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Synopsis

The principal objective of this papek 'il to quoqltrato
coriceptually the re;aiipnqhip between various modelling teéhniquel
commonly emplqud '1n data anqulil in social and bqhavioral
rasearch. The papef rocﬁsoa on the commonalities between such
nultivariate techniques as path analysis, regression analysis,
panel models, longitudinal models, common factor analysis, higher
order factor analysis, factorial models (eg multitrait-m&ltlﬁnthod
nocdals), test score models, error structure analysis models and the
ANCOVA model.

It shows how the covariance structure model which underlies the
LISREL model can be employed to reconceptualise and parameterise
oach of‘tho above models in terms of a more génoral f ramework. In
particular, these models can be conceptualised _¢'u‘ .a specific
configuration of the sub-models which comprise the LISREL model.

The measurement and structural models of the .general covariance

model are employed as the basic building blocks to reconceptualise
the specific wodels on which each of the various techniques are
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"baged. The LISREL model has been chosen as the vehicle for

denionstrating these conceptual commonalities because it is the most
- widely used general covariance atructure model. Although other
models such as' COSAN (McDonald, 1978), EQS (Bentler, 1982 ) ‘
LACCI (Mutheniwu983) are similar to the LISREL model and will thus
“also allow for the parameteriaation of the models discussed in this
paper, the associated computer programs for estimating ‘them are not

as yet as widely used as the LISREL program.

Significant advances have been incorporated into the recently
released version V of. the LISREL program.: In particular, the

program now includes a procedure which automatically estimates a

set of initial start values foru the‘ iteration process in the
maximum liklihood method of estimation. The provision of these
start values by the user had been a major obstacle to the use of .
the program in previous versions. Version V also provides a wider
range of statistics for judging the fit of the model, in addition
' to an option for estimating relationships between ‘discrete’
variables and ' another 'for using a least .qﬁ.&&a estimation
procedure where the alsunptions undetlyinq ‘the maximum liklihood
model are not met hy the data and model under invaatiqation-"

Further, the LIS?!L proqrah is soon to be intatfaced to one of
the most widely used packages available in the social, behavioral
and medical sciences. It is expected that this will mean a much
wider availability and use of thathogram than has been the case
hitherto.

"The paper is written and broidhe.a in a schematic’ and didactic
style suited to novice modellers in social and behavioral research.
The only requirenent is that readers have an idea of and some
previous exoerience with at least one or two of the multivariate
techniques mentioned in the opening paragraph above. They are not
required to have an underatanding of matrix algebra or statistics
in general. Path diagrams are employed as visual representations

of the conceptual models.



1.00 Introduction

This article aims to f£fill a major lacuna in the social science
literatdre covering the general linear model upon which several
types of statistical analysis are based. Statisficél models such
as factor analysis, test theory models, regression models, analysis
of covariance etc. ‘can be shown to be speciilisations of a more
general mathematicai :nd statistical. framework. By explicating
these submodels in terms of a more general model it is possible to
gain greater insight '1ﬁto “the particular similarities and
differences between 1ndivi§uh1 ;ubmbdéls. .

The general model is not new, but its development has recéi?ed
much greater attention over theilast decade and it has been used in
a wiQe.rango'ot apblicationl in education,‘ paychology,"ecénomics,
socléloqy,‘ﬂﬁnd related sub—disciplinos. However, due to the
technical sophistication required to use the computer program and
to parameterise the models its application has remained an elite
speciality. Although various forms of the general model have been
advanced in the literature (McDonald, 1978; Bentler, 1982 Weeks,
1978; Joreskog and Sorbom, 1977, 1978, 1981), ‘I focus on the
particular formulation which appears to have gained the widest
currency. This model, now commonly referred to as the LISREL
model, is accompanied by a burgeoning technical 1literature
roporting the statistical and mathematical theory on which it is
based and 'state of the art' epplications of it. This literature
is accessible to only a small subgroup of specialists who are
familiar with the statistical and mathematical theory underlying
advanced multivariate statistical analyses, however, an elementary
overview for the less technically minded redearcher is not readily
available in the published literature. It is this lacuna in the



literature which I aim to £ill. Reviews of the applied litereture
are toabe“fouhd in Bentler (1980) and Bielby and Hauser (1977)
while general expositions of the statisticei model can be tound in .
Joreskog (1973, 1974, 1977, 1981), Joreskog and SOrbom (1977,
1978). Carmines and McIver (1981) and Rindskopf (1981) proﬁide the
most readable general introduction to covariance structure models
while Bentler (1980) provides a lucid discussion of methodologicel
issues. Woofle (1982) and Lomax (1982) Joreekog and SOrbom (1981)
provide introductions to the application of LISREL.

My aim is to provide an didactic introductory overview of the.
general model and some of its epecialisetione, so that a much wider
group of ' researchers may eppreciate the scope and nature ot the'
method within a context of the more familiar multivariete data

analysis methods found in the social sciences.

i

Although multi-equation lineer modell have been ueed widely in
sociel science research over the lalt two decades or  lo, their
parentage and develogment in other dieciplinee now spang more than
half a century. The biologist Sewell Wright, is usually crcdited
with the first substantive use of such models in a paper publilhed
in 1925. The US Government sponsored COVIee Commission set up in
tﬁe late 1930's recognised the potential for their application in
econamics and early work in educational psychology also produced
variants of such models. During the 1930's and 1960's the
sub-disciplines of econometrics and peychometrice were fostered and
developed by a surge of interest in the application of these models
in economics and psychology, respectively. Their application in
education and sociology also commenced during the 1960's, however,
it was not until late in the decade that researchers in these
latter disciplines generally became aware of the extent to which
similar models had been developed and applied in psychology and
econamics. The seminal article by Goldberger (1971) explicated the
relationship Dbetween the variants of the model employed in

econcmics and psychology and indicated how an approach based on the




merging of these could provide models of more general interest.
Today the most sophisticated deQQIOpment of the model is known
through the generic terms of covariance structure  analysis and
structural equation modelling.' The work of Joreskog and Sorbom
(9976, 1977, 1978, 1981) has largely been responsible for
solving the <complex mathematical and statistical problems
associat@d with the model so that it is now possible to use it in a

wide variety of general applications.

The computer program LISREL V has been gpecifically designed for
the estimation of these models. Other similar programs have been
developed by McDonald (COSAN), Bentler and Weeks (EQS) and Muthen
(LACCI) but they are not yet as well documented and developed as
LISREL, nor are they as widely available. Each program has
slightly different features and qapabiiitiea but LISREL is the most

widely used in the research reported in current academic journals.

2.00 Structural Modelling: The General Framework

e

The topics to be discussed here can be summarised in the
following distinctions:

(1) exploratory v's confirmatory analysis,
(2) fallible v's assumed infallible data,
(3) latent (unobserved) variables v's observed variables,
(4) iineit v's non-linear mddela,
)
(5) model fitting v's parameter estimation,

(6) over-identified v's just-identified models.



: Wdaiééiﬁeéiéﬁ;‘ will be employed ito Vallucidate
‘”differences and’ similarities ‘between the :-more: general covariance
f‘atructure f nodel _and . ‘those which underlie the ‘more familiar
: multivariate methods in common use. ‘

L

(1) Exploratory v's Confirmatory Analysis

When the level of knowledge available about a given problem is
relatively  underdeveloped one -has to proceed :to -analyse and
interpret that problem with elementary methods (Wold, 1966, 1969).
The methods are -elementary only 4in the sense that .they embody
little accumulated knowledge about the phenomena of .-interest, le
they are not based on an elaborated formal theory of -the phenomena.
Such methods can be described as exploratory ,since they take as
their only criterion, the standard of ‘whether or not they “provide
a means to make gsome gort of sense of the data'. When the method
employed produces a non-interpretable or unexpected finding, it is
either discarded or given a post hoc interpretation.  8ince
diadardinq a finding leads to the process of searching or exploring
the data for anothar,. more appropriate, interpretation, this
procedure also ,reauita in a post hoc explanation of the patterns
existing in the data, The problem with such explanations is that
there is, in principle, an unlimited number of tham which describe
the data equally well (on statistical criteria) for any given
Iaituation. In the 1limiting situation where we start from a
position of 'no theory', not even a common seense one, no formal
statistical procedure will choose Dbetween the logical or
explanatory validity of competing post hoc explanations on the
basis of statistical analyses of the data. Hence we need to have
recourse to a mathod of confirmation, or 4in the parlance of
'atatiatica, a method of ‘testing' the various competing

explanations.



Confirmatory analysis is the procedure used in such a situation.
In order to conduct a confirmatory  analysis it'ia necessary to
come to the data armed with a 'theory' of what may have generated
the grid of relationships which exist in that data. This theory
may came from many sources;_scholarly, commoh sense, exploratory
analysis of other data, etc, and may be more, or less, well
developed. The one requirement thch the theory must be able to
satisfy, however, is that is must be amenable tq formulation in a
testable form. This may be -based on a weak specification - eg
variables Xi1.......X5 are related to each other in a non-random way
or, on a strong specification -~ eg X1 causes X3 but not X2, or some
combination of options in such a range of specificatione. Once the
theory is formulated in a testable specification it is possible to
conduct such tests as appropriate to confirm or reject the
particular hypotheses. A collection of hypotheses which describe
the overall theory in greater detail can also be tested
simultaneously. In such a case we say that the overall model which
describes the theory is being tested. 8ince model testing is
usually Dbased on several individual hypotheses which are
simultaneously tested, it provides a greater degree of rejection or
confirmation of the theory than independent tests of individual
hypotheses. Structural modelling is specificaly aimed at such

conf irmmatory analysis of theories.

However, the distinction between exploratory and confirmatory
analysis is not as marked as I have presented it so far. We
probably always have at least one rudimentary theory in mind when
we plan a study. At the eimplist level, a theory of measurement is
required just to collect data on a particular variable. . If we put
a little effort into constructing a theory on the basis of what is
already known about the phenomena of interest, we will usually be
able to provide one or more potential explanations on the basis of
this prior knowledge. These hypothesised models can then be tested

against the data to see if they could have generated the patterns
therein.



‘a model providoa an aoceptable tit to the’ data, ‘then we have
an"independent oontirmation of the theory, although it is posaible
that “other models (possibly unknown) could aluo fit the data
equally well. Where the model 13 not confirmed we can test
alteénative models in a similar fashion, and in the event that none
of them fits the data, explore the data’ by making modifications to
these rejected models. Exploratory analyses aimed at providing
refinements and changes to the models mny 'suggest appropriate
respecifications which can then be teltedlaguinst new data, or
validated against a sample of the data held back for such purposes.

(2) Fallible v's Assumed Infallible Data

The foregoing has assumed that we ' can mootdiily. measure the
theoretical variables of interest in order to test the theory. We
still have a problem to face, even if such variables 'are directly
measurable. When we measure an item or variabla of interest two
questions immediately arise: (a) Is the measurement valid? (b) Is
it reliable? These two issues are studied under the rubric of
'measurement error'. Any sophisticated mathematical or statistical
analyses will want to be able to take account of ‘uuch error, 8O
that we can model the pattern of relationships between the
underlying true scores for each variable in the data. The problem
of measurement error has been studied in oducotionnl psychology in
the development of ‘test score theory' and in economics as the
‘errors in variables' problem. The essential component of both
approaches is an attempt to distill out the ‘'true score' of the
variable from the measurement error. The sub-model underlying this
aspect of the LISREL model is illustrated in Figure 2.1. It states
merely that the observed(measured) variable(X) consists of two
parts: a true score represented as a latent variable(£), plus an
error of measurement(s). (See Figure 4.1 for a description of the

symbols employed in the figures.)
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Figure 2.1 LISREL Measurement Error Model
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’Ji Hero mea%uremeqm:frror_may be 1ntetpreted as a renidual covering

A% Sl ¥4
a range of 1n£ uences, other than that of the true score, which

produce the 6buervod lcore. Influences luch as queltionnaire
method effoctl, rolpondentl self imaqa, etc, which vary across
1ndividuqll"qnq influence their responses, are 1hciuded. The
measureané quol tth posits the existence of a true score for the
particular ﬁheoretical variables of a theory, however, the effects
of measurement error mean that it 1. not possiblo to directly
observe the.g true scores. The notion of a latent (unmeasured)
variable is introduced to represent the true score. The Variable 13

in Fiqute 2.1 is of this type.

(3) Latent (unobserved) Variables v's Observed v.iiab}el

The preceeding section has indicated one situation in which a
latent variable is introduced into the model so as to provide a
more informative analysis of theoretical models against (cbserved)
data. |

Another situation in which it is necessary to introduce latent
variables is when the theory employs ooncepts which are, in
principle, not directly observable, eg social class, anxiety,
intelligence. In order to obtain a mea.uremoné on these variables

it 1s necessary to measure observable variables which are
'deliqnated as indicators of them. Essentially, this amounts to
saying that the measurement theory of these variables is more
camplex than for directly observable variables. For instance,

simplistic measurement of the variable social class may assume that
a single observed variable, fathers occupation, say, is a suitable

measure of it. More complex measurement of social class may take
account of other aspects of the concept , also. In this case, a
Qidef range of varinblelrwhich are ﬁeld to be more representative
of the total ‘'conceptual domain' of the concept (eg relationship to
the mode of production, mothers' and fathers' education, family

wealth,etc.) may be employed as complementary indicators of the

10



theoretical variable. In such a situation it is necessary to
expand Figure 2.1 to include more than one observed measure
(indicator) of the latent ';rariable, so that the t'hveoret:ical
variable 1is represented by the common variation across the set of
designated indicators of it. ‘I‘h’il. is represented in Figure 2.2 and
the latent variable in such cases 1is referred to as a common
factor.

We note that the form of the relationship between the parts of
the model in Figure 2.2 is formally the same as that in Figure 2.1,
thus they are represented in thé same way ;n ‘the LISREL model.
Whether the variable £ is to .be interpreted as a latent variable
or common factor is dictated by its particular theoretical purpose
and not by statistical or mathematical considerations. when it is
interpreted as a common factor (as in factor analysis),the error
tems(S; - 6’) may be interpreted as the unique part of each cbserved
variable and the common factor itself as the shared part or common

constxuct underlying the set of them, The term latent construct

will be employed to refer to both common factors and latent
variables when there is no particular need to distinguish between
them: This usage helps us to keep in mind the fact that such
variables are formally ‘constructed' measures of theoretical
variables, as opposed to direct measurements on the variableQ
Direct measurements on a variable assume that it takes the same
scale of measurement as the measuring instrument, however, indirect
measurement means that the scale of measurement for the constructed
variable depends on the 'weight' of each particular observed
indicator in the constructed variable, in addition to the scale of
measurement for each indicator. Thus, constructed variables will
often have ‘'arbitrary' scales of measurement and these may change,
depending on the membership of the particular observed variable set

employed as indicators of the construct. R
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_ Figure 2.2 A Single Lateat Factor.with Fallible Observed
-+ Variables '

R X1 = A+ 6§
' Xz = X218 + 82
Xy = Ank + 6,
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(4) Linear v's Non-Linear Models =~ ‘= <

S e e s

Linear models have ' become ' popular for - analysing - the"

relationships between variables because they afford a tractable

solution to the numerical and statistical problems in such
analyses. The true relationships between variables may not be

linear, thus the use of linear models necessarily implies ‘a more or

less approximate fit to reality..gg.hoc procedures are available

for linearising the relationships between variables through the

application of non-linear mathematical transformations to the data

when these are well behaved ' relationships, but’' parametric .- .

techniques for linearising non-well béhaVod‘relationshipéiate more

cogplex (see Xendell ‘and Stuart, 1973; Box “and Cox,  “1964) . ' The

property of ‘continuity' in' heasuremént vlcalosiia”an’imPortant’"“

aspect of linear relationships. 'A-‘measurement scale’for ‘a variable®

must be’based on an aasumed underlylng cohtihuhm 1£°1t"i8 “to " have”

i

the potential of’ & linear rolationahip with other vatlables.
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This “ aspect ' of measurnmant haa been” lingled ‘out fof partiocular
attention because it is ‘one "of “the"" atronqcr Asaumptiond  ‘Hade " Lh"
linear models. Variables which are of a 'categorical nature-are By"
definition not ‘continuous. f’!t‘thé”dndef191hq theoreticdl ‘varidble

is, 'hbwovcr.““contlnuous in nature then 'the observed variable‘is'

often treated as if it were continuous. ' The ﬂISREL V program
includes an option to implement this typo of analysis.
!ssontgllly, it rescales the measuring instrument on the assumption
that the underlying theoretical variable is continuous and normally
distributed in the population. These rescaled variables are then
used to calculate the correlations, etc, for the analysis of the
relationships between variables. Where the theoretical variable is
not continuous in character, then the assumption of = linearity is
inappropriate. For such categorical theoretical variables, the
correct procedure is to analyse the data for each categorical group
separately and then compare model estimates between groups or to
include a (binary) dummy variable in the model to represent

membership/non-membership in a group. In the latter case it is
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- assumedﬁﬁthdtwﬂtho'“Qroupl ‘defined by the dummy variablq‘qhqrevshe
same lttqcture of relationships (ie: same slopes .for their

'teérgléionfﬂ/linel') but that their regression 1lines may be

non-coincident.

when the data to be analysed contain a mixture of interval and
ordinal (discrete) measures the LISREL approach can be used to
estimate the relationships between the variables in the data. The
LISREL program calculates different types of ‘correlation
coefficient' between the different types of variable pairs
(interval, discrete polytomous, discrete dichotomous) depending on
the particular pairing of variable types lhvolvod in each instance.
The matrix of these mixed 'correlation coefficients' is then used
to estimate the relationships between the variables in a model.
However, where all, or almost all, of the variables in a data  set
are of a dichotomous categorical type it may be more appropriate to
use other methods specifically developed for this case (o§ log
linear models, latent structure models). Muthen (1983) and Bock
and Aitkin (1981) have also developed programs which can estimate
structural models for this case. The Muthen program is based on a
framawork similar to the LISREL model. Examples of the application
- of thesa methods can be found in Muthen(1981) and, Altkin,Anderson
and Hinde(1981), In the case where the data contain a mixture of
the variable types noted above, the use of these latter methods may
result in a considerable loss of information if all the variables
are collapsed into dichotomies. It is possible to avoid this loss
of information by creating dummy variables to represent each of the
categories in th; polytomous and interval variables in the data.
This procedure, however, results in n-1 dumy variables for n
categories in a measurement scale, thus it can result in a very
‘'large number of variables in the raw data set which forms the input
into these programs. Also, formal inequality constraints have to
be 4included in the structure of the model if these sets of
transformed variables are to retain the information contained 1in
the ordering of categories in the original measurement scale. The

LISREL approach can thus be seen as a compromise solution for
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~analyses in data where the variables are measured with mixed types

of measurement scales. :This compromise is achieved at the cost of

assuming that the distribution of the true.score for the observed

variable is normally distributed in the population. . .

(S) Model Fitting v's Parameter Estimation

Prior to the development of the general LISREL model it was, not
possible to.routinely test how well the gstimates of the parameters
in a structural model hed‘repqoddced the obeerved correlation or

covariance matrix for the data.. mfI‘ypically qthe reeearcher _was

intereeted -in eatimating .the . parameters of each#equetion in thegu;

mode 1 1ndependent1y of conetrainte.acroee_.eqnationa, , contrary _to,

what is, ueually .suggested by .the lubetantive theory underlying o

social science models. Relationehipe“betueen variables were

usually viewed as being all of the same causal or relational!i
status, = For example, perentel education and students' educational ;
aspirations as determinents of achievement would be entered into

the same regreelion'equation. However, most theoriea would auggeet |
that one Variable ahould have caueal priority over the other.} L

yoLEU

In general, it il alwaye poeeible to eatimate parametere for

relationehipa between variables when | an unconetrained, ie

saturated, m°d°1 is posited. For 1ﬂltlncel any set of variablea‘““'

can be factor analyeed to derive an eetimate of their common tactor
variation. In more complex, le formally conetrained, ‘models the
estimation process attempta to provide the best set of eetimatee

given the theory derived constraints placed on the relationships
between constructed (latent) variables in the model. In an

unconstrained situation, of which the first order common factor
model is a simple case, the'model estimates will exactly reproduce
the pattern et variances and covariances in the gata. However, in
a constrained model (ie one in which certain parameters are fixed

in value, say, set to zero) it is problematic as to how closely the
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??‘hle.timdtid,ﬁdrameterl reproduce the relationships in the data. . The

fit ot.thQ‘model is a measure of how wéll the parameter estimates
of a plrticular constrained model reproduce the relationships in
the data‘’as represented by the correlation or covariance matrix.
If a particular theory is a poor description of the processes which
produced the data, then the constrained model which represents that
theory will result in a poor fit between the model and the data.

The issues of parameter estimation and model fit are
conceptually quite distinct. Model fit indicates how well a
particular set of parameter estimates describe the first and second
order moments (correlations or variances and covariances) in the
data, while parameter estimation relates to the estimation of the

mAgnitude' of individual parameters lqch as factor loadings or
regression coefficients. The maximum 1liklihood method of
estimation is based on an iterative process which employs a
criterion of how well a particular set of estimates fit the data at
each iteration in order to derive a solution which fits better at
the next step, given the constraints imposed on the model. The
capacity to test for fit is an advance over methods which provide
only the opportunity to estimate parameters. For instance, none of
the multivariate statistical procedures in the widely used 8PSS
camputer package provide for testing the fit of models based on
their parameter estimates. In part this is justified, since the
procedures therin are all designed for estimating unconstrained
‘(saturated) models, hence the models will all have an exact fit to
the data. However, the methodology of wusing such models often
calls for omodifications to the estimated solution, eg a standard
rocommqndction is that variables with a factor loading of less than
0.3 should be deleted from the particular factor when using them to
build a ooﬁpocite measure from the factor. 6uch rules of thumb
raise the question of how well these constrained composites then
fit the data. The rule of thumb amounts to the placing of ad hoc
restrictions on the multiple factor model, which is then, by
definition, a constrained model. Thus the composites will not

necessarily fit the data perfectly, as would the unconstrained

16



model on which they were baged.

(6) Over-Identified v's Just-Identified Models

The idea of identification can be demonstrated by an analogy
with the conditions for solving a set of algebraic equations. The
discussion of parameter estimation and model fit above assumed that
the parameters of the model were identified. A model is said to be
identified if the parameters can, in principle, be estimated as
unique values.By unique I mean that the set of equations can be
satisfied by just the one 'unique' set o; values for the unknowns

in them. For instance the variable Y iq‘qhid to be Jjust-identified

in the following equation set:
Y=X+2
Y= 3X -2

By substituting the expression for Y from the first equation into

the second equation we obtain an expression which is in terms of
the 'X' variable only.

X+ 2= 3 -2

On simplification this reduces to X=2 and by resubstitution into
the first equation we solve for Y as Y=4.Now,this solution
(Y=4,X=2) 4ie the only set of values which will solve both of these

equations eimultaneously,hence they are said to be unique.

In struoctural modelling the equations express the relationships
betweeri the known variances and covariances which we calculate
directly from the raw data and the unknown ‘'parameters' which
represent the model specific effects of one variable on another.If
we have more unknown parameters in the equations the number of

variances and covariances for the variables employed in a model,
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““then the model ‘i8” said to be under-identified, :that. “is,there is
insufficient%”known 1ntormation ‘in the ‘system to satisfy the

requirement that ‘each unknown can be uniquely estimated.wWhat this
means in practice is that each parameter can at most only be solved

as a function of the other parameters in the model.

If we have exactly the same number of unknown parameters as ther
are known variances and covariances (or .correlations) in the
model,tnen it should,in principle, be pogsible to uniquely estimate
each of the parameters in the model.I say 'in principle' because it
gsometimes occurs that a set of the variances and covariances in the
model are an exact linear 6omb1nat1cn of some .other subset of
variances and covariances and this means that the total amount of
known information is reduced, because a ‘linear combination of
variances and covariances does not add to the 1ntormation‘niready
contained among the uncombined set of variances and covariances.
That is, there is less information available in sets of variables
with exactly collinear variances and covariances than there is in
two subsets each of which ia'indepedent'ot each other. Where there
is more known information contained in the set of variances and

covariances than there are parameters to be estimated, then the
model is said to be over-identified

If the equations of the model were exactly‘determiniotic,that
is, if each outcome could wae specified as an exact combination of
the other variables in the model,then all pairs of equations would
‘give the same solution as any other pair of identified equations
for the model.In practice the models used in the social and
behavioral sciences are not exactly deterministic but 'stochastic'
in nature.That is,they specify that the endogenous(outcome)
variable is only partially determined by _the other variables
included in the model and partially determined by a 'stochastic’
residual or error term.Thie etochastic residual then,in
effect, represents the combined influences of all the variables
whiéh have been left out of the model(eg because we d&o not have
data on them). The result of combining the stochastic element of
modelling with the condition of over-identification is to arrive at

18



a situation where the different  pairs  of equations may give "
slightly different solutions for the parameters. - -Rather than
arbitrarily accepting one get of parameter estimates as preferable
to the other possible sets in an over-identified stochastic model
we can use the additional information available from the solutions
for daifferent subsets of the equations to find a solution which in
some sense is the best 'average' estimate of the parameters ,given
the model and data at hand.In practice this job is done by a
camputer algorithm which minimises the difference between the set
of variances and covariances implied by a given set of parameter
estimates for the model and the set of population variances and
covariances which are estimated from the raw sample data, by
assessing which estimates give the best fit to the data.

In complex models the number of parameters to be . estimated is
often too large for manual checks on the identifiability of each to
be undertaken, since the procedure is logical or mathematical, as
opposed to statistical, in nature 'and standard ‘nunerical or
statistical computation techniques are not suitable. The LISREL
program does undertake a check on model identification when the
option for maximum 1liklihood estimation 1s'used but not when the
unweighted least squares method is employed.

3.00 The LISREL Model

As noted earlier, the structural models of concern in this paper
are those which can be formally specified on the basis of a
consistent theory. The term 'theory' is used here to denote any
set of oconsistent notions about the relationships between the set
of variebles of interest. The model derived from the theory may be
more or less elaborated, depending on the state of development of
the theory. The particular feature of models in the LISREL
framework is that they make expliéit provision for the estimation
of relationships between the underlying theoretical variables of a
theory. Heuristically this amounts to th; egtimation of the

regression and correlational relationships between  the latent
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the structural~ model..n,This aspect of the LISREL

The cutvedAiline- in the figures prélented_ in this paper
represent correlations or covariances, and straight lines represent.
a -peciai - form of regression type relationships, known as

'structural relationships, .ie they are causal, (asymetric)

relationships. The single arrow head indicates the direction of
the relationship.

The Greek letterf (Ksi) indicates endogenous (otherwise known as
predetermined or independent) observed co@structl‘and_;hé ietter n
(Eta) indicates endogenous (dependent),doﬁltructl_(ié determined by
other constructs in the model). The convention used in referring
to LISREL models is that an e gg ous con-truct is one which is not
caused by any other constructs in the model. In the terminology of
experimental design some constructs which are denignated‘ to be
dependent in same equations in the model ‘may\Appear in other
equations as an independent construct. For example, in Figure 3.2,
the construct n; is both dependent and independent, similarly for
N2 depending on which part of the model is being considered. It is
for this reason that the term exogenous is reserved for referring
to constructs which are causally independent of all others in the
modal. Any construct which is caused by any other construct in the

model is then referred to as an endogenous construct.

S8ince not all of the variation in an exogenous construct ie
necessarily determined by the other conetructs included in the
model, these constructs are specified to have a residual term
denoted by ;(ZQ£A).' ‘The Greek letters are employed so as to
distinguish between unobserved and observed variables in the full
model. Uncbserved variables (latent constructs) are denoted by

Greek letters and directly observed variables are denoted by Roman
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Figure 3.1 A Simple Structural Model

M = Y11 &1 + Y12 62 + ¢
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PFigure 3.2 A More Complex Structuzal Model

mo= yu b : R + &y
N2 = - Yaa + Bamy + &2
;o Ns = yn& + Bama + &y
. A 21
¢ €,

Figure 3.]) Measurement Model for a Single
Latent Pactor

e Agamte

Y, = A v e,
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letters and enélos;d in square b;xés. Circles denote that a latent
constfuct is meant to represent a specific theoretical variable
(E,H):. in contrast to those of an omnibus composition represented
by residuals ( ;) or error terms (6,5). A more complex structural
model is depicted in Figure 3.2. In this diagram the constructs
E;,E{ are exogenous andrh-n’ are endogenous constructs. We note
that the presence of three endogenous constructs means that the
model attempts to explain a theory in which the exogenous
theoretical variables simultaneously cause these different outcome

variaﬁle-.

The equations idAéigﬁre 3.2 can be interpreted as multiple
regteuaiSn equations for the particular structural relationships
specified between the latent constructs. The constructs are
unobserved (latent), thus we candot actually eatihate the equationi
as they stand at present. Estimation of the relationships between
the latent constructs requires that we have estimates of the values
of the latent variables based on meauureménts on the observed
variables, thus it is necessary to add a measurément model to the
structural model of Figures 3.1 and 3.2.

The measurement model provides the required 1link between the

observed and unobserved variables of the model. The measurement
model is used to desoribe the latent construots in terms of the

reliabilty and validity of the measurements on the observed
variables. Figure 3.3 presents a measurement model for a single

latent construct. The same form of the relationship between
observed variables and unobserved (latent) constructs applies for
both exogenous and ehdogenoui constructs. The Roman lgttef 'X' is
used to denote observed variables which are indicators for
exogenous constructs and the letter 'Y' is used to denote those
which are indicators for endogenous constructs. In the LISREL

model, unlike in standard multiple regression analysis, the implied
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becaue; t?%?e are"impure"heasures of the theoretical varlables
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being “modelled. The variables of a particular theory and, hence,
%”1‘2’"”&&313» 1"""\' s 2

of cge structural eqpatlons, are those represented as the ‘true' or

g, A

latent constructs ot the structural model. We note that the

measurement model of Figure 3.3 1is of the same form as that

presented earlier in Figures 2.1 and 2.2.

Pigﬁreu3.4 takes the simple structural model of Figure 3.1 and
adds measurement models to each latent construct. For purposes of
illustration the number of observed measures has been varied for
each construct. §1 has only one observed measure (xl),Ez has three
observed measures (X2,X3,X4) and n, has two observed measures
(Y1,v2). We nots that errors of measurement in the Y variables are
denoted by the Greek letter Epailon (€) and measurement errors in
the X variables are danoted by the Greek letter Delta (6). Figure
3.4 represents the completed model and the relationships marked by
curved and'srraiqht lines can be estimated with the LISREL computer

program.

In order to use the LISREL program it is necessary to translate
the formulation of a model into matrix notation and to satisfy
certain teohnioal conditions. These aspeots of the model are
‘discussed.brlefly at the end of this paper. The next section shows
how the mddel developed so far can be employed to describe several
sub-models of the general LISREL model. Tﬁe discussion continues
through the expository use of path diagramg for such models. The
equations for each model are érssented with the diagramsg but may be
passed over by the introductory reader without much loss of
information.
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Pigure J.4 A LISREL Model: Structural Model plus Measurement dodcl

Measugement Models

% = Ah6 *4
X = A6+ G
3= | N2 * &
Xy = YRR
AR LN .

y
Lelam e

Structural Model

ng = Y8 * a8 v 4
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" The system assumptions made by LISREL are: (%) that there is zero

f;covariance between the latent constructs and the residuals on the
latent conatructa, ie E(&% )=0, z(n C )-O, (2) there 1is zero

tcovariance between the measurement errors on the observed exogenous

" ‘and those on the observed endogenous variablea, 1e E(6 € )=0 ang,
(3) there is zero covariance between the latent conetructa and the
errors of measurement on . the observed variables v le 3(5 € )=0,
E(E 8§ )=0, E(N€), E(NS). These assumptions apply to the full
model as depicted 1hltigure 4.1. (In some situations models can be
reparameterieed in alternarive ways which allow for a relaxation in
the restrictions implied by 'theee assumptions.) The following
sub-models will now be illustrated:

(1) first order common factor analysis model,
(2) higher order factor analysis model,

(3) regression model,

(4) recursive path model,

(5) reciprocal effects path model,

(6) test score model,

(7) multitrait multimethod model,

(8) error etructure analyaia model,

(9) analysis of covariance (ANCOVA) model.

(1) First Order Common Factor Analysis Model

The basic etructure for a factor analysis model with a single
common factor is presented in Figure 4.2a, In this model all three
obeerved variables (X1,X2,X3) are assumed to be measures which
reflect the underlying latent factor (§)¢ The error terms (6,- 65)
indicate that the observed variables may be measured with error. A
basic aaaumption of the Classical factor analysis model is that
‘these error terms are uncorrelated, ie E(G qj ) = 0,4 +'j.'
However, such an assumption may not always be warranted. If common
variation exist between a subset, but not all, of the observed
variablee, then it may not be captured by the factor which

represents influences ocommon to all the observed variables.



4.00 Sub-Models of the General LISREL Model

The general LISREL model can be summarised by the diagram in
Figure 4.1

The sections within the broken lines represent the measurement
models for the exogenous and endogenous constructs, and the section
of the model linking them represents the structural ‘model. The
individual symbols do not have subscripts, which indicates that
they represent all the construéts“ of their type in this
repregsentation of the general model. 'Note that the observed
exogenous variables (X's) are not directly 1linked to obagrved
endogenous variables (Y's). The structural model which 1lies
between the ﬁeasdrempnt models mediates the causal influence of the
exogenous variables on the endogenous variables. Althoggh not
shown in Figure 4.1, ocorrelational linké are allowed for between
the individual exogenous constructs and regression type (causal)

relationships are allowed for between those within the endogenous
construct set.

There are two types of assumptions which g¢go with the ZISREL
model: (1) System assumptions = these aré the general statistical
assumptions necessary 1n order to estimate all models in the LISREL

framework and ,(2) Model aslumgtion. = the additional assumptions

which ate specific to a particular model, eg the Classical factor

analysis model specifies that the errors of measurement on the
observed variables are uncorrelated. In effect these latter

assumptions are the restrictions which we place on the general
model to define the sub-models as particular specialilationl of the_
'qeneral"model. Hence, these assumptions are, in principle,
testable within the LISREL framework, whereas the former set of
assumptions are not, since they are an 1nteg;a1 (ie necessary) part

of that framework.
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Figure 4.1 Schematic Representation ot the General LISREL Model

X - cbserved exogenous variabloé |
£ (ksi) = latent exogenous conatrucfs

n (eta) - ’late;tendoqogdus'co;lt:uctl '
Y | : - cobserved endogenous variab;;i

§ (delta) - measurement error in aobserved exogenous variables
€ (Qpailon) - mnaouremcnt'irro: inlébaorvbd ohdoqqnoﬁs variables

Xx(lambda X)- construct loadings (validities/reliability) for observed
exogenous variables

Aytlambda Y)~ construct loadinda (validities/reliability) for observed
; : endogenous variables

Y (gamma) =~ Tregression type coefficients of latent exogenous constnxt
on latent endogenous constructs :

 (zeta) = stochastic residual term for each latent endogenous
constxruct

The abova notation differs from that found in the literature for the .
general model. I have employed lower case Greek letters to indicate the
parameters of the model - as in the other models in this paper. Usually,
lower case Creek letters denote that the system is specified in equation
form while upper case Greek letters denote the corresponding specification
of these equations in matrix algebra format. The literature usually
discusses the general model in terms of its matrix format. .

The model has three other sets of parameters in addition to those shownin
the above diagram; ;

(thota "§)- the covariance matrix for the errors on the observed
exogenous variables

0% (theta € )~ the covariance matrix for the errors on the observed
endogenous variables

B (beta) -  the matrix of structural coefficients between the latent
endogenous constructs

¢ (phi) -~ the matrix of correlations between the exogenous latent
constructs . 28 i



Figure 4.23
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Figure 4,25 Multi-dimensional Factor Model

xn " A:x E: + é:
tX £ §
2 - 21 Ez ¥ 2

X' ) Aazca+ 6:

x~ a A~a£a+ 6“

xu - A'=€3+ 60
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variation common to a specific subset of the observed variables
will be left unanalysed by a single common factor model such as

that in Figqure 4.2a. In such a model these unanalysed
relationships will be represented by correlations among the error
terms belonging to the specific subset of observed variables, thus
the assumption of the Classical model will be inappropriate.
Correlations between the error terms in this model are an
1ndicaﬁion that the observed variables are not unidimensional. The
specification of the single factor (EQ in Figure 4.2a implies that
the model 1is unidimensional, given also that the errors are also

specified to be uncorrelated.

A multi-dimensional factor structure is represented in Figure
4.2b. By specifying that the correlations between factors (¢zi)
are zero we are able to test orthogonallity between the factors. A

rotationally invariant solution is found by placing restrictions on
the pattern of factor loadings (the'Aij ) for the observed

variables. For 'example, in Figure 4.2b variables X, and X, are

specified to load only on factor £,, etc.

We note that the model in Figure 4.2a is of the same form as
that in Figure 2.2, indicating that the separate measurement models
of LISREL can each be viewed as simple common factor models.
Further, note that the structure of the factor analysis model 1is
the same as the LISREL model at each end of Figure 4.1. If we
split the model of Figure 4.t in two (ie delete the arrow denoted
by the Greek letter Gamma- Y ) we have two separate models. If the
residual term § (Zeta) is specified to be zero then the left and
right models ate'equivalent. Thus the simple factor anaiysis model
can be parameterised in terms of either of one of two equivalent
LISREL sub-models. This is a consequence Jt the fact that there is
no designation of variables as endogenous or exbgenou;, since there

are no 'causal' relationships between the latent constructs, in a
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‘%T;_ghé‘ righthand model in Figufé 4.j”dooa, however} allow for a
. non-zero residual (Zeta- () on the latent factors (Nn) and is known

.. as the ordinary factor analysis model, whereas that on the left is

, known as the Classical factor analyafa model, due to its

speciticatibn that the latent factor (Kksi-{ ) has no residual term.

(2) Higher Order Factor Analysis Model

The higher order factor model allows for the specification of a
more detailed analysis of the structure among subaetd of the
observed variables. This is shown in Figure 4.3. The LISREL
framework doéai noﬁ aliow :gqr directional (regression type)
rolafionahipa Botﬁnén laﬁont-conat:uctl on the left side of Figure
4.1, thus it is necessary to cpecify‘a second order model in terms
of thehlordinarx factor analysis model on the right of Figure 4.1,
The factors nl and n, in Figure 4.3 are first order factors while
Ny is a second order factor. We note that while the first order
factor model in rigure'4.2a appeared to consist of & measurement
model only, it can now be seen from Figure 4.3 to represent a
trivial structural model in which the othey factors are null,
8ince the first order factors will be fully determined by the
second order factor only in the special ;lle that the different
factors are perfectly correlated, eg. r(n‘ n,)-l, a residual term
( T ) is specified for each first order factor in the general form
of the model, Weeks (1960) gives examples of the use of such
mode ls,
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Hf;fiableé‘as.£££Sé_§;riables. .('Fixed variable' means that the
valués of the variable found in the data are the only values which
that variable can take, ie that these values are not sampled from a
probability distribution of values for that | variable.) The
regression estimates are then said to be 'conditional' upon the
particular values of the 'X' variables in the data, as is the usual
cagse with ordinary multivariate regrassion. If, however, the
exogenous variables (X's) are observed witﬁ error, then the true
values for the underlying theoretical variables will be dependent
upon the probability distribution of the 6bserved scores. In such
cases the variable is said to be a random or stochastic variable.
Measurement error is one source of a probability distribution for
the estimates of the true values of a variable.‘ By building in the
stochastic nature of measurement error it is possible to
parameterise a regression ﬁodel in the LISREL framework such that
the regression coefticient§ are directly disatténuated for the
effects of measurement error. This development can be viewed as a
special case of the path model introduced in the next section.
Error is a pervasive feature of all measurement, but it presents
particular problems where measuring instruments have not been
universally standardised, as in much of the work in the social
sciences. Hence, fixed variable regression is not a particularly

appropriate modelling technique for much of the data available in
the social sciences. ‘

(4) Recursive Path Model

The recursive path model presented in Figure 4.8 reflects the
dual development of complex structural models. ('Recutlivé' means
that all the causal telationshipl between variables are
unidirectional. Thus if X1 causes X2, X2 cannot cause X1, ie there
are no feedback loops in a recursive model.) It can be viewed as a
marrying of the peychometricians factor analysis model (the
measurement model) and the econometricians regression model (the
structural model). Furthermore, it is possible to allow for the

added complexity of correlations between the errors of measurement
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(3) Regression Model

Figure 3.1 introduced the way in which the relationships in the
structural model could be viewed as being of the éame form as a
regression model. However, due to the fact that in wthé LISREL
framework there is no direct 1link between the exogenous and
endogenous observed vﬁriables, A regression model has to be
reparameterised in terms 6! the structural model to perform a
regression analysis between tﬁé”  obgserved variables. The
approptiaté parameterisation is that given.in Figure 4.4. In this
model the observed variables are each specified to béui&entical to
a companion unobserved latent - construct. Thus riﬁ;_the LISREL
formulation the paths between each observed variable and its
companion latent construct are specified to be unity, ie they are
specified to be " perfectly reliable measures of the underlying
theoretical variable. This makes exélicié‘.one of the basic
assumptions of ordinary multiple regression analysis: that the
variables in the equation are identical with the theoretical
variables of the theory being modelled.

If the residual term ({) in Figure 3.1 is specified to be tgero
then the endogenous variable is specified to be an exact linear
function of the exogenous variables. Regression models usually
allow the residual term to be non-gero, in which case it is an
omnibus term representing the sum total of effects due to the
exogenous variables not formally 4included in the model.
Equivalently it can be interpreted as the . variation in the
endogenous variable which 4is not accounted for by the exogenous

variables in the equation. .

The assumption of perfect reliability for the exogenous

variables is equivalent to a specific formulation of these
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on’the observed variabies across latent constructs. However, as in
he:classical factor ‘analysis model, the errors for different
Hobge,ved variables within a given construct may be assumed to be
":uncorrelated.: Such an assumption is often made in order to

1dent1£y the parameters of the model.

As indicated in the previous section, the random variable
regression model can be parameterised in the general form of a
recursive path model. However, path models have a particular
advantage over regression models when the objective is to expiain
phenanena. Regression models do not incorporate the structure of
relationships of relationships between the theoretical variables of
a theory. A theory will usually 1mply a structure of relationships
in which some of the theoretical variables partially determine
others in a direct way and others indirectly. This means that a
(mathematical) model of a theory which 1neorporates the form of
this structure is a more appropriate representation of the theory.
An exact correspondence in the form of the structure implied by
both the mathematical theory and the model is said to describe an

isomorphic relationship between the structures.

Ordinary regression models do not usually provide estimtes of
‘these fundamental structural parameters of a theory, because they
do not model these particular relationships. Instead they estimate
parameters measuring the effect of each observed exogenous variable
on each observed endogenous variable, one at a time, given
statistical control for the other exogenous variables in the model.
Thus regressien parameters are an omnibus measure of the direct and
indirect effects between the endogenous variable and the other
variables in a theory, ie regression models are based on a ‘black
box' approach to the structure of relationships which exist within
the exogenous variable set: all exogenous variables are given the

same 'causal' or ‘relational' status with respect to the endogenous
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variable. Ordinary regresiionrmodela may, however, be viewed as a
first approximation to the representation of a theory if they
include among their exogenous variables only those which are fully
exogenous with respect to the theory, ie those which are not

determined in any way within the theory. The ordinary regression

model is then said to represent the reduced form of the structural

model. The coefficients of the reduced form model indicate the
total effects (the sum of the direct and indirect etfecta)k of the

exogenous variables on the endogenous variable in the structural
model.

(S) Reciprocal Effects Path Model

The essential difference between a recursive and a ‘reciprocal
(nonrecursive) effects model is that the former specifies that
causation between a pair of latent constructs is unidirectional
whereas the latter 'implies that the two variables influence each
otﬁer thrduéh a feedback'mechaﬁism. The recursive path model of
Figure 4.5 can be made into a recipfocal effects model by the
respacification of the section enclosed in broken lines. The
relev&nt'reipecification is 1Adicated by Fiqure 4.6a, otherwise the
model has the same representation as Figure 4.5.

Although it is not the usual parameterisation of a nonrecursive
model, the reformulation presented in Figure 4.6b also implies a
particular form of reciprocai relationship between the endogenous
conltructs‘nx nndnz . In this case the effect of one construct on
the other is indirect, operating via the variation captured by the
residual Fnrml (C‘.Cz) and the covariance between these residuals
across equations. This indirect effect of one endogenous construct
on another is a form of 'spurious' effect, since it implies that
there are common variables (or at least, common variance) omitted
fram the eﬁultionl'lfor eich of the 'endogenoun constructs.
Nonrecursive models usually suffer from problems in identifying the
parameters which represent the reciprocal effect. The solutions to
these problems usually lie in simplifying the aéspmptions about the

nature of the effects (eg assuming that the effects are of the same
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magnitude‘ in eac direction) é;w”in :the use of instrumental

(6) Test Score Model

The test lcoté modgl developed in educational psfchology can be
tonnﬁlated as a special case of the factor analysis model. The
model is presented in figure 4.7. The interpretation in the test
score model is that the common factor (ﬁl) is treated as the
underlying true score for the observed variables (X1,X2,X3) and the
error terms (6,= 8§, ) represent their uniqﬁe variation. This
unique variation is a composite measure of the test specific
variation for each observed variable (item), and random error in
measurement. 8ince the variatioxi which‘ii common across all the
observed scores 1is accounted for by the true score tactor, the
unigquenesses are usually specified to be uncorrelated, le r(6 Gj )=
0,Y1i i%#3, in such models. Thil formulation then corrospondl to the
Classical Test Score Model. Howovor the roltriction that the
uniquenesses mult oonlilt of non-lyltomatic variation only, ie that
they are uncorrelated, will not hold in the data unless the
assumption of unidimensionallity between the observed scores 1is
also satisfied (cf first order common factor analysis model). For
much of the data in social and behavioral research, the
uniquenesses can be thought of as consisting primarily,of the error
in measurement in the observed variables, althouqh.thoy may contain

substantial amounts of 'method effects' on measurements also
(Cuttance, 1983).

If the true score factor is standardised to have a variando of
unity a parallel measures model is specified by restricting all of
the loadings on the true score factor to be equal O‘x' A,= A,;) and, the
variances of the uniquenesses terms to be equal to each other also

(61-62 =5 3),41\ tau-equivalent measures model is then obtained by
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Figure 4.6a Respecification of Figure 4.5 to include direct reciprocal

effects -~ (paths between n, and n, respecified, balance
of model as in 4.5) .

Figure 4.6b Respecification of Figure 4.5 to include indirect
feedback (reciprocal) effects,V2;indicates a covariance
between the construct residuals,
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. Figure 4.7 Test-score Mddel

xl b AIlgl * 61
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relaxing . the -equality:- restriction on ,theqwuniqu;;;

R -

A%
congeneric measures model is:obtained. by the turther reif;
the equality restriction -on the true score factor loaéf‘

order to identify a congeneric measures model it - is ineceés>

have at least three observed measures of the true score factgf

It should be noted that standardisation may change fhe“goi;T,
the relationship between the components of variance in a ;gqugf;% p
Parallel measures remain parallel after standardisation,Véiéce”‘
their variances are the sgame for different observed ‘measp:qg, 
Tau-equivalent  measures, however, may become congeneric measures
after standardisation. This is because the true score loadings are
affected by the standardisation of each observed measure . agcording
to its own variance. Thus measures which have different variances
but equai true score loadings before standardisation may . ﬁ;ve
unequal true score loadings after standardisation. . Congeneric
measures generally remain congeneric after standardisation. An
interesting special = case for  congeneric measures occurs if the
alternative measures have equal reliabilities (ie equal 'ratios ' pof
true score variance to observed score variance) in their;original
metrics. Upon standardisation such measures become :.parallel
measures. This information can sometimes be used to identify a
model which is underidentified when the (unstandardised) covariancge
matrix is analysed. The model may be identified by restricting the
measures to a parallel measures specification and analysing the
correlatioh matrix. Identifying a model by such a device, however,
means that the basis of the interpretation of some model parameters
may change. Xim and Ferree (1981) provide a discussion of the
issues of interpretation in structural models with standardisation

of either variables and/or parameter coefficients.
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(7) 'Multitrait-Multimethod Model

~ known more generally as variance/covariance components models. In
ﬁgonoral, these are used for modelling quasi-experimental data from
various factorial designs found in educational and psychological

research.

The multitrait-multimethod model has been used in psychology to
model data when more than one type of measuring instrument (method)
has been employed to measure latent traits across 1individuals
Further, Campbell and Fiske ( 1959) showed how the model can also be
used to assess the validity of alternative measures of a latent
construct and Cuttance (1962 ) has used it to .study the method
effects of different questionnaires in the context of a true score

test theory model.

Figure 4.8 represents a model for the latter type of analysis.
There are four true scores (E;-Eg) each with two observed variables
and  there are two method effects (£ . §), due to the two
questionnaires employed to collect the data on the observed
variables. If standardised data, ie correlations are analysed,

then the true score factor loadings are the sQquare root of the

reliabilities and the squared method factor loadings indicate the
proportion of the variance in the observed scores due to the method
- effect. There are corresponding relationships for the case where a
covariance matrix, rather than a correlation matrix, is analysed.
In most qppliontionl the covariance matrix is the more appropriate
to analyse, since it retains information on the measurement scale
of the observed variables. A ocorrelation matrix, on the other
hand, loses this information in the process of standardising the
observed scores in terms of units of their estimated standard
deviation. See Schwarzer (forthcoming) for a didactic example of
the use of multitrait-multimethod models.
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T (s);ErréfﬁsEructute Analysis Model

.«Hoftén_:in social science research the models employed to analyse

e
data assume that there is zero correlation between the measurement

error on one observed variable and other observed variables in the
model. A trivial form of this assumption is fouﬁd-in the ordinary
multiple regression model, 'thch assumes that all observed
variables are perfectly measured, thus there are no measurement
errors which ocould be correlated. As noted in the discussion
above, this assumption of independence betwe?n error terms is also
made in the Classical Test Score model and in the Classical factor
analysis model.

The error structure analysis model 0£ ?1gute 4.9 is designed to
investigate the validity of the assumption of independence between
errors. Although the general itqnz;_gramework does not formally
require this assumption of 1ndépcndence, iﬁ is.otten specified in
suwch models. This is usually because of the need to make
restrictions on a model in order to identify it, and hence provide

unique estimates of the parameters in the model.

Under certain conditions we would expect the assumption of
independence between errors to be implausible. Particular
‘conditions which may invalidate the assumption apply whqn there 1is
a cammon method effect influencing the observed values for some or
all of the variables, or where the observed variables are measured

on repeated occasions, or when individuals' responses on a given
variable are influenced by their scores on another variable, eg

middle class pupils. upgrading statements of  their parent's
Qducation. In fact, correlated error across observed variables is
to be expected whenever measurement is contaminated by systematic
influences other than the true scores for those variables. In the
case where the contaminating influences are not common across

variables then we have a situation characterised by a test score
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‘model with; Hcor£e1ated uniquenesses. Alternatively, if the errors
or uniqhéneisea contain systematic influences (eg corresponding to
- test specific factors or method effects) across observed variables
éhen they can be modelled as additional common factors underlying
the observed variables (cf common factor analysis model). In many
situations . the theories being modelled do not contain the
additiohdi ihtd:mation'requited to specifically represent these
additional factors, or the researcher is not particularly
interested in them., In such cases the 'common' component of the
error terms can be left unanalysed and unbiased estimates of the
model obtained by allowing the‘_ertOts to be freely correlated.
However, in order to obtain unique estimates the model has to be
identified and this is not possible ig all error terms are allowed
to be freely correlated within conatfucts; Identification with all
errors correlated can be obtainqd, however, if we are prepared to
place other types of restrictions 65 the ﬁeauuremcnt models, eg
equality reatrictiona across some of the error variances. This
specific assumption would imply:’that the different observed
variables were all subject to contaminatinélintluencea of a similar
pattern and magnitude, Even if such an assumption is considered
plausible with respect to the random component of the uniquenesses,
it will be much less plausible for any systematic components of
their variation. Hence, it may not hold generally for such errors
of measurement. Of course, how appropriate the specification of
equal variances is for given data also depends on other conditions,
iuch as the relative magnitudes of the afstematic and random
canponents of these error terms. A particular model in which these
error terms are specified to be of equal variance, is the parallel
measures test score model. However, we note that in the classical
specification of this model the individual observed variables are
assumed to be unidimensional, thus the error terms are assumed to
contain only random measurement error, with no common or systematic

canponent across error terms.

Alternatively by specifying the correlations between selected

error terms to be a known (or assumed) fixed value (zero) we reduce

1,8



the number of parametera to be estimated. Rence, the meaanrement

models can be over-identitied by “the judicious apecitication' of
independence (zero correlation) between aelected error terms in the
model. The present type of model may be used to inveetigate the

hypotheeie of independence between speoitied ‘error terms in a
randan subsample of the data, In a contirmatory etudy we would
also turn to the knowledge available trom the theory and other
sources in order to decide which error terms are most likely to be
correlated .but, in an exploratory etudy it is neceeeary to
empirically : teat hypotheeea' about the 'error etructure amonq
particular variablee. | These telta will, ot courae, be conditional

upon the specified aeeumptione about the etructure of errora among
other variables in the model. § Pt b

The oeneral 'LISRbl framework allows for correlated. errors
between observed variables within each of the endogenous and
exogenous variable sets, but not across these two sets of
variables. Thus, to allow for all posible specifications of such
correlations the model in Fiqure 4.9 s parameteriaed with all
obeerved variables and latent conatructa as endogenous variables
and constructs, reepectively, in a recuraive framework. All
regression effects in the model are thus between Eta ()
constructs, and the error terms (ei ) can then be specified with
any correlational structure required. This parametorisation is
therefore in terms of the right hand side only of the model in
Figure 4.1, since parameterisation as a recursive model in the full
framework would not allow for a specification of corrolated errors
between the two sets of error terms, (§) and (¢), at either end of
that model.
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(9) Analysls of Covarxance (ANCOVA) Model

?y.f{The LISREL model can be used to estimate ANOVA and ANCOVR models.

The prime featute ot these two models which contrasts them with all
6f the models so far discussed in this paper is their focus on the
pa:ameters measuring means and their compatison.actoss_(tteatment)

groués. The other models discussed so far all focus on the

covariance structure of variables which exists within a single

group of subjects, although it is a straightforward move to compare
structural models across groups also. Thus the essential

difference is that the former models focus on covafianco structures

while ANOVA and ANCOVA both primarly focus on mean structures.

The ANOVA model was developed for the analysil of data from
controlled experiments in which subjects could . be randomly
allocated to  treatments. Randomised assignment allows the
researcher to assume that variables which are not explicitly
controlled within the experiment do not syltémizicaliy influence

the dapendent variable across treatments (groupl). ' Howovet, much -
of social and behavioral science data describel lituationl in which
the ideal conditions of oxperimontal roloatch_cannot be satisfied.
Research based on such data is  sometimes  called
'quasi-experimental', which alludes to the fact that it is possible
to employ procedures in the analysis of the dat@ to control
statistically for the influence of extraneous f;étorl which may
have influenced the scores on the dependent variable. In order to

exarcise statistical control in this way it is of course 'nocollary
to have collected data on these extraneous influences. This is one
of the reasons why quasi-experimental research is sometimes said to
be weaker than experimental research: in quasi-experiments the
researcher needs to know before hand which non-experimental factors
to collect data on, whoroaq in a controlled experiment there is no
requirement that the relevant extraneous influoncol be known at
all, since the randomised allocation of subjects to treatments

nullifies any effect they could have had.

The analysis of covariance (ANCOVA) model was designed to do the
same job for quasi-experimental data as that which the analysis of

variance (ANOVA) model did for data from controlled experiments; to
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test for a difference in the effects of two treatments. = This
inmvolves a test of the difference in the mean scores for the
treatment and control groups atte: treatment of the former ° group,

given control for covariates ‘which may also have influenced the

outcome,

Assuming that we have data on the - relevant extraneous factors
(covariates), so that statistical control 1is possible for the
influence of these, the usual multivariate ANCOVA analysis model
makes two impbrtant auaﬁmptiohi Ahéhﬁ’éhe data on th;'fwo groups.
First, it assumes that the variances> and covariances are equal
acroes the groups. 5econd, it aseumes that the relationship
between the covariates and the outcome (dependent variable) are the
same across groups. Now,"becadse the condition of randomised
assignment to treatment qroups is not satisfied it is likely that
the first ot these assumptions will otton be violated.  For
instance, children from one school are likely to differ from those
in ancther school with respect to their entry abilities, social
class, motivation etc. Only if statistical matching on the
relevan;ivariables-is caffied out can we be reasonably assured that
the tirif assumption will be approximately satisfied. The second
assumption is often the ond which is least tenable and it is the
one which is most crucial‘tor accurafe dastimates. It implies that
the control grouwp and treatment group have the same regression
lines with respect to the effect of the covariates on the dependent
variable., This assumption may be more plausible in the situation
where the treatment effect is null but where the treatment is
‘effective'! it seems plausible that the relationships will often
differ between the control and treatment groups. Indeed the
treatment may have the effect of chanéinq just this relationship,
eg campensatory education programmes may aim to raise the
performance of disadvantaged children relative to non-disadvantaged
children through special programmes (eg Head Start) and this
treatment may also result in a changed relat.icnship between social
class and educational attainment at the end og the programme.
Social class will, however, Be one of the covariates which a

researcher may wish to control for in any evaluation of the effect
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8 lofuthejbrogramme (treatment) (Sorbom, 1982),

e
_d~ T R TEEF R y T
»;‘Thef‘ above . two aclumptionc are made so as to achieve

identification in he usual ANCOVA model, however, other identifying

rectrictionc may be more appropriate to the research problem at
hand. Thus the flexability of a facility allowing for the
specification of an alternative set of identifying restrictions

would be an advantage in gsuch analyses.

Although not originlly designed with such analyccc in mind the
LISREL model can be parameterised to estimate the ANCOVA model
(Sorbam, 1982; Joreskog and Sorbom, 1981; Horn and McArdle, 1980).

Figure 4,10 presents an augmented path diagramatic
reprecontation of a ANCOVA modelf The' analysis of differences
between groups is carried out by uling the LISREL facility to
conduct a simultaneous multiple group analyli-. This facility
allcﬁa for the fitting and estimation of the ltructurol in several
groups limultaneoully through the use .of a joint ostimation
function. The differences in tho mean ltfucturcl bctwoon groups is
tested by comparing the difference in fit bctwocn a model in which
the mean parameters are specified to be equal ccrocc gtoupl and one
in which they are allowed to be estimated independently of the
values of each othor (le Free, in LISR!L notation). This model
employs the chi square ratio test which is known to be sensitive to

departuree from the model assumption of multivaricto normality.

An alternative formulation of the ANCOVA model is presented in
Pigure 4.11. In this model the mean structures of chc group are
not specified, rather the troctmont offcct is assessed by the
influencc of the variablc ‘', which rcprclcnts group mcmbcrlhip,
on the dependent construct. In this model the data is analysed as
if it was all from the same group but, that members of the group
differ on the characteristic which denotes exposure to the

treatment. In the case where the data are drawn from N groups this
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Figure 4.10 AMOOVA Model with Explicit Structurxe on Mean of Dependent
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| _ Eﬁgfgﬁptﬁéﬁbéréhir.bé denoted by N~1 dummy
va;iableg. Different étrategies of coding the dummy variables can
be ‘employed to investigate various contrasts between groups (Kenny,
5T979fﬁ'nrdy and Maxwell, 1982). The advantage 6£ this model over
the former is that it removes the need to rely on the chi square

ratio 'qt#tistic in assessing the statistical signifléance of the
treatment effect, which is assessed instead in this model by the
standard error for the parameter indicating the effect of group

membership.

- If the principal focus of an investigation is to estimate the
magnitude of the means for different groups, in addition to the
testing of differences between them, then the explicit modelling of
the structures of means is necessary, as in the former model.
Indeed, it is ptobably_alwaya necessary to modelhthe data by the
explicit structures on means if it is the means of groups which are
the focus of the research. Only through such models is it possible

to assess the substantive importance of any difference between

groups, in addition to testing for the statistical significance of
any difgereﬁce between means. The model in Figure 4.11 allows for
the statistical ‘toséinq of the difference between being in one
group as opposed to another. It does not furnish any direct

information on the means.

In addition to the flexability in specifying the most
appropriate identifying restrictions for the particular model at
hand, these formulations of the ANCOVA .model allow for the
investigation of differences in mean atructures.within the specific
context of the covariance structural relationships in the groups
and the assessment of model fit. A model which does not fit
satisfactorally may indicate that important covariates have been
omitted, hence that the difference between groups may be highly
sensitive to the particular specification of the model employed in
the analysis of the data. Analyses with the standard ANCOVA model

leave the researcher gubstantially uninformed as to these dangers
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to inferences and conclusions drawn ftom ths analysis.ﬂ In sddition“
the standard ANCOVA model is not slwsys apptoptiate Qhen subjsctsJ
are assigned to treatments on the basis of patticular non-randomr
strategies, where there may . be error of measgiement"in: the
variables or, when the number of subjects varies sigﬂiticantlyw

acroces groups. Each of these problems can be separately and
| jointly addressed in the formulation of models in a a more general
structural modelling context, although the restrictions required to
identify a particglar model will always ﬁesn choosing between a
fixed set of alternative constraints on the model.

5.00 Discussion and Other Issues

The approach of this paper has beeniﬂto.mgiﬁsﬂlths urssdsr a
non-technical conceptual overview of . .the scope of ths LISREL model .
and to discuss a sslection of modsls comonly employed in _ social “
science within this framework. These models hsve been discussed in
a heuristic way so that researchers interested in extending their
modelling techniques to include the more general approach of LISREL

can see where it fits into the general application. of linear
models.

Anyone who refers to the more detailed literature will soon
realise that there are several issues not so far mentioned.
Problems may be found in the failure of the iterative estimation
process to converge to stable estimates. The estimates for some
parameters may occasionally be implausible even when the model has
an acceptable overall fit. A particular example of this is Heywood
solutions, ie negative estimated variances for the errors of

measured variables (el 8 )1 or for construct residuals (g ).

Methodological problems in deciding on criteria for comparing

the measures of fit for different models based on the same data are
still to be resolved. The issues rest on the criteria for

comparing models which are not nested, that is, more or less
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 restricted versions of ‘one another, and upon the susceptability of
sone of ‘‘the measures of fit to sample size. Version V of the
program does, however, include new measures of model fit. We will
have to wait to see how well these measures distinguish between the
£it of models which are not nested. The sampling distribution for
these new indicies of model fit are unknown, thus they do not
provide " an opportunity for ‘the statistical testing of the
differences bgtween models.

In practice, ad hoc solutions to these problems are adopted to
suit the particular investigatory situation. ' In some cases more
general ‘'rules of thumb' are being developed to cover a wider range
of applications. Many of these illﬁel ‘are as unresolved and
important for other forms of the linear model and for some other
methods of estimating the lﬁb~modell discussed in this article,
also. '

This brings us to the one area in which the LISREL method of
estimation makes more restrictive assumptions about the variables
and data than some other methods. Maximum liklihood estimation
produces estimates with desirable properties provided the data
conform to a multivariate normal distribution. This is generally
considered to be a highly restrictive assumption to make in respect
of data in social science situations. Methods of assessing the
properties of data in this telpeét are available but are not widely
known or applied (Gnanadesikan, 1977). Models based on estimation
procedures employing Ordinary Least Squares or Generalised Least
Squafel techniques make leli‘telttlctive distributional assumptions
about the data. Version V of the LIBREL program has an option for
selecting an estimation procedure based on the method of tinweighted
Least Squares (ULS). However the technical and computational
problqml of computing sampling information about the precision of
the estimates (standard errors) have not yet been solved. Thus the

ULS estimates are accompanied by less information on the fit of the
model and on the precision of parameter estimates than the ML
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estimates. In some cases it will -be useful to doﬁ§ﬁ£§:ﬁodel.

estimates by both methods. Where they are simiar we can be more

conf ident that they are not artefacts of the method, but for data « '

of a highly skewed nature it is best to opt for the ULS estimates
as the ML method is known to be sensitive to the effects of
skewness. If, however, the researcher is prepared to assume that
the observations arer drawn from an underlying true distribution
which is not significantly skewed, ie one which is relatively
nomally distributed, then it is posible to utilise an option in
the program to treat the measurement scale of the observed
variables as ordinal in nature and to rescale the values so that
the variable is normally distributed. In doing this the weights
given by the cdtegories in the measuring scale for the observed
measures are disregarded and new weights calculated from the
frequency of the observations in each category. The correlation
between two such ordinal variables is then calcul#ted from a
contingency table and is known as 'a polycholoric correlation.
These correlations are used in the same way as the ordinary
(Pearson product-moment) correlation coefficient as intermediate
input for further analysis by ULS or ML methods in the program.

In this section I have attempted to indicate some of the areas
in which the methodology of LISREL modelling raises unresolved
questions about such methods in general, however, I allé wish to
stress that the new awareness of such issues is itself a major step
forward. A set of papers which aim to present didactic discussions
of various features of structural modelling and the robustness of
the estimators used in estimating models is in preparation

(Cuttance and Ecob, forthocoming).
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