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" An empirical method (PRESS) tor examlning and oontrasting the ctoes-valldated
prediction accuraciees of some popular algorithms for weighting predictor variables
was advanced and examined. The weight methods that were considered were ordinan
least squares, ridge regression, regression on principal components, and regression
on an equally weighted composite, - PRESS was execut on several data sets having
varied characteristics, with each of the weighting techniques obtaining the greatest
accuracy under some conditions. “The ree of advantage or disadvantage offered by
these alternate weighting algorithms relative to ordinary least squares was
considered. As it was not possible to determine 2 priorl which weighting technique
would be most accurate for a particular data set from theoretical knowledge or from
simple sample data characteristics, the sample specific PRESS method was proffered ¢
poseibly moet appropriate when the researcher wishes to select from among the severe
altemate predictor weighting algorithme in order to achieve maximum cross-validatec
prediction accuracy. The feasibility of the use of a mlcrooomputer for the
oomputation mtmlw m:ss alqodthm was also oonaldered. :
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Many empirical and theoretical studies (Darlington, 1978; Dempster, Schatzoff,
and Wermuth, 1977; Gibbans, 1981; Morris, 1979; Pruzek and Frederick, 1978; Wainer,
1976) have suggested that there are more accurate (in the sense of cross-validatior
;(:cr;g)ictor weighting strategies than the traditionally used ordinary least squares

Much of the effort has concentrated on ridge regression, with Darlington's
(1978) recommendations being by far the strongest in the behavioral sciences.
Bowever, some more recent results (Morris, 1982, 1983) suggest a less enthusiastic
outlook toward ridge regression in the specific situations considered by Darlington
(1978), but a possibly more promising outlook under other data conditions (Morris,
1981). Additional evidence and reservations of others about ridge regression may b
found in Egerton and Laycock (1981), Pagel and Lunneborg (1985), Rozeboom (1979), a
Smith and Campbell (1980).

Similar controversy spanning at least a quarter of a century (Claudy, 1972;
Dawes and Corrigan, 1974; Dorans and Drasgow, 1978; Einhorn and Hogarth, 1975;
Gabriel, 1980; Laughlin, 1978; Lawshe and Schucker, 1959; Pruzek and Frederick, 197
Schridt, 1971; Trattner, 1963; Wainer, 1976, 1978; Wesman and Bennett, 1959) has
surrounded the use of equally weighted predictors as a substitute for OLS weights.
In addition, several investigators have proposed the use of reduced-rank prediction
methods to enhance cross-validation prediction accuracy, possibly beginning with
Burkett (1964), to more recently (Morris and Guertin, 1977; Pruzek and Frederick,
1978) .

It seems clear that claims for a "panacea” weighting technigue to fit all data
configurations, such as ridge coefficients "will undoubtedly be closer to (the true
parameters) and are more stable for prediction than the least squares coefficients”
(Boerl and Kennard, 1970, p 72), or "Ridge regression is the best technique for a
broad range of intermediate values of validity concentration and is little woree th
alternative techniques at the extremes" (Darlington, 19768, p 1250) are unrealistic
Equally clear is that many simulation results strongly suggest that non—OLS weighti
strategies offer the researcher enhanced cross-validation prediction accuracy in ma
data configurations. The most important next step seems to be to determine the
frequency with which such data configurations that are conducive to non-OLS methods
oocur in the behavioral sciences and to examine the importance of the gain or loss
resultant from ucing these strategies. Given encouraging gains in a reasonable
progortion of avajlable data sets, another step would be to generate mechanisms for
helping the researcher decide which of the alternate weighting techniques are best
for which data situations, and for estimating how much improvement or degradation
might be realized by using an alternate technique instead of OLS in a specific data
set.

Some simulation results (Morris, 1981, 1982; Pagel and Lunneborg, 1985;) have
yielded some general suggestions for when to use which technique. One major factor
suggested by Pruzek and Frederick (1978) and explicated more explicitly by Darlingt
(1978), is validity concentration, the degree to which predictive validity is
concentrated in the first few principal components of the predictors. From
simulation results and theory (Darlington, 1978; Morris, 1982; Pagel and Lunneborg:,
1985), it is know that as predictor variable collinearity and validity concentratio
increase, non-OLS methods usually become more accurate than OLS at some point. In
addition, Cattin (1981) has argued that in typical behavioral science data small
eigenvalues from the predictor variable intercorrelation matrix tend to explain mor
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noise than signal. Thus as the validity concentration is high, non-OLS methods are
usually most accurate. However, this tendency is diminished by an opposite trend in
favor of OLS regression as sample size and population multiple correlation increase.
How these trends balance out with real data is not immediately apparent. Co

These effects also depend on the type of prediction accuracy of concern. . Many .
simulation studies have concentrated on the error in estimating population regression
weights. Instead, the interest in this paper is on the accuracy of criterion score - .
prediction. This accuracy criterion seems more reasonable than that of the accuracy
of estimating population regression weights because such techniques as ridge
regression may be inappropriate when the sizes of regression weights are of primary
concern (Darlington, 1978; Pagel and Lunneborg, 1985). Moreover, the same analytic - )
strategy {llustrated in this paper is generalizable to the task of examining errors ..
in estimating regression weights., PR -

However, even when limiting consideration to prediction, one must consider both -
“relative® and "absolute" types of prediction accuracy. 1Is the researcher interested
in generating a prediction equation that yields predicted scores that are maximally
correlated with the actual criterion score (relative), or is the goal to minimize the
differences between the actual and predicted criterion scores (absolute)? These are
not the same goals, and the comparative accuracies of the methods are partially a
function of which one is considered.

Some theoretical (Thisted and Morris, 1980) as well as empirical (Musgrage,
Marquette, and Newman, 1982) rules have been offered for determining when various
types of ridge regression may be helpful in enhancing prediction accuracy. These
rules do not epecifically consider the effects either of validity concentration or of
sample size, both of which have been shown in simulation studies to affect the
relative performance of OLS and non-OLS methods. Also, as operating characteristics
for these theoretical rules have not been examined through simulation, it is
difficult to know how they would perform with real data. As well, the rules due to
Thisted and Morris consider only ridge regression as an alternative to OLS
regression. o

- Although some general trends and suggestions may be gleaned from these studies,

it is at best difficult to suggest to an applied researcher what method to select
given the specific data characteristics of a sample. The results are useful
theoret ically, but thoy are just not sufficiently simple to allow easily applicable
rules to be gencrated to use for specific data sets. Also, such rules would require
unknown population information for which one has no sample estimate, as in the case
of validity concentration.

More important, very little, if any, information is available about how much:
gain or loss in prediction accuracy one might expect by using non-OLS weighting with

real data. What is the potential payoff or loss for the researcher in trying these
non-traditional methods?

»

Rurpose o
The purpose of this paper was to advance and examine an empirical sample-based
method (PRESS) to be used for exploring the comparative performance of several
predictor weighting methods on a specific data set to aid in selection, and most
important, to assist in judging the probable resulting gain or loss in prediction
accuracy in selecting a weighting algorithm. Although the specific technique is
different, the use of an empirical sample-based method to aid in selecting a
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predictor weighting method is parallel with the suggestion of Dempster, Schatzoff,

and Wermuth (1977, p. 106) that "it would seem that comparison of the predictive
capabilities of various methods from one subset to another would provide a reasonable -
empirical basis for selecting a particular method in a given situation.” Mo
demonstrate the technique, the PRESS algorithm was executed on several typical, .
although not necessarily completely representative, sets of data. The feasibility of

the use of a microcomputer for the computation intensive PRESS algorithm was also
considered,

Allen (1971) introduced a technique that he labeled PRESS (PRedicted Error Sum o
of Squares) to be used to select a multiple regression variable subset that would . '~
yield a minimum sum of squared errors in prediction on cross-validation. This = .
algorithm i{s executed by alternately predicting each subject's criterion ecore from
the regression equation generated from the predictor and criterion scores of all o
other subjects. The resulting squared errors of prediction over all subjects are :
accumulated and the sum obtained serves as a criterion for cross-validation accuracy.

Although most of the multiple regression literature dealing with this "round-
robin” subject deletion strategy references Allen and terms the technique PRESS, it .
is not original with Allen. Perhaps the earliest explicit description of the
technique was in a paper by Gollob (1967). Many researchers, however, have S
recommended the procedure for both multiple regression and discriminant analysis-type
classification cross-validation (Allen, 1971; Allen and Cady, 1962; lachenbruch and
Mickey, 1968; Mosteller and Tukey, 1968; Btone, 1974). Additionally, the technique
has also been descriptively termed "leave-one—out" (Huberty, 19684; Huberty and
Mourad, 1980). -

Allen (1971) also provided a derivation for a computational simplification ueed .
in calculating PRESS that requires only one matrix inveraion, rather than the implied
n inversions, where o is the total number of subjects. This derivation was based on -
a matrix identity often attributed to Bartlett (1951), although no mention was made
of Bartlett's work. However, one also can find the same identity in Horst (1963, p.
428) with no mention of Bartlett. Whether all three authors independently derived
the same matrix identity is unknown.

Although this algorithm was introduced to help select a subset of predictors
- that would yield the smallest sum of squared errors upon OLS cross-validation and to

give an ut!mato of the resulting cross-validated prediction accuracy, the same logic
and algorithm can be used to judge the cross-validated prediction accuracies
(relative or absolute) of alternate predictor weighting methods; the idea is
completely general across any weighting strategy. PRESS can be performed for each
competing predictor weighting method, and the most accurate method can be chosen as
the one most probable to be most accurate on use in replicate samples, or the
researcher may decide that the gain, if offered by a non-OLS strategy, is not
important enough to warrant selection of a method that may not be well known.

The computational simplification offered by Allen (1971) is rather
straightforward for OLS. If one considers the usual model for multiple linear
regression, v
Y=BX +e, '
where X is an pxp matrix of p - 1 predictor variable values and the usual unit
vector, Y is the vector of criterion scores, and e is the vector of error terms, the



al solution for B, the vector of regression weights, is

« (X'x)-1 xvy,

deleting a subject would change both X'Y, and X'X, it would seem that both X%,
: :r:, matrix inverse (X'X)~1 would need to be recalculated as each subject is
eted. "

However, if ¥(;) i{s a subject i's predicted criterion score when that subject's
“tor gf _ﬁtedictor scores, Xi, and criterion score, Y{, are excluded from X and Y,
len (1971, p. 11) showed that
o=@y - g0 - gy, |
‘re Q = X'{(X'X)""X{, ¥j is the subject's criterion score predicted from the
jression weights based on all the sample, and ¥; is the subject's actual criterion
re. Although this formulation avoids the numerous matrix inversions, it still
lires the calculation of the predicted criterion score and the Qi8 for every
Jject. This calculation route, which was found to be as much as an order of
gnitude faster than actually calculating the inverses in a recent comparison
)iéis'l 1984), requires very little extra computation if one ordinarily calculates
siduals.

The most obvious step would then seem to be to try to adapt this computational
Jrtcut for use with the non-OLS methods of interest. In fact, by recognizing the
lationship between OLS, principal component, and ridge regression, one not only can
opt the algorithm, but also can do the calculations for the methods essentially
multaneously. As well, the Allen formulation obviously fits the case of regression

an equally weighted composite, as regression on such a composite just turns out to
a case of simple regression. | :

In fact, in a later lication, Allen (1972) r:ovided a version of the shortcut
-zmule for t:d e regression. Given the usual simple ridge regression model of
« (X'X + kI)=4 X'Y,
len showed that it followed that PRESS can be calculated from the same formulation
- with OL8S except that the kI would be added to the X'X matrix before inversion in
a calculation of and

However, there “ a pr&)‘hm with this formulation. When the researcher decides
on a biasing k" in ridge regression, it is added to the gorrslation matrix rather
an to X'X. Although one can center and scale the score vectors such that X'X = R,
w formulation is still incorrect since kI is being added not to the correlation
wtrix, but to the correlation matrix decreased by the contribution of one subject.
 an {llustrative problem with five subjects and one predictor variable (X = 2, O,
3,9 ¥Y=3,4,4,7 6; and a Dempster, Schatzoff, and Wermuth [1977) RIDGEM K
r 2,73), the PRESS cross-val idated correlation calculated by the shortcut formula
w =92, but the true PRESS cross-validated correlation calculated by actually
averting n correlation "matrices® augmented by k1 was =.07. This example is
ortainly not purported to be representative. Moreover, the difference would clearly
o less ¥or samples of even moderate size and with smaller ks. However, it does
llustrate that the Allen shortcut formulation for ridge regression gives incorrect
esults.

Another difficulty, however, stems from the fact that for ridge regression, the
used is often derived from characteristics of the sample. Thus it is aleo a random
arlable. As the accuracy of the choice of k affects the accuracy of the resulting
rediction equation, the algorithm for that choice must also be cross-val idated.

his task is clearly not accomplished in the Allen shortcut formulation. The same
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argument can be advanced for any choice made using information from the data of the
sample that affects the prediction equation. Thus one also must cross-validate the
algorithm for selecting the number of components in regressing the criterion on
principal components, and for choosing the algorithm for deciding which variahles are
*salient® enough to be included in an equally weighted composite, if such judgments
are to be made from sample information.

If one adopts this philosophy of cross-validating the total choice process
involved in constructing a prediction model from sample data, then the only
computational route possible is to calculate p versions of each eguation by actually
leaving a subject out each time. |

A Pascal computer proytan was written that cross-validates OLS, ridge
regression, regression on principal components, and regression on an equally weighted
composite via PRESS for any input data set. One of the difficulties with such
techniques as PRESS, bootstrapping (see Efron, 1979; 1983), and other resampling
plans {s the extreme amount of computation required. When using a mainframe or
minicomputer, this translates into costly run times. As microcomputers are a “one-
time" expense, such computation costs essentially nothing given the availability of
the machine and software. A disadvantage of the microcomputer is that it is slower
than mainframes and minicomputers. However, the degree of difference in specd is
rapidly decreasing with the continuing introduction of faster and more powerful
microprocessors. With this in mind, this program was used with an MS DOS 3
microcomputer to {llustrate and to examine the method on several sets of data, and to
assess the performance of the microcomputer in accomplishing these relatively
demanding computational tasks,

:

There are many possilile choices for a k for ridge regression. Because of its
excellent performance and ite ease of calculation, the lawless and wnn? (1976) k, _
which i8 the inverse of the F ratio resulting from a test of the OLS R4, was used for !
ridge regression. i

Because of its ubiquity, the Kaiser (1960) rule of selecting components with
roots larger than one was used to select the number of componente in regressing a
criterion variable on principal components. One might also concider using a
significance test (e.g., Bartlett, 1950) to determine the number of predictor
components to use. One should note, however, that a subjective decision would be
necessary even though a significance test is used as the researcher must select a
significance level.

As is often the practice, equal weighting was accomplished by specifying a
threshold predictor-criterion correlation for inclusion of a predictor. The
predictor then received either a +1 or ~1 weight depending on the sign of the
predictor—~criterion correlation. The resultant composite was then used to predict
the criterion. For the example data sets presented in this paper, predictor
variables with a correlation significant at the .05 level were included.

Obviously, if other non-OLS strategies were used, different results might have
been obtained. Likewise, with other data sets, results might have been different.
The purpose, however, was a demonstration of a method for examining and comparing the
accuracies of the weighting methods for specific data sets rather than a gencral
comparison of the weighting methods.
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The Demonstration Data Sets
ta sets of widely varying characteristics from the behavioral and

natural sciences were used in this demonstration. An attempt at sampling a variety
of types of data was made; however, the data sets are not advanced as representative,
. The results were not intended and should not be interpreted as generalizable to all
behavioral science data sets. The intent was to explore and to demonstrate a
strateqy for estimating what one might expect for a gpecifjc data set.

It also is important to note that the actual "real® data sets were used rather
than Monte Carlo simulations from covariance structures as has been done in some
' studies mentioned previously. This procedure not only allows the characteristics of
. the data structures to vary as they do in nature, but also affords the unique e
distributional characteristics of a sample to affect the results, contrary to the:
situation in simulation studies in which multivariate normality is usually assured.

These data sets actually have been used in regression analyses. They are from.
journal articles, paper presentations, or text books. Therefore any aberrant ecore
vectors are assumed to have been deleted. Before applying the PRESS strategy (or any-
other analytic method), the researcher probably would wish to consider the removal of
"outliers® that manifest appreciable leverage. One may find it helpful to oonsider
the excellent review by Hocking (1983), as well as associated comments for
information on methods for detecting such score vectors.

Results -

Tables 1 and 2 show the performance—of—the four weighting techniques for each of
the 21 data sets. 1n concentrating on relative prediction accuracy Table 1 furnishes
cross-validated correlations; Table 2 provides absolute accuracy as the mean squared
error in predicting the criterion score. 1n both tables there appears (a) a short
description of the origin of each data set (exact citations being available on
request), (b) the OLS red multiple correlation calculated in the total sample
(RQ), (c) the multicollinearity index due to Thisted and Morris (1980) (MI), (d) the
ratio of the number of subjects to predictor variables (n/p), and (e) the performance
of the methods, with the performance of the non-OLS methods shown as a percent of the
OLS performance. It should be noted that the MI criterion proposed by Thisted and
Morris is different when one considers relative and abeolute accuracy.

The number of subjects ranged from 16 to 293, and the number of predictor
variables varied from J to 17, The largest raw score matrix analyzed had 271
subjects with 12 predictors.

An interesting characteristic exhibited in the results is the amount of variety
cbtained. The comparative performance of the methods is clearly dependent on which
data set is being considered and on whether the criterion of accuracy of concern is
relative or absolute. In eddition, the fact that the different methods performed

‘better with differing real data sets may lend some credibility to such differences
found in simulated data sets.

(Table 1)
Relative accuracy is discussed first. In 16 of the data sets of Table 1 (1, 2,
3' ‘, 6' 7' 9' 10, 11' 12' 13' 1" 15' 18' 20' and 21) tidge pefformance was about
the same as that of OLS (within 2%). However, within these same data conditions, the
accuracies of regressing the criterion variable on principal components, and of
regressing the criterion variable on an equally weighted composite were much less
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consistent. Sometimes these procedures were also very close to OLS performance. 1In -
one data set (10) they were about 10% better than OLS. Moreover, they ranged down to
being appreciably inferior to OLS regression for equal weighting (as evidenced in 11,
13, 14, 18, 20, and 21) to drastically inferior for regression on principal ‘
components (6, 13, 14).

Ridge regression was appreciably superior to OLS regression in relative accuracy
on four data sets (8, 16, 17 and 19) ranging from 118 up to 44% better than OLS
regression. However, for all these four data sets, at least one (in two cases both)
of the other non-OLS methods were considerably superior to ridge - - an outcome nuch
like that provided by the results reported in a previous simulation study of relative
accuracy (Morris, 1982). '

In one data set (5), ridge did very poorly on relative prediction accuracy, as
evidenced by yielding a negative cross-validated correlation (as principal components
did in data set 16). Yet regressing the criterion variable on principal components or
on an equally weighted composite performed much better than OLS. However, the
importance of this particular result must be viewed in context; even though the
sequared multiple correlation was an appreciable .817, the cross validated OLS
correlation was only .028 so that no meaningful prediction could take place on
replicate samples in any case.

Absolute Accuracy (Table 2) |
As for absolute accuracy (Table 2), the results were different. 1In 12 of the

data gets, (1, 2, 3, 4, 6, 10, 12, 13, 14, 15, 20, and 21) ridge was within about two
percent of the mean squared error produced by OLS regression. (It should be noted
that gmaller is superior for this measure of accuracy.) These data sete constituted
a subset of the 16 meeting this same criterion for relative accuracy. On these same -
12 data sots regressing the criterion variable on an lly weighted composite
followed the results of ridge fairly closely; although superior (ranging from very
slightly to appreciablx) to ridge regression on three data sets (3, 10 and 12) 5
regressing on an equally weighted composite was inferior on the rest., Regresesing the
criterion variable on principal components displayed much more variety within these
12 data sets. Performance was about the same as ridge on five of the data sets (2,
3, 15, 20, and 21), superior on three data sets (1, 10 and 12), and ranged to
drastically inferior (4, 6, 13, and 14).

.~ On eight of the data sets (5, 7,8, 9, 16, 17, 18, and 19) ridge was appreciably
better than OLS regression in absolute accuracy, with the decrease in mean squared
error of prediction ranging from about 4% (data set 18) up to nearly 704 (data set
5). In four (5, 8, 16, and 19) of these eight data sets both regressing the
criterion variable on principal components and on an equally weighted composite were
in turn considerably better than ridge.

In only one data set (11) did ridge not perform at least about as well as OLS on
absolute accuracy, with a mean squared error of about 21\ more than that for OLS
regression. Both principal components and equal weighting also performed very poorly
on this data set. It is quite interesting and possibly important to note that this
is not the same data set as the one on which ridge was go poor in relative accuracy:
on that data set (5), ridge exhibited its best absolute accuracy performance (only
318 of the mean squared error of OLS regression).

Although the results from this data set may need to be considered especially
cautiously because of the very small cross-validated correlation, the results also
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did not agree between relative and absolute accuracy in other instances. The
decision of whether one is primarily interested in relative or absolute accuracy is
an important one.

For these data sets, the number of subjects per variable, multicollinearity, and
sample OLS multiple correlation all appeared to be of no use in helping the .
researcher decide whether one of the non-OLS methods would be worth pursuing. The
question of identifying the most accurate prediction method is really one of
classification. Can one "classify” a data set to the method ylelding the greatest
accuracy from sample characteristics? Using the "leave-one-out"™ strategy of
tachenbruch and Mickey (1968), these three sample characteristics were unable to
classify the data sets into the most accurate strategy (OLS or non-OLS) any better
than chance assignment would have for both relative and absolute accuracy. In fact,
when combining the results for both relative and absolute accuracy, the number of
correct classifications was exactly the same as one would expect by chance. For this
reason, it would not seem possible to construct rules for deciding a priori from:

these statistics arising from a specific sample which method would be 1likely to be
most accurate on application to a replicate sample.

Riscusgion ‘

Any summative comments that could be made related to the relative performance of
the methods are necessarily only relevant to these data sets, Moreover, the purpose
of this study was not to declare a best method, or even to derive rules based on -
sample characteristics for deciding which strategy to use. Indeed, the inability to
explain easily the behavior of the weighting techniques from the sample
characteristics presented argues for just such a sample specific approach as has been
used and {8 being proffered. S

One generalization that ?robably can be made from the results, however, is that
none of the non-OLS methods olfers a panacea for achieving maximum accuracy across
pll data sets as some reforts in the literature might suggest. The researcher stands
to lose a lot of prediction accuracy by choosing any of the non-OLS strategies under
some data conditions, Likewise, the researcher stands to gain a great deal in some
data oonditions if a superior algorithm can be selected. The problem is that it is
not easy to specify under what circumstances the realization of a superior algorithm
will occur from simple sample data characteristics; thus, the more complicated PRESS
procedure may be called for.
Although the data sets utilized in this paper may not be representative, it may
still be reasonable to suggest that the performance of none of the non-OLS methods
was good enougli often eno:(;;h to recommend routine application of them in the same way
that OLS regression is used. At the same time, moreover, there are appreciable
-accuracy gains possible in pome cases. If prediction accuracy is sufficiently
‘important for the data set and situation at hand, the researcher may wish to take the
.trouble to ferret out those occasions for which a more accurate non-OLS procedure can
ﬁliver greater accuracy; the PRESS algorithm is suggested as a viable strategy for

at task. : .

The computation times for all the runs are included in Table 3. Most of the
runs only took a few seconds, with several taking a few minutes. The two largest
jobs in which the Project Talent data was analyzed separately by sex each took more
than an hour to run. Whether the times are reasonable or not is clearly a subjective
decision. However, even times of more than an hour don't compare unfavorably with
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the batch job turn-around time that can be expected when using many large computers.”

The microcomputer used was a Sanyo MBC 550. This is an MS DOS machine with an
8088 microprocessor. It is similar in many ways to an IBM PC, but the 8088 clock -
rate is slower (3.6) than that of the IBM PC (4.77). An 8087 arithmetic coprocesso;
was also installed to aid in speed and accuracy. Because of the slower clock rate, -
almost all IBM PC "clones” would run these jobs faster than the times represented,

The computer language used was Turbo Pascal. While a good performer in geneul,
it 1s certainly not the fastest ®number crunching® language available. For example,
a recent article i{n BYTE found the Microsoft Pascal compiler to run a computation :i
intensive program utilizing the 8087 nearly twice as fast as Turbo Pascal. Microsoft
Pascal, however, was unavajilable to test. The Pascal program should run with no -
modification. Wik

It should also be noted that newer, faster, and more powerful microprocessors *}*
are now commonplace. The 8086, 80186, and the 80286 of the IBM AT should all petform
better than the times represented here. Therefore, for all these reasons, the times"
presented should be considered as quite conservative. Moreover, a 32 bit 80386 has“'
recently been released and will be much faster (probably by a factor of more than
four) than the fastest of these (the 80286). Super microcomputers with the power of '
a VAX mini should be on our desks yery soon.

While microcomputer time is essentially free, a deficit in a long running job 13
that the machine {s generally lost for other uses. However, there are now some good '
multitasking systems available that will allow the use of the computer for other ° -8
purposes, i.e. word processing, while such a computation laden job is number- '-""-'f"'*“ -
crunching in the "background.* Such multitasking systems will almost certainly be &*
standard part of the operating system of the more powerful microcomputers that wlll h
be common in the very near future. -

Although several strategies can be employed to make the computing algorithm as - &
efficient as possible, a large amount of computation may result in any case. In *#
general, in judging whether the PRESS technique is worth pursuing a researcher would
need to consider the size of the prediction problem and resulting costs of PRESS in*’
relation to the relative importance of the goal of maximizing prediction accuracy. “%
It is important to note, however, that most prediction problems seen in the ok
behavioral science literature are not excessively large and that in any case the non-
OLS methods are really only contenders with relatively small samples. Further, the ¢
trend of the decreasing cost of computational power is accelerating; researchers need
to plan their methods such that they can capitalize on this resource. Tukey's (1985)
comments relating to our need to make sure that the statistical techniques we invent
anticipate the incredible resources of computational power that we will have in the
near future seem especially relevant, o

A copy of the Pascal computer program is available for those wishing it. It is
a OOM file and should work on any MS DOS microcomputer with a microprocessor in the -
Intel 8088, 86, 286, etc. line. In requesting the program, please specify whether -
the program can expect to find an 8087 arithmetic processing unit available. 1f the
program is of interest, send a blank DSDD diskette to: -

John D. Morris '
College of Education - IRDTE
Florida Atlantic University
Boca Raton, Florida 33431
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Table 1

Heighting Methods' Belative Performance (Crogs-Validated
Correlation) for Several Data Sete

Numerical Designator Hothod
and AsadOf OIS =

--Data Set Description _BEQ__HL_“_iléi_.Bidgn___EQ Egnﬁﬁ
1 Marquardt's Acetylene Data 920 1.0 .920 100.01 102.05 99.7T1
2 Chew LP(5) Predicts MRT .591 1.0 1,750 100.64(100.60 1oo.3o':
3 Hoerl's Kansas Corn Yield | 80014 854 1oo.'2,‘4)_11bo.;23_io_d.'sz ,
4 Draper and Suith (p. 204) 914 1.1 .927 100.03 92.67 99,52
S Drehmer Data (EPM) 817 1.1 ,028 -192,43 379,01 131,28
6 Golf score from Taék‘Ferf 848 1.6  .912 99,99 47.40 99,98
7 Hald Data (D & S, p.'ass) ,962 1.0 .980 100.32 99.11 100,27

8 Hocking & Dunn RR 69ﬁp.-‘82 .620 1 0 1,318 132,67 230.95 23059
9 Hoerl RR-1960 Paper.. .986 1.1 .979 100.21100.17 100,17

10 Rerlinger and Pedhazur, 292 .640 1.6  .690 100.46 109.69 109.80
11 Longley DiM p. 312 .996 1,0 .992 99,83 95.61 92,57
12 Journal of Exp. Education 475 1.1 ,635 101.27 104.27 104.42
13 Rulon: Pref & Buccess - Mech. .,261 1.9 .441 98.59 26.49 92.62
14 Rulont Pref & Success - Oca  .323 2.4 494  96.68 26.51 74.81
15 Rulon: Pref & Buccess -~ Pas  ,252 1,5 ,432 99,01 94.61 97.25
16 Retention from Demos & WISC .388 1.2 ,058 144.11 -40,94 520,58
17 Plers-Harris from 10 & Ach 185 2,2 ,108 111.9 61,88 142,59
18 D & 5 Steam Data (p.352) 949 1.1  .925 99.06 89.44 86.92
19 D & & Data (p. 233) 816 1.2 .691 111,05 121,17 118.50

20 Female Talent Data C4L p, 345 .331 1.9 .520 100.38 97.78 886.15
2] Male Talent Data CeL p. 349 .411 1.7 .51 101,17 100,54 94.97

Note. Additional information about data sources is available from the author;
the abbreviated headings at the top of each data column are described in the
text at the beginning of tle section concerned with results.
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e 2

hting Methods® Absolute Eex:mmancg IMean squared

£} for Several Datd Sets

mer ical Designator ——ethed
" - Asatof OIS
ita et Deecription RO _MI__ OIS _Ridoe FC __Equal
‘arquardt's Acetylene Data  .920 1.1 21.0 99,02 75.60 101,32
Chew LP(5) Predicts MRT .591 1.0 63.9 98.25 98.25 99.10
Roerl's Kansas Cotn Yield  .800 2.1 14.2  98.27 98.37 97,78 -
Draper and Smith (p. 204)  .914 1,4: 13.9  99.16 186.42 106.79
" Drehmer Data (EPM) T 81715 112 31,20 21,20 26.51
Golf ecore from Task Perf  .848 2.3 1.98 100.06 485.98 100.21
Bald Data (DsS, p. 366)  .982 1.0 0.49'_“03.49 141.20 106.61
Bocking & Dunn RR Synp. '62  .620 1.1 837 72.57 31.25 31.38
Roerl RR-1980 Paper .966 1.4 2,98 90.31 92;50:-92;62
 Rerlinger and Pedhazur, p.292 .640 2.2 .19 97.63 79.39 79.29
Longley DiW p. 312 .99 1.2 ,18E+6 121,39 641.15 1066.6
' Journal of Exp. Bducation  .475 1.4 9.89 97,89 93,62 93.4)
) Rulon: Pref & Success - Mech .261 2.4  2.42 100.09 123.62 103.65
{ Rulon: Pref & Success - Oca 323 2.7  2.65 100.21 130.28 117.00
5 Rulons Pref & Success - Pas  .252 2,0 309.7 99.89 102.17 100.86
6 Retention from Demos & WISC .388 1.7 ,18E+5 84.15 81.97 58,07
7 Plers-Marris from 10 & Ach  .185 3.4 209.9 92,12 93.89 93,33
18 D & § Gteam Data (p.352) 949 1.5 .43 94.83 190.84 208.86
19 D & S Data (p. 233) .816 1.7 .007 68.58 48.35 5§3.23 °
20 Female Talent Data CGL p. 345 .331 3.7 2,10  99.16 101,20 107.77
2] Male Talent Data CiL p. 349 .411 3.2 1.63 98.31 98.79 104.17

tote. The information presented in the Note of Table 1 is appropriate for

this table.
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Table 3

Score Matrix Size and Comeutation  Times for Severa] Data Sets

Numerical Designator :
and

_ Data et Description n D Time (M;§)
1 Marquardt's Acety]g_h_e Data . 16_‘ | 3 106
2 Chew LP(S) Predicts MRT . . 23 8 6151
3 Hoerl's Kansas Corn Yield 51 6 2;02
4 Draper and Smith (p. 204) 2i 3 | 108
S Drehmer Data (EPM) 14 9 | ._ _-2:03..
6 Golf score from Task Perf 120 ‘“ | 1;51
7 Rald Data (DS, p. 366) - . 1;1 B p m
8 Hocking & Dunn RR Symp. '62 20 3 07
9 Roerl RR-1980 Paper = 15 5 321
10 Kerlinger and Pedhazur, p.292 3_0‘ 4 s§3
11 Longley DéW p, 312 . - — 16 ' 6 | 136
12 Journal of Exp. Education 83 4 158
13 Rulon: Pref & Success - Mech 93 3 _ sje
14 Rulon: Pref & Success =~ Oca 66 3 ) 124
15 Rulon: Pref & Success - Pas 86 3 133
16 Retention from Demos & WISC 29 10 1:30
17 Piers-Harris from IQ ¢ Ach 55 3140
18 D & & Steam Data (p.352) 25 9 3129
19D & & Data (p. 233) 16 ‘ o
20 Female Talent Data CiL p. 345 27 12 93:39
21 Male Talent Data C4L p. 349 234 12 80:09

Note. The information presented in the Note of Table 1 is appropriate for

this table.
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