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Meta-analysis 1s a technique for combining the summary statistics from
viously conducted research studies. Pioneered by Gene V Glass (1976)
a-analysis gives not only an indication of the direction of the results of
: studies, but provides an index of the magnitude of the effect as well,
ra-analyses are reported in terms of mean effect size, ES. There are two
ves of effect sizes. An experimental effect size {s the mean of the experi-
ntal group minus the mean of the control group divided by the standard

viation, -
YE "'.xc
B = =g
X
111e a correlational effect size 1s simply a correlation coefficient,

ES = r,

Paper presented at the American Educational Research Assoclation, Chicago, April
1985

61



| mode1s. The focus of this paper, however, will be the use of corre1at1°n

coefficients in meta-analyses and the effect .0f -the violation of the aSsum‘
of independence in these analyses.” ™ ' + ». ‘% - . R L

Independence G R e L G L

value of a variable for a subject is not predictable from the value of a yar
for any other subject." '
So far independence has been defined in reference to primary studies pg

by researchers who draw a random sample of subjects, measure the subjects on

variables ‘of interest, and calculate statistics from the measured data usiﬁ?
their hypothesized models. The meta-analysts, on the other hand, draw a sa;
of studies usually from Journal articles, record the numerous statistics
reported in each study, and calculate a statistic based on effect sizes or a
meta-statistic from a data set of simple statistics. When Jumping from th‘:
level of individual studies to combinatory techniques, studies parallel subJ' ts
and simple statistics parallel observations on variables. In the framework:qfi
combinatory methodology, then, independence means that the value of any stgi'
which {s included should in no way be predictable from the value of any othé?
included. statistic.

| | A
The typical study which 1s chosen for inclusion in a meta-analysis, howe%er

_’\ .'..'

will yield more than one effect size or simple statistic. When the meta- ana1§?t

uses all the statistics available {n a particular study to calculate the mea
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size, the assumption of 1ndependence 1s violated. Landman and Dawes (1982)
» five ways in which the assumption of independence,can .be violated in meta-

2s, These five types of v101ations .are .as follows T I
( "1) Multiple measures from the . same subjects.w oo .ﬂa-ﬁkxgs_. T
2) Measures taken at multiple points in time” from the S
same subjects, . . . .: o -
3) Nonindependence of scores within a single outcome
measure, . . .
4) Non;ndependence of studies within a single artic]e,‘.
an

5) Nonindependent samples across art1c1es“ (pp 506- 507)

<raemer (1983) specifica]ly provides the ‘caveat that "only one effect size
tudy can be used to ensure 1ndependence" (p. 99) 1n meta ana1yses.‘ This
that the ratio of effect sizes to studies 1n a meta anaIysis ‘should be
n order to avoid vio]ating this assumption. However, even a cursory review

1blished meta-analyses reveals that the assumption of independence is, in

, seldom met.

Dose

The purpose of this study was to determine the effect of the violation
the assumption of independence on the distribution of r and the distribution
Fisher's 2. In this Monte Carlo simulation the following four parameters were
'd with the values specified:

N - the sample $ize within a study (20, 50, 100),

p - the number of predictors (1, 2, 3, 5),

rho(f) = the population intercorrelation among predictors

(0, .3, .7),
rho(p) = the population correlation between predictors and
criterion (0, .3, .7).

Predictor and criterion variables ‘were generated to conform to\aIl possible
:ombinations of the parameters specified above and then corre1ated.r The main
parameter of interest was rho(i), since i1t was the index' of nonindependence when
it assumed a nonzero value in the multiple predictor cases. "When only one predictor
was used or when the intercorrelation among predictors, rho(1), equaled zero, then

the assumption of independence was not violated.
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criterion variabies. The arrows between variabies indicate the reiationship
among the endogenous variabies.‘ The associated 1ower case 1etters are the

standardized regression coefficients for path anaiysis.. The arrows which are noff

%

Eloure 1. Path diaqram for the one predictor case.
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Fiqure 2.

Path diagrém for the two pr

Figure 3.

path diagram fo

edictor case.

/
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4

r the three predictor case.
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Path diagram for the five predictor case.
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rected indicate exogenous variation, and tho;éizéé?%géiénigpa%e‘éiQen as well,
The following a]gorith derived by Knapp and Swoyer (1967) was used to -
erate correlated vectors ‘of numbers: S Y
Y =ax + Y1-a2%7 Bt
:re X = a vector of randomly ;hd;én‘nymbgrs'fréﬁffhe7sféndifd‘hormé1 distribution,
Z = another vector of randdmly cﬁogéd'ndee;;;;#Bﬁwfﬂécgféndérd normal
distribution, and '_ : |
a = the desired correlation befWééﬁhX and ¥,
In the unique one predictof*case;‘tﬁé'dnféiédﬁ§é1éff6n“amoﬁg predictors
yuld not be varied‘sincé‘on1y‘dné”pfed1¢tdr‘Waé*biesedf;EUTheféfore; independence
«ists in this case. Here the X1 vector was set equal to G, a vector of randomy
hosen standard normal deviates, so the path coefficient between G and X1 {s one.
he path coefficient between X1 and Y, a, was set equal to the popuIatioh cofre]ation

etween predictors and criterion, rhd(p). Since a = rho(p), the error coefficient

or Y was Y1 - a2 or71 - rho(p)z—. The Y vector was th“en created as follows:

Yo axl + Y1 - a2

where Z = a vector 6f r&ndom]y chosen numbers from the standard_normgl distribution.
The vectors for X! and Y were then correlated. | | |

A different procedure was used for data generation in the multip]e'predictor
cases. In Figure 2, path coefficients a = b and ¢c = d. In Figure 3, a = b = ¢
and d me s f, InFigured, asbesceodeseand fegsesheqsj, In these
three diagrams the correlations between any two predictors is equal to the product
of the path coefficients cpnnecting those two predictors with the generating variable
or the quantity, al, since.a11 the coefficients between generating variables and
predictors are equal, For the correlation between two predictors to equal rho(1),
the path coefficient, a, was set equal to 1r;;;?77. Then all thé X vectors~wefe

: generated as follows: '
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1ncremental va1ues for. vectors from one to p, the number of pred1Ctor

The fo1low1ng points concern the generat1on of the Y vectors.j First it

"should be noted that each Y is a linear combination of the p pred1ctors plus.
error. The weight of that combination is c in Figure 2, d in F1gure 3, and

1‘Af 1n F1gure 4 ~Second, 1t should be noted that corre\ation coeff1cients can ‘7%

_}kreconstructed asmf91lows: -

ryxl =ct abd,

r e d ¥hac,
A

but since ¢ = d and aephe rho 1), the corre]ation between Y and any predictor

. X(i). can be wr1tten as fo110ws.

wh-crpnn-d1+ﬁnn.

Also since r 1s an estimate of rho(p), that value can be substituted 1nto“thé

¥4
equation so that it can be solved for ¢ as follows: et
Pp) = cll + A1) : | i

C = p 2‘}?

In'ngure 3 in paralle\ fashion, the correlations between the three predic

R i

and the criterion can be reconstructed as follows: _aﬁ;

68




r = d + abe + acf.

P =e+bcf+ bed;‘:_ |

'ryx3 = f + cbe + cad;

sincea = b - c = rho(i). and d = e = f the corre]at1on between Y and any
dictor, X(1), can be written as fo]]ows ' ‘ E e

”yx, =d+ A1)+ Ali)d = d(l +'2P(1))

so since Fyx is an estimate of- rho(p) that value ¢an be substituted into the
i .

juation so that it can be solved,for d as follows:

P (p) = dl1 +2P(1)s

ds=
T+2

In Figure 4 the last obvious parallel exists. The corre]at1ons between the
‘ive predictors and the criterion can be reconstructed as fo]lows-

r = f + abg + ach + adl + aeJ,

.Yxl

r.. =g +baf +bch + bdi + bed,

yx2

r = h + caf + cbg + cdi + ceJ,

yx3

r = { + daf + dbg + dch + deJ,
# yx4
E r = J + eaf + ebg + ech + edf,
-3 g

but since a s bwcedane -'frho(1). and f = g = h={ = 4§, the correlation

tween Y and any predictor, X(1), can be written as follows:

rw1 s+ (1) + ) + (1) + o) F = £(1 + 4 2(1)).

ngafn r estimatee rho(p) so with the appropriate substitutions the solution

r f is as follows:
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P(P) = f(l + 4/0(1)).

.f:r
T3 .

So far in generating the Y variables in the two 'three, and five prek

~cases, the weights of the combinations, ¢, d, and f. respectively,

, have so1utio
But in each case a weight for the error term 1s needed In the Knapp and

2
. the amount of variance accounte

2

algorith the value a can be viewed as r

are given below: L o ess “
02 | . D
Ry-lz -CPyx el m PR

Ry. 123 dpy:q ) d’pyxz * d” " 3df9(p). RN

h R = =
Yy 12345 ffoyx + f/éyx + f/ﬂyx + f/ny4 +-f’?}x5 = 562 (p).

The Y variables were generated as follows:
Y = c(X1 +X2) +71 - 2cA(p),
Y = d(X1+ X2+ X3) +71 - 3dA(p)2,
Y« £(X1 +X2+X3+X4+X5) +¥1 - §FP(p)2.

Correlations between the criterion variables and each of the predictors wer ;er

calculated in the multiple predictor cases
- The number of rep11cat1ons was chosen by solving for n. in the formula for'

the standard error of the mean of the correlation coefficient given below:

1.~P4
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Jue for 0_ was arbitrarily set at .01, which was deemed sufficiently

for precision in this study. In this formuia. P 1s the popuiation
lation, rho(p), and was set equal to zero. The symbol. Nes is the sample

and was set equal to 20. Substituting these vaiues into the equation

ed Nes the number of replications, to assume the largest value that would
,ss1ble among the values fof“bakametéks. éhb(b)”éha'ns. that were chosen for
study, The solution for n , the number of rep]ications was 500.

For each combination of N, p, rho(i). and;rho(p) and{for all . rand Z
ributions, the means, medians.'andmstandard:deriations}were'caicoiated.
s ‘ . ;;; SRS
The means, medians.'and”standard deviations;ofithe correlation coefficients

all values of rho(i). rho(p). and thelnumber of’predictors. p: when N=20
har in Table 1. The'same information when N'; 50 and N = 100 appears in

les 2 and 3 respectively.

The means, medians, and standard deviations of the Fisher s Z transformation

the correlation coefficients for all values of rho(i), rho(p), and the

ber of predictors. p._when n = 20 appear in Table 4, The same information

‘n N = 50 and N = 100 appears in Tables 5 and 6 respectiveiy.

Inspection of these tables shows that when the population correlation
2fficlent, rho(p), equals zero both the mean of r and the median of r hover
ound that value and neither 1s consistently higher or lower than the other,
wever, when rho(p) assumes a nonzero value the median of r 1s usually larger
an mean r, This 1s because r is a biased statistic and 1ts distribution 1s
qatively skewed when rho(pj ts positive. This ordering of the mean and the
»dfan when rho(p) 1s not zero does not occur in_the Fisher's Z distribution.

As N increases both the mean of r and the mean ofii are better estimators
f the parameter rho{p). This follows from the Central Limit Theorem. Both

he medtan of r and the median of Z tend to be better estimators of the population
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CTable 1

When N =20

" Means, Medians, and Standard Deviations for C Lo

294 322,206

.683 .698 .129
001,003 .230
3.2 L33 L2130

5 0 ..002 -.004 .233
.3 203 .309 .216
7 b |

015 .007 .230

0,300 .36 .214

- ..004
1,296
692

-.009

.289

.686

.008

307
b

-.007
1,299

.03
.305
.703

.007:'
,320

Coe%0 706 a2

0
3
7
"2 0 T.002 0N 225 223
SR
7
0

,208
125

233
,214

126

221
208

.002 -.004

297

.695

311
710

002 -.007

295
687
004
292
694

36 .
703
.000
.303
714

®W1th one predictor nonzero rho(1) values are undefined.

bTh1s combination would generate data which are undefined.
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Table.z

Means, Medians, and Standard Deviations ‘for Correlation Coefficients

When N = 50

__rho(i)
. o 3 7
p rho(p) ¥ M4 SD. ° T M4 .SD. ¥ Md. SD

1 0 .001 -.000 .41
3 .303 ,305 .128
7 697 .705 ,073
2 0 .005 .000 .142 -,001-.003 .140 = 004 .005 .149
3 .294 .307 .32 ©.300 .305 131  .304 .305 .130
.7 .697 ,705 .075 ~ .694 .703 .076  .696 .703 ,069
30 .002 .001 139,007 .003 .145 001 -.002 .142
3,294 ,301 .130  .295 .300 .130  .295 300 .136
o b .696 .703 ,075  .694 .700 ,076
5 0 -.002-.001 .143 -,006 -.009 ,144 =-,005 -.007 .)4]
3,299 303 29 L300 305 129 .295 .300 .128
7 b b 699 .705 .07

%1th one predictor nonzero rho(1) values are undefined.

bThis combination w&uld generate data which are undefined.
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Table 3

‘Means, Medians, and Sta_ndard__-}Dg_vi_.atti"dn:'s”_;fdrmcbr.-relat.ic;ngil-toefficieh%

When N =100

e
0 : 3 g ] g
p rho(p) r Md. SD, T Mdr~so 'F M f‘,'so'
1 0 .008 .005 .108 e |
.3 299 ,303 .,091 s £
.7 .698 ,701 ,053 fop g
2 0. .004 .003 .099 -,008-.009 .101 .009 :.012
3 297 .303 091 304 .308 091  .303 .303
7700 .704 051 .69 703 053 . .699 .703 .048
3 0 -.005-.009 .098 ..002 .002 .102 -.001 .000 .
.3 301 .35 .092 302 .305 .092 .300 302
B A .698 701  .050  .695 -.699
§ 0 -002-.002 .09 .03 .001 .100 -.003 -.002 .100
3 295 .298 .093  ,206 ,302 .093  .302 .306
7 b b 699 702

%1th one predictor nonzero rho(1) values are undefined.

®This combination would generate data which are undefined.
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Table 4

Means , Medians and Standard Deviations for Fisher 3 Z Transformat1on

of the Correlation Coefficients When N = 20~ ~ = ' =

rho(1)
_ 0 .3 7
p rho(p) 7 MdZ ._so; 7 Mdz SO, 7 M4, SO,

1 o . .016 .007 .243
3 .317 .334 233
7 .885 .879 .237

20 .002 .0 .238 -.004-.007 .235 .02 -.004 .247
3,327 327 246 321 309 .240  .323 .321 .242
7 .873 .864 .242  .890 .895 241  .893 .887 .230
3 0 .001 .003 .244 -.009 -.013 ,246  .002 -.007 .24
3 0321 ,324 .244 313 .35 284,321 ,327 242
7 b .879 .874 242  ,880 .873 .24
5 0 -.002-,004 ,246 .009 .007 ,240  ,004 -,001 .233°
3,319 .319 ,248 .33 ,331 240 .316 ,313 .23
7 b | b 891 895 229

q4ith one predictor nonzero rho(i) values are undefined.

bTh1s combination would generate data which are undefined.
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Table 5

ST
P rho(p) Z Md, SO, Z M, SO . T a_
120,001 -.001 .144
3 .319 .315 144
7 .876 .877 .144 o
2 0 005 .000 .145 -.001-.003 .142  ,004 .005
C 339 .37 .46 316 315 47 . L320 315
L7877 877 M5 870 873 147 873 .83
0 .02 .001 .41 007 003 .148 . ,001 -.002
3 .39 .310 46 (310 310 145,311 .309
g b 878 .87 .45 870 .867
5 0 .,002-.000 .46 =,006 .00 .147 =-.005 -.007
J N5 W33 45 N6 L3150 145 L3100 .310
7 b b .878 .877

qith one predictor nbnzero rho(1) values are undefined.

b

This combination would generate data which are undefined.
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Table 6

Means, Medians, and Standard Deviations for Fisher S Z Transformat1on N

of the Correlation Coefficients When N = 100 o -

rho(1)
- 5
p rholp) T M4, S, I Md, SO, I MY, SO,

1 0 .008 .005 .110

30311 .33 .10

7 .870 .869 .102 | -

2 0 .004 ,003 ,101 -,008 -.009 .102  .009 .012 .098
.3 .39 .312 .00 .317 .318 ,101  .316 ,313 .098
.7 .874 .875 .00 .873 .872 ,104  .872 .874 094

3 0 -.005-.009 .099 .002 .002 .103 ~.001 .000 .098
3 .33 .35 102 315,315 .103 .313 .312 097
7 b 870 .869 .097  .863 .865 097 .

5 0 -.002-.002 ,100 .003 .001 .101 =-.003-.002 .101

.3 .38 ,308 .03 .309 .31 ,102 .315 .316 .105
.7 b b 871 .872 100,

84ith one predictor nonzero rho(t) values are undefined.

bThis combinat{on would generate data which are undefined.
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parameter, rho(p), as N increases és‘ﬁéll._ Both the mean and tte median are

sistent estimators. It should be rew*ﬂbered here that when P equa]s sero, sy

v"

Z also edua]s zero, However when r is .3, Z 1s

to fndicate that nonindependence of tte data does not affect +he estthat1on 0

the population parameter, rho(p). This is, of course, on]y for the case when, he

same parameter 15 being estimated by 211 the data | \
When eydluating the standard deviations they'shouidtbé referenced to the

known dxpected'vd]ues in the céses‘when independénceﬂts not Qididted‘ “For thé

distribution, the standard error of r can be found by substitut1ng the va]uesi

for the parameters used in this study into the fdliowing formula:

c_"-,,_-’/Ll - 2’

224, The standard error of r when rra(p) 1s .3 and N is 20 is approx1mate1y§,2ﬁ4
The standard error of r when rho(p) i .7 and N 1s 20 is approximately ,114. . Whe
rho(p) 1s 0 and N !s 50 the standard srror of r {is approximately .141, Whentrhokp
1s .3 and N 1s 50 the standard error ¢f r {s approximately .129. When rho(p;?'°i
and N s 50 the standard deviation is approximately .072. The standard errort”
when rho(p) 1s 0 and N s 100 is .1. The standard error of r when rho(p) is
and N 1s 100'13 approximately .091. Finally, the standard error of r when rho. p)
.7 and N 1s 100 {1s approximately .05!,
Inspection of Tables 1, 2, and 3 shows that all the standard deviations'd? '
close to thefr expected values, The largest deviation of the standard deviat’ﬂgé

from 1ts expected value was .015 and that was in an 1ndependent case. This

deviation 1s of no practical concern. There {s some improvement as N increases
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;e standard deviations are consistent estimators;”but there are no apparent

es over levels of rho(i) or p. .- - _;gni} .uafﬁyﬁﬁg@; Wff:ﬁi, .

i ¥ l‘c -

For the Fisher s Z distribution the values of the standard deviations can

\ ~

und by substituting the vaiues for the parameter used in this study into.-z

‘01lowing formula: - 'ﬁy' o o T
o, =__1 |
' 1 N - 3 ) . R
afore, the standard error of Z when N is 20 s approximate]y .243, The |
jard error of Z when N is 50 is approximateiy 146 Finaiiy, the standard
r of Z when N is 100 is approximateiy 102, "ul : P

Again inspection of Tabies 4, 5 and 6 shows that all the standard deviations

very close to their expected vaiues. There is some improvement in the estimates

| increases, but there are no apparent changes over either levels of rho(i) or p.

:lusion
The general conclusion, then, {s that nonindependence does not affect the -

imation of either the measures of central tendency or the standard deviations
- correlation coefficients and for Fisher's Z transformation of the correlation

fficients when the same population paremeter is being estimated.

e L
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