rule of thumb amounts to the placin9 of � � 

restrictions on the multiple factor model, which is then, by 

definition, a constrained model, Thus the composites will not 

necessarily fit the data perfectly, as would the unconatrained 
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model on which they were baaed.

(6) over-Identified v•a Just-Identified Models

The idea of identification can be demonstrated by an analogy 

with the conditions for solving a set of algebraic equations. The 

discussion of parameter estimation and model fit above assumed that 

the parameters of the model were identified. A model is said to be 

identified if the parameters can, in principle, be estimated as 

unique values.By unique I mean that the set of equfttions can be 

satisfied by just the one 'unique' set of values for the unknowns 

in them. For instance.the variable Y is said to be just-identified 

in the following equation set:

By substituting the expression for Y from the first equation into 

the second equation we obtain an expression which is in terms ,of 

the 'X' variable only. 

on ■implification this reduces to X•2 and by reaub■titution into 

the first equation we ■olve for Y aa Y•4.Now,thia ■olution 

(Y•4,X•2) ia the only set of values which will solve bdth of th••• 

equation• aimultaneoua ly,hence they are ■aid to be unique. 

In ■truotural modelling the equations express the relationships 

between the known variances and covariances which we calculate 

directly from the raw data and the unknown 'parameter■' which 

represent the model ■pecific effects of on• variable on another.If 

we have more unknown parameters in the equations the number of 

va riances and covariances for the variables employed in a model, 



then the mC>del'ls"said 1:.o be under-identified, that 'is,there ia 

inauff ia�t•,;;,;; �wt\ ;, information in the system to satisfy the 
11< '{ i•: 

requirement.that each unknown can be uniquely estimated.What this 
means in practice is that each parameter· can at most only be solved 
as a function ot the other parameters in the model, 

It we have exactly the same number ot unknown parameters as ther 

are known variances and covariances (or correlations) in the 

model,then it ahould,in principle, be poasible to uniquely estimate 

each ot the parameters in the model,I say 'in principle' because it 

sanetimes occurs that a set ot the variances and covariances in the 

model are an exact linear combination ot some .other aubset ot 

variances and covariances and this means that the total amount ot 
known information ia reduced, because a linear combination of 

variances and covariances does not add to the information already 
contained among the uncombined set ot variances and covariances, 

That is, there is leas information available in sets of variables 
with exactly collinear variances and covariances than there is in 

two subsets each of which is indepedent of each other, Where there 
is more known information contained in the ■et of variances and 

covariances than there are para111eters to be estimated, then the 
model is said to be over-identified 

If the equation• ol the model were exactly deterministic,that 

is, if each outcome could was epecified aa an exact combination of 
the other variables in the model,then all pairs of equation• would 

give the same solution as any other pair of identified equations 

tor the model.In practice the models used in th• social and 
behavioral sciences are not exactly deterministic but 'stochastic' 

in nature,That ie,they specify that the endogenoua(outcome) 

variable is only partially determined by .the other variables 
included in the model and partially determined by a 'stochastic' 

residual or error term,Thia stochutic ruidual then, in 

effect,repreaents the combined influences of all the variable• 
which have been left out of the model(eg becauae we do not have 
data on them). The result of combining the stochastic element of 

modelling with the condition ot over-identification is to arrive at 

18 
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a aituation where the different pairs of _equations may give 

alightly different solutions for the' parameters. Rather than 

arbitrarily accepting one aet of parameter estimates as preferable 

to the other possible sets in an over-identified stochastic model 

we can use the additional infor111Ation available from the solutions 

for different subsets of the equations to find a solution which in 

sane senae is the best !avera ge' estimate of the parameters ,given 

the model and data at hand.In practice this job is done by a 

canputer algorithm which minimises the difference between the set 

of variances and covariances implied by a given set of parameter 

estimates for the model and the set of population variances and 

covariances which are estimated from the raw sample data, by 

assessing which estimates give the best tit to the data. 

In ccmplex models the nlllllber of parameters to be estimated is

often too large for manual checks on the identifiability of each to 

be  undertaken, aince the procedure is logical or mathematical, as 

opposed to statistical, in nature ·and standard n\lDerical or 

statistical computation techniques are not suitable. The LISREL 

pr09%'am does undertake a check on model identification when the 

option for maximum liklihood eatimation is used but not when the 

unweighted least squares method ia employed. 

3 ,00 !h! � !2!!! 

Aa noted earlier, th• structural model• of concern in thia paper 

are those which can be for111Ally specified on the ba•i• of a 

conai,tent theory, Th• term 'theory' i• u•ed her• to denote any 

set of con•i•tent notion• about the relationships bet-.,.en th• set 

of variable• �f interest, Th• model derived from th• theory may be 

more or 1••• elaborated, depending en th• ,tate of development of 

the theory, The particular feature of models in the LISREL 

framework 1• that they make explicit provi•ion for the estimation 

of relationships tkttween the underlying theoretical variables of a 

theory. Heuristically this amounts to the estimation of the 

regression and correlational relationships between the latent 

i ...



This aspect of.the LISREL 

'l'he curved lines in the figures presented in . this paper 

represent correlations or covariances, and straight lines represent 

a special form of regression type relationships, known as 
,structural relationships, ie they are causal, (asymetric) 

relationships, 
the relationship, 

'l'he single arrow head indicates the direction of 

The Greek lettert (ltsi) indicates endogenous (otherwise known as 

predetermined or independent) observed constructs and the letter n 

(Eta) indicates endogenous (dependent) constructs (ie determined by 

other constructs in the model), 'l'he convention used in referring 

to LISREL models is that an exogenous construct is one which is not 

caused by any other constructs in the model,· In the terminolo9Y of 

experimental design some constructs which are designated to be 

dependent in aame equations in the model IIIAY appear in other 

equations as an independent oonstruct, For example, in Figure 3,2, 

the c:onetruct n1 ia both dependent and independent, similarly for

n2 depending on which part of the model is being considered, It is 

for this reason that the term exogenous is reserved tor referring 

to constructs which are causally independent of all other• in the 

modo l, Any c:on1truct which is caused by any other con1truct in the 

model is then referred to H an endogenous 00n1truct, 

Since not all of the variation in an exogenous 00n1truct i1 

necessarily determined by the other con1tructa included in the 

modol, these c:onatruc:ta are specified to have a residual term 

denoted by t,; (Zeta), 'l'he Greek letters are employed ao aa to 

distinguish between unobserved and obeerved variables in the full 
modol, Unobserved variables (latent oonatruc:ta) are denoted by 
Greek letters and directly obaerved variables are denoted by Roman 
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letters and enclosed in square boxes, Circles denote that a latent 
construct is meant to represent a specific theoretical variable 

Ct,n>, in contrast to those of an omnibus composition represented 
by residuals ( r;) or error terms ( 6, £), A more complex structural 
1110del is depicted in Figure 3 ,2. In this diagram the constructs 

t1 ,t2• are exogenous andn
1
-n

3 
are endogenous constructs, We note

that the presence of three endogenous constructs means that the 
model attempts to explain a theory in which the exogenous 

theoretical variables simultaneously cause these different outcome 
variable a, 

The equations in Figure 3,2 can be interpreted as multiple 
regression equations for the particular structural relationships 

specified between the latent constructs. The constructs are 

unobserved (latent), thus we cannot actually estimate the equations 

as they stand at present, Estimation of the relationships between 

the latent constructs requires that we have estimates of the values 

of the latent variables baaed on measurements on the observed 
variables, thus it is necessary to add a measurement model to the 
structural model of Fi9Ures 3. 1 and 3 ,2. 

The meaaure!Mnt � provides the required link between the 

observed and unobserved variables ot the model, The measurement 

modal is uaed to desor ibs the letent oonstruots in terms of the 

reliabilty and validity of the measurements on the observed 
variables. Fi9Ure 3,3 presents a measurement model for a single 

latent construct, The same form of the relationship between 
observed variables and unobserved (latent) constructs applies for 

both exogenous and endogenoua constructs, The Roman letter 'X' is 

used to denote observed variables which are indicators for 
exogenous constructs and the letter 'Y' is used to denote those 

which are indicators for endogenous constructs, In the LISREL 

model, unlike in standard multiple regression analysis, the implied 
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ausation do no travel between observed X's and the Y's, 
, 

'"4r ';�ft if •. Ht:r ,'· ,£�.q � 

because these are '.impure' measures of the theoretical variables
lll'•idl't :t:t:i!i '" • :,·.1+ :) .1 •• : 

being modelled. The variables of a particular theory and, hence, 
t)':t\:1titt$tr; :;�':t 

of the structural equations, are those represented·as the •true' or 
;<{,"!,�:•:}':> '" 

latent, .C?o.n.�tructs of the structural model. 
•' ' .  :,,,, � -

We note that the 
measurement model of Figure 3,3 is of the same form as that 

presented earlier in Figures 2.1 and 2.2. 

Figure 3 .4 takes the simple structural model of Figure 3. 1 and 

adds measurement models to each latent construct, For purposes of 

illustration the number of observed measures has been varied for 
each construct. ti has only one observed measure (X 1), t

2 
has three 

observed measures (X2,XJ,X4) and 111 has two observed measures

(Y1,Y2). we note that errors of measurement in the Y variables are 

denoted by the Greek letter Epsilon Ce:) and measurement errors in 
the X variables are denoted by the Greek letter Delta (�). Figure 

J.4 represents the completed model and the relationships marked by

curved and strai9ht lines C4n be estimated with the LISREL computer
program.

In order to u.ae the LISREL proqram it is necessary to translate 

the fomulation of a model into matrix notation and to satisfy 
certain teohnioal conditions. These Hpeots of th• model an 
diacussed briefly at th• end of this paper, Th• next section shows 

how th• model developed eo far can be employed to deeoribe ••veral 

sub-model• of th• qeneral LISREL model, Th• diseuesion continues 
through tha expository use of path dia grams for such modele, The 

equations for each model are pNaented with the diaqrarna but may be 
passed over by the introductory reader without much 1011 of 

information, 
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The" system' assumptions made by LISREL are: ( ,) that there is zero 

covariance between the latent constructs and the residuals on the 

latent �nstructs, ie E( tz; )•O, EC n z; )•O, (2) there is zero 

'covariance between the measurement errors on the obaerved exogenous 

and those on the observed endogenous variables, ie E( o £ )•O and, 

(3) there is zero covariance between the latent constructs and the

errors of measurement on the obae�ved variables , ie E( t £ )•O, 

E( t o )•O, I!!( n £ ) , E( n o ) . These assumptions apply to the full

model as depicted in Figure 4. t. (In some situations models can be
reparameterised in alternative ways which allow for a relaxation in

the restrictions implied by these assumptions.) The following

sub-models will now be illustrated:

( 1) first order co11111cn factor analysis model,

(2) higher order factor analysis model,

(3) regression model,

(4) recursive path model,

(5) reciprocal effects path model,

(6) test score model,

C7) multitrait multimethod model,

CS) error 1tructure analyais model,

C9) analysil ot covariance CANCOVA) model,

Ct) rirat Order common ractor Analy1i1 Model 

Th• baaic atructure tor a factor analy1i1 model with a 1in9le 

can�n factor i• preaented in Fi9Ure 4.2a, In thia model all three 
obaerved variable• CX1,X2,X3) are a11umed to be mea1ure1 which 

reflect the underlyin9 latent factor Ct�. The error t:erma Co 1• o;> 

indicate that the obaerved variable• may be meaaured with error, A 

basic a11umption of the Cla11ical factor analysia model is that 
these error terms are uncorrelated, ie ECo1 � ) • 0,1 , j,

However, such an assumption may not always be warranted, If corrmon 

variation exist between a subset, but not all, of the observed 

variables, then it may not be captured by the rector which 

represents influences oonmon to all the observed variables. 
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The general LISREL model can be SW1111arised by the diagram in 

Figure 4, 1 

The sections within the broken lines represent the measurement 

mode ls for the exogenous and endogenous constructs, and the section 

of the model linking them represents the structural model. The 

individual symbols do not have subscripts, which indicates that 

they represent all the constructs of their type in this 

representation of the general model, ·Note that the observed 

exogenous variables (X's) are not directly linked to observed 

endogenous variables (Y's). The structural model which lies 

between the measurement models mediates the causal influence of the 

exogenous variables on the endogenous variables. Although not 

shown in Figure 4,1, c:orrelational links are allowed for between 

the individual exogenous ex>nstructs and regression type (causal) 

relationships are allowed for between those within the endogenous 

construct set. 

There are two types of assumption• which 90 with the LISRll!L 

modal1 ( 1) Syatem asaumPt;iona • theae are the 9eneral atatiatical 

aaaumptiona neceaaary in order to eatimate all model• in the LISRll!L 

framework and ,(2) � asaumption• - the additional asaumptiona 

which are apecific to a particular model, •9 the Claaaical factor 

analya is model apecifi•• that the error• of meaaurement on the 
obeerved variable• are unco�related. In effect th••• latter 

assumptions are the restrictions which we place on the 9eneral 

modal to define the sub-model• as particular apecialiaationa of the 

general model, Hence, theae assumption• are, in principle, 

testable within the LISREL framework, wherea• the former set of 

aaaumptiona are not, since they are an integral (ie necessar y) part 

of that framework, 
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Figure 4.l Schematic Repreaentation of the General LISREL Model 

X observed exogenous variables 

� (ksi) latent exogenous constructs 
t 

n (eta) latent endogenous conatructs 

Y observed 8JJ4oqenous variables 

o (delta) measurement error in obH%Ved exogenous variables 

£ (epsilon) - meaaw:ement error in observed endogenous variables 

>.x (lambda X)- construct loadings (validities/reliability) for observed 
exogenous variables 

A1lambda Y)- construct loadings (validitiea/reliahility) for observed 
endogenous variable• 

Y (gamma) regreaaion type coetficienta of latent exogenous construct 
on latent enqeno� constructs 

t (zeta) atochutic re■idu.l term for each latent endogenous 
construct 

'lhe abov41 not:.&tion differ■ from that found in the literature for the 
general mod4tl. I h,ave employed lower cue Greek letters to indicate the 
puameter• ot the model - u in th• other model■ in thi• paper. UaUAlly, 
lower cue Creek lettera denote that th• ■y■tem 1• ■pacified in equ,ation 
form while upper cue Greek letter■ denote the correaponding ■pacification 
ot th••• equation• in matrix algebra format. 'l'he literature uaually 
diacuaHa th• qeneral model in term• of it■ matrix for1DAt. 

The model haa three other ••ta ot parameter• in addition to thoae shown in 
the above diagram, 

e0 (theta cS) - the covariance matrix for the errora on the observed 
exogenous variable• 

the covariance matrix for the errors on the observed 
endogenous variable• 

$ (beta) the matrix of structural coefficients between the 
endogenous constructs 

� (phi) the matrix of correlations between the exogenous latent' 
constructs 
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variation conmon to a specific subset of the observed variables 

will be left unanalysed by a single conmon factor model such as 

that in Figure 4 ,2a, In such a model these unanalysed 

relationships will be represented by correlations among the error 

tems belonging to the specific subset of observed variables, thus 

the assumption of the Classical model will be inappropriate, 

Correlations between the error terms in this model are an 

indication that the observed variables are not unidimensional, The 

specification of the single factor (E;
1
) in Figure 4 ,2a implies that 

the model is unidimensional, given also that the errors are also 

specified to be uncorrelated, 

A multi-dimensional factor structure is represented in Figure 

4,2b, By specifying that the correlations between factors (�2il

are zero we are able to test orthogonallity between the factors, A 

rotationally invariant solution is found by placing restrictions on 
the pattern of factor loadings (the >.1j ) for the observed

variables. For example, in, Figure 4,2b variables X1 and x2 are

specified to load only on factor t 1, etc,

We note that the model in Fi91,1re 4 ,2a is of the same form as 

that in Fi91,1re 2,2, indicatin9 that the separate measurement models 

of LISREL can each be viewed as simple co11111on factor models, 

Further, note that the structure of the factor analysis model is 

the same •• the LISR.ll!L model at each end of Fi91,1re 4,1, If we 

split the model of Fi91,1re 4,1 in two (ie delete the arrow denoted 

by the QrHk letter G41'11111a- Y) we have two separate modell, If the 

residual term � (Zeta) is specified to be zero then the left and 

right models are equivalent, Thus the simple factor analysis model 

can be parameterised in terms of either of one of two equivalent 

LISREL sub-models, Thia is a consequence of the fact that there is 

no designation of variables as endogenous or exogenous, since there 

are no 'causal' relationships between the latent constructs, in a 
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.The righthand model in Figure 4. 1 does, however, allow for a 

non-zero residual ( zeta- i; ) on the latent factors en) and is known 

as the ordinary factor analysis�• whereas that on the left is 
known as the Classical factor analysis model, due to its 

specification that the latent factor (Ksi-t ) has no residual term. 

(2) Higher Order Factor Analysis Model

The higher order factor model allows for the specification of a 

more detailed analysis of the structure amatg subsets of the 
observed variables. This is shown in Figure 4.3. The LISREL 

framework does not allow for directional (regnssion type) 
relationshi ps between latent construct• on the left side of Figure 
4. t, thus it is necessary to apecity a second order model in terma
of the ordinary factor analysis model on the right of Figure 4.1.

The factore n1 and n2 in Pigure 4,3 are first order factors while
n, is • Hcond order factor. We note that while the first order 
factor model in Figure 4,2a appeared to conaiat of • measurement 

model only, it can now be seen from Pigure 4,3 to represent a 

trivial atructural model in which the ot!ier factors are null, 

Since the first order factor• will be fully deterlllJ.ned by the 

aeoond order factor only in the apeoia 1 caae that the different 

factors are perfectly correlated, ei• r(n1 n1>•t, • residual term

( C) is apeoitied tor each firat order factor in the ieneral form

of the model, WNka (1980) iives example• of the uae of such

mode la,
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as fi xed variables. ('Fixed variable' means that the 

values of the variable found in the data are the only values which 

that variable can take, ie that these values are not sampled from a 

probability distribution of values for that variable.) The 

regression estimates are then said to be 'conditiona 1 1 upon the 

particular values of 'the 'X' variables in the data, as is the usual 

case with ordinary multivariate regression. If, however, the 

exogenous variables (X's) are observed with error, then the true 

values for the underlying theoretical variables will be dependent 

upon the probability distribution of the observed scores. In such 

cases the variable is said to be a random or stochastic variable. 

Measurement error is aie source of a probability distribution for 

the estimates of the true values of a variable. By building in the 

stochastic nature of measurement error it is possible to 

parameterise a rei?'e&sion model in the LISREL framework such that 

the regression coefficients are directly disattenuated for the 

effects of measurement error. Thia development can be viewed as a 

special case of the path model introduced in the next section. 

Error is a pervasive feature of all measurement, but it presents 

particular problema where measurinq instruments have not been 

universally standardised, as in much of the work in the aocial 

science■• Hence, fixed variable reqreaaicn 1• not a particularly 

appropriate modellinq technique for much of the data available in 

the social acienc es, 

(4) Recuraive Path Model

The recursive path model presented in riqure 4,5 ret'lects the 

dual development ot' complex structural models, ( ' Recurai ve' mean■ 

that all the causal re lationshipa between variable■ are 

unidi rect iona l, Thua it' X1 cause■ X2, X2 CaMOt cause X 1, ie there 

are no t'eedback loop■ in a recursive model,) It can be viewed as a 

marrying ot' the paychometricians factor analyais model (the 

measurement model) and the econometricians regression model (the 

structural model). Furthermore, it is po88ible to allow for the 

added complexity of correlations between the error■ of measurement 



(3) Regression Model

Figure 3.1 introduced the way in which the relationships in the 

structural model could be viewed as being of the same form as a

regression model. However, due to the fact that in the LISREL 

framework there is no direct link between the exogenous and 

endogenous observed variables, a regression model has to be 

reparameterised in terms of the structural model to perform a

regression analysis between the observed variables. The 

appropriate parameterisation is that given in Figure. 4 .4. In this 

model the observed variables are each specified to be ... identical to

a canpanion unobserved latent construct. Thus in the LISREL 

formulation the paths between each observed variable and its 

canpanion latent construct are specified to be unity, ie they are 

specified to be· perfectly .reliable measures of the underlying 

theoretical variable. Thia makes explicit one of the b asic

assumptions of ordinary multiple regression analyais1 that the 

variables in the equation are identical with the theoretical 

variables of the theory being modelled, 

If the residual term(�) in Fi9'1re 3,1 is specified to be cero 

then the endo9enoua variable is specified to be an exact linear 

function of the exo9enoua variable■ , Re9reaaion models usually 

allow the residual term to be non•cero, in which case it is an 

omnibus term representing the ■um total of effects due to the 

exog.snoua variable■ � formally included in the model, 

Equivalently it can be interpreted aa the variation in the 

endogenous variable which is not accounted for by the exogenous

variables in the equation, 

The assumption of perfect reliability for the exogenous

va riables is equivalent to a specific formulation of these
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the observ�d variables across latent oonstructs. However, as in 

classical factor analysis model, the errors for different 
,·�1::. • 

variables within a given construct may be assumed to be 

uncorrelated •. Such an assumption is often made in order to 

identify the parameters of the model. 

As indicated in the previous section, the random variable 

regression model can be parameterised in the general form of a 

recursive path model. However, path models have a particular 

advantage over regression models when the objective is to explain 

phencmena. Regression models do not incorporate the structure of 

relationships of relationships between the theoretical variables of 

a theory. A theory will usually imply a str ucture of relationships 

in which some of the theoretical variables partially determine 

others in a direct way and others indirectly. This means that a 

(mathematical) model of a theory which incorporates the form of 

this structure is a more appropriate representation of the theory. 

An exact correspondence in the form of the atructure implied by 

both the mathematical theory and the model ia uid to deacribe an 

iaomorphic relationahip between the atructurea, 

Ordinary regression model• do not usually provide estimtea of 

the•• fundamental structural parameters of a theory, becauae they 

do not �od•l th••• particular relationahips. Instead they estimate 

parametera measuring the eff ect ot each obHrved exogenoua variable 

on each observed endogenoua variable, one at a time, given 

atatiatical control for the other exogenoua variables in th• model. 

Thus regression parameter■ are an omnibus measure of the direct and 

indirect etfect■ between the endogenous variable and the other 

variables in a theory, ie regression model■ are baaed on a 'black 

box' approach to the structure of relationships which exist within 

the exogenous variable set: all exogenous variables are given the 

same 'causal' or 'relational' atatua with respect to the endogenous 



variable, Ordinary regression models may, however, be viewed as a

first approximation to the representation of a theory if they 

include among their exogenous variables only those which are fully 
exogenous with respect to the theory, ie those which are not 

detennined in any way within the theory, The ordinary regression 

model is then said to represent the reduced� of the structural 

model, The coefficients of the reduced form model indicate the 

total effects (the sum of the direct and indirect effects) of the 

exogenous variables on the endogenous variable in the structural 

model, 

(5) Reciprocal Effects Path Model

The essential difference between a recursive and a reciprocal 

(nonrecursive) effects model fa that the former specifies that 

causation between a pair of latent constructs • is unidirectional 

whereas the latter implies that the two variables influence each 

other through a feedback mechanism, The recursive path model of 

Figure 4,5 can be anade into a reciprocal effects model by the 

respecification of the aection enclosed in broken lines. The 

relevant reapecification is indicated by Figure 4,6a, otherwise the 

model has the aame repreaentation aa Figure 4,5. 

Although it ia not the uaual parameteriaation of a nonrecursive 

model, the reformulation presented in Figure 4,6b alao implies a

particular form of reciprocal relationahip between the endogenou.a 

constructs n1 and n2 • In thia case th• effect of one conatruct on 

the other ia indirect, operating via the variation captured by the 

residual _terms (�1,�2) and the covariance between th••• residuals

acroea equations. This indirect effect of one endogenous construct 

on another is a form of 'spurious' effect,· aince it implies that 

there are common variable■ (or at least, co11111on variance) omitted 

fran the equation■ for each of the endogenous constructs, 

Nonrecuraive models usually auffer from problem■ in identifying the 

parameters which represent the reciprocal e�fect, The solutions to 

these problems usually lie in simplifying the assumptions about the 

natur e of the effects (eg assuming that the effects are of the same 

,\' 
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,, 
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magnitude in each . direction) or in the use of instrU111enta l 
. •:- ,IP ,_,.;?<· i., .. _;i·�-/ · :  ,.��:-: "'-�·;.:1.�v\{:l.·%f'o.n • • • 
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(6) Test score Model

The test score model developed in educational psychology can be

fomulated as a special case of the factor analysis model, The 
model is presented in Figure 4. 7, The interpretation in the test 

score 11Ddel is that the co111111on factor ((1 ) is treated as the

underlying true score for the observed variables (X1,X2,X3) and the 

error terms ( 61 - 6
3 

) represent their unique variation, This 

unique variation is a composite measure of the test specific 
variation for each observed variable (item), and random error in 

measurement, Since the variation which is coDlllon across all the 
observed sc:ores is accounted for . by the true sc:ore factor, the 

uniquenesaes are usually specified to be uncorrelat�d, .ie r (o1 o
j )•

o,Vi i♦j, in such models, This formulation then corresponds to the 

Classical Test Score Model, However the restriction that the 
uniquenesses must o:>nsist of non-systematic variation only, ie that 

they are uncorrelated, will not hold in the data unless the 

assumption of unidimensionallity between the observed scores is 

also satisfied (cf firat order coDlllon factor analyaia model), ror 

much of the data in aocial and behavioral research, the 

uniquenesaea can be thou9ht of aa o:>naistin9 primarily of the error 
.in measurement in the obaerved variable■, althou9h they may contain 

substantial amounts of 'method effects' on measurements also 
(Cuttance, 1983), 

If the true score factor is standardised to have a variance of 

unity a parallel measures model is specified by restricting all of 
the loadings on the true score factor to be equal (.).1• X 2• A 1) and, tbe 

variances of the uniquenesses terms to be equal to each other also 

Co1 • 0 •0 iA tau-equivalent measures model• is then obtained by
2. 3 
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Figure 4.6a Re
specification of Figure 4.5 to include direct reciprocal

::f:l as :ar;) 
be.tween n

1 
and n

2 
respecified, balance 

Figure 4.6b Respecification of Figure 4.5 to include indirect 
feedback (reciprocal) effects.W21indicates a covariance 
between the construct residuals. 
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. Figure- 4.7 Test-sc:ore Model 
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relaxing the '·•equality .�res�ric.�?n �n.:,;,•.theJ:J!ir,uniqu� 
.,,,, ,.,. "'""·1 

congeneric measures model is : obtained, by :the ,.further. rel . . �- � 
the equality restriction ,on the true 
order to identify a congeneric measures model it 
have at least three observed measures of the true score 

It should be noted that standardisation may change 
the relationship between the components of variance in 
Parallel measures remain parallel after standardisation,. since. 
their variances are the same for different observed measur�.11 •. 
Tau-equivalent ,measure■, howev�r, may become congeneric measures 
after standardisation, This is because the true score.loadings are 
affected by the atandardiaation of each observed measure , . aqcordipg 

to its own variance, Thus measures which have different variances

but equal true score loadings before standardisat,,ion IMY �ve 

unequal true score loadings after standardisation, Congeneric 

measures generally remain congeneric after standardisation, An 

intereating apecial . caae for congeneric measures occur• if the 

alt ernative meaaures have equal reliabilities (ie equal ·ratios pf 
true 10ore variance to obaerved a00re variance) in their .origin•·l 

Upon 
Thia 

atandardiaation auch measure■ become ·,,parallel 

information can aometime1 be used to identify a 

model which i1 underidentified when the (unatandardiaed) covariance 

matrix ia analyaed, The model may be identified by reatricting the 

meaaures to a parallel measure■ 1pe0ification and analysing the 

correlation matrix, Identifying a model by such a device, however, 

means that the basis of the interpretation of 1ome model parameter■ 

may change. Xim and Ferree ( 198 1) provide a discu11ion of the 

i1sue1 of interpretation in structural model■ with atandardiaation 

of either variables and/or parameter coefficient■, 



·,· ··.<�{;'.'.'.",,;,. . ,' ,, ',,o:; ·,, '\;
.Multitrait-Multimethod Model· 

This , model ' is a particular specification of a family of models 

known more generally as variance/covariance COlllpOnents models. In 

general, these are used for modelling quasi-experimental data from 

various factorial designs found in educational and psychological 

research. 

The multitrait-multimethod model has been used in psychology to 
model data when more than one type of measuring instrument (method) 

has been employed to me&sure latent traits across lndividuals 

Jl'Urther, Campbell and Fiske {1959) showed how the model can also be 

used to aueu the validity of alternative 1118Asures of a latent 
coutruat and cuttance ( 1982 .-) hu ued it to atudy the method 

effects of different questionnaire• in the context of a true score 

t .. t theory model. 

Pi9UE'e 4.8 represents a model for the latter t� of analysis. 

There are four true soores (�1-(�) each with two observed variables

and there are two method effects <t,,.• �), due to the two
questionnaire• employed to collect the data on the observed 

variablea. If standardiaed data , ie correlation• are analysed, 

then the true adore factor loadJ.n9a are the aquare root of the 

reliabilities and the aquared method factor loadin9s indicate the 

proportion of the variance in the observed soores due to the method 

effect. There are corrHpcndin9 relationships tor the caae where a 

covariance 111atrix, rather than a correlation matrix, is analysed. 

In most applications the covariance matrix is the more appropriate 
to analyse, aince it retains information on the measurement acale 
of the observed variables. A correlation matrix, on the other 

hand, losea thia information in the proc••• of standardisin9 the 

observed scores in teru of unit• of their esti111ated standard 

deviation. S•• Schwarzer (forthcoming) for a didactic exa111pl• of 

the use of multitrait-multimethod models. 
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An&l.ysis Model 

\1�J,0ften in social science research the models employed to analyse
d�ta assume that there is zero correlation between·the measurement 

error on one observed variable and other observed variables in the 

model. A trivial form of this assumption is found in the ordinary 

multiple regression model, which assumes that all observed 
variables are perfectly measured, thus there are no measurement 

errors which could be correlated. Aa noted in the discussion 
above, this assumption of independence between error terms is also 

made in the Classical Test Score model and in the Classical factor 

analysis model. 

The error structure analysis model of·�igure 4.9 is designed to 
investigate the validity of the assumption of independence between 

errors. Although the 9eneral LISR!L framework does not formally 
require this assumption of ind�pendence, it is often specified in 

such models. This i■ usually because of the need to make 

restricti0ns 0n a model in order to identify it, and hence provide 

unique estimates of the para meters in the model. 

Under certain conditions we would expect the assumption ot 

independence between error1 to be implausible, Particular 

conditions which may invalidate the a1sumption apply when there is 

a canmon method effect influencin9 the observed values tor some or 

all of the variables, or where the ob1erved variables are measured 

on repeated occasions, or when individuals' responses on a 9iven 
va riable are influenced by their 1eores on another variable, eg 

middle class pupils up9radin9 statement• of their parent'• 

education. In tact, correlated error across observed variables is

to be expected whenever measurement is contaminated by systematic 

influences other than the true scores tor those variables, In the 

case where the contaminating influences are not co11111on across 

variables then we have a situation characterised by a teat score 
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model with·uncorrelated uniquenesses. Alternatively, if the errors 

or uniquenesses contain systematic influences ( eg corresponding t'o 

test specific factors or method effects) across observed variables 

then the y can be modelled as additional coD111on factors underlying 

the observed variables (cf common factor analysis model). In many 

situations the theories being modelled do not contain the 

additional information required to specifically represent these 

additional factors, 

interested in them. 

or the researcher is not particularly 

In such cases the 'coDlllon' component of the 

error terms can be left unanalysed and unbiased estimates of the 

model obtained by allowing the errors to be freely correlated. 

However, in order to obtain unique estimates the model has to be 

identified and this is not possible if all error terms are allowed 

to be freely correlated within constructs·. Identification with all 

errors correlated can be obtained, however, if we are prepared to 

place other types of restrictions on the measurement models, eg 

eqUAlity restrictions across some of the error variances. This 

specific assumption would imply that the different observed 
variables were all subject to contaminating influences of a similar 

pattern and magnitude, Ev.en if such an assumption is considered, 

plausible with respect to the random component of the uniquenesses, 

it will be much 1••• plausible for any system.atic components of 

their variation, Hence, it may not hold 9enerally for such errors 

of measurement, Of course, how appropriate the specification of 

equal variances is for 9iven data also depends on other conditions, 

such as the relative magnitudes of the systematic and random 

canponents of th••• error terms, A particular model in which th••• 

error terms are specified to be of equal variance, is th• parallel 

measures test score model, However, we not• that in the classical 

specification of this model the individual observed variables are 

assumed to be unidimensional, thus the error terma are assumed to 

contain only random measurement error, with no co11111on or systematic

canponent across error terma,

Alternatively by specifying the correlations between selected

error terms to be a known (or assumed) fixed value (zero) we reduce 



the number of parameters to be estimated, Hence, the measurement 

models can be over-identified by the judicious specification of 

independence (zero correlation) between selected error'terms in the 
model, The present type of model may be used to investigate the 

hypothesis of independence between specified error terms in a 

randan subsample of the data. In a confirmatory study we would 

also turn to the knowledge available· from the theory and other 

sources in order to decide which error terms are moat likely to be 

correlated but, in an exploratory study it is necessary to 

empirically teat hypotheses �bout the error structure among 
particular variables. These teats wl:1.'i', of course, �·�nditional 

upon the specified assumptions about the structure of errors among 
other variables in the model, 

The general LISREL framework allows for correlated errors 

between observed variables within each of the endogenous and 

variable exogenous 

variables. 

correlations 

sets, but not acroaa these two. sets of 

Thua, to allow for all posible specification■ of such 

th� model in Figure 4,9 ia parameterised with all 

oblerved variable• and latent c:onstructa as endogenous variable■ 

and constructs, respectively, in a recursive framework, All 
r419reuion effects in the model are thus between Eta <n) 

conatructs, and the error terms (£ i ) can then be specified with

any correlational atructure required. 

therefore in terms of th• right hand aide 

Thia parameteriaation is 

only of the model in 

Figure 4,1, aince parameteriaation aa a rec:uraive model in the full 

framework would not allow for a apecification of correlated errors 
between the two aets of error terma, (�) and (c), at either end of 
that model, 



Analysis of Covariance (ANCOVA) Model 

LISREL model can be used to estimate ANOVA and ANCOVA models. 

The prime feature of these two models which contrasts them with all 

of the �odels so far discussed in this paper is their focus on the 

parameters measuring� and their comparison across (treatment) 

groups. The other models discussed so far all focus on the 

covariance structure of variables which exists within.!. single 

� of subjects, although.it is a straightforward move to compare 

structural models across groups also, Thus the essential 

difference is that the former models focus on covariance structures 

while ANOVA and AN COVA both primarly focus on mean structures. 

The ANOVA model was developed for the analysis of data from 

controlled experiments in which subjects oould be randomly 

allocated to treatments, �ndomised assignment allows the 

researcher to assume that variables which are not explicitly 

controlled within the experiment do not systematically influence 

the dependent variable across treatments (groups). However, much 

of social and behavioral science data describes ·situations in which 

the ideal conditions of experimental research cannot' be satisfied,

Research based on such data is sometimes called 

'quui-experilllental', which alludes to the fact' that it is possible 

to einploy procedures in the analysis of the data to control 

statistically for the influence of extraneous factors which may 

have influenced the soores on the dependent variable. In order to 

exercise statistical control in this way it is of course necessary 

to have collected data on these extraneous influences, This ia one 

of the reasons why quasi-experimental re•••rch is sometimes said to 

be weaker than experimental research1 in quasi•experimenta the 

researcher needs to know before hand which non-experimental factors 

to collect data on, whereas in a controlled experiment there is no 

requirement that the relevant extraneous influences be known at 

all, since the randomised allocation of subjecta to treatments 

nullifies any effect they could have had, 

The analysis of covariance (ANCOVA) model was designed to do the 

same job for quasi-experimental data as that which the analysis of 

variance (ANOVA) model did for data from controlled experiments, to 



teat for a difference in the effects of two treatments. ·This 

involves a teat of the difference in the mean scores for the 

treatment and control groups after treatment of the former • group, 

given control for covariates which may also have influenced the 
outcane. 

Assuming that we have data on the relevant extraneous factors 

(covariates), so that statistical control is possible for the 
influence of .these, the usual multivariate ANCOVA analysis model 
makes two important assumptions about the data 'on the two groups. 
First, it. assumes that the variances and covariances· are equal 
acrca s the groups . Second, it asaumes 'that the relationship 
between the covariates and the outcome ( dependent variable) are the 

same acr011s groups. Now, because the condition of randomised 

assignment to treatment gn,ups is not satisfied it is likely that 

the first of these assumptions will often be violated. For 
instance, children from one school are likely to differ from those 

in another school with respect to 
class, motivation etc. Only 

their' entry abilities, 

if statistical matching 

social 

on the 

relevant, variables• is carried out can we be reasonably assured that

the first assumption will be approximately satisfied, The second 

assumption is often the one which is least tenable and it is the 

one which is most crucial tor accurate 1Htimates, It implies that 

the control group and treatment group have the same regression 

lines wi th respect to the effect of tho covariates on the dependent 
variable, This assumption may be more plausible in the situation 

where the treatment effect is null but where the treatment is 

'effective' it SHIii■ plausible that the re lationehips will often 

differ between the control and treatment groups, Indeed the 

treatment may have the et'fect of changing just this relationship, 

•9 compensatory education progra11111es may aim to raise the 

performance of disadvantaged children relative to non-disadvantaged 

children through special progra11111es (eg Head Start) and this 

treatment may also result in a changed relatfonship between social 

class and educational attainment at the end of the prograll'llle, 

Social class will, however, be one ot' the covariates which a 

researcher may wish to control for in any evaluation of the effect 
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The .. above two assumptions are made so as to achieve 
'! ,f, f-1,,," 
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identifi�ation in he usual ANCOVA model, however, other identifying 

restrictions may be more appropriate to the research problem at 

hand. Thus the flexability of a facility allowing for the 

specification of an alternative set of identifying restrictions 

would be an advantage in such analyses. 

Although not originlly designed with such analyses in mind the 

LISREL IIX)del can be parameterised to estimate the ANCOVA model 

(Sorban, 1982; Joreskog and Sorbom, 19811 Horn and Mc:Ardle, 1980). 

Figure 4, 10 presents an 

representation of a ANCOVA model. 

between groups is carried out 

augmented path diagramatic 

The analysis of differences 

by using the �ISREL facility to 

conduct a simultaneous multiple group analysis, This facility 

allows for the fitting and estimation of the structures in several 

groups simultaneously through the use of a joint estimation 

function. The differences in the mean atruct�rea between groups is 

teated by comparing the difference in tit between a model in which 

them.an parameters are specified to be equal across groups and one 

in which they are allowed to be estimated independently of the 

values of each other (ie rree, in LISRIL notation), Thia model 

employs tho chi square ratio teat which is known to be sensitive to 

departurH from the model aaaumption of multivariate normality. 

An alternative formulation of the ANCOVA model is presented in 

Figure 4. 11. In this model the mean structure• of the group are 

not apecified, rather the treatment effect ia asaeaaed by the 

influence of the variable 'T', which represents group membership, 

on the dependent construct. In this model the data is analysed as 

if it was all from the same group but, that members of the group 

differ on the characteristic which denotes exposure to the 

treatment. In the case where the data are drawn from N groups this 
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variables. Different strategies of coding the dullmy variables can 

be ·e111ployed to investigate various contrasts between groups (Kenny, 

;!979;· Bray and Maxwell, 1982). The advantage of this model over 
the fomer is that it removes the need to rely on the chi square 

ratio statistic in assessing the statistical significance of the 

treatment effect, which is assessed instead in this model by the 
standard error for the parameter indicating the effect of group 

membership. 

If the principal focus of an in vestigation is to estimate the 

magnitude of the means for different groups, in addition to the 

testing of differences between them, .then the explicit modelling of 

the structures of means is nec:essary, as in the former model. 

Indeed, it is probably always necessary to model the data by the 

explicit structures on means if it is the means of groups which are 

the focus of the research. only through such models is it possible 

to assess the substanti ve importance of any difference between 

groups, in addition to testin'l for the statistical si(Jnificance of 

any difference between means. The model in Fi(JUre 4.11 allows for 

the statistical testinlJ of the difference between being in o�e 

group as opposed to another. It does not furnish any direct 

infoz:ma tion on the means.

In addition to the tlexability in specifyin9 the most 

appropriate identifyin9 restrictions for the particular model at 

hand, these formulations of the ANCOVA model allow for the 

investi9ation of differences in mean structures within the specific 

context of the covariance structural relationships in the group■ 

and the asseasment of model fit. A model which does not fit 

satisfactorally may indicate that important covariates ha ve been 

omitted, hence that the difference between 9roups may be highly 

sensitive to the particular specification of the model employed in 

the analysis of the data. Analyses with the standard ANCOVA model 

leave the researcher substantially uninformed as to these danger s 

$4 



to inferences and conclusions drawn from the analysis. _In addition 

the standard ANCOVA IIIOdel is not always appropriate w�n subje�ts 

are assigned to treatments en the basis of particular non-random 

strategies, where there n,ay be error of measurement in the 

variables or, when the number of subjects varies significantly 

acroea groups. Each, of these problems can be separately and 

jointly addressed in the for111Ulation of models in a a more general 

structural modelling context, although the restrictions required to 

identify a particular model will always mean choosing between a 

fixed set of alternative constraints on .the model. 

5.00 Discuasion and Other Issues 

The approach of this paper _has been to ... giv,e the rea_der a

non-technical conc�ptual overview of the scope of the LISREL model 
' , • '' > ,. �.' ,, ' ' 

and to discuss a selection of models coam�ly .FPlC?yed in social 
' ,. ,, ' '"" < .,,,.,, ' • ' f; ,, > •\, ' 

science within this framework. These models have been discussed in 

a heuristic way ao that researchers interested in extending their 

modelling techniques to include the more general. approach of t.ISREL 

can aee where it fits into the general application. of linear 

mode la. 

Anyone who refers to th• more detailed literature will aoon 

realiae that there are aeveral iasuea not so far mentioned, 

Problems may be found in th• failure of the iterative eatimation 

proc••• to converge to atable estimates, Th• estimates for some 

parameters may occaaionally be implausible even when the model haa 

an acceptable overall fit, A particular example of this 1• Heywood 

aolutiona, ie negative estimated variances for th� errors of 

measured variables (c 6 l I or for construct ruiduala ( r; l, 
l 

Methodological problems in deciding on criteria for comparing 

the measures of fit for different models based on the same data are 

still to be resolved. The issues rest on the. criteria for 

canparing models which are not nested, that is, more or less 
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restrictE1d versions of 'one another, and upon the susceptability of 

sCllle • of':: ih� measures ot' 'fit to sample size. Version V of the 
program does, however, include new measures of model fit. We will 
have to wait to see how well these measures distinguish between the 

fit of models which are not nested. The sampling distribution for 

these new indicies of model fit are unknown, thus they do not 

provide an opportunity for the statistical testing of the 
differences between IIIOdels. 

In practice, � � solutions to these problems are adopted to 

suit the particular investigatory situation. In a0111e cases more 

general 'rules of thumb' are being developed to cover a wider range 
of applications. Many of ·these issues are as unresolved and 

important for other forma of the linear IIIOdel and for some other 

methods of estimating the sub-models discussed in this article, 

al.ao. 

Thia brin9a us to the one area in which th• LISRJ:L 111ethod of 

estimation makes more restrictive assumptions about the variable■ 

and data than some other methods. Maximum liklihood estimation 

produces estimates with desirable properties provided th• data 

conform to a multivariate normal distribution, '1'hia is 9enerally 
considered to be a hiqhly restrictive assumption to make in respect 

of data in social science situations. Methods of ••••••in9 the 

properties of data in this respect are available but are not widely 

known or applied (Qnanadesikan, 1977), Models baaed on estimation 

procedures employin9 Ordinary Least Squares or Qeneraliaed Least 

Squares te.chniquea make leaa restrictive distributional assumption• 

about the data. Version V of th• LISP.EL pro9ram has an option for 
aelecting an estimation procedure baaed on the method of t1nwei9hted 

Least Squares (ULS), However the technical and computational 

problems of computing sampling information about the precision of 

the estimates (standard errors) have not yet been solved. '1'hus the 

ULS estimates are accompanied by leas information on the fit of the 
model and on the precision of parameter estimates than the ML 
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estimates. In some cases it will be useful to compute model 

estimates by both methods. Where they are simiar we can be more 

confident that they are not artefacta of the method, but for data , 

of a highly skewed nature it is beat to opt for the ULS estimates 

aa the ML method is known to be sensitive to the effects of 

skewneaa. If, however, the researcher ia prepared to aaaume that 

the observations are drawn from an underlying true distribution 

which is not aignificantly skewed, ie one which is relatively 

nomally distributed, then it is poaible to utilise an option in 

the program to treat the measurement scale of the observed 

variables as ordinal in nature and to rescale the values so that 

the variable is normally distributed. In doing this the weights 

given by the categories in the measuring scale for the observed 

measures are disregarded and new weights calculated from the 

f requency of the observations in each category. 'l'he correlation 

between two such ordinal variables ia then calculated from a 

contingency table and is known aa a polycholoric correlation. 

These correlations are used in the same way as the ordinary 

(Peanon product-moment) correlation coefficient as intermediate 

input for further analy■ia by ULS or ML methods in the program. 

In this section I have attempted to indicate some of the areas 

in which the methodolo9Y of LISRIL modelling raiaea unreaolved 

queationa about such method• in general, however, I alao wiah to 

atre•• that the new awareneaa of such iaauea 1• itaelt a majO¥" step 

forward. A aet of paper• which aim to present didactic diacuaaiona 

of various feature, of 1tructural modelling and the robuatneaa of 

the Htimatora uaed in Htimating model• ia in preparation 

(Cuttance end lcob, forthcoming). 
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