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A PERSPECTIVE ON MULTICOLLINEARITY

John T. Pohiman
Southern lllinols University, Carbondale

Multicollinearity occuré when a set of predictors in a
regression model  are correlated. When one or more
predictors are 1linear combinations of dther predictors,
exact multicollinearity exists, The moﬁt tfpical case
encountered in practice is some imperfect, but possibly
strong, assocliation among predictors. The sampling
variability of regression coefficients s, in part, a
function of the correlations among predictors. High
interpredictor correlations will 1lead to less stable
estimates of regression weights. This relationship can be
problematic if a regression weight's variability obccufoo
some functional relationship of interest to a researcher.

The multicollinearity problem, then, 1s an unacceptably high

standard error of a regression welght that occurs because of
[}

high interpredictor correlations.
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‘There are, however, meaningful research questions that

require quels»_with_ highly - correlated ,predictors.. ,AT
quadratic curve fitting model requires a predictor and its
squared value as independﬁﬁt v;ri#blés.. UIf%%££§ préaictor
takes only positive integer values, the correlation between
the predictor and its squared' value will be extremely high.

There are also inatandéswiﬁ&which a researcher, desiring to

measure some construct reliably, uses a number of highly
correlated, but fallible measures of the construct. Using
both WISC and Binet scores as measures of intellectual
ability would be an 'examplé of such multiple indicator.

models.

"'The  impact of” multicollinearity in any particular

w‘aﬁpliégtiahn dgﬁéﬁds on the roles taken by the variables

By e R
N

Ifaff;ét;é: vrééédictors:in ; regrehsion model'may take one of
W’é;o ;;ié;;r théy. m&y.bo investigative variqblea or control
Qafiiﬁles.' Investigative variables are those predictors
whoie influence oh.the dependent variable constitutes the

primary interest of an analysis., Control variables or

covariates are included in a model in order to statistically
adjust both the dependent variable and investigative

predictors for some contaminating influence.

Multicollinearity might occur within or between such
classes of predictors. A model can be formed using multiple
:éontrol variablea méaauring the same construct. | Using a
number of IQ tests to measure the construct mental ability
exemplifies this approach. In these cases a researcher

should not interpret the partial tests performed on the
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separate weights 5331999d't°.th94ﬁﬁdlyidg§1y;9,ﬁﬁiﬁgfes',P“t-
instead should treat ﬁhe collectioﬁof__IQ £93£;;$;“ ;;§ét;
In this context the researcher 1is 1ntergsted”in_c§é€£§iii&g
for the influence of the IQ construct represenﬁgd/\ﬁy_ﬁﬁe
multiple test scores. The individual partial tests._ﬁre

irrelevent to this reéearch problem.

Similarly, a set of investigative variables might be

multiple measures of the same construct. If mental ability
was an investigative construct of interest, the above
comments would apply equally in this casae. Setwise

regression methods would be the appropriate response to this

problem (Cohen and Cohen, 1975)

A third possibiiity exists; an investigative variable
and a control variable are highly correlated. The
researcher has been 1lead to this position in pursuit of an
answer to a meaningful research question. Multicdllinearity
in such modelé is a legitimate and unavoidable consequence
of posing the research question. Under these circumstances
the researcher will either have to endure the problem, or
with a slight amount of prior planning, correct for the

impact of multicollinearity.

How can a researcher reconcile the legitimate need to
estimate coefficients in models with highly correlated
predictors and the inevitable 1imprecision associated with
" such probléms? Ridge regression (Hoerl and Kennard, 1970)
and similar methods (Smith and Campbell, 1980) Thave been
proposed. Ridge regression methods . tend to adjust

coefficients closer to zero than the corresponding ordinary
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yr:idcestlhgﬁdré of coéffléieﬁfg%'t58£;e;;ibitgiéégwgampling_
variability but can be biased.  In theory the'eétimagiggi'
bias is offset by smaller mean équare errors of estimaﬁiggj:
The mathematical justification for ridge estimation islﬁaéed
on an existence theorem (Draper and Smith, 1981, p.316)
which simply states that there always exists an estimate of
a regression weight that will deviate from the true weight
less than an OLS estimate. Unfortuneately, in any specific
application of ridge regression there is no guarantee that
the sample estimate is a member of the class of more
accurate estimates. The effilcacy 'of ridge estimation
depends upon the extent of prior information the reseafcher
has 'fé§Ard£ng the‘xbobulﬁtibhll model. If the prior
informgtlaﬁklé‘CBErecé;“ Sna the ridge estimators accurately
reflect this {érlof information, then the ridge estimates
will 'bé' more‘ procido than their OLS rcountorparta.. A
researcher in possesion of prior information could
justifiably use ridge oitimation as a vehicle for a Bayesian
analysis. The uge of ridge methods without a clear
specification of the implied prior constraints is
'~ unwarranted. Another approach, the one advocated here, 1s

to use OLS estimates, but plan for the potential problems of

multicollinearity. This paper will -focus on the
consequenses of multicollinearity for the most common

applications of statistical inference in linear models.

Multicollinearity and Model Assumptions

The  1illustrations provided in the remainder of this
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paper will make use of a thréé'prédidtor.regressidﬁ problem.
A three prédictor regression model for a dependentnvariable

may be expressed as
(1) Y = 8y +81Xy+ BoXg + 83X3 + E

where Y is a vector of values for the dependent
variable , (X1 Xy X, ) are the predictor vectors, (Bl'
Bé , andg3 ) are the least squares weights and E , the
residual vector. Researchefs then usually interrogéte the
functional relationships implied 1in their model via
statistical inference directed at the model's coefficients.
From a random sample of observations and the resulting
estimate of thé model, confidence intervals m&y. be placed

about the coefficient estimates or tests of null hypotheses

may be performed. A test of H:Bl = ¢ is conducted .as

follows:
1. A full model estimating (1) is fitted to sample data

using the least squares criterion

2 Yab +pbX +bX +bX +
(2) = by b, X, + b X) +b X, *+ E(f)

2. A restriction is imposed on (2) by oeﬁting the
weight under test equal to the value specified in the

_hypothesis,»s1 = ¢c. The restricted model then is estimated

1]
(3) Y = by + eX; +byX, + byX, +_ E(r)
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it g {E'(D)E(D)-E' (DE(E)} /{m(£)-m(r)}

B ) PR -.' ) ’ f -
(a(6)-n() } (n-n() E'(E)ECE) /{n-n(£)}

where E'(£f)E(f) and E'(r)E(r) are the error sums of
squares for the full and restricted models respectively,
m(f) and m(r) are the number of weights estimated in the

full and restricted models and n is the sample size.

In order for the F statietic given in (4) to follow a

centrel F distribution, it is assumed that

“1. The elements of E(f) are n(O, o2 )

o,

: 2. The weighte eetimeted in (1) and (2) satisfy the
S 1% R P ‘ RN

least aquares criterion.

‘ i .‘“‘t\i SRR F

""3."The variance of the residuals is homoscedastistic.

4. The sample is randomly drawn from the population.

5. The null hypothesis is true.

It 1is important to note that no assumption is made
regarding the correlations among the predictors. The type I
error rate for such tests is unaffected by

multicollinearity. Hence a researcher rejecting H: need not

be concerned about the multicollinearity problem for that
test. With the current interest in multicollinearity it was
inevitable that some authors (Loether and McTavigh, 1980 p.

331) would include uncorrelated predictors as an inferential
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assumptlion. Recently, =~ Hawkes and 'Mosely . (1982)

questioned. this = extreme finterpretation;ijwiLoeih%rﬁ;
McTavish are simply wrong and have thereby misled ' their::
readers. We must now be prepared for the'onalaught336¥¥$

papers that will use all sorts of suboptimal methdda“ciﬁfﬁéﬂ?

Loether and McTavish.

Multicollinearity, Interval Estimation and Power

The correlations among predictors can affect the type
II error rate of tests and increase the range of confidence

intervals. These effects obtain as a result of the

increased imprecision in the estimation of weights that is
associated with multicollinearity. This can be‘demonstrated
with the expression for the standard error of a regressiSn
coefficient. Scaling all the ?ariables in a model so that
their variances are equal, the expression for the variance

error of the regression weight assigned to x1 is given by
(Winer, 1971)

(1=07129)

(3) 02 =

_ 2
! nC1=P] ,)

where 9;6123 is the coefficient of determination for

the model in (1), ﬂf.za is the coefficlent of determination

for the model

(6) X = By +B,X, +B8.X +E
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-ahd*h”is?the'sampie size.. . An unbiased estimate of <% a»w 4?

o, -

is obtained by replacing the coefficients of determinationxk

T AN

in (5) with:-the respective sample R squares*?and'usi&g?(n:'“

m(f)) in place of n. Inspection of (5) shows that as oi.'{s;'--

increases :80 does 0% . In the extreme -case where

1

ol =1, °§1 is undefined. The variance of a regression

coefficient is therefore a function of

three

factors: Dy-123 ' 9%‘23, and n. High interpredictor

correlations are not sufficient evidence of a problem.

Sample size and model validity <can compensate for
multicollinearity ., . Table 1 illustrates:  the inter-
relationships among the terms in (5).
ST TP OE RN R S B R PO IR
e ot i . - Table 1, .
SR il L S e oL
"7%ﬂmf"'tf° " Three Coﬁbisations:otp;..u3 ' s?ozs' and "
ST T qhat 'Yield Equal Values of olzu
2 2 a o2
pY *123 p1'23 by
case ! 30 00 10 .03
case 2 «30 «90 100 .03
case ) 93 «90 10 005
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The @ three examples given,ih ‘Tﬁble 1: show that many
combinations of sﬁmplé size, Dziizg‘v,ﬁna’;élz3yiéld tﬁe.same
standard error for a regression Weight. One couidv not
assert a multicollinearity problem for cases 2 or 3 |in
contrast to case 1, aince all three cases produce}theiggme
varianée error. In order for a problem to exist, the
variance error of a weight must be greater that some desired
value. Hence a researcher must specify, before the
analysis, a desired value of the standard error of a

coefficient of interest.

As noted earlier, multiéollineafity does not affect the
type I error rate of tests on linear models. Type II error
rates and the width of confidence intervals will, however,
be influenced by interpredictor correlations. .A researcher

can correct for these effecté when planning an analysis by

selecting a sample size that can ¢ompenaate for any degree
of multicollinearity. | When interval eétimation of 8, | is
planned, the researcher can spécify.D;.123 ' 9%o23 and the
desired value of oé, + Given these'values, (5) can be used
to solve for the sample size that will give the desired

degree of precision.

For example, a researcher might be planning a"béth
analysis of school achievement in the 5th grade (Y) with a
structural model that includes attitudes toward teachers
(X1 ), attitudes toward school ‘- in general (X, ) . and
achievement in the 4th grade (xs). The model that would be

L]

estimated is

93



Y= Bg + X+ BXy HByXy, *E

f

If we assume all of the variables in this modei have
_been scaled to a common variance, then the coefficient B,
may be treated as a beta weight and (5) gives its variance
error. The researcher might decide that an acceptable value
of ng is .0l1. A review of the literature or a pilot study
might yield estimates of D;-lza and pi-za to be .7 and .5
respectively. Substituting these values in (5) and solving
~for né Fhe reqyiaite?aampleksizefgg.foupd‘to be 60. "% the
}%?9§?3f¢h§ﬁ*wanﬁeqwdt9 bqﬁho;e_‘capp;qus. a larger value of
upf.zaxzi ;é??}dq.,b95¢ ‘used ; to  accommodate stronger
1m9¥%}99}}19ear$ty_effgctg._ If g?za . were set equal to .8
th?_:gquigigg gqmple oige,pecqmee 150. With this sample
;-Lée:theﬁreqéarcher would know that the estimation of B1 is

sufficiently precise even allowing for stronger than

anticipated multicollinearity effects.

A similar approach might be taken if the researcher is
using hypothesis testing methods. A power analysis can be

performed to determine a requisite sample size that will

‘provide A desired power for a test of Hi Bl - 0,

The least squares method along with the assumption

&4V N(0, 42 ) (Winer, 1971) insures that
2
b]NN(*Bl’ab])

The standard error of b] that will yield the desired
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power for this test when Bl =A g

(7) X ‘ ‘
! Z(1 - ) + 2(1 - )
where a¢ = the significance level, 8 = the type Il

error rate desired and zp = the unit normal deviate at the

px100 percentile.

Substituting (7) for °b] in (5) and solving for n

glives » )
1) * 210) (V-0 )

(8) ne=

2 (1 - 02
a2 | 91'23)

Formula (8) may then be used to determine the requisite

sample Size.so that a test of H: 81 = 0 at significance

level a will have of power of (1-8) if B; =4 , given the

2 2 -
values of py ‘123 and Ple2s ° For example, letting « 105
(one tailed), power = .80, A =,30, ";-123 = ,70 and ol 23

= ,50 ylelds an n of 42. If the researcher chose “to

accommodate a larger value of p2 (8) could be applied

le23 !
to determine the necessary sample size to compensate for

stronger multicollinesrity'eftects. | If 1n the 'previehs
example 91.23 is changed to .8 the required semple size
becomes 104, A sample of this size would then allow for the
effects of multicollinearity and provide a test with the

- desired power.

These examples have shown that it is possible to use

OLS estimation and still allow for multicollinearity.

Sample size was used as the compensating'parameter, but it
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is possible to use = p2 . in a similar fashion.*'iﬁenceﬁﬁ7fﬂﬁ

«123
y
collinearity effects could be countered by adding covariates: .

to a . model that are highly correlated with the dependent

variable. It is extremely important that the research

question not be compromised if this approach is employeds
Summary

Multicollinearity effects can result in imprecise
estimation of regression coefficients, but small sample
sizes and low model coefficients of “determination can

produce the.same effects. Multicollinearity does not result

in a violation of the assumptions that underly statistical
oy TN " E RES I *".

inference on linear models. This implies that a researcher

wishing only to protect against type I srrors need not be

concerned about high interpredictor correlations. The

. .!.

researcher concerned about - the powerd of tests rshould
incorporats a consideration of multicollinsarity into the
planning of an analysis. "It has been shown here that it is

possibls to‘ compensate for any degree of multicollinsarity
by'incrsasing sample sizes or model validity. The use of
these methods insures that the rsssarchsr will be able to

benifit from the valuable sampling characteristics of least

squares estimation; the sample coefficients are unbiased

estimators of'thsir respective parameters.
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