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Multicollinearity occurs when a set of predictors in a 

regression model , are correlated, When one or more 

predictors are linear combinations of other predictors, 

exact multicollinearity exists, The most typical case 

encountered in practice is some imperfect, but possibly 

strong, association among predictors, The sampling 

variability of regreaaion coefficient• i■, in part, a 

function of the correlation• among predictora, High 

interpredictor correlation• will load to leas atable 

estimates of regression weighta, This relationship can be 

problematic if a regreaaion weight's variability obacurea 

some functional relationship of interest to a researcher. 

The multicollinearity problem, then, is an unacceptably high 

standard error of a regression weight that occurs because of 
• 

high interpredictor correlations, 
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There are, however, meaningful research questions th�t'R]tt 

require models with highly correlated predictors. A 

q1;1aa,r;-atic curve. fitU�g mode� ,requires a �redi�t�r and its 

squared value as independent variables. If the predictor 

takes only positive integer values, the correlation between 

the predictor and its squared value will be extremely high. 

There are also instances in which a researcher, desiring to 

measure some construct reliably, uses a number of highly 

correlated, but fallible measures of the construct. Using 

both WISC and Binet scores as measures of intellectual 

ability would be an example of such multiple indicator 

models. 

The impact of 1 multicollinearity in any particular 
:� 1 

application depends on the roles taken by the variables 

affected. Predictors in a regression model may take one of 

two roles, they may be investigative variables or control 

variable•• Investigative variables are those predictors 

whose influence on the dependent variable constitutes the 

primary interest of an analysis, Control variables or 

.covariates are included in a model in order to atatiatically 

adjuat both the dependent variable and investigative 

predictors for aome contaminating influence. 

Multicollinearity might occur within or between such 

classes of predictors. A model can be formed using multiple 

control variables measuring the same construct, Using a 

number of IO tests to measure the construct mental ability 

exemplifies this approach. In these cases a researcher 

should not interpret the partial tests performed on the 



separate weights assigned to the individual .. IO measures, but 
l ; •�' ' "'?, 

, 

instead should treat the collection of IO tests as a set.

In this context the researcher is interested in con�rol�ing

for the influence of the IQ construct represented by the

multiple test scores. The individual partial tests are 

irrelevent to this research problem. 

Similarly, a set of investigative variables might be 

multiple measures of the same construct. If mental ability 

was an investigative construct of interest, 

comments would apply equally in this case. 

the a.hove 

Setwise 

regression methods would be the appropriate response to this 

problem (Cohen and Cohen, 1975) 

A third possibility exists7 an investigative variable 

and a control variable are highly correlated. The 

researche� has been lead to this position in pursuit of.an 

answer to a meaningful research question. Multicollinearity 

in such models is a legitimate and unavoidable consequence 

of posing the research question. Under these circumstances 

the researcher will either have to endure the problem, or 

with a slight'amount ot prior planning, correct for the 

impact ot multicollineftrity. 

How can a reaearcher reconcile the legitimate need to 

eatimate coetticienta in models with highly correlated 

pre�ictora and the inevitable impreciaion associated with 

such problems? Ridge regression (Hoerl and Kennard, 1970) 

and similar methods (Smith and Campbell, 1980) have been 

proposed. Ridge regression methods tend to adjust 

coefficients closer to zero than the corresponding ordinary 
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yield estimators of coefficients 

variability but can be biased, 

, ·., ··,.�_,,, •.'; ;, .,. .. , • ··"·'" ,•J�;i.ii;!;'l.i\1�;�ii;,t1li Ridge regression methods'.S/:it•,❖1:1� 
\. 

• �,-, '. 1. •'", i ;·.. ;:-, -.\--i�•::,\\i ,}'{-)�·'."' ,' .•• -,,� • .'that exhibit 'less sampling' 

In theory .the estimatio�
1 

bias is offset by smaller mean square errors of estimatio'n. 

The mathematical justification for ridge estimation is based

on an existence theorem (Draper and Smith, 1981, p.316) 

which simply states that there always exists an estimate of 

a regression weight that will deviate from the true weight 

less than an OLS estimate. Unfortuneately, in any specific 

application of ridge regression there is no guarantee that 

the sample estimate is a member of the class of more 

accurate estimates. The efficacy of ridge estimation 

depends upon the extent of prior information the researcher 

has regarding the ·population model. If the prior 

information
) 

£s correct, and the ridge estimators accurately 

reflect this prior information, then the ridge estimates 

will be more precise than their OLS counterparts.. A 

researcher in posseaion ot prior information could 

justifiably use ridge eatimation as a vehicle tor a Bayesian 

analysis, The uee of 

■pecitication of th• 

ridge method• 

impl hd prior 

without a clear 

conatraint■ h 

unwarranted, Another approach, the one advocated here, i• 

to u■e OLS e■timate■, but plan for the potential problem■ of 

multicollinearity, Thi■ paper will ·tocu■ on the

consoquenaea of multicollinearity tor the moat common 

application• of ■tati■tical inference in linear models, 

Multicollinearity and Model Assumptions 

The illustrations provide� in the remainder of this 
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paper will make use of a three predictor r�gressiori problem. 

A three predictor regression model for a dependent variable 

may be expressed as 

(l) 

where Y is a vector of values for the dependent 

variable , (X 1 ,x2 ,x3 ) are the predictor vectors, ( B1,

andB3) are the least squares weights and E the 

residual vector. Researchers then usually interrogate the 

functional relationships implied in their model via 

statistical inference directed at the model's coefficients. 

From a random sample of observations and the resulting 

estimate of the model, confidence intervals may be placed 

about the coefficient estimates or tests of null hypotheses 

may be performed. 

follows1 

A test of H1B1 • c is conducted -as

1. A full model estimating (1) is fitted to sample data

using the least squares criterion 

(2) Y • b0
+b 'IC + b X + b X + E ( f)

t l 2 2 3 3

2, A restriction is imposed on (2) by setting the 

weight under test equal to the value specified in the 

hypothesis,. e1 • c. The restricted model then is estimated

(3) 
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E' {f)E{�) /{n-111{f)} 

where E'(f)E(f) and E'(r)E(r) are the error sums of 

squares for the full and restricted models respectively, 

m(f) anc'l m(r) are the number of weights estimated in the 

full and restricted models and n is the sample size. 

In order for the F statistic given in (4) to follow a 

central F distribution, it is assumed that 

1. The elements of E(f) are n(O, 02 )

2. The weights estimated in (l) and (2) satisfy the

least squares criterion. 

3.' The variance of the residuals is homoscedastistic. 

4. The sample is randomly drawn from the population.

5. The null hypothesis is true,

It is important to note that no assumption is made 

regarding the correlations among the predictors. The type I 

error rate for ■uch te■ta is unaffected by 

multicollinearity, Hence a researcher rejecting H1 need not 

be concerned about the multicollinearity problem for that 

teAt. With the current interest in multicollinearity it was 

inevitable that ■ome authors (Loother and McTaviah, 19801 P• 

331) would include uncorrelated predictors as an inferential
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assumption. Recently, 

questioned this 

McTavish are simply wrong and have thereby -mj,.sled • .their'.: 

readers. We must now be prepared for the onslaught:.cif 

papers that will use all sorts of suboptimal methods citing '
0 

Loether and McTavish. 

Multicollinearity, Interval Estimation and Power 

The cor·relations among predictors can affect the type 

II error rate of tests and increase the range of confidence 

intervals. These effects obtain as a result of the 

increased imprecision in the estimation of weights that is 

associated with multicollinearity. This can be demonstrated 

with the expression for the standard error of a regression 

coefficient. Scaling all the variables in a model so that 

their variances are equal, the expression for the variance 

error of the regression weight assigned to x1 is given by

(Winer, 1971)

( .l 
(5) 

n ( l - p2 ) 
1.2! 

2 Where P 
y•·Us h the coet'ticient ot' determination for

the model in (1), P�.23 i• the coet'ficient ot' determination

f!or the model 
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; :;,,,.,.and p'. !�: the sample size.,, '!An \Unbiased ,estimate of :i!Jrl:cttiv 
,, •·' • "1 • ' 

is. ,obtaii;i.�d, by replacing, the coefficients, of •determination, , 

in.(5) with the respective sample R squares and using'(n:.: 

m(f)) in place of n. 

increases ,so does 

Inspection of (5) shows that as Pi•h� 

a2 In the extreme case where 
b

l 

=l, 

coefficient 

is undefined. The variance of a regression 

is 

2 2 

therefore a function of three 

factors: Py•123 , P1•23, and n. High interpredictor 

correlations are not sufficient evidence of a problem. 

Sample size and model validity can compensate ,for 

multicollinearity . , Table 1 illustrates the inter-

relationships among the terms in (5). 

Table 1 

'lbree Combinations of p2 . p2 and ft 

y•123 ' 1•23 

'lba't Yield Equal Values of a:1

ft 

case 1 .,o .oo 10 .o, 

caH 2 .,o .90 100 .o, 

case 3 .9!1 ,90 10 .o, 
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The three examples given in Table l show that many 

combinations of sample size, P;.123 , and Pf .23 yield the same 

standard error for a regression weight. One could not· 

assert a multicollinearity problem for cases 2 or 3 in 

contrast to case l, since all three cases produce the same 

variance error. In order for a problem to exist, the 

variance error of a weight must be greater that some desired 

Hence a researcher must specify, before the value. 

analysis, a desired value of the standard error of a 

coefficient of interest. 

As noted earlier, multicollinearity does not affect the 

type I error rate of tests on linear models. Type II error 

rates and the width of confidence intervals will, however, 

be influenced by interpredictor correlations. A researcher 

can correct for these effects when planning an analysis by 

selecting a sample size that can compensate for any degree 

of multicollinearity. When interval estimation of 81 is

• · 
2 2 planned, the researcher can specify. Py-123 , P1•23 and the

2deaired value of 0b1 Given these values, (5) can be used 

to eolve for the sample size that will give the desired 

degree of precision, 

For example, a reeearcher might be planning a path 

analysie of echool achievement in the 5th grade (Y) with a

structural model that includes attitudes toward teachers 

( X l ) , attitudes toward school in general • (X 2 ) and 

achievement in the 4th grade (X, ) • 

estimated is 

The model that would be 



' ,;>,,,/fft•, oj•<>" 

4,�,/:}:��-l��Z_:i'.: ;·:,,,. 

If we assume all of the variables in this model have 

been scaled to a common variance, then the coefficient 

may be treated as a beta weight and (5) gives its variance 

error. The researcher might decide that an acceptable value 

of a: 1 is .01. A review of the literature or a pilot study 

might yield estimates of P;.123 and P�.23 to be . 7 and .5 

respectively. Substituting these values in (5) and solving 

for n, the requisite. sample size is ,found to be 60. 

researcher wanted to he more 

p 2 could he used 
·, l •23 

cautious, a larger 

accommodate

··� the

value of 

stronger 

multicollinearity effects. 

to 

If P� 1.23 were set equal to .a

the requisite sample size becomes 150. 
'! 

' 
With this sample 

size the researcher would know that the estimation of a is l 
sufficiently precise even allowing for stronger than 

anticipated multicollinearity effects,

A similar approach might be taken if the researcher is

using hypothesis testing methods, A power analysis can be 

performed to determine a requisite sample size that will 

·provide a desired power for a test of H1 13 • o.

The least square• method along with the aesumption 

ei "' N(O, 02 ) (Winer, 1971) ineurea that 

bl "' N 
.a 1 ' asl 

The standard error of bl that will yield the desired 
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power for this test when 

(7) 

e • i1 is 

where a • the significance level, e • the type II 

error rate desired and zp = the unit normal deviate at the 

pxlOO percentile. 

_Substituting (7) for ab in ( 5) and solving for n
l 

gives 

(8) n •

Formula (8) may then be used to determine the requisite 

sample size so that a test of Hz 61 • 0 at significance

level cs will have of power of ( 1- 6) if 61 • A , given the 

values of P;.123 and Pf •23 For example, letting a •.OS

(one tailed), power • .BO, A •.30, P;,12, • .70 and P�.2�·

• .50 yields an n of 42. If the researcher chose to

accommodate a larger value of P�.23 (8) could be applied

to determine the necessary sample size
. ' � '' , .  

to compensate for 
{,· '�,· � ,. ;' 

stronger multicollinearity effects. If in the previous 

example Pf.23 is changed to .e the required sample size

becomes 104. A sample of this size would then allow for the 

effects of multicollinearity and provide a test with the 

desired power. 

These examples have shown that it is possible to use 

OLS estimation and still allow for multicollinearity. 

Sample size was used as the compensating parameter, but it 
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is possible to use 2 
py•l23 in a similar fashion.

collinearity effects could be countered by addlng, covariates, ..

to a model that are highly correlated with the dependent 

variable. It is extremely important that the research 

question not be compromised if this approach is employed. 

Summary 

Multicollinearity effects can result in imprecise 

estimation of regression coefficients, but small sample 

sizes and low model coefficients of determination can 

produce the same effects. Multicollinearity does not result 

in a violation of the assumptio�s that underly statistical
�- .;• ./ i; '. l,·'.·'t1 'l '·· t ' r 

inference on linear models. This implies that a researcher 

wishing only to protect against �ype I errors need not be 
• '"�· �Y r .

4 

concerned about high interpredictor correlations. The 

researcher concerned about the power of tests should 

incorporate a consideration of multicollinearity into the 

planning of an analysis, It has been shown here that it is 

possible to compensate for any degree of multicollinearity 

by increasing ■ample size■ or model validity, The use of 

these method■ insure■ that the researcher will be able to 

benifit from th• valuable sampling charaoteri■tio• of least

squares estimation, the ■ample ooeffioient■ are unbiased 

estimator■ of't�eir respective parameters. 
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