
·LE LINEAR REGRESSION VIEWPOINTS 
E 14, NUMBER 1, SPRING 1985

The Effect of the Violation of. the Assumption of 

Independence When Combining Correlation 

Coefficients In a Meta-Analysis 

Suaan M. Tracz 

CallfoTI• State
, 
U�lverslty,

, 
frffno 

Patricia B. Elmore 

Southern llllnol• University, Carbondale 

Meta-analysis is a technique for combining the summary· statistics from 

viously conducted research studies. Pioneered by Gene V Glass (1976) 

a-analysis gives not only an indication of the direction of the results of

? studies, but provides an index of the magnitude of the effect as well, 

ta-analyses are reported 1n terms of mean effect size, !S', There are two 

ies of effect sizes. An experimental effect size 1s the mean of the experf-

11tal group minus the mean of the control group divided by the standard 

v1ation, 

itle a correlational effect size is simply a correlation coefficient, 

ES• r, 
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has ( 1983) �'rw�o'1ttia's·' been' de' 
, • ' ,<1',S,,�)Jflcs!,,1 , ! ;, , "' , ,, .Xt 

·*techniques for using effect sizes as data points and then fitting regress·· 
models. The focus of this paper, however, will be the use of correlation 
coeffi�ients in meta-analyses. and the .. effect ,of the violation of. the assum 
of independence in these analyses: 

Independence 

A necessary assumotion for the results of statistical analyses to be tenabl 
is independence. All inferential s"tatistical techniques require independen�:pif 
observations. By i ndependen�e is mea�t'"thh 'the probability of including ol�: 
subject or data point will in no way affect the probability of including an}\�h, 
subject or data point. ;,,Another .way of defining independence is to say that .ft 

;-?' 

value of a variable for a subject is not predictable from the value of a 

for any other subject. 

So far independence has been defined in reference to primary studies 

by rese�rchers who draw a random sample of subjects, measure the subjects o 

variables of interest, and calculate statistics from the measured data usi�· 

their hypothesized models, The meta-analysts, on the other hand, draw a 

of studies usually from journal articles, record the numerous statistics 

reported 1n each study� and calculate a statistic based on effect sizes or"• 

meta-statistic from a data set of simple statistics. When jumping from the· 

level of individual studies to combinatory techniques, studies parallel subjects 
Ji� 

and simple statistics parallel observations on variables. In the framework �l

combinatory methodology, then, independence means that the value of any staffh 
·�,I:,which 1s included should in no way be predictable from the value of any other,':(%

included statistic. ili :,
1 

The typical study which 1s chosen for inclusion in a meta-analysis, howev,er
lf,�'

wil 1 yield more than one effect size or simple statistic. When the meta-anal_yst 
Yi}t 

uses all the statistics available fn a particular study to calculate the mea�,,JL 
;"\;f:i5: 
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size, the assumption of independence is violated. Landman and Dawes (1982) • 

! five ways in which the assumption :,of Jndependence ,can ... be violated ,in meta-
" .... ·.·, ' ,., 1"·',,, 1, ,,, · ,', , ,, .,a ,.,, , .. 

�s. These five types of violations are as follows:' ' .. , • ' \/'. ' 4- ., ,  ._, ,. 1\;', 

"l) Multiple measures from the same subjects,.,., ... 
2) Measures taken at multiple points' in time'·from the

same subjects, ... ,., , :, .,:s•·•-, ... , ...
3) Nonindependence of scores within'a single outcome

measure, • . • , 
,; .. \ .· > ,� � ,. 

4) Nonindependence of studies within a single article, 
and . _ ,· . .

5) Nonindependent samples across articles" (pp. 506-507).

Kraemer (1983) specifically provides the caveat 'th�t "c�ly one effect size 

tudy can be used to ensure inde�e��;ri��"
0

(p.-99) in.meta-anai;ses. This

that the ratio of effect _sizes t6 studies 1n a m�ta-analy;is should be 

n order to avoid violating this assumption. However, even a cursory review 

1blished meta-analyses reveals that the assumption of independence is, in 

, seldom met. 

JO Se 

The purpose of this study was to determine the effect of the violation 

the assumption of independence on the distribution of r and the distribution 

Fisher's z. In this Monte Carlo simulation the following four parameters were 

!d with the values specified:

N - the sample size within a study (20, 50, 100),

p - the number or predictors (1, 2, 3, 5),

rho(I) - the population 1ntercorrelat1on among predictors 

(0, ,J, ,7) I 

rho(p) - the population correlation between predictors and 

criterion (0, .3, ,7). 

Predictor and criterion variables ·were generated to conform to all possible 

:omb1nations of the parameters specified above and then correlated. The ma1n 

parameter of interest was rho(i), since it was the indet of nonindependence when 

it assumed a nonzero value in the multiple predictor cases. ·when only one predictor 

was used or when the 1ntercorrelation among predictors, rho(i), equaled zero, then 

the assumption of independence was not violated. 



'st�dy d�pendent 'and 1 ndepe�dent 'carrel at i o'ns ''weri §inerated 
cri

1

t!
1

�i6n and predictor variables. The values of the parameter p� the number
of pr�di ct�rs, were ,one, two, three, and five, an� path di �grams for each case 
appear in Figures 1 through 4 respectively. In these diagrams.the G variable� \, , , 

: w,J·�: 
are the common generating variables used along with error to fo�m the X variabl�r· 

J,'.�� or predictors, which are in turn combined along with error to produce the y orJJ!i 
criterion variables. The ar�ows _b7tween variables indicate the relationship ',
among the endogenous variables,. The associated lower case letters are the 

standardized regression coefficients for path analysis. The arrows which are 

Figure 1. Path dia�ram for the one predictor case. 
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Figure 2, Path diagram for t he two p red icto
r c as e . 

Figure 3.
Path diagram 

for t h
e 

thre
e pr

ed icto r  c� s e
. 

6

5



EJ,gure 4. Path diagram for the five predictor case. 
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' ·1·· •• ·.:·.. . ·, . 

iected indicate exogenous variation, and those coefficients are given as well. 

The following algorith derived by Knapp and Swoyer °(1967) was used to 

.erate correlated vectors of numbers: 

Y • ax + 11 - a2
z

!re X • a vector of randomly chosen numbers fr�ni"the standard normal distribution,

Z • another vector of randomly chosen numbers 'from the standard normal 

distribution, and 

a • the desired correlation between X and Y. ' 

In the unique one predictor· case� the intercorrela.tion among predictors 

>uld not be varied since only one ·predictor was 'present .• Therefore, independence

dsts fn this case. Here the Xl vector was set equal to G,' a v�ctor of randomly

hosen standard normal deviates, so the path coefficient' between G and Xl fs one.

he path coefficient between Xl and Y, a, was set equal to the population correlation

,etween predictors and criterion, rho(p). Since a• rho(p), the error coefficient

for Y was� or f1 - rho(p) 2 , The Y vector was then created as follows:

Y • aXl + Vl---:;_zz 

where Z • a vector of randomly chosen numbers from the standard normal distribution. 

The vectors for Xl and Y were then correlated. 

A different procedure was used for data generation fn the multiple predictor 

cases. In Figure 2, path coefffcfents a• band c • d. In Figure 3, a• b • c 

and d • e • f. In Figure 4, a• b • c • d • e and f • g • h • 1 • j, In these 

three diagrams the correlations between any two predictors 1s equal to the product 

of tho path coefficients connecting those two predictors with the generating variable 

or the quantitY,, a2, since all the coofflclents between generating variables and 

predictors are equal, For the correlation between two predictors to equal rho(l), 

the path coefficient, a, was set equal to f rho(1), Then all the X vectors were 

generated as follows: 
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X(i) .. ,faG +{1:a!(i) . ' l  
.. "t >.! ) '.,' a< '•; I >, > �-• ,� ' ' ' ,.,j,i,._ " , ' ( '. j 

X( 1) • a vector of values for a predictonand,,i r,assumes l 

for vectors from one to p, the n�mber,<>f,,pr�dictors; 

a • rho ( 1) • the population intercorrel ati on among predfat�rs.
·:/{f< 

2(1) • a vectnr of randomly chosen standard normal deviates.J�.nd ;
incremental values for vectors from one to p, the 11����� :of 

The following points concern the generation of the Y vectors.·. ;,First 

should be noted that each Y is a linear combin.atfon of the p predictors 

error. The weight of that combination is c in Figure 2, d in Figure 3, and 

f in Figure 4. Second, it should be noted that correlation coe.ffi.cients can, 
:1,; ' ·, ' 

',' • ',, 

reconstructed from, the standard� zed regress ion coefficients in a ;path diagram 

In Figure 2, the correlations between the two predictors and the, criterion ca 

reconstructed as. follows: 

r • C + abd, YXl •. 

r • • cl +'bac, YX2 

but since c • d, and a• b •,'r'ii'o(TI, the correlation between 
' ' ,, ' 

X(i), can be written as follows: 

ryx
i 
• c + P(i)c • c(l +,.0(1)).

I 
Y and any predictor 

. •• Jw1, 

Also since ryx
i 

1s an estimate of rho(p), that value can be substituted

equation so that it can be solved for c as follows: 

p (p) • c(l + P(f)) 

c • P(� 
1 + (1) 

In Figure 3 in parallel fllshiori, the correlations between the three P��?:,1,c'

and the criterion can be reconstructed as follows: 
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r • d + abe + acf, yx
l 

ryx • e + bcf + ba. d,
. 2. 

• 

ryx
3 

• f + cbe + ca�, 

since a • b • c •'Vrho(i), and d • e • f, the correlation between Y, and any 
" �·: , . ' • ', ·� . ' ' 

idictor, X{i), can be written as follows: 
. . . 

ryx
f 

• d + /'(i)d + ,t'{i)d • d(l + 2
,
,P(i)).

so since ryx
i 

is an estimate of rho(p)� that value can be substituted into the 

1uation so that 1t can be solved for d as follows: 

f (p) • d(l + 2,P{i)), 

d • f'(p) 
1 + 2 f'( i) .

In Figure 4 the last obvious parallel exists. The correlations between the

'ive predictors and the criterion can be reconstructed as follows: 

ryx
l 

• f + abg + ach + ad1 + aej,

r • g + baf + bch + bdi + bej, 
YX2 

ryx
3 
• h + caf + cbg + cd1 + ceJ,

ryx
4
• 1 + daf + dbg + dch + deJ,

i 
r yx

s 
• j + ea f + ebg + ech + ed 1 ,

"' 

',but since a• b • c • d • e •frho(1), and f • g • h • 1 • J, the corre1at1on 

between Y and any predictor. X(i), can be written as follows: 

ryx
i 
• f +,0{1)f +,t'(1)f +f'{i)f + p{1)f • f(l + 4f'{1)),

'Again ryxt 
estimates rho{p) so with the appropriate substitutions the solution

:for f Is as fol lows: 
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,t)(p) = f(l + 4,.0(1)). 
f • e�l 1+4 i). 

, ,_ d So far fn generating the Y variables in the two. three. and five predic or
cases. the weights of the combinations, c. d. and.f. respectively. have s�\lt 
But in each case a weight for the error term is needed, In the Knapp and;,�te• • • • • 2 ' 2 '.J ' • •• , 1 .. :.J · "( algorith� the·val��-a can be viewed as r .  the amount of va�iance account 
so 1 - a2 is the amount of variance not accounted for and 'i 1 - a2 is the ��i ht
the error vector, Z . 

. In the . three multiple predictor cases studied here, formulas 

are given below: 

R;,12 • c Pyx
l 
+ c,Oyx

2 
• 2cf(p).

R;,123 • dPyx
l 
+ df'yx

2 
+ d�YX3 

• Jd;'(p),

The Y variables were generated as follows: 

Y • c(Xl + X2) + 71 • 2c,t'(p)Z, 

Y • d(Xl + XZ + X3) + il • 3df'(p)Z, 

Y • f(Xl + X2 + X3 + X4 +XS)+ Y
,-
1---5-f P_(_p)Z. 

Correlations between the criterion variables and each of the' predictors were 

calculated in the multiple predictor cases 

The number of replications was chosen by solving for n
r 

in the formula 

the standard error of the mean of the correlation coefficient given below: 

-�
o-_ ■ r_:=s=

r -{n,:' 
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,lue for a:_ was arbitrarily set at .01, which was deemed sufficiently 
r 

for precision in this study. In this formula, /> is the population 

1at1on, rho(p), and was set equ�l to zero. Th,e symbol, ns' is the sample
\, ,:,,,,; \t," 

and was set equal to 20. Substituting these ·v
0

alues into the equation 

ed nr• the number of replications, to assume the largest value that would

,ssible among the values for parameter·s, rho(p) and ns, that were chosen for

study. The solution for nr• the ·number of replications, was 500.

For each combination of N, p, rho(i), and_rho(p) and for an.r and Z 
... > ' ' � 

ributions, the means, medians, and standard deviations were calculated. 

l ts

The means, medians, and standard deviations of the correlation coefficients

�11 values of rho(i), rho(p), and the number of predictors, p, when N•20

iar in Table 1. The same information when N • 50 and N • 100 appears in

les 2 and 3 respectively.

The means, medians, and standard deviations of the Fisher's Z transformation 

the correlation coefficients for all values of rho(i), rho(p), and the 

1ber of predictors, p, when n • 20 appear in Table 4, The same information 

·n N • 50 and N • 100 appears in Tables 5 and 6 respectively,

Inspection of these tables shows that when the �opulatfon correlation

ifffcfent, rho(p), equals zero both the mean of r and the median of r hover

1>und that value and neither 1s consistently higher or lower than the other,

wever, when rho(p) assumes a nonzero value the median of r is usually larger

,an moan r. Thfs is because r 1s a biased statistic and its distribution is

i<Jatlvely skewed when rho(p') 1s positive. This ordering of the mean and the

1dlan when rho(p) is not zero does not occur in the Fisher's Z distribution.

As N increases both the mean of r and the mean of Z are better estimators 

F the parameter rho(p), This follows from the Central �fmit Theorem. Both 

he median of r and the med1 an of Z tend to be better es ti ma tors of the population 
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Table 
' .. ' 

Means Medians and Standard Deviations 

When N • ZQ 

p 

la

2 

3 

5 

rho( p} 

0 

.3 

.7 

0 

.3 

.7 

0 

,3 

.7 

0 

·r Md
r 

.015 .007 

.294 .322 

.690 .706 

.002 ,011 

,300 .316 

�683 ,698 

.001 ,003 

,295 ,313 

b 
, ' 

0 -.002 -.004 

.3 ,293 .309 

,7 b 

·rho( 1)

.3

SD -

Md r 

.230 

.206 

.126 

.225 -.004 -,007 

.214 .296 ,299 

, 129 ,692 .714 
, ., 

.230 -,009 -.013 

,213 ,289 ,305 

,686 ,703 

,233 ,008 .007 

,216 ,307 ,320 

b 

•' , '  

! "i' 

.7 

'so' :·, r:•:.; Md 

,223 ,002 -.004 

,208 .297 .311 

, 125 ,695 .710 

,233 .002 -.007 

,214 .295 .316 

.126 .687 .703 

,227 ,004 .000 

.208 ,292 .303 

.694 , 714 

1with one predictor nonzero rho(i) values are undefined. 

bThis combination would generate data which are undefined. 
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Table 2 

Means 1 Medians 1 and Standard Deviations for Corre 1 at ion Coefficients 

When N • 50 

rho( i) 

0 .3 .7 

p rho( p) r Mdr sor r Mdr sor r Mdr

la
0 .001 -.001 , 141 

.3 ,303 ,305 , 128 

.7 ,697 .705 ,073 

2 0 .005 ,000 .142 -.001 -.003 .140 .004 ,005 

.3 ,294 ,307 , 132 ; ,300 .305 , 131 ,304 .305 

.7 .697 .705 ,075 ,694 ,703 .076 ,696 ,703 

3 0 .002 ,001 , 139 ,007 ,003 .145 ,001 -.002 

,3 ,294 ,301 , 130 ,295 ,300 .130 ,295 ;300 

,7 b ,696 ,703 ,075 ,694 .700 

5 0 -.002 -,001 , 143 -.006 -.009 .144 -.005 -.007 

.3 ,299 ,303 , 129 ,300 ,305 , 129 ,295 .300 

.7 b b ,699 ,705 

'\11th one predictor nonzero rho(i) values are undefined, 
bTh1s combfnat1on w�uld generate data which are undefined. 
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SDr

.149 

.130 

,069 

.142 

, 136 

,076 

, 141 

.128 

,071 

' ' ·'.f)'' -.. 
'_ .•.',1,1i1 '•. 

' '
,, ! ·1 '

1
, ·  .-· 

. .
.,, .... '.,• 



t Table 3 

Means Medians and _Standard Oeviatia,ns ;tor Correlation ·Coefficien 
·, 

When N • 100 
1';, 

rho( i) 

0 .3 .7 

p rho(p) r Mdr Sor r :Md ,SD r .. i),:,Md,., ... r "'t'.' r
la 0 .008 .005 .108 

.3 .299 .303 .091 f . 

.7 .698 .701 . 053 

2 0 ,004 ,003 ,099 -,008 -.009 .101 .009 , .012 

,3 .297 ,303 ,091 ,304 .30.� .091 ,303 .303 

.7 .700 .704 .051 ;,,699 .703 ,,053 ,699 ,703 

3 0 -.005 -.009 ,098 .002 ,002 i• 102 -.001 ,000 

,3 ,301 ,305 ,092 . ,302 ,305 ,092 .300 ,302 

,7 b ,698 , 701 ,050 ,695 • ,699 

5 0 -,002 -.002 .099 ,003 .001 .100 -.003 -.002 

.3 ,295 ,298 ,093 ,296 .302 ,093 ,302 .. 306 

.7 b b .699 ,702 

aW1th one pre�ictor nonzero rho(1) values are undefined.
bThfs comb1nat1on would generate data which are undefined.
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Table 4 

Means I Medi ans I and Standard Devi at ions for Fisher; s ? Tran;formation 

of the Correlation Coefficients When N • 20 

rho( i) 

0 .3 .7 

p rho( p) 1" Mdz so z Md SD 'f M�z z z 

la 0 .016 ,007 .243 

.3 ,317 ,334 .233 

.7 ,885 ,879 .237 

2 0 .002 .011 .238 -.004 -.007 ,235 .002 -.004 

.3 ,327 ,327 ,246 ,321 ,309 .240 .323 ,321 

.7 ,873 ,864 .242 .890 ,895 .241 ,893 .887 

3 0 .001 ,003 .244 -.009 -,013 .246 ,002 -.007 

.3 . 321 ,324 .244 .313 , 315 .244 ,321 ,327 

.7 b ,879 ,874 ,242 ,880 ,873 

5 0 •,002 -.004 ,246 ,009 .007 ,240 ,004 -.001 

,3 ,319 ,319 ,248 ,334 ,331 ,240 ,316 ,313 

,7 b b ,891 ,895 

awlth one predictor nonzero rho(1) values are undefined,

brh1s combination would generate data which are undefined,
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SDZ

.247 

.242 

.230 

.241 

,242 

.241 

.233 

,231 

.229 

' 
I 
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Table 5 

Means Medians and Standard D 

of the Correlation Coefficients When N = 50 

p rho(p) z

la 0 ,001 

.3 ,319 

.7 ,876 

2 0 ,005 

.3 ,309 

,7 .877 

3 0 ,002 

,3 ,309 

.7 b 

5 ·o -,002 

.3 , 315 

,7 b 

0 

Mdz so

-.001 .144

.315 .144 

.877 , 144 

.ooo , 145 

,317 .146 

.877 , 145 

,001 .141 

.310 , 146 

-.001 , 146 

, 313 . 145 

z 

-.001 

,316 

,870 

,007 

,310 

,874 

. "�"" 

rho( i) 

.3 

Md 

-.003 

,315 

,873 

,003 

,310 

.874 

-.006 -.009 

,316 ,315 

b 

.142 ,004 
,J 

, 147 .320 

.147 ,873 

.148 ,001 

, 145 , 311 

, 145 ,870 

.147 -,005 

, 145 ,310 

,878 

awith one predictor nonzero rho(i) values are undefined. 

.7 

Md 

.005 

. 315 

.873 

-,002 

,309 

.867 

-.007 

,310 

,877 

bTh1s combination would generate data which are undefined. 
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Table 6 

.; . .  { 

.,. ,,._.. 

Means
1 Medians

1 and Standard Deviations for Fisher's Z Transformation 
., ',1 ,'. 

of the Correlation Coefficients When Nm 100 

rho(i) 

0 .3 .7 

p rho( p) 7. Mdz SOz "Z Mdz S02 
! Mdz SDz

la 0 .008 ,005 .110 

.3 .311 . 313 .101 

.7 ,870 ,869 .102 

2 0 ,004 .003 , 101 -.008 -.009 .102 .009 .012 .098 

.3 .309 .312 , 100 .317 .318 , 101 .316 ,313 .098 

.7 .874 .875 .100 ,873 ,872 , 104 .872 .874 .094 

3 0 -.005 -.009 ,099 ,002 .002 , 103 • ,001 .000 ,098

.3 ,313 ,315 .102 ,315 . 315 .103 .313 . 312 ,097 

.7 b .870 ,869 ,097 ,863 .865 ,097 

5 0 -.002 -.002 , 100 .003 ,001 , 101 -.003 -.002 .101 

.3 ,308 ,308 , 103 .309 ,311 , 102 ,315 ,316 .105 

.7 b b ,871 ,872 , 100 

awlth one predictor nonzero rho(t) values are undefined. 

bThls comb1nat1on would generate data which are undefined. 
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pa ram e te r, r ho (p), as N inc rease s as i. ell. Both the inean �nd th e med i an ar�·,cons is ten t e stimators. It sho ul d  be r em� ".lbe red h e re t h at when r �q ual s  zero,· ;�J
�·, '  

1:� 
z als o e qua ls ze ro. Howeve r , wh e n r i s .3, Z is .31; a.nd when r .i s .7, z is-� l36 :' '· ."' ·. '')' ' '·4t Inspectio n  of the table s shows U3 t t here is no ,dis c�rnible · trend in m��ri"'rm ea n z, me d

ian r, and median Z o ve; ��-,el� of r�o( i·/'.:�;\�;�d �i- p .• T his s�
fJ;'

. ,, , < 
·

· :·· ., 
•

·\ .,
,
, 

•
• • • .l;I Y '?: 

t o i ndica te t
ha t  n o nindepe nde nce of tre d ata d oe s_ not affect t he estima t ion"��

�: '

' 

' ·� t he p opu la t ion par am eter, r h
o(p). T h is i s, of c o ur se , only for the c a se whe�, t.hesa me par a meter is bei ng e stima te d b y  a ll t he d at a.

When e va lu a ting t he s ta nda r d  dev�!t io ns they sh ould be r e f e rencedkn o wn expecte d ·va lue s in the cas e s  whe 1  indepe nden ce is no t vio l ated. Fo r the ,cr,i

�
;:

dis tr ibu tio n, the st and ar d  e rr or of r ::an b e found b y  sub stHuting th e  
fo r the para meter s  used in th is stud y  into t h

e f ol lo wing f ormula:
va l ues �:Ji 

!!:
'·\),, ·t 

;.:tf 

': .
1
·:
.
j, •,)'i.�: .•,, fij/ ,,� 

There fo re ,  t he st andar d  e rr or o f r whe n  rho(p) is 0 and N is 20 is appr oximately .224, The s tanda r d error o f r w hen rrJ(p) is .3 and·N is 20 is appr oxima te1Jf;o4 ., •. 
The s tan d a rd er ror o f 

r wh en r
ho (p)' is .7 and N fs 20 is approxim a tely .1 14. iWhe n:.i} 

rho(p ) 1s 0 an d N fs 50 the st a
n dard t rror of r fs app r oximately .141. When �-h o( i:: 

-�k 
1s .3 a nd N 1s 5 0 t

he stand a r d  er ror cf r fs a pproxi m ately .129. Whe n  r ho(p) 'is . 
ii\ %1!\ an d N fs 5 0 the s ta nda r d  d evfllt1on 1s ap proxima tely ,0 72. The st andard error'.'o'f r. $IP; \

when r ho(p ) fs 0 an d 

N
1s 100 1s .1. Th e  stand a r d  er ror of r w hen r ho(p) is .3: ,�:�:. 

and N 1s 100 fs ap pro xim atel y  , 091, 
Fina l ly, t he standard err or of r W he n  rho :_(pJ.7 an d N is 10 0 fs a

pproximatel y  ,051. �m 

,
I: \lnspec tio n  o f Tab l es 1, 2, a nd 3 show s  tha t  al l  t he st andard deviations ar� ,:�':i: 1£ ' close to their expec ted valu es , Th e  lar ge st de viation of the stand a r d  deviati�;�1 ;· from its expec ted va lu e  was ,015 and tha t  was in an indepe ndent case. This �f',1\t

· 

dev iati on is o f no pra ct
ica l  concer n. There i s  s o me imp rov e me nt as N in c reases 

7 8  



;e standard deviations are consistent estimators, but there are no apparent 

es over levels of rho(i) or p. 

For the Fisher's Z distribution, the values o� th� sti�dard deviations can 

und by substituting the values for the p����;ter u;;/1�
1

this stu'dy into 

'ollowing formula: 

c::rz = 1
r � 

�fore, the standard error of Z when N is 20 ,is approximately .243. The 

jard error of Z when N is 50 is approximately .146. Finally, the standard 

r of 2 when N is 100 is approximately ·.102. 

Again inspection of Tables 4, 5, and 6 shows that all the standard deviations 

very close to their expected values. There is some improvement in the estimates 

1 increases, but there are no apparent changes over either levels of rho(i) or p. 

� 

The general conclusion, then, 1s that nonindependence does not affect the 

imation of either the measures of central tendency or the standard deviations 

correlation coefficients and for Fisher's 2 transformation of the correlation 

!fflc1ents when the same population parameter is being estimated.
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