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Abstract

The Box-Jankins approach to time series analysis, a regression method
analyzing sequential dependent observations, was used to select the -
. appropriate stochastic model for describing undergraduate grade point
-ages. The technique, applied to approximately a half century of
. from two universities, suggested that the moving average model
/ided the optimal fit, Suggestions were made for further exploration
iPA data.
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Whenever a phenomena is observed over time, it is often useful to se
for temporal patterns witnin the data. Economistsahave studied ‘stock marke ?
prices, sociologists have examined population levels and psychologists have%
investigated changes in the incidence of depression For such purposes,
variety of time series analySiS Procedures have been developed derived pr1 ari
from the theory of multiple regression These techniques require data ga 3
from at least fifty time periods (McCleary and Hay, 1980, p. 20). Since
arcnival data covering this many time periods is not as commonly collected
in education as in some other fields, these mathematical approaches are no
as widely used in educational research. It {s the purpose of this paper:
11lustrate sucih an application, using undergraduate grade point averages. :

Although educational institutions evaluate their students each term,
-»wt‘?}i

S

as would be reQuired for a time series analysis. However. a meaningfulvt m
series can be realized by obtaining the average grades given during each
the grading periods across a lengthy time span. For about the last half
century, many universities and colleges have adopted a 5-point grading scale'

using either the letters A through E or the numbers 1 through 5. Some of ne

i i , o

institutions calculated, at each graiing period, the average of grades ani ded

to their students, with the intent of maintaining reasonable consistency
their grading standards both among their departments and across time.

Approximately fifteen years ago, reports began appearing that a conspicious
increase was occuring each year in the grading patterns-at-manyiinstitutionsv
(Birnbaum, 1977). Although that pattern appears to have abated during the

past few years (Suslow, 1977), grades remain at a noticably higner level than.
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te the {ncrease.

A variety of factors have been suggested to explain the phenomena of
tutional grade average fluctuation {Birnbaum, 1377), but there has been
« of data that support the proposed explanations. Rogers (1983)

ned several independent variables (demographic and economic) for the
ibility of explaining temporal variation over an extended time frame,
found each of them lacking in explanatory power.

Any “"explanation" of a pnenomena implies that the phenomena can be
sately described. “1athematical models, and regression models ¥n particular,
appropriate for such a description, but an exam1nation of the literature
asts that most authors rely solely on visual graphs rather than employing
ematical modeIing. It was the purpose of this study to use a stochastic
series approach to generate mathematical models that might appropriate]y
ribe the entire sequence of grade point data

Method

yle

Grade point average data were collected from two midwestern universities

about a fifty year span. For the first, hereafter ca11ed University A. ,
1+ was collected for each year from 1929 through 1982, This data {s plotted
s time series plot in Figure 1. For the second institution, hereater called
versity B, data was collected each year from 1932 to 1982, except for the
rs 1943 through 1946, when no data was available. This data {s plotted in
jure 2. |

Thase data were analyzed with the tihe ser1es analys1s proeedures
sught together in 1970 by George E. P. Box and Gwilyn M, Jenkins, in thelr

1ume entitled Time Series Analysis: Forecasting and Control: (revised
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Figure 1. Grade Point Average (GPA) at University A. by year, from'

1929 to 1982. (Prior to 1944 the data s for the who1e

year; afterward it {s for fall term.)
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Figure 2, GPA at University 8, by year, from 1932 to 1982 (fall term).
Far 1943-1946, data are not available.
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- become ava11ab1e to a much wider audience.

" The data was processed on a Harris computer. using MINITAB (Ryan et al.,

edition 1976). These Auto- Regressive Integrated Moving Average (ARIMA)i
models (often referred to as “Box-Jenk1ns" models) require a large amou;
of data. However, when data are collected over an extended-t1me period; .
in this study, there {s the possibility that the social mean1ng of thei s
could change over time. Thus, 1t becomes difficult to assign the same
interpretation to the data at the beginning and end of the series. Non
theless, the study of temporal patterns {is an 1ntr19d1ng oﬁe, ana w{tan:

developnent of appropr1ate computer software, the Box-Jenkins methodsohave

McCleary and Hay (1980) have prepared a treatise designed to encoura

the use of the Box- Jenkins analys1s for soc1a1 science data, and to exp]icab

strategies for both analyzing tne data on the computer and presenting the

computer output. Their strategies undergird the analysis in this study’

1982). 0ther approaches and other computer Pprograms cou1d have been oseﬂ

but th1s was the one ava11able for th1s proJect. The reader w111 need to
1nterpret the methodological procedure of this study in that 1ight. |

The empirical 1dent1f1cation procedures recommended by Box and Jendj
require an analysis of the autocorrelation function (ACF) and the parttal
autocorrelation (PACF) of the time series. The graphed ACF and PACF for;m
both of the University time series are shown in Figures 3 and 4. The ACF 1s

a set of correlations, each one of which represents the correlation _between

the original sequence and 1tself when lagged

~ k units, For observations closa together. e.g., 1 or2 lags we most often

find a higher correlation than for observations further apart, as 1s typ1f1e

in Figures 1 and 2, where the correlations are slowly dying out as the lags
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~a1nérease. Th1s dying out phenomena 1s a consequence of the fundamental

tenent of the ARIMA mOdel. namely that the effect of any given input to the
system decl1nes over t1me. (Note that this 1s just the" oppos1te of a time

i

ﬁw‘
&
.
g

series of a bank savings account where. assuming a constant 1nterest rate,

the compounded interest ‘from the f1rst dollar {nvested 1ssa1ways larger
than that from any subsequent dollar invested.) When the’data 1s properly
modeled, the residuals (errors result1ng from the nodel) shou]d be random]y

X
3
distributed, and thus yield an ACF w1th with values. that are all statist1caf%§'
3
X
&

“non- sign1f1cant The goal of the Box Jenkins approach 1s to find such a f .
model. L
The Box-Jenkins approach {s a three stage procedure ‘to build a mode].
consisting of Identification, Estimation, and Diagnosis. - Each of these
will'be 111ustrated in the following analysis. The cyciée {terates until an
interpretable soiution 1s found.” ' B
University A
Ident1f1cat10n. |

- An exam1nat1on of the ACF of the raw data (Figure 3) shows that the Ac
falls to zero slowly. indicating that there 1s a strong systematic trend hg
the data, The most common method for removing this trend is to transform f
the data by replacing each observation with the difference between it and the
preceding observation, When this differencing transformation 1s complete.'thei

ACF 1s again computed. Figure 5 shows the ACF for the differences. The valuee;

are much smaller, indicating almost random data. However, there are some .

spikes, which may be due to sampling error or to some systematic process,;igfgn

further analysis 1s required, B 'fﬂ%l
The PACF {s interpreted similar to the ACF, except that each value is =

the correlation between observations k units apart after the correlation at :
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1ntermed1ate lags has been contro11ed or fpartial]ed out" The PACF 1n Figure

3 shows a single sp1ke. which may be the resu1t of what 1s ca1led a moving
O Sk S L
average (MA) component. Th1s moving average component can be conceptua]ized

as a random “shock" which {s added to each observation to obtain the predicted
value for the next observation o illt o | |

The distinguishing characterist1c of a mov1ng average process 1s the
finite duration of the shock The shock persists for q observations and
then 1s comp1ete1y suppressed (McCleary and Hay. p 61) Such a “shock“
might be the resu]t of the new grades that are added each term for each |
particu]ar student. Since the maJority of students w111 1eave the 1nstitutton
after four years, the impact of any particular student w111 vanish when that
individual leaves. _

From the ACF and PACF'we can'nou tentative1y “{dentify" theimodel as an
ARIMA.(O. 1, 1) The zero indicates that‘there 1s'no auto regress1Ve (Aﬁ)"
term, the m1dd1e 1 1nd1cates that d1fferenc1ng 1s to be used (th1s 1s the h
Integrative (I) term), and the last 1 1nd1cates a mov1ng average (MA) term.
Estimation, | | |

When the estimates of the paramaters were computed, 1t was found that

the (0, 1, 1) model produced a't-value of only 1.23 for the MA term. Since
this va1ue was not statistica11y significant at the .05 level (nor anywhere
near there), the mode] was rejected, and the procedure returned to the
identification stage. o

,Identiftcation..
It might be useful at this point to emphasize that since the estimated

ACF and PACF are based on very small samples, they are subject to relatively

large sampling errors. Consequently, any identification is very tentative.
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Because the ACF and PACE:for first differences appeared rough, it seeme

58 I?‘ ...... f-..‘ 5

appropriate to take second differences. i e ’ differences betweenithe 'f”eiz

-.4\'_

;g!"".t £y

difference scores. Figure 6 shows the resulting ACF and PACF They appear

v(ﬂ

more interpretable. suggesting a (0 2 1) model. An examination of Figure |

;‘\; ¥ ki ("
also suggested that the variance was not constant across tiﬁg To attempt

""e?z
7

to correct this, alogarithmic transformation of the data was perfornéd

oy . .
’l) ‘latgt!‘ ;:_.

Estimation

Table 1 shows the results of estimating the (0 2, 1) model. The mg§1,

average parameter of 9767 satisfies tne stationarity requirement that its

TR

absolute value be less than 1 0, and is also statistically significant atQ'

' s -ﬂ}m,
less than the 05 level

WEL R E : r’tﬂf‘f v

.Diagnosis.

- The simplest diagnostic procedure is to compare the results of tne givei
model and alternative models. In this way, it can be shown that a particular
model is optimal in that neither a simpler nor a more complex model will

e

SUff1C°' The, simpler model (0 1. 1) was already shown to be inadequate iﬁ

The more complex model (0 2 2) ylelded a statistically insignificant se%%n

MA term. $0 it was reJected. Tne (1 2, 1) model was also tested, but tﬁ%‘

Lore

“l HE '1‘ ,u-‘

AR term was insignificant. Thus. the ARIMA (o, 2, 1) model was accepted as

ﬂ’%

the “best“ fit. |
The equation generated by this procedure can be conveniently writtenf
in the following form: (1- B)2 « (la 9767B)a where B is the backshift
operator, and a, 1s the random-shock element (McCleary and Hay, (1980), 5%\4f
64). The backshift operator 18 defined as By, = Yio1 and- follows tne‘usuzl
algebraic rules. The operator (1-B) represents first di fferences and (l-B)2

R T

represents second differences.
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Table l:

S B iy
Y. wipd, .

FINAL ESTIMATE~ UF PARAMETER:
NUMBER ~  TYPE ESTIMATE °  ST. DEV.
1 MA 1 0.9767  0,0435

DIFFERENCING. 2 REGULAR

RESIDUALS., Sy = 0.0121:86 (BACHFURECA TS EXCLUI!E[J@
DE = 51 M8 = 0,000%751 ~@»t$
NO. OF OES. OKIGINAI SERIEL 54 Al TER nIFFERFNLING

bk T

Tabie 2. ”Parameter_estimgtes_for_thg ARIMA (0, 2.'2)iﬁo&é1.i

FINAL ESTIMATES OF PARAMETERS

NUMBER  TYPE ESTIMATE 8T+ DEV, T-=RATIO
1 MA 1 1,1475 0,1224 ?.30
2 MA 2 -0,3302 0.1220 -4¢35
DIFFERENCING, 2 REGULAR S ol
RESIDUALS., 88 = 0,0429018 (BACKFORECABTB EXCLUDED)
DF = 43 M8 = 0,0009977 A
NO. OF 0BS., ORIGINAL SERIES 47 AFTER DIFFERENCING 45

N ATNE &

CHE N
oo e Mg
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The random shock element a, is the stochastic component in the equation.
the ARIMA model this moving average component can be shown to be mathe-
ically equivalent to the exponentially weighted average of an previous
ervations (Pankratz. 1983, P- 49, 109; McCleary and Hay, (1980), p 63)

University B P,
ntification.

An examination of the estimated ACF and PACF of the raw data (Figure 4)
gests that this data is also non-stationary and needs to be differenced.
single spike on the PACF suggests a_(O. 1, 1) model. |
The (0, 1, 1) model produced an estimate of the Moving Average parameter
n a t-value of .23. Since this was far from statistical significance,
ifications needed to be made. Second differences were used, since the |
a appeared to approximate a quadratic trend The (0 2 1) mode]l produced

arameter with a t-value of 11 12, which was highly significant

The model was first diagnosed by comparing 1t with a more '''' complex model
ordingly, a (0, 2, 2) model was tested 1t produced significant t-values E
both MA parameters, as shown in Table 1. To compare the two “models, the

n squares of the residuals was computed. The (0, 2, 1) model;yielded_p
« ,0011274, while the (0, 2, 2) model yielded MSR = .0009977} 'Finally.

l, 2, 2) model (yet more complex) was testad, but it yielded MSR =
'11641. Consequently, the (0, 2, 2) model was favored, since it yielded
- smallest MSR. o - o

The ACF and PACF for the Residuals of model (0, 2, 2) are shown in-
ure 7. No spikes are shown at lag 1 or any other lags. The residuals

-
.ear to. meet the diagnostic criteria, so the model {s accepted.
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The model can be conveniently written as (I-B)Zyt- (1 - 1.14758 +_.530282)at.

R T
" ® [

Conclusion |

This paper has suggested that meaningful mathematical models can .be °
created to describe ‘the time series of changes in the yearly ‘grade point
average at a university. The models are very tentative. partly because of
tne small number of available observations and also because of their relative
complexity. | |

while this paper has not answered the questions about the so-called
"grade inflation." it has indicated that a mathematical description of the |
time series of grades is sufficiently complex to suggest ‘that no simple'
answer may suffice;” The data 1s unstationary, as shown by the need for
differencing; lt‘further appears to be best modeled by an approach that
postulates randon shocks that persist for only a finite time, yet each of which
can be represented as an exponentially weighted average of all previous
observations. This perhaps reflects both the influx of new students and the
persistent effects of traditional grading practices. :

Data for this study was available for only two institutions of higher
education, so the;generalizability of the results 1s 1imited. Studies vith

data from other {nstitutions would serve to indicate the existence of general

patterns across institutions.
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