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Perhaps a best starting point is at the beginning--the beginning of 

my involvement in multiple l.inear regression ala Ward, Bottenberg· and 

Jennings. A presession to the AERA annual meeting 1n New York in 1967 

was my first exposure to this type of analysis. I must admit something 

less than being fully enthralled with their ideas at the time. Despite 

computer accessibility for the five day workshop, I didn't actually run 

any programs. To me it was just a new fad, When gettinq back to Grand 

Forks (N.O.) l did feel some pangs of conscience and tried running a 

simple ANOVA by regression. The problem was a three group situation; 

1 was trying to run: 

where 

x1 • 1 if a member of group 1, O otherwise,

x2 • 1 if a member of group 2, O otherwise,

x3 • 1 if a member of group 3, O otherwise,

b1, b2, b3 are regression coefficients,

V • the criterion score, and 

e
1 

• the error in prediction with this model. 

(l] 

The program used at the presession was DATRAN, a forerunner of LINEAR 

(which of course, I didn't actually use). The.program available to me back 
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,":,grams typically have automatic inclusion of a unit v�ctor (or constant). 
,.,,.,,.,,,,., 

'.· Well, what happened next is both a descriptor of something about my 

personality (stubborn) or,,possibly lack of intelligence (slow). On a 
, :·i::tx.;.:,·:;· ,:. • • , ..,.:_ -, 1 •. ,.., • • 

daily basis for seven weeks, (that'.s 35 ti�s) I unsuccessfully tried 

running the program exactly as shown in equation 1 without any change. 

I thought possibly there was something wrong with the computer or the 

program;� did it cross my mind that I might have made a conceptual 

error. Finally, I started monkeying with the input (I was convinced 

the stuff in Bottenberg and Ward, 1963, was wrong).' ·Well, I finally 

made the right mistake, and the program actually worked correctly. 

One form of that .mistake is as follows: 

[2] 

The difference between equation 2 and equation 1 ostensibly is the 

exclusion of bO in equation land the exclusion of b
3
X
3 

in equation 2.

Also, I now know that equations 1 and 2 are reparameterizations 

of one another, There are also some other "obvious" things about 

equation 2; it took me only four years to discover some of the 

obvious. 

Equation 2 can allow not only a simple ANOVA, but also describes 

some important aspects of Ounnett's (1955) test (Williams, 1971); bO
is not just a constant, but is equal to Y

3
, the so-called left out 

group. Also, b1 • V1 • V
3 

and b2 •· V2 - V
3
. Equation 2 could be

rewritten as: 

[3] 

The tests of the regression coefficients b1 • V1 - Y
3 

and b2 • V2 - V
3

are identically equal to the t values in Ounnett's test. 

In addition to an ANOVA, other simple designs can be shown in a 

regression lay-out, such as the analysis of covariance, the t test, and 

treatments x subjects designs. The use of equations such as equation 2 
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to complete these designs. was shownJn W1111ams,(1970). ,,,As usual, I ,· ., •' ,/ ·  � ;,,, ,. "'.11� s "'' :-:·: ,-'<l.'e s(,·,·i •v\ ,,,.� ':· ,, ' "' .,: '" "· • ' '' 

had no idea at the time of the relatfons�ip ito.!"�ltipJe c<>m1>�ris<>ns,· In 

some ways, the relationships are so simple a�d direct .that H. gives me 

cause for some degree of humility to remember �ow.long 1t took me to 
' 

·• ' , ,  , ,  , ,1 ,,·· ' ' . ' 

discern the obvious again.

Through the use of full and restricted models, a process to 

test comparisons equivalent to Tukey's (1953) test was shown (Williams, 

1974a). With three groups, beginning with equation 1, Ya b1x1 + b
2X2 

+

b
3
x3 + e1. Now suppose the test.of V

2 
a V

3 
is of interest. In terms 

of the regression coefficients b
2 

• b3 is the appropriate res·tr1ction. 

Then Y • b1X1 + b2X2 + b
2X3 + e

2 
or

y • blX2 + b
2
(X2 + X3) + e2

. 

Let vl • X2 
+ X3

i then 

•• y • b1X1 + b
2V1 + e

2
. (4] 

Equation 4 can be reparameterized so that the unit vector (constant 

term) is reintroduced by excluding either x
1 

or v
1
. Excluding x

1 
yields: 

Y • bo + b2V2 + e2. (5] 

Testing t • � • (R� - R�)/l yields a t  appropriate to 

(1 • R
2
) / ( N • K) 

testing Y2 to Y
3
. 

On the other hand, there is an easy way to run Tukey's test by 

regression. All that i� necessary is the set of reparameterizations of 

equation l: 

y. ba + b1X1 + b2X2 + el'

y. bo + b1X1 + b3X3 + el'

and Y • ba + b
2X2 + b3X3 + el. 
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''.,. ·,,:,>·.,{!�, ,, N, r ,. • ·;,.' , ' ',, 1 ·v ';., ;: '. ,· , , · 

Here/the''test''of the computed t values is identical to a similar test 

fo; Tul<ey's test. (It' took a full three years after doing the same thing 

with Dunnett 1 s test to realize that Tukey's test could be accomplished 

through successive psuedo-Dunnett's'tests). One complication is that 

most published studentized range tables are in terms of q, rather than 

in terms of testing the regression coefficients for significance. A 

table showing a direct solution using tests on the (partial) regression 

weights is given in Williams (1976, 1980). 

In that I routinely would find all simple reparameterizations of 

an equation for an ANOVA solution, taking seven years to discover the 

obvious says something. 

Two-Way Disproportionate .ANOVAs 

The two-way analysis of variance with disproportionate cell frequen

cies has been discussed in many different publications; Bottenberg and 
• ', • ' 1

.,. 

' ' ' 

Ward (1963) showed a regression solution for the general case, and 

Jennings (1967) concentrated on the disproportionate situation, To 

be honest, I had a lot of trouble understanding the Jennings article, 

so I tried to go about doing what I could understand from the original 

Bottenberg and Ward presentation. One aspect of Bottenberg, Ward and 

Jennings in their various writings is a concern for explicitly stating 

exactly the hypothesis being tested through the use of a restriction on 

the regression coefficients, This aspect has been both a blessing and 

a curse; it is a blessing in the sense that the approach allows a 

precise methodology. It 1s a curse in that users are often at a 

disadvantage because of the cognitive completixity and relative 

mathematical sophistication required in comparison to traditional 
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analysis of va riance methodo1o�ie s , It could be:a rqued that a middle

ground can be attempte d; to some degr e e, t hat mid dle gro und was som eth
i
ng

t ried to do (Willia m s, 19 7 4 b),

As an example of a two-way A N0VA wi t h  dispr oportio n ate cel l  freque n cie s

the fol lowing data set wa s  origin al ly pub l is
hed in W il l ia m s  (1 9 7

2

):

Data f o r  Dispropo rt
i onate Tw o-Way An al ysis o f  Va ri an c e  

E ffe c t  E f fe ct 

Bl B2 B3 

Al 8 1 6 
6 1 

2 
4 

A2 1 0  7 10
5

9 

4 7 

4 5

3 4 

The solution given (1 97
2) 

tha t  w a s  m ea n t  to simpl i fy t he p ro c ess was

t o  fo rm four models:
[
8]

where 
1 i f from a n indivi dual in ce 1 1  1 ( row 1 , co 1 umn 1), 0 o t herw

i

s e;
Xl • 
X2 • 1 i f from a n ind ivi du al in cel l  2 (row 1, colum

n 2), 0 
otherw

i

s e;

X3 • 1 i f from an ind ivi dual in ce 1 1  3 (r ow  1, c olum n  3), 0 oth erw
i

s e;

1 i f from an individual in ce 1 1  4 (row 2, colu m n  
1)

, 0 otherw
i
se; X4 • 

x5 • 1 1f from an individual 1n cell 5 (ro w  2
, c olu mn 2), 0 otherw

i

s e; 

a nd bo t o  b5 are r egres si on co ef f ic ie nts f o r  this model, 

y • b 6  + b 7X7 + e
4 !

where 

x7 • 1 from a n  1nd 1vi dual i n r o w  1, 0 o the r wi �e a nd 

b 6, b 7  a r e  regr e s si on c oef f icient s  fo r  this m odel.

4 3  

[
9
] 



/,'. '.· .. ",tY ,

■ ;bi{+ b9X9' + b10X10 +·es; [10] 

• '/\where

x9 • 1 if from an individual in column 1, O otherwise;

x10 • 1 if from an individual in column 2, O otherwise; and

b8
, b9 and b10 are regression coefficients for this model.

ya bll + b12X7 + b13X9 + b14X10 + e6 . [ll] 

Now a solution in terms of sums of squares can be given as follows: 

From: equation 8, SSATTRIBUTABLE • 80.80;

55DEVIATION • Sl.20;

equation 9, SSATTRIBUTABLE • 20.36;

equation 10, SSATTRIBUTABLE • 37.43 and

equation 11, SSATTRIB,UTABLE • 80,2
5.

This information could be used to construct a fitting contants solu

tion or a hierarchical solution (Cohen, 1968) or the solution described 

by Jennings (1967); although Jennings laboriously goes through the ,,; 
P: 

process of testing hypotheses through restrict ions on a reparameteri zat ion 

of the full model: 

[12) 

This model corresponds to equation 8, except that the unit vector is 

omitted (b0) and the sixth cell 1s represented through b6x6. Because

my solution, while 1t co1nc1des w1th Jennings, can be addressed without 

adjusting the sums of squares as must be done for a fitting constants 

solution or a hierarchical solution, I called this solution the "unadjusted 

main effects" solution--in retrospect, a poor choice of names. It was 

called this because of the means of extracting the sums of squares--but 

,1ts usefulness is because 1t corresponds to the Jennings solution. That,
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by the way, 1s another story-- I spent an hour and a half convincing .Earl 

that my so�ution gave the same results as his; at first he was skeptical. 

Fi na11y, he accepted that, ''computationa11y, their respective sums of 

squares was the same," but thought only people such as myself who under

stand both approaches and used my approach as a computational short cut 

should use it; if you didn't know what hypotheses were being tested, 

you probably shouldn't use it. I thought Earl was being a little harsh 

back in 1972, but today I'm coming closer to agreement with that position. 

In particular, it could be noted that the so-called "full rank model" 
. -,. ' ' ' .' .,, .  . • ' !' ' ·, ' ' 

as described by Timm and Carlson (1975), and which in fact they describe 

using my (1972) data set, has no better claim to being a full rank model 

solution than Jennings (1967); the hypotheses tested by these and other 

approaches are considered. in Williams (1977a). It 1s unfortunate that 

the Timm and Carlson (1975) solution might be seen by some as "standard 

practice" or "state of the art". The issue really is, which hypotheses 

are of greatest interest? If the Timm and Carlson hypotheses are truly 

of the greatest interest, they can be addressed via the Bottenberg and 

Ward approach. 

A summary table that computationally tests hypotheses proportional 

to cell frequencies such as proposed by Jennings can easily be formed 

from the information from equations 8, 9, 10 and 11: 

SSROWS • 20.36; SScoLS • 37.43;

SSRC • 80.80 • 80.�5 • .55;

SSwithin • 51.20. The summary table is as follows:
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Table 1 

.. Surrmary Table for Two-Way 
Disproportionate Cell Frequencies 

1, '/ ;- ' ·1 ,;J" �,; 

Source of Variation df ss MS F 
,,..•·1 ·\ Rows· 1 20.36 20.36 4.77 

Columns 2 37.43 18.72 4.38 

R X C 2 .55 .28 .07 

Within 12 51.20 4.27 

In regard to mui'tip.le comparisons in a two-way layout, equation 12 
<�( 

is an appropriate starting point. The number �nd type of comparisons J} 
, .' .• ' ,�\· 

(contrasts) would be important for deciding on the type of test (Dunnett's} 

:Tukey's, Scheffe's, 1959: and Dunn's; 1961). As �n example of constructin�' a 

to compare column 1 to column 2, weighing the cells by their size, the 

hypothesis, in terms of sample'mt!ans, is: 

In terms of the regression coefficients, 



Equati.on 14 can be used in programs where ·unit vectors' can· be

omm1tted, Its reparameterization, eciuation 15, ,,is useful when .a unit·

vector is automatically incorporated into a, regression solution.•,:,: 

Equations 8 and 12 (full models) yield Ri • .61212. Equations 14 and

15 (restricted models) yield R2 = .38544. Then:

t =\ff" = (Ri- R�)/1 
2 

• 2.648.
(1 - RF)/12 

This t value should be tested against an appropriate table depending 

upon the type and number of total comparisons considered by the researcher. 

This approach to multiple comparisons is probably much closer to 

the approach of Jennings and Bottenberg and Ward than I would have con

sidered 10 to 15 years ago. Additional considerations regarding multiple 

comparisons in the two-way analysis of variance ban be found in Williams 

(1980). 

Multiple Comparisons in the Analysis of Covariance 

Students would often ask questions such as, "How do you do multiple 

comparisons on adjusted means 1n the analysis of covariance?" I've often 

been impressed with questions students ask; I'm sure they've been less 

impressed with at least some of my answers, Well, for several years, 

I didn't have any good answer to the aforementioned question (other 

than, "That's a good question.") and as the answer finally came to me, 

there was far more embarrassment than awe. The "answer" had been on 

the printouts that I'd tieen using for years. In a nutshell, 1t was 

simply the test of signifiance for the group partial regression 

weights in a full model. An example of a solution for this problem 

was taken from Williams (1979). 
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.�is taken from Williams (1974b� p. 104 and 109). In Table 

'�ttxf i�,a1binary variable for membership in group 1; x2 is a binary

.. variable .for membership in group 2 and x
3 

is similarly a binary variable

• • for membership in group 3 and X4 represents a pretest score; the Y value

represents a posttest score. 

Table 2 

Data for the Analysis of Covariance ' 

.Y Xl X .·. X3 X4 2 
35 1 ·o 0 12 

27 1 0 0 17 

32 1 0 0 13

29 1 ,, 0 0 10

27 1 0 0 8

38 0 1 0 29 

25 0 1 0 12 

36 0 l 0 17 

25 0 1 0 22 

31 0 1 0 15 

27 0 0 1 17 

35 0 0 1 22 

19 0 0 l 10 

17 0 0 1 8

32 0 0 l 13 

Under the assumption of a single regression line on the covariate 

(the pretest, x4) an analysis of covariance can be accomplished with two 

linear models: 

[16] 
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and 

(17] 
In that a large part of the print-out regarding equation 16 is useful, 
the print-out is reproduced in Table ' 3 , 

The usual analysis of covariance can be completed by using: 
2 2 

F = 
(RF - RR)/(g - l) = (.61959 - .47476)/2 = 2 09 

(l _ R�)/(N _ C � g)(l - .61959)/11 ' '

which for df • 2, 11, p >,05. 

' . 
' '

In equation 16 the x
3 

variable has been omitted. Thus b1 
= :V1adj -

V
3
adj and b2 • V2adj - V

3
adj. To find the adjusted means, the following

equations can be used: 

V
3
adj • bo + b4X4 • 15.36 + .76(15) • 26.76; 

V1adj •bl+ Y
3
adj • 5.52 + 26.76 • 32,28; and

V
2
adj • b2 + Y

3
adj • 3.20 + 27.76 • 29.96.

The adjusted values agree with those originally given by Williams (1974b, 

p, 106), though the method shown here is simplified somewhat. 

More importantly, the standard error of the regression coefficients 

corresponding to x1 and x2 are respectively equal to the standard

errors for comparing V1adj to V3adj and V
2
adj to'V3adj. Thus, the

computed t values given in Table 3 are directly usable in whichever 

multiple comparison procedure the researcher prefers. The use of

0unnett's (1955), Tukey's (1953), Dunn's (1961) and Scheffe's (1959) 

tests are described in a regression format using computed t values 

in Williams (1976, 1980), Were there interest in comparing V1adj

to V2adj, a model of the form:

Y • bo + b1X1 + b3X
3 
+ b4X4 + ea (18]

could be used, with focus on the computed t value for the x1 variable.
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Table 3 

Print-Out for Equation 16 

Variable Mean Standard Corre 1 ati on Regression 
Deviation X YS Y Coefficient 

4 15.00 5.85 0.689 0.76 

1 0.33 0.48 0.039 5.52 

2 0.33 0.48 0.398 3.20 

Dependent 
29.66 6.12 

INTERCEPT 15.36

KJl TIPLE CORRELATI(I( 0.78714.

STD. ERmR OF ESTIMATE 4.26230

MULTIPLE CORRELATI(I( S�D 0.61959 

ONE MINUS Kl.TIPLE CORRElATI(I( SQD. 0.38041 

Analysis of Variance for the Regression 

Source of Variation 

Attributable to Regression 
Deviation from Regression 

Total 

Degrees 
Of Freedom 

11 

14 

StJD of 
Squares 

325.49 
199.84 
525.33 

•. Std. Error 
of Reg. Coef. 

0.22783 

2.73396 

2.92653 

. Mean 
Squares 

108.497 
18.167 

3.33582 
_J:. 

2.01905 

1.09345 

F Value 

5.972 



f course, multiple covariates and/or more:complex comparisons can be 

ncorporated; multiple ,c.ovariates can be incorporated without· adding too 
• ' ,,. ' �. 

uch complexity to.the,�olution. The remarkable thing is that the solu

,ion to multiple comparisons for the analysis of covariance is easily 

tchieved, 

Multiple Comparisons in Repeated Measure Designs 

Again, the impetus (to me) for interest in multiple comparisons in 

·epeated measures designs in general• and treatments x subjects designs

:n particular comes from students, Students would ask, "0.K .• so now

48 can do a treatments x subjects design by regression, How ·do we run 

nultiple comparisons?" Since they asked the question long before I had 

any suitable answer, a question might be asked, "What answer did I give?" 

To quote both the famous and infamous (e.g. Steve Martin and John 

Mitchel 1), "I forgot. 11 Considering that that answer can be as simple 

as, 11It's right there on your printout, 11 I won't dwell anymore on why 

it took so long, 

Multiple Comparisons for Treatments X Subjects Designs 

To consider multiple comparisons for treatments x subjects designs 

or repeated measure designs) an example taken from Chapter 7 of 
1

�lliams (1974b, p, 56) is used� see Table 4. 
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, :Table .4 . 

Three T�atment Methods of Paired-Associate Learn,irJg 
. . with Educable Mentally Retarded Subjects 

,. , .. : :.,/· :'!�1!:t i;it V.1; Subject Treatment One Treatment Two Treatment Three ' 

1 18 27 15 
�.} 

: · .  1', 
· ,  

2 17 24 14 

3 14 13 12 
!1 

4 5 ,8 6 

5 11 ,14 10 
·iff', 

6 9 12 8 

7 14 16 15 

8 12 17 9
i. 

)"1• 
':),,:'''-

9. . 22 21 16 

10 10 18 15 

The infonnation in Table 4 can be placed 
,, 

1n a tabular form suitable 

for use in regression format; see Table 5. 
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Table 5 

Illustration of Design Matrix for Treatments X Subjects Designs 

XI X
2 

X3 X
4 

X
5 x

6 
X
7 

Xg Xg XlO
Xll Xl2

X
13

X
14 

l 1 0 0 1 0 0 0 0 0 0 0 0 0 60 
7 0 1 0 1 0 0 0 0 0 0 0 0 0 60 
5 0 0 1 1 0 0 0 0 0 0 0 0 0 '60 
7 1 0 0 0 1 0 0 0 0 0 0 0 0 55 

0 1 0 0 1 0 0 0 0 0 0 0 0 55 
4 0 0 1 0 1 0 0 0 0 0 0 0 0 55 

1 0 0 0 0 1 0 0 0 0 0 0 0 39 
l3 0 1 0 0 0 1 0 0 0 0 0 0 0 39 
12 0 0 1 0 0 1 0 0 0 .. 0 0 o· 0 39 
5 1 0 0 0 0 0 1 0 0 0 0 0 0 19 
8 0 l 0 0 0 0 1 0 0 0 0 0 0 19 
6 0 0 ·1 0 0 0 1 0 0 0 0 0 0 19 

11 1 0 0 0 0 0 0 1 0 0 0 0 0 35 
14 0 1 0 0 0 0 0 l 0 0 0 0 0 35 
10 0 0 1 0 0 0 0 1 0 0 0 0 0 35 
9 1 0 0 0 0 0 0 0 l 0 0 0 0 29 

12 0 1 0 0 0 0 0 0 1 0 0 0 0 29 
8 0 0 1 0 0 0 0 0 1 0 0 0 0 29 

14 1 0 0 0 0 0 0 0 0 1 0 0 0 45 
16 0 1 0 0 0 0 0 0 0 1 0 0 0 45 
15 0 0 1 0 0 0 0 0 0 1 0 0 0 45 
12 1 0 0 0 0 0 0 0 0 0 1 0 0 38 
17 0 l 0 0 0 0 0 0 0 0 1 0 0 38 
9 0 0 1 0 0 0 0 0 0 0 1 0 0 38 

22 1 0 0 0 0 0 0 0 0 0 0 1 0 59 
21 0 1 0 0 0 0 0 0 0 0 0 1 ,Q 59 
16 0 0 1 0 0 0 0 0 0 0 0 1 0 59 
10 l 0 0 0 0 0 0 0 0 0 0 0 1 43 
18 0 1 0 0 0 0 0 0 0 0 0 0 l 43
15 0 0 1 0 0 0 0 0 0 0 0 0 1 43 

The values 1n Table 5 are defined as follows: 

Y • the criterion score; 

x1 • 1 if the score corresponds to Treatment 1, O otherwise;

x2 • 1 1f the score corresponds to Treatment 2, O otherwise;

x3 • 1 if the score corresponds to Treatment 3
1 

0 otherwise;

x4 • 1 1f the score is obtained from Subject 1, 0 otherwise;

tfi 

., 
S3 I 

I 

I 

I 



t� ;' 

X5 • 

X • 

6 

X7 • 

X8" 
X =9 

XlO • 

Xll" 
X
12 = 

X13" 

1 'ifthe score is obtained from Subject 2, O otherwise; 

1 ff the score fs obtained from Subject 3, O otherwise; 

1 i; the score is obtaf ned from Subject 4, 0 �therwlse; 

1 ff the score fs obtained from Subject 5, O otherwise; 

1 ff the score is obtained from Subject 6, O otheNise; 

1 if the score if obtained from Subject 7, O otheNfse; 

1 ff the score fs obtained from Subject 8, O otheNise; 

1 ff the score fs obtained from Subject 9, 0 otheNise; 

1 ff the score is obtained from Subject 10, 0 otheNise; 

x
14 • the sum of the criterion scores for each subject separately. 

A full model for this data could be given as: 

Y • bo + b
1

X
1 + b

2X2 + b4X4 + b5X5 + b6X6 + b7X7 + b8X8 + bgXg +

blOXlO + b11X11 + b
12

X12 + elO; [l9] 

an alternative model would be: 

• Y • bo + b1X1 + b3X3 + b4X4 + b5X5 + b6X6 + b7X7 + baXa + bgXg +

b10X10 + b11X11 + b12
X12 + elO' [20] 

See Table 6 for a printout using equation 19, 

From Table 6, ft can be seen that t1 • 1,10362 and t2 • 4,59846;

that t values are respectively the tests regarding comparing V1 to v
3

and V
2 

to V
3
, taking into account that the subjects serve as their own 

controls, A similar printout could be generated using a model corre

sponding to equation 20, Values from this printout show t1 • -3.49484, 

t3 • -4.59847; these t values-correspond to comparing V
1 

to V
2 

and 

V3 to V
2
. Also, the corresponding means are V

1 
• 13.20, V

2 
• 17.00 

and V
3 

• 12.00, These computed t values should be compared to an 

appropriate multiple comparison table for significance. 



VI 

VI 

T able 6 

Output 
of F ull � 1 fo r Treatme nts X Subj e cts Des

i

gn 

variab le Hean Standa rd  
No. 

Deviation 

1 0.33333 0.47946 

2 
0.33333 0.47946 

4 0.10000 o.30513 

5
0.10000 o.30513 

6 
0.10000 o.30513 

7 
0.10000 0.30153 

8 0.10000 o.30153 
9 0.10000 o.30153 10 0.10000 0.30153

11 0
.
1

0000 

0.301 5 3
12 

0.1 0000  0.301 5 3

Depe ndenty 
14.066 6 7

5.1322

6

INTERCEPT 12.26667

fot.lL TlPLE CORRELATION 0.92774

STD. ERROR t>F ESTlt'ATE 2.43131

MlUIPlE CORRELATION S(JJARED 

ONE M IK U S  MJlTIP L E  CO RRELATION SQD
.

Sourc e  of V
ar iation

A
t tr ibutable t o  Reg re ssi on 
Deviati on f rom  Re gre ssion 

Tn

+-

:11 

Corre la ti on Regression . Std. Error Comp uted 
X vs Y 

Coeffi
ci

en t 

O f  Re9. Coe
f

. 
T V

a
l
ue 

-0 .12145
1.19998 1.08732 1.10362 o.41105 4. 99997 1.08732 4.5984 6 

0.3
9
195

5. 66663 1.98515 2.85451 
o.28185 4. 0000 1 1.98515 2.01496 

-0.07046 -1. 33331 1.98515 -0.67164 
-0.51085 -7.9999 2 1.98515 -4.12987 
-0.15854 -2. 66665 1.98515 -1.34329
-0.29066 -4. 6666

4 1.98515 
-2.35077 

0.06166 0. 6666
8 1.98515 0.33583

-0.09248 -1.66665 1.98515 -0.8395 6 

0.36 993 5.3 3 3 32 1. 985 1 5  
2.68661 

0.8607 0

0.1 3930 

Analys is o f  Varia nce for th e  Re gre ssion•

Degrees SI.Ill of 
Of F reedan  Square s  

11

657.4602 1  
1 8  

106.40
308 

?O 7 1; �  R l; � ? P  

Mean 
S quares 

59.769 10 
5. 9 112 8

�- - --- -�·- ---- -

Beta 

0.11 210 0.46710 
0.33690 0.23781 

- 0.07927 
-0.47562 
-0.1585 4 
-0.277450.0396 4 
-0.09909 0.3170

8 

F Va
lue

10.11102



Usin g  the Sho
rt cut Method

.::,,ff. . ... ' 
The s olu t ion jus t  give n  in t he last se ctio n  pr esum e d that.each>su bje c t (e x c e pt one ) 

is separately c oded using a bin a
ry codf��,;1�,h�\� .. 

-, ·  .;">'>�,\;' :,':'l"J Clea rly, ff t
h e n u mbe r  o f  subjects is at al l  large, th e coding pro c edurede sc ribe d in Will iams (

19 7 7b) a nd usin g: 

[21] m ig ht be pre
fe rrable. How eve r, one difficult y  with u sing this ' shortcut

p ro cedure is tha t 

t he st andar d  e rror o f t he regre ssi on coeff1ci e �ts , 
for xl and X2 are t o o  smal l  due t o  the degre es of fre edom, a

s' g e

nerated
by the compute r  program, not b ein g  a ccu rate for dev iat ion fromr e g res�fon. Th ese t va lu es c ould b e  adjus ted by multi pl yi

�
n b an .

. a pp rop r f a te cons
tant. T he a p pr opriate c onsta nt fs:

c • · � 

. .  W19 where MSW is the mea n  square wit hin (or devia tion from regr ession)21 fo r e qu at ion 2 1 an
d Msw

19 
is t he mean square wit hin f or equation 19.Th e MSW is 4,0922 5 and MSW is 5,91125, Thus, c • ,8320 3, The values 21 1 9  ge n erate d by eq u a t io n  2

1 

for t1 an
d t2 (compari ng V 1 t o  V 3 an d  V2 t o

V3 ) a re t
1 

• 1,3264 1 an
d t

2 
• 5.5 2 678, M ulti plying t1 and t2 by c y ields correcte d t1 

• 1,1036 1 and corrected t2 
• 4 ,5 9845, wft hfn rou ndinger ro r o f the va lues foun d earli er, 

Of course, MSW w ou ld no t  be
19 available wer e  the researche r  us ing t he s h or tcu t  met h od, Howe v

er,
MS • SS� w he r e  N fs t he total n u mb er of scores, S fs t he numberW19 R- -g+ l of subjec ts an d g fs t

he number o f groups, Tho denomin ator c an al so 
be fou nd a s  (S-

l
) (g-1),

Re pe ated Measu r es Designs
Mu l tip le comp ar is ons al s o  can b e  r ela tively routinized f

o
r la

r
ge

da ta se ts invo lv ing rep eated measu r es. Wi llia ms a nd Wil lia ms (1
98 4) s ho

wed

-

.



research application of a hypotheses testing process fork groups 

!asured at three times for large N. More recently, they showed

in press) ·the same solutions to the problem done earlier in Williams 

1980)i a 3 x 4 repeated measure design with five entries per cell was 

1ade to show a problem that was not solvable in a regression fonnat; 

'ortunately (or unfortunately) a solution was found, so the chapter 

�as entitled, "Problems less amenable to a regression solution." In 

.-ipplying this solution to the larger data set, two progressively easier 

50lutions were found; the preferred solution (i.e., easiest to accomplish) 

is embarrassingly close to a simple Bottenberg and Ward/Ward and Jennings 

(1973) solution. 

Perhaps the point of all of this is to give some comfort to those 

who have struggled within the use of regression as a technique to address 

research questions, particularly as they look over their shoulders and 

think they may never master the process, Insofar as I might be seen as 

one who has mastered this process, let me point out, I'm still learning! 
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