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One of the‘ioi( appealing enpecte of multiple regression to beginning
multiple regression students is the amazing feet performed by a stepwise
regression computer prekreer The'preceuetof selecting the "best"” combination
of predictors so effortlessly and efficiently creates an overwhelming urge to
use thie procedure.end the ceuputer'progrel that accomplishes it for e multi-
tude of tasks for which it is 111 auited.’ Many textbooks on multiple regres-
sion claim that abuse of this technique is common. Draper and Smith (1981)
give a mild statement that “the ;{ephli;?breceddre is easily abused by amateur
statisticiane (p. 810), while Wilkinson (1984) is much more dramatic:

Stepwise regrelelon'll probably the mast abused
computerjzed statistical technique ever devised. Il you
think you need stepwise regression to solve a particular
problem you have, it §o almost certain that you do not.
Professional stalisticians rarely use automated stepwise
regression. (p. 106)

Cohen and Cohen (1078) lucgelt that model building should proceed
according to dictates of theory rather than relying on the whims of a
computer. BHut since in the social end behavioral sciences theoretical models
ere reletlvely rare (Neter et el.. 1983). Cohen and Cohen luggeot that the
stepwise method {e a "eore temptation" to replece theory in these lltuetlone
(p. 103). *

The authors of current multiple regression textbooks suggest the follow-
ing considerations for selecting a subset of predictors for a regression
mode) :

1. Selection of varjables for a regression model should not be a
mechanical process (Chatterjee and Price, 1977; Draper and Smaith,

1961; Neter et al., 1983; Younger, 19079).
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2. No one process will constiatentlv select the “best” model (Rerenson et
al., 1083; Gunst and Mason, 1980; Kleinbuum and Kupper, 19078;

Norrlson. 1983 Pedhazur. 1082; Vounger. 1079).
3. There s no one “best" mode) cccordlng to any common criterion such as

the maxisus R (Chatterjee and Price, 1077; Freund and Minton. 1979;
Neter et al., 1083).

4. The stepwise method should not be used to build lodelo for explunatory
research (Cohen and Cohen, 19075; Pedhazur, 1982)

...1n addition many authora point out that the stepwise sethod has limited
‘quc(ulnenl when the predlctoro_gre highly correlsted (Chqtterjee and Price,
. 1911; Kleinbaum and Kupper, 1978; Neter et al., 1083), l(}g gey oe} of'var!—
ables work in combination (Younger, 1079), or when 0uppre,ulon exists (Cbhen
.and Cohen, 1973)., Chatterjee and Price (107]) suggest tE,t_u{}h’lu)tlcollln-
ﬁwoorlty‘the backward method is preferred although other oulhorlhouagegt that

the backward method should not be used in this case because of cosputational

.. .inaccuracy that may occur If multicollinearity is severe and a near singuler

matrix s inverted.

In spite of these suggestions, there are stil] many research studies
reported in the literature in which these guidelines are violatad. Results
are reported of a model "selected” by the computer, usually using the stepwise
method with no indication that this mode]l might not be the “correct” or "best"
one. The discussion of the selected mode]l fs done in a mechanical fushion
with no indication given of a careful critique of the ndequicy of the
computer-selected model. Explanatory interpretations are frequently made
(Pedhazur, 19082) which often take the fors of considering variables selected
by the cosputer to be "good” predictors of the dependedt variable because they
have a “significant relationship” and variables not selected by the computer
are considered to be "poor" predictors because they do not have a "significant
relationship”. A varjable that may be one of the best predictors when studied
individually and that fits nicely into an exjsting theory will be considered
to be a fpoor“ predictor almply because it does not occur in the selected

model even though its omission may be due to predicting the same variance as
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other predictors already in the mode) that are no better predictors than {t
is.

There are many other competing procedures that can be used to select
variables for a regression model other than the stepwise method. Three major
ones mentioned In many regression textbooks are the forward, backward, and
best subsets methods. This paper will endeavor to compare the ctepwllglnpthpd
with these selection methods to determine the types of models that each would
be likely to select and in so doing determine the strengths and weaknesses of

each method.

Method

The procedure used was to apply each of the common selection methods to o
number of data sets of varjous types and evaluate the differences between the
models chosen. The source for each of the data sets used in the analysis {s
described below. In Table 1 the number of subjects and number of predictors
for each data set is )isted.

3. CMAl -- Data Set Al from Gunst and Mason (1960)

2. GMA3 -- Data Set A3 from Gunst and Mason (1980)

3. GMAG -~ Data Set A6 from Gunst and Mason (1980)

4. GMA8 -- Data Set A8 from Gunst and Mason (1960)

5. GMu1 -- Data Set Bl from Gunst and Mason (1980)

6. GMR2A-GMB2B -- Détn Set B2 from Gunst and Mason (1980)

7. TAL -- Project Talent data from Lohnes and Cooley (19686)

8. ENRI-ENRS -- 1986 freshman enrollment data from Andrews University

9. LONG -- Data from Longley (1967)

10. HALO -- Data from Draper and Smith (1981)

11. SUP -- Data genecrated from a contrived correlation matrix
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Nine of the data sets were sclected from textbooks that used the data
sets to illustrate interesting and/or unusual applicatjons of regresslonfthul
would be bréught out by the data. A]]l of the variables were not included in
some of the sets. Some of the variables in the GMA3 set were not used because
there were idrervérjablcg then uubjecgl. -One verlgble was removed from the
GMB1 set due to tolerance problems (its toloréncé uﬁ;:belon ,61, andf@hultuos
autonatlcally éxcluded from the BMDP2R program although it would not have been
included in“any of the models if tolerance had been ignored). -The categorical
varjables from the TAL set were not used.:: -~ .5 &l

The SUP data was generated using a program described in Morris (1975)
from a contrived correlation matrix described below that included varjables
that j]llustrated suppression. To get a correlation matrix with suppression,
three varjables were constructed composed of random numbers with the first
variable designated as the dependent variable and the other two designated as
independent varjables. ‘A fourth variable was then constructed which did not
have a high correlation with the dependent varjable by itself but yielded a
high multiple correlation with the dependent varjable when combinad with the
two previously chosen independent variables. The correlation matrix from this
data was then used as input to the Morris program which generated a new set of
dsta which gave the same correlation matrix but was “marginally normal." The

correlation matrix used was:

I 3 4
1] 1,000 446 .202  .307
2 1.000 -,195 -.088
3 1.000 -.527
4 1.000

An alternate approach that would have given ah equivalent matrix would

have been to use the method suggested by Lutz (1983).
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GMB2 was run twice using a dlf!erent depeﬁden;ovarlable each tlie The
ENR data woe analyzed with & dlfferent aetl of predictors. The varlnblel ul?d
for the ENR data sets were .elected from 86 varlablel which in turnlwere |
selected from a larger data base that lncluded 499 varlableo. A prlnclpa]
components factor nnalyolo was conducted ualng the-se vnrlablel and the
variables loadlnc on the lcyractoro wlth the hlgheot etgen valuec (all above
1. a) were uaed in the 5 oeto o! predlctoru l  o | | |

ENRY had 1 predlctor fron each of the flrat 7 factorl

ENR2 had 2 predlctora fron each of the flrot 7 !actoru.

ENRS had ¢ predlctorl from each of the flrlt 7 !actors

ENR4 had | pledlctor from each of the 14 factors.

ENRS had 2 predlctoro tron oach of the 14 factorl.

The computer progruno uoed to cgleét the belt lode} fro- each dntn -et
were BMDPZR for the ltepulle. for;ard ;na backward o;lut:ono. and BMDPOR for
the best subsets lolutlon. The otepuloe and foruard nethodt uoed an
P-to-enter limit of 8 0 and the otepuloe lethod uoed an P-to ~remove ll-lt of
1.09. These limite are In llne’ylﬁh reconnendatlyno made for proper use of
stepwise regression which suggsst ghat the F-to-enter limit selected should be
fairly low e0 as to allow more variables a chance to show their worth in the
final mode)l. The backward nethod used & comparable F-to-remove limit of 2.0,

The BMDYOR progran selected the mode]l with the lowest Cp value, which is the
| default value of the progran An ideal Cp value ies one that f{e equal to or
lower than the number of parameters in the model (predictors ¢+ 1). Dixon and
Brown (1070) euggest that this criterion will give models in which the
varfables in the mode) have F-to-remove values above 2.0, making this
criterion similar to thut used in the other three methods. Of course, the
specific models selected would differ if other criteria were used, but the

overall characteristics of the four cqlectlon methods should not change. To

evaluate a different criterion, on some comparisons it will be noted what the
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renultc would have been if an F- to-enter/remove level of 4.0 had been used
“rather than 2.0. | -

s Table 1 reports the characterlltlcl of the lublell selected by the ¢
"selection nethods with the 16 dntn leto' Forﬂthe stepwise method the number
of predictors selected 1s reported along with the R2 for the selected mode].

" Por the other -etho;e lnfor-atlon is only preoented if the mode] selected was
dlrferent from the -odel oelected by the otepw!ae method. Addltlonal-
information provided for these nodell(lncludea the nu-ber of predlctorl in
thut mode]l that were not’ln the ltepwlle nodel and the nunber of predictors in
the stepwise model not Included in that lodel.

T g
b

Results
On 9 of the 16 data loto. the * -cthédu cho.e dlfreront models ullng

é LRI

the {nitial crlterla of a P to enter/re-ove of 2.0 and the lowest Cp. In
comporison wlth thdd;:;;;}ne -ethod. tho forwurd nethod chose a different
nodol on 2 datn oott. ih:aéacknnrd lethod chooo a dlrrerent model on 8 date
sets, and the belt cub;et; lothod choue . dlffcrent lodel on 7 data sets. The
backward method and.boti subsets nctho&pdlrreréd‘bn’d data sets. For eaéh of
the data sets on uhléh differences were found, the differences will be
describod in detall. |

GMA3 ~-- The stepwise, backward and best subsets mothods selected the same
mode] which had 1 less vquable than thet lelectc¢ py the forward sethod. If
F-to-enter/remove limits of 4.0 had bebn used, the ltepwl?o end backward
methods would have removed one edditional varlable giving a 4 predictor model
while the model chosen by the forward method would not have changed, thus
having 2 more predictors than the stepwise and backward methods.

GMA6 -- The backward and best subsets methods gave the same¢ model which

had an R2 more than twice as much as that found by the stepwise and forward

methods which gave the same model. The R2 values found were .150 and .347.
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The ttgpwlte/lorward ubdel had 2 prodlctorn and the backward/best subsets
mode] had 7_predlctor§. The uiébwlue>f0rwurd methods did not enter a third
variable because the<hl¢h§|t F-to-enter was 1.06. The worst variable in the 7
varlablé béckward and Séot ldbletlinodel had a F-to-remove of'a.zs. If an F-
to-enter limit of 4.00 had been used, there Qéuld have been no variables
included in the ltepwloe/f;rwerd mode] since the first variable entered had an

)

F-to-enter of 2.50 while the backward method would have removed the seventh
variable leaving a 6 variable mode]l with an R of ,300. The stepwise method
gave much ioger R2 valué; atuF-to-énter_llllto.of both 2.0 and 4.0. ‘The}cp
value for the gackw;rd/beui iublétl loael wae 4;02 fof 7“bfbdlbtof| while the
otepwlue/!&rﬁurd.uodel had a Cp Qaihe of b.bl‘for - Bfedlctor.. indicating the
) predtctdr mode) cﬁolen.bynthoﬂbnckward and best subsets methods was @ much
bettor.iddel. . | | "

GMA8 -- The stepwise, forward, and backward methods produced the same
mode) which wocldlrfofent from that chosen by the best subsets method. The
best lublétl -odel.had 1 iooo prodlctdr. the last varjable chosen by .the step-
wise/forward methods and the variable which would have been the next to be
deleted by the backward method. The R2 valuee for the 2 models were .886 and
877, The Cp valuee for the 2 models were about jdentical (1.8) for the
ctepwlio/forwafd/backward mode] and 1.50 for the best subsets model). The F-
to-remove for the fourth vor(ablo”lncludod in the larger mode]l was 2.28.

GMB1 --The 4 methods produced 3 ;odoll. with the stepwise and forwafd
sethods selecting the same mode)l. The R2 values for the models were ,716 for
the 8§ predictor best subsets model, .?27 for the 6 predictor stepwise/forward
mode), and .739 for the 8 predictor hackward model. A)) of the variables in
the best subsets model were included in the stepwise/forward mode]l with the
additjonal varfabhle in the ttepwlsé/forward mode) having an F-to-enter of

2.02. The backward model used 4 of the 6 predictors in thé stepwise/forward

mode]l and 4 additjonal predictors. The Cp values were 3.27 for the
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etepwiee/forward mode]l and 3.14 for the beet eubsets model. The backward
mode) was not listed ae one of the 10 best 8 predictor -odélc in the BNMDPOR
best eubeets |electlon even though it had an R2 of .737 whlch was hlgher than
9 of the 6 varjable lodell listed. 1If the F-to-enter and F- to remove limits
had been 4.0, both the stepwise/forward and backward models would hnve
included 8 variables but 9nly 3 would havo been conlbn to both. Tﬁe (]
variable -odel R2 would hgve b?en .716 (pf the ltepﬂﬂle/forQard.-od;l and .6017

Sy

for the backwnrd model. ’

GMB2B ~-- The model) nelocted by the otepulle and forword nethodu had only
1 predlctorful(p an R2 value of{.l16. No vqunble was even cloee to being
considered for entry an.the f—to~onter volue for the best a&d{t;ohal second
varjable wn.ﬁQ.?B. The beckwnrd and bolt luboeto nodelo were the same with §
predictors and an R2 of ,809, The worst varjable in the 8 predlctor svde) had
an F-to-ra-ovo velue of 6, 02. The reason for the dllcrcpancy betwoen the
models was that 2 of the varlableo were only good prodlctoro in combination.
In the stepwise solution, one of this palr nould have been tho oooond variable
added with an P-to-enter of 0.76 and Increasing the R? from .116 to .103. The
third variable added would have been the other member of the pair which would
have increased the R2 to .371. The better predictor of the pair in the eecond
step added only .017 (.103-,176) while togsther as steps 2 and 3, the pair
added .198 (.371-.178). The fourth and fifth predictors incressed the R2 from
.371 to 800, | - |

TAL -- A)) of the methods selected the same mode] but the order of entry

of the variables In the stepwise/forward and backward methods were different.
The last variable entered in the stepwise and forward methods was not the same
as the variable that would have been removed next in the backward method. 1If
the P-to-enter/remove limit had been 4.0, the models would have been different

with the stepwise/forward method mode) having 4 varjables with an R2 of .366

and the backward model having 6 variables with an R2 of .306. The additional
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2 variables for the backward model were included becausa these 2 variables
would not have been good enough to enter alone in the stepwise/forward
methods, but together they were good predictors, making them rena}p‘ln the
backward method.

- ENR3 -- The 4 methods produced 3 models, with the stepwise and forward
methods aelecting the same model.. The RZ2 values for the models were ,820 for
the 8 predictor best subsets mode), .521 for the 9 predictor ltepulle/forgard
model, and .525 for the 1) predictor backward model. Al) of the variables in
the best subsets model were ‘ncluded {n the stepwise model with the additional
varjable of the stepwise mode] having an F-to-enter of 2,02, Al] but one of
the variables in the stepwise/forward mode]l were included in the backward -
model with 3 additional variables added. The 3 models selected were the best,
second best, and tied for third best 4n the best subsets method with Cp, values
of 6.88, 5.80, and 6.05. The other model with a Cp of 6,05 was the second
boit 8 predictor model selected by the best subsets method. This model had 1
predictor different from the best mode) selected. It appears as If the
additional 2 or 3 variables of the backward model were not needed to select a
goud mode]l but other combinations of varjables would have given equally good
smaller models. If an F-to-enter limit of 4.00 had been used, the
stepwise/forward mode) would have contained 6 predictors with an R2 of ,810
and the backward mode)l would have had 7 predictors with an n2_or_.511 wlth_ h
only 3 of the same predictors as the stepwise/forward mode).

ENRS -- A)]l of the methods produced the same modé]l but the stepwise/
forward and backward models had a different order of entry. I1f the
F-to-enter/remove limit had been 4.00, the stepwise/forward model would have
had 8 predictors with a R2 of .338 and the backward model would have had 9
predictors with a R2 of .343 with 6 variables the same as those in the

stepwise/forward model. If the ninth predictor of the backward model had been
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removed, the remaining 8 variables would have had the seme RZ as the
otop;loe/forward mode i.aae) with 2 variables being dlff?ront;

LONG -- The stepwise, forward and backward methods éhooen by BMDP2R gave
the same 3 predictor model with an R2 of ,985 and Qhe best subsets model had ¢
predictors with an R of .995. The addltlonal‘predlctor In thelbeot subsets
model was not lncluded ln the other models due to lt. hlgh fntercorrelation
(tolerance=.002) with the flrut 3 predlctorl ln the nodelx BMDPOR (beot sub-
‘sets) allows a grgote( degree of lultlcolllnearlty than BMDPZR.-lo thise
problem was not encoﬁntered with the model chongn by thqt program. The
F-to-remove value of the fburth variable in the best subsets mode]l was 5.95
1ndl§atlng it deserved to bef!ﬁ.the mode) §if the low tolefgnqe could be
ignored. The C, value for the 4 p;edlctor mode] was 5.20 ponpared to the 3
predictor value of 21;66.-”The first varlable.entered in the stepwise and
forward methods was “the vafjable that contflbutedithe most to.the high |
toleronce value for the fourth varjable in the nodel (the correletlon between
them was ,993). If a 3 prodlctor mode]l had been chosen by all methods
ignoring the tolerance problem, the backward and best subsat methods would
have chosen the same model with a higher R2 than that cho.én by the
stepwise/forward method (.993 to ,983). The Cp value for the 3 predictor
backward/best subsets mode) would have been 8.234 compared to the
stepwise/forward value of 21,66, The backward/best aubsets lodél is better
because the second and third variables entered in the stepwise/forward method
in combination pair much better with the fourth variable than the first
variable entered. The model chosen by the backward and best subsets methods
was never .valuated in thc etepwise and forward methods.

HALD --The stepwise, backward, and best subsets chose the same 2 predic-
tor mode) while the forward method selected a 3 predictor model, inciuding a
variable that was the first one entered but that later became redundant with

the addition of the second and third variables.
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SUP -- The stepwise and forward methods did not allow any varjablas to‘
enter the model. The largest F-to-enter value was 1.99. The backward and
best subsets models were the same with 3 predictors and an R2 of .967. The
lowest F-to-remove value of the 3 predictors was 85.16 which if removed would
brlng_the R2 down to .506. Each varlnble'nc}lng alone dld_not predict enough
to be included but only showed its high pred{qtlve Qouqr in qonblnatlon with

the other variables.

Conclusions

If models chosen by different selection methods uere_rqlatlyely,a]ullar
in the ‘nusber of variables in the model, the variables lncluQed,nndvthe
amount of varfance explained (Rz), and the model was to be qaeq.prlnnrljy fqr
prediction, not explanatory purposes, It_gould seem ihnt thg.uﬁzzéqtlon of
Draper and 8mith (1981) that the |tqulue method might be preferred because of
its practical nature would seem reasonable. The resulte of this study
sugguest, however, that in some cases models that are severely inadequate are
selected by the stepwise method and other consistent, but less important
dlfforence- between the models selected by the different methode also appear,
korword/estepwise comparisen

It would be expected that the forward -eihod would be more similar to‘the
stepwise method thnn‘the backward or best subsets methods because the stepwise
method is an extension of ‘he forward method nlth the nadltlonnl procedﬁre of
removing variables previously entered i{f they no longesr contribute to the |
model. In both of the data sets in which a difference exjsted between these
2 methods., the forward method gave a larger data let‘by including a variable
that became redundant when later variables were added by both methodes.

Backward/stepwise comparison

The backward method differed in a consjstent manner from the stepwise

method in 2 ways. In each of the 5 data sets in which they differed the
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backward method selected a mode]l with more predictors. If an P-to-enter limjt
of 4.0 had been used, the backward method also would have frequently given a
larger number of pred]ctora. Where the same number of predictors were
ueleéied but with different combinations, the stepwise method was more
efficient, generally»havlnz tﬁe higher R2, 1n 2 of the 8 cases in which they
differed the R2 values were fairly close but for the other 3 the R2 values
were markedly different (.347/,150, .609/.176, and .967/.000) with the
backward method selecting the better model in each case. These 3 data sets
ali had a combination of varjables that acted jointly to predict well but none
of the variables entered the model individually in the stepwise or forward
methods. These data sets illustrate that in certain circumstances the
stepwise and forward methods can select very:lnaaequote models,

Backward/best subsets comparjsop

On 12 of the 16 data sets the same model was selected by the backward and

best subsets methods. The:iasot”di‘€}dbdnéy'betwdeh'thb models selected by
the two methods was on the GMB) data set in which the models had 6 and 8 pre-
dictors and R2 of .716 and .739. It seems as if the backward and best subsets
methods can be counted upon‘td&dlvo models that nre’feooonobly similar in
number of predictors end'lnoﬁnt of variance explained, although if thure is a
difference the backward method generally will give a larger model. In the 4
duta sets in which the 2 methods gave pitrcrent models, the backward method
selected a larger mode]l 3 times and a smalier mode) once (although this was
due to a.tolerance problem).

w e ‘ u "

Excluding the 3 cases in which the stepwise method was very inadequate
and the case with the tolerance problem, the number of predictors selected by
the stepwise method was the same as that selected by the best subsets method
in al]l but 3 cases where the stepwise method gave 1 additional predictor in

each case. The additional variable in each of the larger models barely
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entered over the F-to-enter of 2.00 level and the discrepancy should not be
considered important but more of an indication that the F-to enter level of
2.00 was not exactly equivalent to the criterion of the loweit,cp value that
was used in the BMDPOR program.

A Best subsets summary

The algorithm used in BMDPOR, which admittedly does not compare all
poqnl‘le -qdell. will not alwayl‘llot all "good" models. _!n the GMB]1 data
set, the 8 predictor model chosen By the backward method was n§t¢even ljp‘pd
as one of the alternatives in the BMDPOR output even though it had a higher 82
than all but one of the alternatives that were mentioned. The best subset
method, however, does seem to work the best of all of the pred!ct{onlnethodl
with the data sets used here. It is especially recommended because it
encourages a non-mechanical selection process by clving many suggested models.

The backward method can be counted on to give a model which will explain
about as much variance as models chosen by any other method but it may {nclude
more variables than are nocessary to got a "good” model. A major danger
occurs with this method, however, when thers s high multicollinearity. In
this case, computational inaccuracies may occur, 8o tolerance problems should
be considered before running a backward solution.
ﬁlﬁﬂli!ﬂ.!ﬂ!&&tx-

The stepwise method will generally give a model that comes close to max-
imizing the amount of variance explained for a given number of predictors.
1f conditions of multicollinearity, suppression, and sets of variables working
Jointly do not occur, the models selected by the lt;pnloe method can be
expected to be as good as the models selected by the backward and best subsets

methods. If these conditions do occur, however, the stepwise method may give

a model that is completely inadequate. To guard against this occurrence, the
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stepwise method should never be used alone to select a model, but only in

conjunctidn ﬁlth'the'backuard‘and/or best subsets methods. ,
[orwa;d summary i ¢ Ade s

~ 'The forward method. although discussed in almost all regression text-
books, is rarely, if ever recommended as a reasonable alternative to the step-
wise nethod; and this paper supports the idea that the method has little ierlt
If the stepwise Wethod §s available. '

L

R I S R . f i .
Selectjon process summary - g ooy . T a e s

When a mode) is to be selected. it is important to consider more than one
préeduré.’ If one method §s to be used, it would appear that the best subsets
method is the best of the methods examined here since the computer program
generatdl iahy models from which a "best" one can be selected. The‘vlrtue of
running a backward and/or stepwise solution in additfion to the best subsets
method would be ‘to identify differences -in the models that point out
characteristics of the variables and/or data set that might be overlooked
otherwise. Using ;he best subsets or backward procedures, it is unlikely that
an ektfe-elv poor mode) would be chosen, but this is a real possibility with
the otepﬁlié“ahd forward methods. . For this reason it is recommended thst the
stepwise and forward mothods NEVER be used alone in ooloctinc‘o mode] for any

purboce.
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| Tob)enl.

Regression Hode)o s&)eéteh by Different SQIectﬁbn'Ne(hodo

lNu-ber'of'Pfedlctoro Selected/Differences from Stepwise/R2

DATA | Stepwise| Forward | Backward | Best Subsets
SET N 1IV'e | ¢ R2 | ¢ + - R2Z| ¢ + - R2 | e + - R?
P B T T

GMAS 13 6 : ‘ ,ooo,_s_ 1 0 .ooo{ :

GMAG 50 14 : 2 .150% : 7 6 1 .aiv{ 7 61 .37
GMAG 33 © : ‘ .066: : : s 01 .67
GMR] 60 14 .= 6 .727: : 6 4 2 .139{ 5 0 1 .716
GMB2A 40 6 : ‘ .a7e= ’ ‘='

GMB2R 40 6 = 1 .176= : 58 4 0 .509= 8 ¢ 0 .809
TAL 805 16 { ] .4oc= | : :

ENRI 870 7 { 2 4.o¢o= : * :

ENRZ 870 14 : 7 ;316:; ’ :

ENRS 570 26 l ) .oz:‘ ::: 3 3 .azb‘ e 0 1 .820
ENRG 870 14 -= 5 .ooo: : ;::

ENRS 670 26 , 1 .ae:’ : :

LONG 18 6 : 3 .905: { '= ¢« 1 0 .995
HALD 313 4 I 2 .910% S 10 .oez‘ :

sUP 30 3 : 0 .oool : s 8 0 .oe1= S 8 0 .087

¢ « nusber of predictors seYected using F«2.0 for entry end Fe1.99 for
deletjon for the estepwise, forwerd end backwerd models ond Cp=2.0 for the
best subsets mode).

]
+ =« number of predictore selected in thie mode) thet were not in the stepwlise
mode!

- = pnumber of predictore in the stepwise model thet were not selected in thie
mode!
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