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Multiple Comparisons Via Multiple Linear Regfession.
Learning the Obvious Takes Time

John D. Willlams
The University of North Dakota '

Perhaps a best starting point 1s at the beg1nn1ng;#the‘beg{nh1ng of
my involvement in multiple 1inear regression ala Ward, Bottenberg and
Jennings., A presession to the AERA,annui1 meeting in New York in 1967
was my first exposure io this type of analysis. 1 must admit something
less than being fully enthralled with their ideas at the time. Despite
computer accessibility for the five day workshop, I didn't actﬁa11y run
any programs, To me 1t was Just a new fad. When getting back to Grand
Forks (N.D.) I did feel some pangs of conscience and tried running a
simple ANOVA by regression. The problem was a three group situation;

1 was trying to run:

Y oubXy + byXy + baXy + @) (1)
where

X1 = 1 {f a member of group 1, 0 otherwise,

X2 = 1 {f a member of group 2, 0 otherwise,

X3 = 1 1f a member of qroup 3, Q otherwise,
bl' b2' b3 are regfession coefficients,

Y = the criterion score, and

& e - the error in prediction with this model.

The program used at the presession was DATRAN, a forerunner of LINEAR

: (which of course, I didn't actually use). The program available to me back
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Dakota was ‘a stock IBM program, in retrospect, such stock pro-
rams typica11y have automatic inclusion of a unit vector (or constant),
¢we1]. what happened next is both a descriptor of something about my
‘1vpgr§9nq11ty*(sgupbgrnlrpcwpqssipIy la;k of 1ntgjligence'(s]ow). On a
ha;qi& B;§1svfor sevén weeks, (that's 35 timeé) i unsuccessfully tried
running the program exactly as shown in equation 1 without any change,
fithought possibly there was something wrong with the computer or the
iprogram; never did 1t cross my mind that I might have made a conceptual
error. Finally, 1 started monkeying with the input (I was convinced

the ;tuff in Bottenberg and Ward, 1963, was wrong). ° Well, 1 finally

made the right mistake, and the program actually worked correctly.
One form of that mistake is as follows:
The difference between equation 2 and equation 1 ostensibly 1s the “E

exclusion of bolin equation 1 and the exclusion of b3X3 in equation 2.

Also, I now know that equations 1 and 2 are reparameterizations
of one another, There are also some other "obvious" things about
equation 2; 1t took me only four years to discover some of the ?

obvious.

Equation 2 can allow not only a simple ANOVA, but also describes
some important aspects of Dunnett's (1955) test (Williams, 1971); by o
{s not just a constant, but 1s equal to Ys. the so-called left out
group. Also, b, = Yi - ¥; and by * ¥V, - V,. Equation 2 could be
rewritten as: »

Va Ty 4 (T - Tk + (T, - Tydxy + ey (3]
The tests of the regression coefficients b, = Yl - 73 and b, = ¥, - Y3
are identically equal to the t values in Dunnett's test.

In addition to an ANOVA, other simple designs can be shown in a
regression lay-out, such as the analysis of covariance, the t test, and *

treatments x subjects designs. The use of equations such as equation 2 -
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to complete these designs was shown in “!.lL!,am.;,}.;(,}??o,); s, usual, T
had no idea at the time of the re]atipnsp1p3;§]mglt1p]e Qéhpgr1spns,» In
some wyys.'the relationships are so simple agd‘dfreg; that jt,g1y¢s‘mé v
cause for some degree of humility to remember how long it took me to ...
discern the obvious again.

Through the use of full and restricted mode]s, a process to
test comparisons equivalent to Tukey's (1953) test was shown (Williams,
1974a). With three groups, beginning w{th equation 1, Y = b + b2X2
b3x3 +ep. Now suppose the test of Y2 = Y3 is of interest. In terms
of the regression coefficients b2 = by is the appropriate restriction,
Then Y = b X1 * byXy + byXy + e, oOr

Y = byXy + by(Xy + X3) + ey
Let V = X, + X3 then

Y. byXy + bV, + e,. “ (4]
Equation 4 can be reparameterized so that the unit vector (constant
term) 1s reintroduced by exéluding either X1 or Vi. Excluding X1’y1e1ds:

Y= byt bV, + ey, (5]

Testing t = ‘F = (Rg - Rg)ll yields a t appropriate to
(1= RE)/(N = K)
testing Vz to VS‘
On the other hand, there is an easy way to run Tukey's test by
regression. A1l that is necessary is the set of reparameterizations of

equation 1:

Y o= by + by byKy +oeg, f2]
Y = by *+ byX; *+ byks + ey, . (6]
and Y = by + byX, + baXy * €. A (7]
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Here, fﬁébfééf”%f'thé‘ébﬁpﬁﬁéa t values 1s identical to a similar test
for Tukey's test. (It took a full three years after doing the same thing
 with Dunnett's test to realize that Tukey's test could be accomplished
throughksdcce551ve psuedo-Dunnett's tests). One complication is that
most published studentized range tables are in terms of q, rather than

in terms of tésting the regression coefficients for significance. A
table showing a direct solution using tests on the (partial) fegression
weights 1s given in Will1ams (1976, 1980). -

In that I routinely would fihd 311 simp]e'repafameterizétions of

an equation for an ANOVA solution, taking seven years to discover the

obvious says something.

Two-Way Disproportionate ANOVAs J:”:" ,

The two-way ana1ysfs of variance with dispropgrtiqpate ceilvfrequen-
cles has been discussed in many differentt?ublicqiipns§ Bottgnbérg and
Ward (1963) showed a fegression solution fqr the ggneral case, and
Jennings (1967) concentrated on the disproportionate situation. To
be honest, 1 had a 1ot of trouble understanding the Jennings article,
so | tried to go about doing what I could understand from the original
Bottenberg and Ward presentation. One aspect of Bottenberg, Ward and
Jennings 1n their various writings 1s a concern for explicitly stating
exactly the hypothesis being tested through the use of a restriction on
the regression coefficients. This aspect has been both a blessing and
a curse; {1t 1s a blessing in the sense that the approach allows a
precise methodology. It 1s a curse in that users are often at a
disadvantage because of the cognitive completixity and relative

mathematical sophistication required in comparison to traditional
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analysis of variance methodologies, It cou1d be: arqued that a midd]e
ground can be attempted; to some degree, that middle ground was something

I tried to do (Williams, 1974b),
As an example of a two-way ANOVA with disproportionéte cell frequencies
the following data set was originally published in Williams (1972):

Data for Disproportionate Two-Way Analysis of Variance

Effect : N Effect

8 B By

A 8 1 6
6 1 2

A2 10 7 10

5 9

4 7

4 5

3 4

The solution given (1972) that was meant to simplify the process was
to form four models:
V= b * ByKy * byKy + baky + byy + bgks + ey (8]
where
Xy = 1 4f from an individual 1n cell 1 (row 1, column 1), 0 otherwise;
Xp =1 if Trom an individual in cell 2 (row 1, column 2), O otherwise;
X3 = 1 1f from an individual 1n cell 3 (row 1, column 3), O otherwise;
Xq @ 1 1f from an individual 1n cell 4 (row 2, column 1), 0 otherwise;
X5 w 1 4f from an individual in cell 5 (row 2, column 2), O otherwise;
and b0 to b5 are regression coefficients for this model.
Y ® b+ byXy *+ ey ‘ (9]
where
Xy = 1 from an {ndividual in row 1, O otherwise and

b6’ b7 are regression coefficients for this model.
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‘ b8+ béxg‘ + ‘biéxld"i-"es; S R ST e [10)

X9 = 1 {f from an individual in column 1, O otherwise; :.

i)y o = 1 1f from an individual in column 2, 0 otherwise; and

1
b8' b9 and b10 are regression coefficients for this model.
Y = byy * bypXy + byg¥g ¥ bygXyg * e (1]
“Now a solution in terms of sums of squares can be given as follows:
From: equation 8, SSATTRIBUTABLE = 80.80;
SSpeviaTIon = 51.203
equation 9, SSATTRIBUTABLE = 20.36;

equation 10, SSATTRIBhTABLE = 37.43 and

This information could be used to construct a fitting contants solu-

tion or a hierarchical so1n£1dn (then. 1568) or the so]ﬁtion described -

by Jennings (1967); although Jennings 1abor10us1y goes through the

g

process of testing hypotheses through restrictions on a reparameterizationi
of the full model: 5
v-bﬁ1+%§+bj3+%&4555+%%+ey (12] g
This model corresponds to equation 8, except that the unit vector is ;
omitted (bo) and the s1xthyce11 1s represented through bsxs. Because :
my solution, while 1t coincides with Jennings.‘can be addressed without .
adjusting the sums of squares as must be done for a fitting constants :
solution or a hierarchical solution, I called this solution the "unadjusted
main effects" solution--in retrospect, a poor choice of names. [t was f
called this because of the means of extracting the sums of squares--butwb

Ats usefulness 1s because 1t corresponds to the Jennings solution. That
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by the way, is another story;-l spent an hour-and a\haif»cont1ntfn§;Eer1

that my so]ution gave the same results as his; at’first he was sheptieel.

Finally, he eccepted that, "compntationa11y, thefh respeetineisums of

squares was the same," but thought only people snch as myseIf‘who under-
stand both qpproaches and used my approach as a computational short cut

| should use 1t; if you didn't know what hypotheses were being tested,

you probably shouldn't use it. I thought Earl was being a 1ittle harsh

back in 1972, but today I'm com1ngvcloser to agreement with that position.

In particu]ar. it cou]d be noted that the so- cal]ed “fu]] rank mode1"
as described by Timm and Car]son (1975), and which in fact they describe
using my (1972) data set, has no better c1a1m to being a full rank model
solution than Jennings (1967). the hypotheses tested by these and other
approaches are considered in Ni]]iams (1977a), It is unfortunate.that
the Timm and Carlson (1975) solution might be seen hy some as "stendard
practice" or "state of the art". The issue really is, which hypotheses
are of greatest interest? If the Timm and Carlson hypotheses are truly
of the greatest interest, they can be addressed via the Bottenberg and
Ward approach, ' '

A summary table that computationally tests hypotheses proportional
to cell frequencies such as proposed by Jennings can easily be formed
fhom the 1nfornat10n from equations 8, 9, 10 and 11:

SSpows * 20.36; SSgq s = 37.43;

SSpc = 80.80 - 80.25 = .55;

SS,ithin = 51:20. The summary table 1s as follows:
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%jxis an appropriate starting point The number and type of comparisons

(Y

“.Table 1

B
e d

e e, <o Summary Table for Two-Way
T Disproportionate Cell Frequencies

o Source of Variation df SS Ms - Fo
Rows 1 1 20.36  20.36  4.77

Colums 2 37.43  18.72  4.38
RXC 2 .85 28 .07
Within =~ 127 s1.20  4.27

In regard to'muftipie compariSOns in a two-way layout equation 12

{(contrasts) would be important for deciding on the type of test (Dunnett's,

f’.Tuke_y S, Scheffe s, 1959 and Dunn’ s, 1961). As an example of constructing

contrast to test s hypothesis of Interest, suppose the researcher wants
to compare column 1 to coiumn 2, weighing the cells by their size, the

hypothesis, in terms of sampie means. is.
W, +1Y 7 +5Y '

In terms of the regression coefficients,
3bl + b4 . 2b2 + sz
4 / ;
Unraveling and solving for by yields: by = 8/21b, + 20/21b5 - 1/21b,.
Substituting this restriction into equation 12 yields:
Y = (8/21b, + 20/21bg - 7/21bg)X) + byXy + baXs + byXy + beXg + beXgd
+ eyl (131

or
Y m by(Xy + B/21X() + baXy + by(Xy = 7/21X)) + bg(Xg + 20/21%)) +
b6x6 + e [14]
Reparameterization with b6 = (0 ylelds:
« - X
Y = by + by(Xy + 8/21X)) + baXq + by(X, 7/21X,) + bg(Xg + 20/21%y
+ ey [15]
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. Equation 14 can be used in programs where 'unit vecfdrs{tdn“bé
ommitted. Its reparameterization, equation 15, :is useful when a up1tﬂ
vector is automatically incorporated into a‘regress1on,solutidn.‘$xf‘u.
Equations 8 and 12 (full models) yield RE = ,61212. _Equations 14 and °
15 (restricted models) yield R% = ,38544., Then: |

t =\F =\(R§ - RB)/1

2
(1 - RE)/12

= 2.648.

This t value should be tested against an appropriate table depending

upon the type and number of total cohparisons coﬁsidered by the researcher.
This approach to multiple comparisons is probably much closer to

the approach of Jennings and Bottenberg and Ward than I would have con-

sidered 10 to 15 years ago. Additional considerations regarding multiple

comparisons in the two-way analysis of variance ban be found in Williams

(1980).

Multiple Comparisons in the Analysis of Covar1ancé

Students would often ask questions such as, "How do you do multiple
comparisons on adjusted means in the analysis of covariance?" 1[I've often
been impressed with questions students ask; I'm sure they've been less
impressed with at least some of my answers. Well, for several years,
I didn't have any good answer to the aforementioned question (other
than, "That's a good question.") and as the answer finally came to me,
there was far more embarrassment than awe. The "answer" had been on
the printouts that I'd been using for years. In a nutshell, 1t was
simply the test of signifiance for the group partial regression
weights in a full model. An example of a solution for this problem

was taken from Williams (1979).
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, _ds taken from Williams (1974b, p. 104 and 109). ‘In Table
'5 1s 2 binary var1ab]e for: membership in group 1y X2 is a binary

.‘variab1e for membership in group 2 and X3 1s sim{larly a binary variable

if5for membership in group 3 and X4 represents a pretest score; the Y value
represents a posttest score. B
' Table 2.

Data for the'Analysis of Covariance ;

Y X b XZ R Xy X
35 o0 il n0 s T 12
.27 vl S0 0 » 17 -
32 D T 0 13
29 1 - o1
210 o .
38 0 1 0 29
25 0 1 0 12
% 0 1 0 17
25 0 1 0 22
3 0 1 0o 15
27 0 0 1 17
3 0 0 1 22
19 0 0 1 10
17 0 0 1 8
32 0 0 1 13

Under the assumption of a single regression 1ine on the covariate
(the pretest, X4) an analysis of covariance can be accomplished with two
1inear mode1s:

Y = by * byX; + byXy + byXy + eg, [16]
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and

Y = bo * byXy + e S [17]
In that a 1arge part of the print-out regarding equation 16 1s usefu1,
the print- out 1s reproduced in Table 3.

The usual ana]ysis of covariance can be completed by using:

2
_ (R - RR)/(g -1 (61950 - .a7476)72
1 - .61959 = 2.09,
(I'Rz)/(N-C- 9) *

which for df = 2, 11, p >.05.

In equation 16 the x3 variable has been omitted. Thus b1 = Y&adj -
Vsadj and b, = Yéadj - YSadJ. To find the adjusted means, the following
equations can be used:
Véadj = b0 + b4X4 = 15,36 + .76(15) = 26.76;
YladJ = b1 + Y3adj = 5,52 + 26,76 = 32,28; and
Véadj = b2 + Y3adJ = 3,20 + 27.76 =29.96.
‘The adjusted values agree with those originally given by Williams (1974b,
p. 106), though the method shown here is simplified somewhat.
More importantly, the standard error of the regression coefficients
corresponding to X1 and X2 are respectively equal to the standard
errors for comparing Vladj to Vsadj and V}adj to'VaadJ. Thus, the
computed t values given in Table 3 are‘direct1y usable in whichever
multiple comparison procedure the researcher prefers. The use of
Dunnett's (1955), Tukey's (1953), Dunn's (1961) and Scheffe's (1959)
tests are described in a regression format using computed t values
i in Will1ams (1976, 1980), Were there 1nterest»1n comparing Yladj
. to V. ,2dJ, 2 model of the form:

Y = by + byX; + baXs + by, + eg ¢ (18]

0
could be used, with focus on the computed t value for the Xl variable.
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Table 3

Print-Out for Equation 16

Variable Mean Standard Correlation Regression - ‘1;Std. Error

Deviation Xvs Y Coefficient © of Req. Coef. $°3§¥5§d
4 15.00 5.85 0.8 0.76 o0.22783 = 3. 33582“
1 0.3 0.48 0.0 5.52  2.7339 2.01905
2 0.33 . 0.48 0. 393 320 . 2.92653 1.00385
Depeqient 29.66 6.12 - |
INTERCEPT 15.36
- MILTIPLE CORRELATION 0.78714
° 'STD. ERROR OF ESTIMATE 4.262%0
MATIPLE CORRELATION SQUARED , 0.61959
ONE MINUS MULTIPLE CORRELATION SQO. 0.38041

Analysis of Yariance for the. Regres510n -

Source of Variation Degrees ‘Sum of | . Mean F Yalue

v 0f Freedom ‘Squares Squares :
Attributable to Regression 3 325.49 108.497 5.972
Deviation from Regression 11 199.84 18.167

Total 14 525.33



f course, multiple covariates and/or morefcompIei comparisons can be
ncorporated; multiple ‘covariates can'beyincorpore;ed«w1;hou§"add1ng;£oo
uch complexity to,the‘§e1ut10n; The remarkable thing {s that the solu-

ion to mu1t1p1e comparisons for the analysis of covariance 1s easily

ichieved,

Multiple Compariéons in Repeated Measure Designs

Again, the impetus (to me) for interest in multiple comparisons in
epeated measures designs in general, and treatments x subjects designs
:n particular comes from students. Students would ask, “0.K., S0 now
s can do a treatments x suejects design by regression, ' How ‘do we run
wlitiple comparisons?" Since they asked the question long before I had
any suitable answer, a question might be asked, "What answer did 1 give?"
To quote both the famous ane infamous {e.g. Steve Martin and John
Mtchell), "1 forgot." ,Cone1der1ng that that answer can be as simp)e

as, "It's right there on your printout," I won't dwell anymore on why

it took so long.

Multiple Comparisons for Treatments X Subjects Designs

To consider multiple comparisons for treatments x subjects desians
or repeated measure designs) an example taken from Chapter 7 of

f114ams (1974b, p. 56) 1s used; see Table 4.
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v-Table 4 e ooy FE ST

e TR G b

‘ Three ‘Treatment Methods - ‘of Paired-Associate .Learning a¢8 ’
) with Educable Menta'lly Retarded Subjects :
- Subjeeg Treatment One Treatrnent Two ' Treatmen’tf:l Thx:eéj R
1 s 21 BT
2 17 24 14
3 W13 S
4 8 CLE T 8. S 6 EINES .
7 o 14 e 16 R L
8 S T I ¢ R T 1
o :

T R |- s

—
o

The 1nformat1on in Tab'le 4 can be placed in a tabu'lar form suitable

for use in regression format. ‘see Table 5.
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 Table 5
I1lustration of Design Matrix for Treatﬁents X Subjects Designs'

1 X2 X3 X4 Xg X6 X, Xg X

OO0 OO0~ 0O0O0OO0O0O0OO0OOOOOOOOOO~OO-
OO0 OOO0O0O0OOOOHOO~OOHOO~HOO~O
—HOOHOOHOOHOO~OOROOHOO~OOH~HOO—~ OO
000000000000 OD0DO0O0O0DD0O0O0O0O0O0O0OOOD O ==
[efeYolofoleololelolelelelefelofolelofolelaolofoloN oo} o)
ooo.-..a.-oooooooooooooo;:lépoo‘ooooo

The values in Table 5 are defined as follows:

Y = the criterion score;

X1 = 1 {f the score corresponds to Treatment 1, 0 otherwise;
Xo = 1 1f the score corresponds to Treatment'z, 0 otherwise;
X3 = 1 1f the score corresponds to Treatment 3, 0 otherwise;

X4 = 1 {f the score is obtained from Subject 1, O otherwise;
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1 ?f the score 1s obtained from Subject 2, 0 bfhérw1se;

1 1f the score 1s obtained from Subject 3, 0 othenwise,

1 1f the score is obtained from Subject 4 0 otherwige,

= 1 {f the score 1s obtained from Subject 5, 0 otherwise,
Xg = 1 1f the score is obtained from Subject 6, 0 otherwise;
,x10 = 1 {f the score 1f obtained from Subject 7, O otherwise;
X11 = 1 1f the score is obtained from Subject 8, 0 ofherwise;

1 if the score is obtained from Subject 9, 0 otherwise;
Xj3 = 11f the scére 1s obtained from Subject 16, 0 otherwise; and :
”X14 = the sum of the criterion écores’for each §ubjeét separately. ;
::A full model for this data could be given as:
Y u by + byXy + byXy + byKy + beXs + bgXg + byXy + bgXg + bXg +
bio¥10 * P1r¥11 * Bro¥2 * €0} | (19]
~ an alternative model would be: ,
¥ = by ¥ byy #+ bly + byXy * bgks + bekg *+ byky + bgky + bKg +
bjoX10 * P1rtin * Bro¥i2 * oo [20]
See Table 6 for a printout using equation 19,
| From Table 6, it can be seen that t, = 1.10362 and t, = 4.59846;
that t values are respectively the tests regarding comparing Vl to 73
and Vé to Va. taking into account that the subjects serve as their own
controls. A similar printout could be generated using a model corre-
sponding to equation 20, Values from this printout show t1 = -3,49484,
t3 = .4,59847; these t values correspond to comparing Vi to Vé and
Vs to Vé. Also, the corresponding means are Vl = 13,20, Yé = 17.00
and Vs = 12.00. These computed t values should be compared to an

appropriate multiple comparison table for significance.
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Table 6
Output of Full Model for Treatments X Subjects Design

Variable Mean  Standard Correlation Regression . Std. Error
No. Deviation Xvs Y Coefficient 0f Reg. Coef,
1 0.33333 0.47946 -0.12145 1.19998 1.08732
2 0.33333 0.47946 0.41105 4.99997 1.08732
4 0. 10000 0.30513 0.39155 5.66663 1.98515
5 0.10000 0.30513 0.28185 4.00001 1.98515
6 0. 10000 0.30513 -0.07046 -1.33331 1.98515
7 .10000 _  0.30153 -0.51085 -7.99397 - 1.98515
8 0.10000 0.30153  -g.i5854 ~2.66665 1.98515
9 0. 10000 0.30153 .  -0.25056 -4.66664 . 1.98515
10 0.10000 0.30153 0.06166 0.56668 1.98515
1 0.10000 0.3013 -0.09248 -1.66665 ©1.98515
12 0. 10000 0.30153 0.36993 5.33332 ©1.98515

Dependent

Y 14.06667 5.13226

INTERCEPT 12.26667
TIPLE CORRELATION 0.92774

STD. ERROR OF ESTIMATE  2.47171

MULTIPLE CORRELATION SQUARED 0.86070

ONE MINUS MULTIPLE CORRELATION sgp. 0.13930

Analysis of Yariance for the Regression -

Source of Yariation - Degrees * Sum of : Mean
0f Freedom Squares I Squares

Attributable to Regression 11 657.46021 59.76910

Deviation from Regression 18 106.40308 5.91128

Theral 20 7R RAR270

—
Computed Beta
T Value -
1.10362 0.11210
4.59846 0.46710
2.85451 0.33650
2.01498 0.23781
-0.67164 ~=0.07927
-4,12987 - -0.47562
-1.34329 -0.15854
-2.35077 -0.27745
0.33583 0.03964
-0.83956 -0.09509
2.685661 0.31708 .
F Value



Using the Shortcut Method =

The solution just given in the last section presumeé that each
subject (except one) s separately coded using a binary coding scheme
Clearly, if the number of subjects is at all large, the codinu procgdure
described in Williams (1977b) and using: i

Y = byt bX +byXy +by,+e, ,’{:‘[’213
might be preferrable. However, one difficulty with using this‘Shortcut
procedure is that the standard error of the regression coefficients -
for X “and X2 are too small due to the degrees of freedom, as generated
by the‘computer program, not being accurate for deviation from
regres;jon. These t values could be adjusted by multiplying by an
ol

"19
where MS Way is the mean square within (or deviation from regression)

apofopriate constant. The appropriate constant is: ¢ =

-for equation 21 and MS Wig is the mean square within for equation 19.

The MSw21 1s 4,09225 and MSwlg 1s 5,91125. Thus, c = .83203. The values
generated by equation 21 for t, and t, (comparing Vi to Vs and Yé to ¥,)
are t, = 1,32641 and t, = 5.52678, Multiplying t; and t, by c yib.ds
corrected t " 1.10361 and corrected ty " 4,59845, within rounding

error of the values found earlier. Of course, MSwlg would not be

available were the researcher using the shortcut method, However,

MS . ssw whare N 1s the total numbar of scores, S 1s the number
"19 RS-gFT

of subjects and ¢ s the number of groups. The denominator can aiso

be found as (S-1)(g-1).

Repeated Measures Designs
Multiple comparisons also can be relatively routinized for large

data sets involving repeated measures. Williams and Williams (1984) showed
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research application of a hypotheses tést{ng process for,k groups
:asured at three times for large N. More recently, they showed‘\

in press)'the same solutions to the problem done earlier in Williams
1980); a 3 x 4 repeated measure design with five entries per cell was.
ade to show a problem that was not solvable in a regression format; |
‘ortunately (or unfortunately) a solution was found, so the chapter
vas entitled, "Problems less amenable to a regression solution." In
applying this solution to the larger data set, two progressive]y easier
solutions were found; the preferred solution (i. e.. easiest to accomp11sh)
is embarrassingly close to a simple Bottenberg and Nard/Nard and Jenninqs
(1973) solution.

Perhaps the point of all of this is to give some comfort to those

Qho have struggled within the use of regression as a tethnique to address
research questions, particularly as they look over their shoulders and
think they may never master the process, Insofar as I might be seen as

one who has mastered this process, let me point out, I'm still learning!
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