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Abstract 

The Box-Jenkins approach to time saries analysis, a regression method 
analyzing sequential dependent observations, was used to select the 
appropriate stochastic model for describing undergraduate grade point 

·ages. The technique, applied to approximately a half.century of
1 from two universities, suggested that the moving average model 
tided the optimal fit. Suggestions were made for further exploration 

,PA data. 
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. -1Whenever a phenomena is observed over time, it is often useful to search 
for temporal pattern's witrd� the dafa'}1)Economists'have'l"s't��ie'd'"stock mar�ll; 

' ' '' f i':'f''\',";
'f

,'"�··� ' ", . ., ,'''\ ·.\1·:t;-prices, sociologists have examined population levels, and psychologists hav�'' • '\:;Jl\:t;t! investigated changes in the incidence of depression. For such purposes, .a:.;r
variety of time series analysis p�ocedu��s have been developed, derived p;��ri 
from the theory of multiple regression'.' 'ri,·��e techniques require data gai�ed 
from at least fifty time periods {McCleary and Hay, 1980, p. 20). Since 
arcnival data covering this many time periods is not as conmonly collected 
in education as in some other fields, these mathematical approaches are not} 

:i\��i�{;as widely used in educational research. It is the purpose of this paper to)''' 
illustrate such an application, using undergraduate grade point averages. 

Although educational institutions evaluate their students each term, 
. �rit 

single group of pupils 1s not often evaluated fifty times on the same variaole, ·, ' .,,! 
as would be required for a tirre" se,r_ie� analysis. Ho�ev�0

r, a meaningful.}��
series can be realized by obtaining the average grades given during each:o 

. .  

the grading periods across a lengthy time span. For about the last half 
;• 

century, many unfversitios and colleges have adopted a 5-point grading seal ,
. .}�\-::using either the letters A through E or the numbers 1 through 5. Some ofo,��i�:.

'J?���-­
institutions calculated, at each grajing period, the average of grades awarded 

to their students, with the intent of maintaining reasonable consistency i 

their grading standards both among their departments and across time. 

Approximately fifteen years ago, reports began appearing that a conspicious 

increase was occurfng each year in the grading patterns at many institution. 
,)!{\1': '• 

(Birnbaum, 1977). Although that pattern appears to have a bated during the',f*, 

past few years (Sus low, 1977), grades remain at a noticably higher level thait 
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t o  the increase. 
A var iet y of fac tors have be en sug gested to e x pl ain the phenomena of

tution al grade ave rage flu ctu ation {Bi r nbaum, 1 97 7 ), but there h as be e n  

: k of data that sup po rt the p ropos ed e xpl anations .  Roge rs (1983) 

ned seve ral indepen dent v ar ia ble s  {de mog ra phi c  and economi c) for the

ibi l ity of explain ing te mpora l var iat ion o ve r  an e xte nded time f rame, 

found each of t hem lack i n g in e xp lan a to ry powe r. 

Any "expl a nati on " o f a pnenome na impl ie s  that tile pheno men a c an be 

Jately describe d. :1ath e ma ti ca l mo de ls, an d reg r es sion models in par ti cul ar,

a? p ropri a te for suc h a d e s cr ip ti on, but an e xaminat ion of the l ite ratur e  

ests that most auth o rs rely s ol ely on v i su al g raphs rather than emp
l o

y
ing

ematical modelin g. It was th e  purpose of this stud y  to use a stocha s tic

ser ies approach to gener ate ma thema ti c al mo del s  that mig ht ap p ropriatel
y

:ribe the enti re seq ue nce o f g r ade point d ata. 

Me tho d

�

Grade point avera ge da ta were co l le ct ed 
from two m i dwest er n un iversi ti es 

about a fifty y ear span .  F or t he fir st, her eaf t e r  calle d  Universit
y A,

, was collected for ea ch ye ar from 19 29 throu gh 1 982, Thi s  d at a  i s  plott e
d

,, time series plot in Fi gu re l. For the s econd ins t itut ion, her eat e r  calle d

vers 1 ty B, data was collected ea ch year fro m  1 9 32 to 1 982, except for the

,rs 19 43 thro u gh 194 6, when no da ta wa s  ava il abl e. T h i s  d ata i s  pl o tted in

iure 2. 

ice du re 

These data wer e ana lyze d w it h the time s eries anal ysi s  procedu res

·iught together in 197 0 b y G eorge E. P. Box and Gw il y n  M, Je nkin s, in the ir 

lume entitled Time Series Analysis: Forecasting an d Con tro l· (r evis ed

8
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2,75 + 

2,50 + 
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Figure 1. Grade Point Average (GPA) at University A. by year, 

1929 to 1982. (Prior to 1944 the data 1s 

year; afterward 1t 1s for fall term.) 
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-+-------+·-'v--+--------��---------�---------+-----
1932 1940 1950 1960 1970 1980 

Figure 2. GPA at Un1versity 8, by year, from 1932 to 1982 (fall term). 

Far 1943·1946, data are not available. 
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edition 1976). These Auto-Regressive Integrated Moving Average 
models (often referred to as "Box-Jenkins" models) require ·a large amouri't (:�tJW,�:
of data. However, when data are collected over an extended time period,"{;s

.':'..;.f,;p�:. in this study, there is the possibility that the social meaning of theiaata
,:. 

could change over time. Thus, it becomes difficult to assign the same 
interpretation to the data at the beginning and end of the series. None:.·;; 

";:t1/i. the less, the study of temporal patterns is an intriguing one, and with the' 
• 

• . • 
1 ·,·::illldevelopment of appropriate computer software, the Box-Jenkins methods ,haWf 

become available to a ·mu,ch wider audience.
• _,i,j McCleary and Hay (1980) have prepared a treatise designed to encourage'· 

· 'i.::..S·'{/4f 
the use of the Box-Jenkins analysis for social science data, and to explicat, 

. \ '' i�''' 
strategies for both analyzing the data on the computer and presenting the A 

·,,)i.f�icomputer output. Their strategies undergird the analysis in this studY/�f, 
\/�;,

( 

The data was processed on a Harris computer, using MINITAB (Ryan, et a1.',iii; 
. -�:� ·:· /":/f 1982). Other approaches and other computer programs could have been used,' ' 

,,•?!��(' 
but this was the one available for this project. The reader will need�-
interpret the methodological procedure of this study in that light. 

:?t 
The empirical identification procedures recommended by Box and Jenk1�s 

require an analysis of the autocorrelation function (ACF) and the partialJ
'. >-,:�:�·l 

autocorrelation (PACF) of the time series. The graphed ACF and PACF f�_r,d, 

both of the University time series are shown in Figures 3 and 4. The ACF
1
,:1s 

a set of correlations, each one of which represents the correlation between 
""'{<,: 

the original sequence and itself when lagged 

k units. For observations closo together, e.g., 1 or 2 lags, we most often 

find a higher correlation than for observations further apart, as is typifie 

in Figures 1 and 2, where the correlations are slowly dying out as the lags
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Figure 3, Estimated ACF and PACF for GPA. University A. 
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�inc'rease. "This dying' b'ot 'phe'riome1i·i�isi;a.(,Eorilecitent1e' 16Hth'e0 fundamental :- •<••--• r••V'>' ••t "'' �>'·1•·�,,-, ,.,.,....'t,'•,,L""'"(,. ·••h••"''f•'�---•,<�.......,.t .. ·"'�•�-,-, 

tenent' of .th� ARI� .���1, �".��et�)hat ·the effect of any given inputJ:o the.�; 
system declines over time.,', (Note that this is just the 'opposite of-� time1ffe 

'' . '' • ·,•". '· ,, :, ,•, � 
series of a bank savings a'cco�1t' where, assuming a constant interest �a'te;1fi, 
the compounded interest 'from' the first dollar invested is"always l�rger; l
than that from any subsequent dollar invested.) When the;data is prope�ly il 
modeled, the residuals (errors resulting from the r.iodel) should be 1r�ndo1111jl�· . . It 
distributed, and thus yield an ACF wi .. th with values. that are all statistical\� 

' .. �:-x :i#".'fJ,\ 

non-significant. The goal of the Box-Jenkins approach is to find such:�·· :';if 
model. .,�1r.a"'H 

... :,0.: The Box-Jenkins approach is a three stage procedure to build a model ,;:,K� 

consisting of IdentfficationtEstimation/and Diagnosis. Each of these 
wi'll 'be illustrated :fn the following analysis. The cyc1i· 1terates until 

. 
' '  i , .  ' ' 

� ,," : "' f 

interpretable solution is found.·· 
University A 

Identification, 
• An examination of the ACF of the raw data (Figure 3) shows that the

falls to zero slowly, indicating that there is a strong systematic trend 
the data, The most common method for removing this trend is to transform 

the data by replacing each observation with the difference between it and 

preceding observation, When this differencing transformation is complete, 

ACF 1s again compute:!, Figure 5 shows the ACF for the differences. The val u;s 

are inuch smaller, indicating almost random data. However, there are some 

spikes, which may be due to sampling error or to some systematic process, so 

further analysis is required, 

The PACF fs interpreted s 1m1la r to the ACF, except that each value is 

the correlation between observations 1 units apart after the correlation at 
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Figure 4. Estimated ACF and PACF for GPA. Un1vers1ty B. 
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interrrediate lags has been controlled or "partialled out". The PACF in Figure 

3 shows a single spike, which may be the result of what is called a moving 
• ,· ' •• ir:i.:·;, • c· "')" 

average ( MA) con,;,onent. This movi,ng ave rag� �omp�nent can be conceptualized 

as a random "shock" which is added to 'ea�h observation to obtain the predicted 

value for the next observation. 

Tne distinguishing characteristic of a moving average process is the 

finite duration of the shock. The shock persists for q observations and. ' 
. 1 ';; . , 

then is completely suppressed (McCleary and Hay, p. 61). Such a "shock" 
' • , : ,', t • ' '1 J ,; ", • •) \ ,i •, '•a 

• • 

might be the result of the new grades that are added each term for each 

particular student. Since the majority of students will leave the institution 

after four years, the impact of any particular student will vanish when that 

individual leaves. 

From the ACF and PACF we can now ten ta ti ve ly "1 dent1 fy" the model as an 

ARIMA (0, 1, 1). The zero indicates that there is no auto regressive (AR) 

term, the middle 1 indicates that differencing is to be used (this is the 

Integrative (I) term), and the 1 as t 1 indicates a moving average (MA) term. 

Estimation. 

When the estimates of the parameters were computed, it was found that 

the (O, 1, 1) model produced a t•value of only 1.23 for the MA term. Since 

this value was not statistically significant at the .OS level (nor anywhere 

near there), the model was rejected, and the procedure returned to the 

identification stage.

ldenti fication. 

It might be useful at this point to emphasize that since the estimated 

ACF and PACF are based on very small samples, they are subject to relatively 

large sampling errors. Consequently, any ident1fication 1s very tentative. 
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.. Becaus.e the. ACF .and PA.CF for first differences appeared rough, it seeme 
., •• ': ,. :,' .,,., 

• 
'·: ; : ;' '.(.J}{i ,?':}; •. ,·, appropriate to. take second differences, i.e., differences between the • • ' � -+ .- ,.. , · -•,,,.,.. , J�rn2· .r};.;,,: ·,.,..lf'1•; difference scores. Figure 6 shows the resulting A�F andPACF. ' They appe'ar 

tt·.':.ttff¥tY't',t· .. 'l :�•'1:JA�• more interpretable, suggesting a (0, 2, 1) model. An examination of Figu're 
' 1 

>'.: { ,;(\;? 't: �'i:,c,d..,, ._ ._ y� :t}(:i�
also suggested that the variance was not constant across time. To attempt· 

-:'\·· ·: :·: ' ' BiH f..i to correct this, a logarithmic transformation of the data was performed. · :., 
Es ti mati on. 

Table 1 shows the results of estimating the (0, 2, 1) 'mod�l. The"7�gSir

average parameter of .9767 satisfies tile stationarity retjui·r��erit thatdi1 

absolute val,�e be less than 1.0, a�� is also stati�tic!11;;�fg�ifica�i :r'ijr. 

less than the .05 level. 

Diagnosis. 

The simplest diagnostic procedure is to compare the re��lts of the �l�e, 

model and alternative models, In this way, it can be shown that a particula, 
' ·;': ; • • ,· I/ ' 

: : '. ":: :;J\tf;',;-,., model 1s optimal in that neither a simpler nor a more complex model will ,i· 
'I ;, ' ', /. 

; • .1• ' ,. �t�--
suffice, The simpler model (0, 1, 1) was already shown to be inadequate,�· 

• ,. , ·:: 11% 
The more complex model (0, 2 , 2) yielded a statistically insignificant secon,

' ''lt#t 
MA term, so 1t was rejected, The (1, 2, 1) model was also tested, but·•ttie'

AR term was 1nsign1f1cant. 

the "best" fit. 

Thus, the ARIMA (0, 2 1 1) mc;d�l\as accept�d as

The equation generated by this procedure can be conveniently written 
. •· . •• • 'llf{j, 

in the following form: (l•B)2yt ■ (1-.9767B)at where B is the backshHt ..n,:Jib 
operator, and at 1s the random-shock element (McCleary and Hay, (1980), p. 4t

• ,':';-,;ii½ /. 

64). The backshift operator 1s defined as Byt • Yt·l and follows the usual· 

algebraic rules. The operator (l·B) represents first differences and (l-B)2 

represents second differences. 
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Figure 6, Estimated ACF and PACF for second differences. University A.
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Table 1. Parameter estimates for'the'ARIMA:i(o 

FINAL ESTIMATEh LJF PARAMETER� 

NUMBER TYPE ESTIMArt ST, DEV, 

1 MA 1 0,9767 0,0439 

DIFFERENCING. 2 REGULAR 

RESIDUALS. 

NO. OF OBS. 

ss = 0,01?1�LJ6 

Ill = 51 MS "' 

OF�IGINAI snnci., 

Table 2, Parameter estimates for the ARlMA (O. 2. 2) 1110del. 

FINAL ESTIMATES OF PARAMETERS 
NUMBER TYPE EST I HATE 

1 HA 1 1.1◄1, 

2 HA 2 -o.,302

DIFFERENCINO. 2 REOULAR 
RESIDUALS. SS • 0.0◄29018 

PF• ◄3 HS• 

NO. OF OBS. ORIOINAL SERIES 

ST ♦ DEV. 
0.122◄ 

o. 1220

T-RATIO
9t38

-◄·3'

(BACl<FORECASTS 

0.0009977 

◄7 AFTER DIFFERENCING,' 
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The random shock element at is the sto,chas��.c component in the equation.

the ARIMA. model this moving average component can be shown to be mathe-

i cal ly equivalent to the exponentially weighted average of all previous 

ervations (Pankratz, 1983, p. 49, 109; McCleary and Hay,· (1980) �- p. 63). 

University B 

ntification. 

An examination of the estimated ACF and PACF of the raw data (Figure 4) 

gests that this data is also non-stationary and needs to be differenced. 

single spike on the PACF suggests a (0, 1, 1) model. 

imation. 

The (0, 1, 1) model produced an estimate of the Moving Average parameter 

ha t-value of .23. Since this was far from statistical significance, 

ifications needed to be made, Second differences were used, since the 

d appeared to approximate a quadratic trend. • The (0, 2, 1) model produced 

drameter with a t-value of 11.12, which was highly signif1ca_n,;. 

�nos is, 

The model was first diagnosed by comparing it with a more complex model. 
1· 

!)rdingly, a (0, 2, 2) model was tested. It p�duced signiff·c�n(�-�alues 
, \.. �-�· ,r ">, ' , 

both MA parameters, as shown in Table 1. To compare ttie t;o 1:mo·clels, .the 

rl squares of the residuals was computed. The (0, 2, 1) mode1 1y1.elded .• 

• ,00112 74, wh11 e the ( 0, 2, 2) mode 1 yielded MSR • ,0009977 '. Fina 11y,

1, 2, 2) model (yet more complex) was test9d, but 1t yielded _MSR •

•11641. Consequently, tho (0, 2, 2) model was favored, since it yielded

• smallest MSR.

The ACF and PACF for the Residu�ls of model (0, 2, 2) are shown in

1ure 7. No spikes are shown at lag 1 or any other lags. The residuals 

,ear to. meet the diagnostic criteria, so the model 1s accepted. 
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Figure 7. Estimated ACF and PACF for nis1dua1s from Arima (0, 2, 2) 

model. Unf vers 1ty B.
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The model can be conveniently written as (l-B)2yt• (1 - l.1475B + .5302B2)at.

Conclusion 

This paper has suggested that meaningful mathematical models can be 
' ,' I 

created to describe the time series of changes in the yearly grade point 

average at a university. The models are very tentative, partly because of 
. 

. . 

toe small number of available observations and also because of their relative 

complexity. 

While this paper has not answered the questions about the so-called_ 

"grade inflation/i it has indicated that a mathematical description of the 

time series of grades is sufficiently complex to suggest that no 'simple 

answer may suffice. The data is unstationary, as shown by the need for. 

differencing. It further appears to be best modeled by an approach that 

postulates random s,hocks that persist for only a finite time, yet each of which 

can be represented as an exponentially weighted average of all previous 

observations. This perhaps reflects both the influx of new students and the 

persistent effects of traditional grading practices. 

Data for this study was available for only two institutions of· higher 

education, so the genera11zab111ty of the results 1s 11m1ted. Studies with 

data from other institutions would serve to 1nd1cate the existence of general 

pattems across 1nst1tut1ons. 
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