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Chapter One

Introduction

Point of View

This little monograph on path analysis is addressed to a somewhat

different group of readers than the typical presentation on path analysis.

It is assumed that the reader has had at least a modicum of experience

with multiple linear regression and the use of full and restricted

models. It is presumed that the reader has read or is familiar with at

least parts of one of the following texts: Bottenberg and Ward (1963);

Kelly, Beggs and McNeil (1969); Ward and Jennings (1973); Williams (1974a);

or McNeil, Kelly and McNeil (1975). On the other hand, no presimiptions

are made regarding prior background in path analysis. ' .

The Path Analysis Literature

Path analysis originated in the work of Sewell Wright (1921, 1934);

his work on path analysis eminated from his study of genetics. The

use of path analysis was for the most part restricted to genetics for

a considerable time; economic applications were given in Wold and Juneen

(1953), Wold (1954), Goldberger (1964) and Johnston (1972). Blalock

(1962, 1964, 1971) was one of the earlier (if not the earliest) advocates

of causal analysis in the social sciences. However, Duncan's (1966)

paper seems to be the "jump off place" for the barrage of writing
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regarding path analysis/structural equations/causal analysis in the social

sciences. The Anerican Sociological Association has sponsored a yearbook,

Sociological Methodology that has been methodologically dominated by the

concerns of path analysis. The editors of the series have been Borgatta

(1969), Borgatta and Bohmstedt (1970), Costner (1971, 1972, 1974), Heise

(1974, 1975b, 1977) and presently Schuessler (1977). These yearbooks are

an excellent source regarding current sociological concerns (and by

inference, their relationships to educational research) of path analysis.

Several texts are available that explicate path analysis/causal models,

including Blalock (1964), Goldberger and Duncan (1973), Duncan (1975),

Namboodiri, Carter and Blalock (1975), Heise (1975a), Li (1975), Hanushek .

and Jackson (1977) and Asher (1977).

To this point, path analysis has been used as a term synonomous with

causal models and structural equations; while the English language is

replete' with redundancies, different words often are used to convey shades

of meaning. So one might describe the shades of meaning among the three

terms; to a person intimately familiar with the area, the terms convey a

different meaning. Before the term path analysis is defined or contrasted

with the two "new" synonyms, a necessary delimitation is made that presently

will make sense to readers not in the intended audience, but who are some­

what more familiar with the literature regarding path analysis. The main

technique considered in this monograph is termed "recursive models" and

has been described in Land (1969) and presented to a regression oriented

audience in Williams and Klimpel (1975). The reasons for this delimitation

will become obvious only after the recursive models have been considered in

detail and contrasted to other techniques in the path analysis oriented

li terature.
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Path Analysis - A Perspective

As attractive as it is to define path analysis in terms of the

several regression equations that will likely be involved, such a

definition is likely to miss the whole point of path analysis. Users of

path analysis will undoubtedly use regression models, but do so only be­

cause the underlying substantive theory requires it; some path analysts,

such as Goodman (1975), have at times shown that path type models can be

studied in contexts other than regression. Rather, users of path analysis

emphasize the underlying theory, whether it be social, genetic, economic

or psychological. On the other hand, the empirical value of structural

equations has sometimes been questioned. Duncan (1975, p. viii) made these

curious statements:

It is not my purpose to advocate or defend the use of structural
equation models in sociology. Indeed, I hold a rather agnostic
view about their ultimate utility and vitality in that discipline,
fascinating as the models may be in purely formal terms. One thing
that has given me pause is that I did not find it expedient to
include here any substantive sociological examples, real or contrived.
In thinking about the matter, it seemed to me that most of the
persuasive real examples pertain to a narrowly delimited area of
sociological inquiry. On the other hand, many contrived examples
in the methodological literature of sociology are so utterly
implausible as to call into question their very purpose.

Path Analysis - A Link Between Theory and Data Analysis

Perhaps the greatest value of path analysis is that it requires the

researcher to make explicit statements of the precise models that are going

to be formulated. Clearly, those whose approach to data analysis has been

the "shoot it up the flagpole and see if anyone salutes" type of data 
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snooper will find path analysis a foreign type of approach. To be sure,

data snooping has a place in the formulation of theory, but only rarely

(if ever) in the testing of a theory. Insofar as theory testing is

likely to become more rather than less important in the future of educa­

tional research, path analysis seems destined to hold a more important

place in the analysis of educational data.

Organization of the Monograph

The major methodological process, recursive structural models, is

presented in Chapter Two; the complete data set is given in Appendix A.

Structural equations are considered in Chapter Three. In Chapter Four a

second set of data is explored. The second set of data was collected on

a younger group of students than the first, but the variables reported are

identical. The second set of data is included in Appendix B. Various

hypotheses are shown and tested as an example of combining the results of

two different data sets.

The process of "two-stage least squares" is described at length in

Chapter Five. Several educational research applications of path analysis

are given in Chapter Six; the studies are by no means a complete listing

of such applications, but they should convey some idea of the use of path

analysis in educational research. Chapter Seven considers the relation­

ship of path analysis to statistical methodologies other than multiple

linear regression, including factor analysis.



Chapter Two

Recursive Systems

In the present chapter, a data set is considered in a path

analysis framework. The complete data set is included in Appendix A.

The data in Appendix A were collected by Williams and Brekke (in press).

They were studying the logical relationships of various Piagetian stages

and spatial relations. The variables included in the study were:

Xj = 1 if a conserver (a Piagetian concept) 0 if a nonconserver;

X2 = score on the Concrete Operational Reasoning Test (CORT)

devised by Burney (1974); X3 = score on the Logical Reasoning Test

(LRT) devised by Ankney and Joyce (1974); X^ = score on the Revised

Minnesota Paper Form Board Test (RMPFBT), a measure of spatial relations

(Likert and Quasha, 1970).

Any brief attempt to explain the Piagetian theory is likely to

oversimplify to the point of losing most of the richness of the theory.

Jean Piaget has published volumes of material on the thinking of children

for over half a century; for much of that time, he has run an institute

for the study of children^ thinking in Geneva, Switzerland. His

research went largely unnoticed in the United States until the 1960's.

Since that time, there has been an explosion of research regarding Piagetian

theory. Expositions of Piaget's theory have been written by Sund (1974)

Piaget, Inhelder and Szeminska (1960), Piaget (1930), Elkind (1974), and

Furth (1969, 1970), among many others. Over 50 additional references to

publications by Piaget can be found in Magary et al. (1977).

5
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Piaget's is a sequential theory; that is, the child's thinking develops

in stages. Briefly, the stages are: (1) The sensory-motor stage (0-2

years); (2) The preoperational stage (2-7 years); (3) The concrete-oper­

ational stage (7-11 years); and (4) The formal-operational stage (11-14

years).

The measure of conservation (weight), X-j, is a concrete-operational

task that should be achieved near the midpoint of the concrete-operational

stage. The Concrete-Operational Reasoning Test (CORT), 1S a PaPer

and pencil task that would be appropriate as a measure at the upper­

end of the concrete-operational stage. The Logical Reasoning Test

(LRT) is a measure at the formal-operational stage (X^). The three

Piagetian variables are clearly ordered; should occur first, then

X? and finally X . The fourth measure, a measure of spatial

relations (RMPFBT), X , for present purposes is considered a higher level
4

skill than any of the three Piagetian tasks. Subjects in the present

data set (N =116) were high school students. (See Appendix A).

Recursive Equations

Typically a set of recursive equations are used to define the relationship

between the four variables:

x2 - ai + + ef (2.1)

X3 = a2 + b31.2Xl + b32.1X2 + e2’ and (2’2^

X4 a3 + b41.23Xi + b42.13X2 + b43.12X3 + ^2*3^

In the recursive equations, each variable X.. is considered to be a possible

cause of the variables occurring after X. but not before X . The values
1 i

aT " a3 ^Present the intercepts for the corresponding equations. The

regression coefficients given in equations 1-3 are indicated as partial

regression weights. If a path diagram were made of the recursive
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equations, Figure 1 would result.

Figure 2.1 Recursive Path Diagram.

Quite often, the interest in path analysis is not in a complete

set of paths as given by Figure 1, but rather in restricting the number

of paths.

For the present data, it might be conjectured that a path for X1

to is unneeded; that is, it does not seem likely that conservation

will have any effect on spatial relations except thru the two intermediary

Piagetian tasks. Dropping the path from X^ to X^ would transform equation

2.3 to X4 = a^ + ^42.3X3 + ^43.2^3 + e4’

Equation 2.4 presumes &41.32 vanishes (or is equal to 0). This is

equivalent to hypothesizing p4132 = To test this hypothesis, equation

2.3 can be used as a full model and equation 2.4 can be used as the 

restricted model:
2 2

F = (R4.123 ‘ R4.32)/’1

(1-<i23)/(n-k-1)

where k is the number of paths to X4

(2.5)

when all paths are represented.

Most users of path analysis focus on the standardized regression weights;

these weights (beta coefficients) are called path coefficients. Figure 

2.2 shows a path diagram with all paths included for the data in Appendix A.
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Figure 2.2. Path Diagram for Three Piagetian Tasks and the Minnesota Paper
Form Board: X, = conservation, X„ = Concrete-Operational Reasoning Test,
Xo = Logical Reasoning Test and X^ = Revised Minnesota Paper Form Board
Test (spatial relations).

assumption seems

diagram with p^

result. Such a

If the path from Xj to is eliminated, a new path diagram would

system would assume that B 32 =P4i 32 = P41 = This

intuitively tenable, given that p^ = .06. A second path

= 0 is given in Figure 2.3.

Figure 2.3. Path Diagram with p = 0.
Operational Reasoning Test, X_ - Logical
Minnesota Paper Form Board Test (spatial

X - conservation, X? = Concrete-
Reasoning Test and X^ = Revised
relations). 4
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It can be seen that dropping p has little effect upon the remaining

system. Both p42 and p43 change only slightly from the complete recursive

system (Figure 2.2) to the reduced recursive system (Figure 2.3). The

test given in equation 2.5 yields

F = (.24421 - .24080)71  ,nl-
(1 - .24421)/(ll6 - 3 - 1) " •bU0,

This F value is nonsignificant, indicating the hypothesis that p4^ = 0 is

tenable. There is yet another way to achieve a test essentially the same

as that given by equation 2.5. In that most computer programs also give the

computed t values wherein the t value is a test of significance for the

partial regression coefficient, the t value can be read from the printout

and is t = .711. In that t2 = .505 = F, the present result is analogous to

the t test being a special case of the analysis of variance.

Tests of More than One Partial Regression Coefficient

The test given by equation 2.5 is appropriate if exactly one path

coefficient is being tested. If, however, more than one coefficient is being

tested in the model, the probabilities should be adjusted for the specific

tests performed. That is, the concerns of multiple comparisons enters

into the arena. All too often, multiple F (or t) tests are performed after

using a full and retricted model for all restricted models without any

adjustments to the probability values. In regard to the usual comparisons,

Williams (1971, 1972, 1974b,1975, 1976) has shown the various multiple

comparisons in a regression format while also addressing the over-use of

full and restricted models without adjusting the probability values. Bielby

and Kluegel (1977) have also addressed this same problem.

While many ways of preserving the probability values could be used,

the specific approach recommended here follows Dunn's (1961) test. Essentially,

Dunn's test requires the researcher to fix the hypotheses to be tested on an

a priori basis rather than using a "snooping" procedure such as Scheffe s (1953)
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4
test. Note that in Figures 2.1 and 2.2 there are (2) = 6 paths. If these

paths are all tested indiscriminately (as would occur with tests that consider

all possible comparisons such as Tukey's, 1953, or Scheffe's test) it would

seem to be out of character to the conception of path analysis; path analysis is,

after all, at least as much as exercise in theory as it is a statistical

technique. Few theories would encountenance indiscriminant testing of

hypotheses; rather, specific hypotheses would be tested*for a priori stated

reasons.

In regard to the data in Figure 2.2, suppose a researcher had hypothesized

that no indirect effects occur; that is, no variable makes any contribution-

beyond the path to the inrnediately subsequent variable. See Figure 2.4.

Figure 2.4. Path Diagram with p^ = p = p.? =0. X, = Conservation,
X2 = Concrete-Operational Reasoning Test, Logical Reasoning Test and

= Revosed Minnesota Paper Form Board Test (spatial relations).

Table 2.1 contains the path coefficients from the full recursive model

(Figure 2.2) and with the corresponding computed t values; the correlation

coefficients are also reported. The table is shown in two sections; those

paths that are considered necessary by Figure 2.4 (p2i p32’ p43^ are the

top portion and those paths dropped from Figure 2.4

the bottom portion.
(p31’ p41* p42) are
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Table 2.1

Path Coefficients, Correlation Coefficients and Computed t Values for Figure 2.2.

Path Coefficient r t

P21 = .163 .163 1.77

P32 = .459 .484 5.59

P43 = .300 .436 3.15

P31 = .152 .227 1.85

P41 = -060 .169 .71

P42 = -252 .408 2.68

To test p3p p^i and p^, Dunn's tables (Appendix C and D respectively at

the .05 and .01 levels) can be used. The dfw for p and p42 are 112;

for p^,. are 113. There is so little difference in the critical val.ues
■Ji 1 1

for such degrees of freedom that they can be ignored for large N; most

tables (including those in Appendix C and D) do not provide separate entries

for those values so that interpolation is necessary in any case. To two

decimal points, the critical value for m = 3, df = 113, is 2.43 (at the .05

level) and 2.99 (at the .01 level). The computed t value for p42, t = 2.68,

is sufficiently large that we probably would consider retention of this coefficient.

Indeed, we might be suspicious of p2p since the corresponding t value is

non-significant. For logical reasons, p would seem necessary in the system

even though it is a non-significant path. Hence, a tentative model would

include p2p p32, P42 and p43, excluding P31 and p4r See Figure 2.5.
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Figure 2.5. Tentative Model for Piagetian data and spatial relations. =
Conservation, X2 = Concrete-Operational Reasoning Test, X3 = Logical Reasoning
Test and X4 = Revised Minnesota Paper Form Board Test (spatial relations). .

The Problem of Arguing from a Non-Significant Finding

One difficulty with the approach shown in the previous section is that

decisions to drop paths is made from a non-significant finding, rather

than basing the decision on a significant finding, as is usually the case

with statistical inference. While some readers may be satisfied by an

inversion of the previous sentence, that is only those paths whose test proves

to be significantly different than zero are retained, the use of a statistical

test as the major determiner may prove to be inadequate to the task of

path analysis. Certainly, paths that vary only slightly from zero but are

significant due to a large sample size may still be discarded. This decision

can be made on a statistical basis even with a large sample size. A researcher

may choose an arbitrary value, g, such that if p is within a confidence

band of the value, the path is discarded.

Given that the path coefficient and t value are available, the

standard error of the path coefficient is given as s = P . (2.6) As an
, p t

example, suppose the researcher had decided to drop all path coefficients
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whose absolute value are less than .20 or those whose confidence band included

.20 (among the coefficients to be tested). To test p42> the confidence band

is given by p t tas , where t is taken from either Appendix C or D.

Because there are three tests involved in the testing, p3p p41> and p42,

m = 3, dfw = 113; the critical value for a = .05 is 2.43. Thus, the

confidence limits are .252 t .228 = .024, .480. Under this criterion, p42

would be dropped.

Reproducing the Correlation Matrix

One of the more important contributions of path analysis is the repro­

duction of the correlation matrix. The correlation matrix can be reproduced

using the following equation

rij’*pjkrik- (2-7>

where k includes every variable which has a path leading directly to Xj. For

situations such as are'depicted in Figure 2.2 wherein every variable is

connected to every other variable with a path, equation 2.7 would identically

reproduce the correlation matrix. On the other hand, models such as Figures

2.3, 2.4 and 2.5 would tend to have some departure from an exact reproduction

of the correlation matrix.

The reproduction of the correlation matrix by successively using

equation 2.7, proceeds as follows (using Figure 2.2):

r12 ' p21rll " P21 ' -163i (2-3)

r13 = P3fn * P32-12 ' P31 * p32r12 ’ -152 + ('459>(-I63) = -227S (2-9)

r14 ’ P41rll + P42r12 + p43r13 " P41 + p42r12 + P43r13 " ('060) + (-252)<-163)

+ (.300)(.227) = .169; (2.10)
r23 = p31r21 + P32>-22 ■ P31r21 * P32 " (.152)(-163) + (.459) • .484; (2.11)

r24 = P41r21 + p42r22 + p43r23 ’ p41r21 + p«2 + P43r23 ‘ (-M0) ('163) + l'252)

+ (.300)(.484) = .407; (2.12)
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>-34 ‘ p41r31 + p42r32 + P43r33 ’ + P42r32 + P« ‘ (-060)('227) +

(.252)(.484) + (.300) = .436. (2.13)

All values for the correlation coefficients are within rounding error of the

actual correlations.

In that the final model (Figure 2.5) had two paths (p31 and p41) deleted

it would be useful to compare the predicted correlations with the actual

correlations. With p and pd1 deleted,
31

r^ “ p21rn ~ P21 " *163j (2.14)

?13 = P32r12 = (.484)(.163) = .079; (2.15)

q4 = p42r12 + p43r13 = <-257)(-163> + (.312)(.227) = .113; (2.16)

^23 = P32 = -484; (2.17)

r,4 = P42 + P43r23 = (.257)(.312)(.484) = .408; (2.18)
^34 = p4?r32 + p43 = (-257)(.484) + (.312) = .436. (2.19)

Table 2.2 contains the actual correlations in the portion above the main

diagonal in the correlation matrix and the predicted correlations under the

deleted paths are found below the main diagonal .

Table 2.2

Actual (Above Main Diagonal) and Predicted (Below Main Diagonal) Correlations

for the Piagetian and Spatial Relations Data

X1 X2 X4

X1 .163 .227 .169
X2 .163 .484 .408
X3 .079 .484 .436
X4 .113 .408 .436

Legend: X, = Conservation, X? = Concrete-Operational
X3 ~ Logical Reasoning Test and X = Revised Minnesota
Test (spatial relations). 4

Reasoning Test,
Paper Form Board
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The discrepancy between r13 = .227 and rJ3 = .079 might be more than some

researchers wish to entertain; they could then add p back into the system

if they so desire.

Further Decomposition of Correlation Equations

The set of equations from 2.8 to 2.13 can be represented as path coefficients

only, with the correlations appearing as solutions to the equations. Equation

2.8 is already in such form. If equation 2.9 is inspected,

r13 = P31 +p32r12’ But ri2 = P2p therefore r13 = P31 + P32P21- (2‘20)

In a similiar manner, equations 2.10 thru 2.13 can be transformed:

r14 = P41 + P42P21 + p43^p31 + P32P21)> (2-21)

r23 = p31P21 + P32’ <2-22)

r24 = P41p21 + P42 + p43<p31p21 + p32^ <2‘23)

and '

r34 = P41 (P31 + P32p21> + p42 (P31P21 + p32> + p43‘ (2'24) ’'

It can be noticed that each equation (2.8, 2.20 thru 2.24) includes the

path coefficient for the path from the two variables involved in the correlation

plus some additional material. For example, equation 2.20 for rj3 includes

P31 plus PggPsi* Path coefficient corresponding to the two variables

being correlated is called the direct effect. What is meant by a direct

effect is precisely defined by equations 2.8 and 2.20 thru 2.24; Darlington

(1968) has pointed out the limitations of using beta coefficients and

compares several related concepts that, because of similar terminology,

sometimes get conceptually confused. Williams and KI impel (1975) show

that the direct effect and independent contribution of the variable are, in

fact, different concepts. Wolfle (1977 b), following Finney (1972), extends

the Williams and Kimpel paper by separating the components that make up

the indirect effect into more definable components. Wolfle (1977 a)

extends his earlier paper by giving an explanation in typical sociological 
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terminology of the different indirect effects. Table 2.3 shows the decomposition

of each correlation into four components, the direct effects, indirect effects,

spurious correlation, and joint associations. In relation to the decomposition

of the total indirect effects into components, see also Anderson and Evans

(1974) and Spaeth (1975).

Table 2.3

Assessment of the Effects of the Fully
(All Paths Included)

Recursive Model

Variables Total
Association

Di rect
Effects

Indirect
Effects

Spurious Joint
Association

X1 on X2 .163 .163 .... - - —

X1 on X3 .227 .152 .075 — —

X1 on X4 .169 .060 .109
*■ 1^

X2 on X3* 1 .484 .459 ..... .025

x2 on X4 .408 .252 .138 .018 -

X3 on X4 .436 .300 .136

First, in regard to Table 2.3, there are no joint associations since there

is only one variable

variable can have an

that serves only as a predictor variable (X^. No

indirect effect on the variable it immediately precedes;

thus Xj on X^, X^ on X , and X^ on X have no indirect effects. In regard

to X1 on X^, r^ - P31 + P32P21; p^ = .152 is the direct effect and P32P2i =

(.459)(. 163) = .075 is the indirect effect of X, on X_ thru X . For X on X„
■1 J 2 14*

r14 = P41 + P42P2i + P43 (p31 + P32P2p;

= P41 + P42P2i + P43P31 + P43P32P21;

= (.060) + (.252)(.163) + (.300)(.152) + (.300)(.459)(.163);

= .060 + .041 + .046 + .022.

For r14, .060 represents the direct effect, .041 is the indirect effect of 
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Xj on X4 thru X2, .046 is the indirect effect of on X4 thru X and

.022 is the indirect effect on Xj on X4 thru X2 and X3.

For r23, r23 = p^ + p^,

= (.152)(.163) + .459,

= .025 + .459,

where .459 is the direct effect of X on X , and .025 is due to the combined

effect of P31 and p^. This latter effect cannot be indirect in regard

to X on Xo, because there are no intermediary variables; because Xi orecedes
2 J 1 '

both X2 and X_, this portion of the correlation is called spurious.

For the effect of X2 on X4,

r24 = p41p21+ p42 + P43P31P21 + P43P32’

r24 = (.060)(.163) + (.252) + (.300)(.152)(.163) + (.300)(.459),

r24 = .010 + .252 + .008 + .138.

For r24, .252 represents the direct effect, .138 represents the indirect

effect of X2 thru X3 and .010 and .008 represent spurious relationships.

Finally, .300 represents the direct effect of X_ on X. with the remaining
□ ’

portion due to spurious effects.
One additional value of path analysis should now be seen; each correlation

can be decomposed into a direct causal portion, an indirect causa p

and the spurious effects of the variables involved. It would ofte

interest to compare the size of these various components. Rega 9

present example, X2 (Concrete-operational Reasoning Test) has a fa' y

indirect effect on X4 (spatial relations) thru X3 (Logical Reasoning Test).

Xj (conservation) has a larger indirect effect than a direct effect on 4>

this indirect effect may be sufficient to include the variable Xj in the 

model even though p43 is close to zero.
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Assessing the Effects Under the Reduced Recursive Model

The model shown in Figure 2.5 has two deleted paths, p31 and p^. See

Table 2.4.

Table 2.4

Assessing the Effects in the Reduced Recursive Model

Variables Total
Association

Di rect
Effects

Indirect
Effects

Spurious Joint
Association

X^ on X3 .163 .163 — — —■ ■ —

Xt on X .227 — .079 . - —

X, on X
1 4

.169 .067 — ■ - - -

X2 °n X3 .484 .484 —

X2 on X4 .408 .257 .151 ■ ■-

X on X
3 4

.436 .312 — .124 —
■

Using equations 2.8 and 2.20 thru 2.24 with' P31 = P41 = 0 and the remaining path

coefficients from Figure 2.5,

^12 = P21 = ,163, the direct effect of X.^ on X^;

?13 = P31 tp32p2l

= 0 + (.484)(.163) = .079, the indirect effect of X on X ; The actual
1 3

value for r^, .227, is .148 larger than the just arrived at figure. This

difference is due to dropping p3^.
?14= P41 + P42P21 + P43P31 + P43P32P21

= 0 + (,257)(.163) + (.312)(0) + (.312)(.484)(.163)

- 0 + .042 + 0 + .025 = .067, which represents the indirect effect of

Kj on r^ .067 - .102 is the portion due to deleting po^ and p^.
F°r r23’ ?23 = P32 + P31P21>

= .484+0, all of which is direct;
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r24 = p41p21 + P42 + P43P31P21 + P43P32’

(0)(.163) + (.257) + (.312)(0)(.163) + (.312)(.484),

= 0 + .257 + 0 + .151;

p42 = -257 is the direct effect; .151 is the indirect effect of X? on X4 thru X3

Finally,

r34 = P41 (p31 + P32P2? + P42P31P21 + P42P32 + P43

= 0 (0 + (.484)(.163))+ (.257)(0)(.163) + (.257)(.484) + (.312)

= 0 + 0 + .124 + .312.

which represent respectively the spurious effect (.124) and the direct

effect (.312).

Relationship of Partioning the Correlation
Coefficients~wTth Partial and Part Correlation and the Independent

Effect of a Variable

One of the problems of statistics is translating the results of the use

of equations to a presentation in English. In common English, what is a

"direct effect"? Several authors have attempted to answer in English this

question. These renditions in translating statistics has undoubtedly given

rise to many misconceptions on the part of unsophisticated readers. Perhaps

it is easier to proceed by showing what a direct effect is not to help clear

up these misconceptions. It was shown in complete detail in Kerlinger and

Pedhazur (1973) and Williams, and Klimpel (1975) that a direct effect is not

synonymous with "the independent contribution of a predictor. For

example, if the effect of variable 3 is considered in relationship to var’

4 from the full recursive model (Figure 2.2; Table 2.3), ^3
2

R4 12 = -17711- Thus» the independent contribution of variable 3 is R4_123

- R4 12 = .06710. It is well established that this value is the square of

the part correlation between variable 4 and an adjusted variable 3 such

variables 1 and 2 have been partialled out of variable 3;
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r4(3.12) = .259 - V.0671. The square of P43 is (.3) or .09. Thus,

neither the direct effect or a variable nor the square of the direct effect

is necessarily related to the independent effect of a variable.

Tnis also leaves in some doubt the use of the terminology, "spurious

effect". One might suppose that the spurious effect of a variable b on

variables a and c would be given by r - r . where b might represent one
Q U • L/

or more prior variables. This relationship does not hold either; r34 = .436;

r34 12 = .286. One direct effect is of interest; p32 = r23 - P31P21-

P32 = r23 _ (r13 " P32r12^ r12’
9

f>32 " r23 ' r13r12 + P32r12 '•

P32 I1 ’ r122> ° r23 ‘ r13r12;

p32 = r23 ~ r13r12 ’ which is

1 - r1 r12

between, variable 2 and variable
i

This finding isn't particularly

correlation coefficient. To use
2 2 2R2.13=r21+r2(3.1)' This formulation presumes that variable 3 is a

predictor of variable 2 which violates our recursive models. What, then,

can be said about a direct effect? A direct effect of a variable is that

portion of a correlation not due to compound paths in the decompositon

of the correlation coefficient. Duncan (1970) addresses many of these same

issues from a path analysis perspective (and with different interpretations

with those given here) and should be consulted by the interested reader.

Choosing a Solution

Of the models tested, which path diagram should be used as the path dia­

gram to represent the data for reporting purposes? Making tnis decision is

one form of the equation for the part correlation

3 modified by variable 1 (or r2^3 ^).

helpful in decomposing the squared multiple

rn/n , x. an eouation could be formed:
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be investigated.

at least as much an art as it is a science. The decision made by Williams

and Brekke was to consider Figure 2.3 with only p41 deleted as their model.

While this model does include two non-significant paths (p and p ), their

inclusion can be justified by logical reasons and also by considering the

effect on the reproduced matrix of correlation coefficients. If the reader

prefers another solution, adequate information is presented so that another

solution could

Identification

There are three possible states of affairs regarding identification in

path analysis; an equation (or set of equations) can be just-identified,

over-identified, or under-identified. With recursive models, it is not possi­

ble for under-identification to take place. While identification takes on a

considerably higher interest in nonrecursive models, several points are 

worth addressing.-

For the moment, it is worthwhile to consider a complete nonrecursive

model for four variables. See Figure 2.6.

Figure 2.6 A Four Variable Model with all Possible Paths Included

Figure

"everyth! ng

2.6 would be substantively useless, since it would assume that

causes everything else", which is not helpful in any sense. How-

. eoon that there are twelve arrows (equivalently, six double-ever, it can be seen tnat cner c a
, , ■ that many paths would cause the system to beheaded arrows). To include that many pa

a it inriicious choices are made in deleting paths, the systemunder-identified, it juaiciuu
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can become just-identified or over-identified. As it happens, a complete

recursive system (see Figure 2.2) is just-identified. That is, all parameters

can be estimated, but no tests on the adequacy of the system can be made; by

deleting additional paths (see Figure 2.5) thus causing over-identification,

tests can be imposed on the system; these tests were given earlier. To see

another aspect to over-identification, consider the estimates of r^ from two

similar equations for Figure 2.5 (with p31 and p41 deleted). From equation

2.16, "r^ = .113; al so, ^4 = .067 from the use of equation 2.21; r14 = .169.

Thus, not only does over-identification lead to somewhat inaccurate estimates

of the correlation coefficients, it can lead to different estimates of the

correlation coefficients.

Exogenous and Endogenous Variables

To this point, an effort has been made to present path analysis from

a regression framework, using much of the terminology more familiar to the

regression formulations. Thus, many of the niceties of path analysis have

been omitted. To compensate for this regression emphasis, Some of the

concepts more familiar to a path analysis view are now considered.

Variables in a path analysis are either exogenous or endogenous. While

many authors have described these two terms in considerable detail, one

major difference is this: a variable that serves only as an independent

(or predictor) variable is considered to be exogenous; exogenous variables

are often thought to be pre-existing to a system implied in a path analysis.

Accordingly, while an endogenous variable may be an independent variable in

part of the system, it must be a dependent variable at least once in the

system.

For the example in the present chapter, conservation (X^) serves as an

exogenous variable. Had another variable, such as age been included and had

conservation been regressed on age, then conservation would become an endogenous

variable.



23

The usual practice is to consdier that all endogenous variables are

measured with error, but exogenous variables are measured without error. The

usual system in path analysis then includes a residual predictor variable

for each endogenous variable, together with an appropriate path coefficient,

that accounts for all the remaining variance not attributable to the system.

That custom was not followed here; the interested reader is directed to Land

(1969) regarding this aspect of path analysis. However, path coefficients for
residual variables are easily found as l/ 1 - R^ where R is the multiple cor­

relation of the particular variable with all of its predictor variables. The

residual path coefficient is more commonly referred to as the coefficient of

alienation in elementary statistics texts. Also, it is usually the case that

path diagrams specifically include paths from these residual variables; Figure

2.7 shows the path diagram from Figure 2.5 with pJ3 and p deleted but with

Figure 2.7 Path Diagram with p and p Deleted and Residual Paths Included
X, = Conservation, X - Concrete-Operational Reasoning Test, X, = Logical
Reasoning Test and X^ = Revised Minnesota Paper Form Board Test (spatial
relations)
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Specification Error

One major flaw that a researcher may make in path analysis is to

incorrectly specify the order of the variables; such a turn of events is

called a specification error. As an example, suppose the actual ordering

of variables in the data set considered in this chapter is X^, X^, X^, X^.

That is the formal operations task (X3) should have had spatial relations

(X4) as a predictor rather than vice-versa. Then many of the estimates

of the path coefficients for the system will be irremediably incorrect.

Thus, path analysis is not an appropriate tool for those who would prefer to

fix the order of the variables on the size of the beta coefficients rather

than having decided the order a priori.

Another way that a specification error can occur is by the omission of

a variable, either be actual omission or by an assumption of linearity

where ci(rvi linearity exists. If the researcher is aware of a variable that

should be included that, for whatever reason, is not included, this difficulty

can be somewhat alleviated by including indicators of the omitted variable.

In regard to omitting a variable, Woelfle ^1978) nas pointed out that if

a variable X^ is omitted when it should have been included that the estimate

of p32 is given as X3 = p32 ^2 + e' wfien> in fact, the true model is

X3 = p3i, X2 + p31 Xj + e. Then, p^2 = p32 + p31 r23, so that P31i"23 repre­

sents a specification error. Thus, Woelfle would argue that if a large

discrepancy occurs in reproducing the correlation matrix (See Table 2.4),

this discrepancy would represent a specification error.
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Di scussion

Readers who are quite familiar with multiple regression but unfamiliar

with path analysis are likely to be perplexed on several points regarding

path analysis. Besides the introduction of an almost completely new

terminology, words that appear to have commonality between traditional

multiple regression analysis and path analysis sometimes refer to different

entities. As has been shown here (and previously in Williams and KI impel,

1975), direct effect has a different meaning from "the independent contri­

bution of a variable".^ Also "spurious" has a very specific meaning in

path analysis tnat is different from rac - rac

A justification of sorts could be made for adherents of path analysis

in that they could rightly claim that the use of regression addresses only

a part of path analysis; path analysis could be seen as a different per­

spective, much as Bayesian statistics is an entirely fresh approach to

understanding data. In this vein, they have coined new words and have

attached somewhat different meanings to words already appearing in the

statistical literature.

For those who see path analysis as a useful tool to analyze data but

prefer to use regression as the means of analysis, there need be no contra­

diction. As a user (but not necessarily a "true believer") of path analysis,

perhaps a suggestion can be made. It appears to me that the terms direct

effect, indirect effect and spurious effect are attempts to impose the

English language on relationships that are unequivocal in the equation

form, but become equivocal by trying to approximate their meaning with

English. No analytic loss occurs if the terms are discarded; while this

change would be less welcomed by those who prefer verbal presentations,

the interests of accuracy would be served.



Chapter Three

Structural Equations

For the researcher not oriented toward the causal model-path analysis-

structural equations approach to analyzing data, the addressing of

structural equations might appear to be nothing other than a semantic

exercise to using simple regression models. Those who have learned the

maxim, "You cannot determine causation from correlation", will be

skeptical of the meaning addressed to structural models, just as they will

likely see path analysis as a violation of their revered maxim.

Before writing down the structural equations, it is worthwhile to

examine the reasoning that might lead a researcher to even attempt to find

such equations. Briefly, such a researcher (one who wishes to estimatel
structural equations) has a fairly difficult goal in mind - the finding of

a model that has some universality and can be used with a variety of

populations. If the structural model were dealing with hunan behavior,

’ the structural equation should be useful in relating the cause-effect

nature of the human behavior rather than simply predict an outcome.

Interestingly, a rather good example of structural equations has already

been made in the regression oriented literature (sans the path analysis

framework). McNeil (1970) presented a process by which one might, empiri­

cally, through the use of regression models, arrive at Newton's law of

motion. Those who would be critical of the use of regression might discount

McNeil's contribution as "the reinvention of the wheel". Rather, McNeil 
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was focusing upon the methodology as a way in which so-called "laws"

could be empirically found. But these laws are precisely the end goal

of those who use structural models. They would hope to find models that

have fairly wide application.

Quite clearly, the use of structural equations would most likely be

working within a theoretical framework; one such example from an earlier

period is the models developed in learning theory by Hull (Hillgard, 1956).

Thus, those who might be oriented to approaching data analysis as a data

snooper might never appreciate the mind-set of those working from a strong

theoretical base.

A Definition of Structural Equations

What is a structural equation (as opposed to a regression equation)?

Perhaps'it is useful to allow Duncan (1975) to mince a few more words

on this issue also:

It does not seem to be possible to give a definition of "structural
form" that is other than circular. The structural form of the models
is that parameterization-among the various possible ones-in which
the coefficients are (relatively) unmixed, invariant, and autonomous.
How do you know if you have written a model in its structural
form, rather than in some other form? Well, if the coefficients
in the model are indeed relatively invariant across populations,
somewhat autonomous, and not inseparable mixtures of the coefficients
that "really" govern how the world works-then your model is actually
in its structural form.

A strong possibility in any area of research at a given point in
time is that there are no structural relations among the variables
currently recognized and measured in the area (p. 151-152).
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Structural Equations for the Pi agetian Data

With some trepidation then, structural models can be expressed for

the recursive relationships shown in Chapter Two (with P^b., 99=0).

They are given as

X9 = 21.125 + 1.408X. + e , (3.1)
15

X, = 1.574 + 1.236X. + .434X_ + er (3.2)
J 1 l 6

and

X. = 20.224 + .646X9 + .831Xq + e_. (3.3)

The reader will probably recognize these equations as the least squares

solutions for the various coefficients. Are the structural coefficients

nothing more than simple least squares solutions together with a semantic

overload? From the preceding discussion, such criticism would seem

unjustified. As will be seen in Chapter Five on nonrecursive relation­

ships, in general, the structural coefficients are not identical with

simple (or ordinary) least squares solutions.



Chapter Four

Comparing Results from Two Different Data Sets

A second data set (Appendix B) is considered in this chapter; the

data are from Brekke and Williams (1978). Several interesting relationships

can be drawn between the two data sets in Appendix A and Appendix B.

First, the same variables are available for analysis in set B as were

available in set A. One major difference distinguishes the groups; group

A is a group of high school students (ages 15 years to 19 years 7 months)

whereas group B consists of junior high school students (ages 12 years 3

months to 16 years 3 months); ages given in the Appendices are in months.

Three kinds of analyses are performed in the present chapter. First, an

analysis procedure somewhat analogous to homogeneity of regression co­

efficients is tested given that access is available to both data sets.

Second, only data set B is considered to be available, and path coefficients

from set A are used as a "restricted model". Finally, assuming that the

structural coefficients are available (given in Chapter Three) restricted

models are employed on the structural equations.

Preliminary Analysis of the Second Data Set

First, because path models are given in Chapter Two and structural

equations are given in Chapter Three, corresponding information on data

set B are useful for comparison. Because data set A was collected prior

to data set B, p41 was excluded (were it included, P41 = .043; thus, its

exclusion can be made on both logical and empirical grounds). Figure 4.1

shows the path model for data set B.

29
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Figure 4.1 Path Diagram with Junior High Subjects, = 0, (N = 111),
Data Set B. X = Conservation, X„ = Concrete-Operational Reasoning Test,
X3 = Logical Reasoning Test and X4 = Revised Minnesota Paper Form Board
Test (spatial relations).

Comparing Figure 4.1 to Figure 2.3, a general remark is that the

corresponding path coefficients are in fact remarkably similiar; perhaps

the relationship of Xj to X2 and also of X to X mignt be seen as being

slightly reduced.

The corresponding structural equations for data set B are as

follows:

X = 21.548 + -1.119X1 + eo > (4.1)

X3 = .856 + .853X1 + ,455X2 + eg (4.2)

and

X4 = 20.961 + .54 5X2 + .912X3 + e^. (4.3)

While these coefficients may not seem "unduly'1 different from

those presented in Chapter Three, any conclusions can await a statistical 

test.
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A Preliminary Analysis of the Combined Data Sets

Combining both data sets, analyses like those shown in Figure 4,1

and equations 4.1 - 4.3 are also of interest. Figure 4.2 is a path

analysis for the combined data sets.

Figure 4.2 Path Diagram for Combined Data Sets (N = 227) with p4j = 0,
X-i = Conservation, X? = Concrete-Operational Reasoning Test, X3 = Logical
Reasoning Test and X4 = Revised Minnesota Paper Form.

As might be expected, the coefficients in Figure 4.2 tend to be inter­

mediate between Figures 2.3 and 4.1. The structural equations for the

combined set are as follows:

X2 = 21.394 + 1.196X1 + en> (4.4)

X3 = 1.174 + 1.125X1 + .445X2 + e12 (4.5)

and-

X4 = 20.678 + . 584X2 + .886X3 + e^ (4.6).

While intuitive judgments might be made about the similarity of

equations 4.4 - 4.6 to the two earlier sets of structural equations,

statistical tests would be more definitive.
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Combining Two Data Sets

Path coefficients and structural equations for the combined sets

have already been presented; a reasonable question to ask is, "Do the

two data sets have homogeneous regression coefficients?" Alternatively,

is there any significent loss of information when the groups are combined,

other than differences in means? That is, will a single regression line

fit both groups, or are seperate lines necessary to adequately

represent the available information? To test these hypotheses regarding

the regression lines, several new variables are useful:

X,. = 1 if a member of set A, 0 if a member of set B;

X6 = 1 if a member of set B, 0 if a member of set A;

X7 = Xi • X5;

X8 = Xj • X6;

X9 = ‘X2 • X5;

X10 = X2 ’ X6’

x = X • X5; and
11 J u

X12 = X3 X6‘

The following models will allow a test of the necessity of separate

regression lines for the conservation variable:

Model I: X2 = b0 + b5X5 + b7X? + b8X8 + ei4, (4.7)

Model II: x2 ’ bQ + b5X5 + b1X1 + e15, (4.8)

Model III: X2 = bg + b7X7 + bgXg + e^ and (4.9)

Model IV: x2 - b ♦ bjX + e (4.10)

For models I - IV, Rj = .02069, rJ = .02042, RjJ = .01988 and Rjy = .01968.
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Testing Model I against Model II would allow a test of homogeneity of

regression; the tw groups would be presumed to have the same regression

line, but allowed to have different constants. This test is given as

F = (Rj - Rj2)/(3-2)
-------------------------- = .061; (4.11)
(1 - r2)/(227-4)

this is of course non-significant, serving as a partial justification

of the non-necessity of more than one regression line.

Testing Model I against Model III would allow a test of differences in

means (or constants) without assuming that the two groups fall on the

same regression line:

F = (R? - Rttt)/(3-2)
—------ ----------------- = .184; (4.12)
(1 - R*)/(227-4)

this non-significant result would be a partial justification that

the groups do not differ significantly in their constants. A test of

Model I against Model IV would allow a simultaneous test of a need

for separate regression lines and difference in constants:

F = (Rj - RjyJ/O-l)

--------- 1 = .115. (4.13)
(1 - Rp/(227-4)

This non-significant result would serve as a possible justification

that a common regression line and common slope are reasonable in terms

of the observed data.



34

Testing Model II against Model IV would allow a test of a common

constant given that the regression lines are homogeneous:
2 2

F = (Rjj - RIV )/(2-l)
----------- --------------- = .169. (4.14)
(1 - R^)/(227 - 3)

Under the assumption that the regression lines are homogenous, the

non-significant result would indicate that a conmon constant is tenable.

Finally, testing Model III against Model IV would allow

a test of a common regression line given that the groups are assumed to

have a common constant:

F ’ - R^)/(2-l)

------------ 2------------- = -046. (4.15)
(1 - Rm)/(227-3)

Again, the non-significant F value would serve as partial confirmation of

a common regression line. It might also be pointed out that the test

given by equation 4.11 is equivalent to testing the homogeneity

of variance in the analysis of covariance; given that the F in

4.11 is non-significant, the "usual" analysis of covariance is tested

by equation 4.14. Models similiar to I-IV can be developed for the

second stage of path analysis as well:

Model V: X3 = bQ + b5X5 ♦ b7X7 + bgXg ♦ bgXg 4 b1QX1() + elg. (4.16)

Model VI: Xg = bQ + bgX5 + b^ + b^ + eig, (4.17)

Model VII: X3 - bQ + b?X? + bgXg * bgXg + b1QX10 + e2£| and (4.18)

Model VIII: X3 = bQ + b]X] + b^ + e21- (4.19)
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The corresponding R2 values are:

Rv2 = .27296, Ry| = .27238, R^ = .27268 and R^J = .26720.

If tests analogous to equations 4.11 to 4.15 are run, no significant

findings occur. Other types of tests are conceivable as well. For

example, another model that might be of interest is

X3 = bQ + b5X5 + b7X7 + b8X8 + b2X2 + e22. (4.20)

Such a model, when compared to Model V, would allow a test of homogeneity

on X2, given that no other assumptions are made (Perhaps it is possible

to test hypotheses for questions that no one would ever ask!).

The third stage of the path analysis would have the following models,

similar to Models I-IV and V-VIII:

Model IX: X4 = bQ + b5X5 + bgXg + b1QX10 + bnXn + b12X12 + e23, (4.21)

Model X: X4 = bQ + bgX5 + b2X2 + b3X3 + e24, (4.22)

Model XI: X4 = bQ + bgXg * ♦ bn«n - b^X^ * e25 (4.23)

and

Model XII: X. = bn + b9X9 + b9X9 + e9f-. (4.24)4 0 L C oo £0

o
The corresponding R values are:

R 2 = .26981, R2 = .26948, R 2 = .26976 and R = .26859.
1A A Al All

Again, no significant findings occur using tests analogous to those given

by equations 4.11 to 4.15; also, tests similar to those suggested by equation

4.20 can be run.

The net effect of the tests run to this point in Chapter Four is that

the path diagram with the two sets of subjects is a reasonable way to

express the data; using one set of path coefficients and one set of

structural coefficients can be done without undue loss of information.
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Testing the Path Coefficients from Set A on Set B

Most published research does not allow the luxury of reanalysis

with new data sets; if a path analysis has been performed on the data,

comparisons of the path coefficients from the two analyses can still be

completed. For present purposes, suppose the path diagram from Figure

2.4 is available. Then six variables can be defined:

Vx = z2 - .128zr

V2 = z2 - .163zx,

V = z - .107z - .498z ,
O 0

V = z - .152z - .459z ,
4 3 1 2

V = z - .243zo - .372z_ and5 4 2 3

V6 ' Z4 - -25222 - •300z3-
V1 and V2 express’ respectively, the path equation for z2 from set B and

set A. 'The interest is on the standard deviations (and hence, variances)

of Vn - V . The squared standard deviations express the error variance

for each path equation; V-^ is the least square estimate for the sample

data (set B) and V2 is the least square estimate from the prior data set,

and hence serves as a restricted model. Using the methodology of Botten-

berg and Ward (1963, p. 47),

F = (q2 - q1)/(df1)

q/Ad^)

where q. ■ (n - 1) s?.

Also,

(4.25)
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Sj = .98357, qT = 108.193,

s| = .98478, q2 = 108.326,

s| = .72696, q3 = 79.966,

s| = .73001, q4 = 80.301,

s| = .70974, q5 = 78.071, and

s| = .71269, q6 = 78.396. ’

For comparing to V2, F = .134;

for comparing V3 to V^, F = .226;

and, for comparing V5 to V5, F = .225.

The conclusion of fitting the prior path coefficients as restrictions

on set B is that the fit is not all that bad; the prior path coefficients

appear to be well within a reasonable limit of those found in set B.

Testing the Structural Equations from Set A on Set B

If structural equations are available (or if sufficient information
I

is made available to calculate them), these prior structural equations

can be imposed upon the new data set; the process is extremely similar

to the process given for testing prior path coefficients. Since the

error variance for the second set of structural coefficients are

readily available, it is necessary only to find the error variance for

the imposed set. Three variables can be defined:

V7 = X2 - 21.125 - 1.408Xj,

V = X, - 1.574 - 1.236X, - .434X9, and8 3 1 Z
Vo = X, - 20.224 - .464X - .831X .9 4 2 3
V10’ V11 anc* V12 can be defined t0 be the similar terms from the

structural coefficients given by equations 4.1 - 4.3.
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These sum of squared error terms are as follows:

q? = 1959.906,

q8 = 1213.719,

q9 = 7108.191,

q^o = 1957.725,

qn = 1209.464 and

q12 = 7092.273.

Using equation 4.25, and comparing successively q7 to q10 , qg to qxl

and q9 to q12 . the corresponding F values are

F = .06u (for comparing q7 to q^)),

F = .125 (for comparing qg to q^) and

F = .08U (for comparing q9 to q^2).

None of these F value begin to approach significance. One major
I

difference between the tests performed on the structural equations

and the tests performed on the path coefficients is that the same

constant (intercept) is forced upon the second set when using the

structural equations.

This inclusion of the constant could cause additional stress on

the models; for the present data, the prior constants, as well as the

prior regression coefficients, fit reasonably well.

Use of Comparing Path or Structural Models in the Research Literature

Having become familiar with the methodology in the present chapter,

one is inclined to wonder, "How often are such models actually tested

and reported?" The answer would appear to be, until fai rly recently,

"Not very often." Specht and Warren (1975) review the comparison of

causal models to previous data. For the most part, the literature is

methodological rather than being substantive applications. Specht and

Warren prefer testing structural models rather than path models (that is
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unstandardized coefficients rather than standardized coefficients). On

the other hand, because testing structural models can be seen to be a

standard regression technique, many substantive applications might escape

notice because the author(s) might have used standard regression terminology.



Chapter Five

Nonrecursive Models

To this point, only recursive models have been considered. Non­

recursive models, that is, those that contain reciprocal causation, are

of special interest. Nonrecursive models might be a meaningful means of

analysis for variables that could be seen as changing together over time.

The two data sets (sets A and B) include two variables that are excellent

candidates for reciprocal causation; the latter two tests could conceivably

be viewed as showing reciprocal causation. That is, as people become more

proficient at formal operation tasks they may also become better on the

spatial relations tasks (this is the approach that was considered in Chapters

1-4); conversely, as a person becomes more proficient in spatial relations

tasks, they will also become more proficient at formal operation tasks.

Some might view this as just another way to express a correlation coefficient;

actually, a reciprocal causation is implied here. That is, a person could

study formal operational type materials through such mechanisms as taking

coursework in finite mathematics, courses in logic or related courses. One

possible expected outcome might be improvement in spatial relations, even

though spatial relations have not formally been learned. Again, one might

posit that taking coursework in the various geometries should not only be

helpful in improving the spatial relations score, but also help improve

the formal operations score. Before this model is analyzed, a "complete"

model is of some interest.

40
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A Model Containing All Possible Causations

Figure 5.1 shows a diagram wherein all possible paths are included.

Comparison of Figure 5.1 with the earlier recursive diagrams would help

point out that the recursive models actually involved considerably more

assumptions regarding the non-existence of paths than was acknowledged then.

Implicit in the recursive models was that all paths from a higher nunbered

variable to a lower numbered variable were zero. That is, implicit in

Chapters 2-4 was that p,„, pn, p , p? p and pq. were all zero.
Xn- «J‘t

Figure 5.1 Path Diagram With All Possible Paths Included.

The assumptions regarding the non-existence of certain paths brings

up again concerns aired earlier in Chapter 2 regarding identification. As

will be seen, Figure 5.1 is hopelessly under-identified.
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Identification in Nonrecursive Systems

To determine whether over-identification, under-identification or

just-identification is present, consider the following diagram:

Figure 5.2 A Diagram Demonstrating Three Types of Identification.

To begin, it is simpler to decide upon the identification for that

portion of the diagram not involved in reciprocal causation. The equation

leading to 1S just-identified, as it has a path from its only predecessor

variable. On the other hand, the equation leading to X, is over-identified,

as p is presumed equal to zero. The variables involved in the reciprocal

cuasation are not quite so easily determined regarding identification. Many

references on path analysis include the so-called "order" and "rank" condi­

tions to decide upon the degree of identification in a nonrecursive system.

A variant of the "order" condition is Duncan's (1975) "counting" procedure.

For a given variable Xp let G = the number of paths to Xj. Then find

H = the number of exogenous variables + all predetermined prior endogenous

variables. If H < G the equation is under-identified; if H = G the equation

is just-identified and if H > G the equation is over-identified. Strictly

speaking, the latter two conditions (H=G or H>G) are necessary but not

sufficient conditions for identification. For X^, G = 4, H = 3; thus,

the equation associated with X^ is under-identified:

V b0+ bjXj + b2X2 + b3X3 + b5X5 +e2?. (5.1)
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However, for X , G = 3 and H = 3, indicating that the equation
5

X = b + bX + b_X, + b X + e (5.2) is "probably" just-identified.

The rank procedure tests for linear dependencies involving each equation.

While the "rank" condition is not given here in detail (but see Duncan,

1975; Asher, 1976; or Namboodiri, Carter and Blalock, 1975), the equation

for X_ is in fact just-identified.
5

A Nonrecursive Representation of the Piagetian Tasks and Spatial Relations

Figure 5.3 shows an alternative path diagram for the Piagetian tasks

and the spatial relations tests from data set A (N = 116). A reciprocal

causation is considered regarding formal operations and spatial relations.

Figure 5.3 Nonrecursive Path Diagram for Piagetian Tasks and Spatial
Relations, Set A (N=116): X, = conservation, X„ = Concrete-Operational-
Reasoning Test, Xo = Logical Reasoning Test ana Xd = Revised Minnesota
Paper Form Board Test (spatial relations). 4

Now, the degree of identification of the equations for X2, Xg and

X^ as dependent variables is necessary. X? is in a simple recursive

relationship to X^ and hence is just-identified (as was true previously).

For X,, G = 3, H = 2; thus, the equation associated with Xo is under-
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identified. For - G 2, H — 2, and the equation for is linearly

independent of all other variables, hence, the equation associated with

X4 as a dependent variable is just-identified.

When considering recursive equations, just-identification and over­

identification do not cause any special estimation problems in non-

recursive models. Under-identification is a much more serious problem;

estimation may not take place when under-identification is present. If

the problem is to be solved, the under-identification has to be removed.

One rather useful way to approach the problem is through the use of two-

stage least squares.

Two-Stage Least Squares

Before using two-stage least squares (2SLS), the under-identification

must be removed in one of two ways; either existing paths to those

variables whose equation is under-identified are to be dropped, or

additional exogenous variables can be added; combinations of these two

approaches can also be workable. In general, adding exogenous variables

is to be preferred over dropping paths, unless the removed paths can be

reasonably presumed to be zero.

For data set A, one possible additional exogenous variable is

available, age in months (X ). Unfortunately, X fails to be a useful
a a

variable for the 2SLS process. To be a useful exogenous variable, high

intercorrelations with the various endogenous variables are necessary; X^

does not have this property. If we would proceed with Xa in a 2SLS pro-

cess, the failure of X would lead to collinearity (or near collinearity)
a

among the transformed variables. Thus, we are confronted with the last

alternative, the dropping of paths. Here also we encounter an additional

Problem; we will have to alter our theory to the needs of the 2SLS process
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exogenous variables for 2SLS (otherwise all transformed variables

would be simple linear functions of one

(N=116):

X3

x2

X4

so that estimation may take place. First, we need at least two

another). Clearly, p will

exogenous variable. Now eitherhave to be dropped so that X2 may be an

p or p will have to be dropped, otherwise X will remain under-
J X 0 c. 3

identified (p43 could be dropped, but of course that eliminates tne

nonrecursiveness and completely eliminates the problem!). If p, is

Thus, for estimationdropped, X^ ceases to be an exogenous variable.

purposes, p^2 must be dropped; it is a pity, as

path coefficient in the models shown in Chapter

Figure 5.4 .Nonrecursive Path Diagram for Set A (N=116):
Xj = conservation, X^ = Concrete-Operational Reasoning Test,
X3 = Logical Reasoning Test and Xd = Revised Minnesota Paper
Form Board Test (spatial relations).

To accomplish the 2SLS process, the endogenous variables, Xo

and X4, are seperately regressed on the exogenous variables. The

resulting equations are called reduced form equations:

X3 ^0 + b.]/i + ^2 + e30 anc’ (5.4)

X4 = bg + bjXj + b^X2 + e3p (5.5)

p was the largest
Ju

Two. Figure 5.4

shows the resulting nonrecursive model.
. X1
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The reduced form equations constitute the first stage of the

2SLS process. The resulting equations for set A, shown as prediction

equations, are

Xo = 1.574 + 1.236X, + .434XO

and

X4 = 21.062 + 2.294XJ + .983X2>

Now, the second stage of 2SLS can take place. When X3 is used as

the criterion, X4 (instead of X^) is used as a predictor; when X4 is

used as the criterion, X3 (instead of X3) is used as a predictor.

The resulting structural equations are

X3 = -7.732 + .223XX + .442X4 + e32 (5.6)

and

X4 = 18.142 + .178X2 + 1.855X3 + e33- (5.7)

Figure 5.5 shows the model with path coefficients.

X1 «X2

r34 = .436

P34 = ’485

X3 P43 = -353 ^X4

Figure 5 5 Nonrecursive Path Diagram with Path Coefficients Shown
(N=U6)- Xi = conservation, X = Concrete-Operational Reasoning Test,
X3 = Logical Reasoning Test afid X4 = Revised Minnesota Paper Form
Board Test (spatial relations).
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It can be seen that the "purifying" or "washing" of the data has

improved p somewhat but allows p7A = .495 to exceed the correlation

between X3 and X4- Were it not for the loss of P32> Figure 5.5 could

be a fairly attractive model for interpretive purposes.

Correcting for Bias in the Path Coefficients in 2SLS

Hout (1977) has pointed out that the path coefficients are under­

estimated for the endogenous variables involved in the reciprocal

causation. This bias does not effect the structural equation models

given in equations 5.6 and 5.7. The bias is due to the way in which

computer programs calculate path (beta) coefficients. In equation 5.6,

the path coefficient for X4 is found as

P,d = \ WSJ = -442(3.714/3.315) = .495.
^4 *5. 14 4 o

Hout maintains that the correct value would be found as

P-M = \ = -442(3.714/1.679) = .978.3.14 3
Alternatively, p^^ can be found as the path coefficient found without

correction (.495) divided by R (.50675), which is within rounding
3 • J.

error.of .978. It is necessary to adjust p^g for the same reason;

P43 = b4.13<s3'/s^ = 1-856(1.679/3.714) = .839.

Clearly, the dramatic change in the path coefficients of the variables

involved in the reciprocal causation would tend to give different inter­

pretations to the data. The corrected

greatly exceed the correlation between

conjecture that the probable inflation

values f°r P43 and p^ both

X_ and X.; r = .436. One might
3 4 *54

due to the correction process

would sometimes lead an unwary researcher to allow for a reciprocal
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causation because the costs involved are low and the payoff is high.

Perhaps Hout is on sound ground in insisting on correcting the resulting

path coefficients; the outcomes may leave several readers of the sub­

stantive interpretations of corrected path coefficients in a 2SLS process

unconvinced of the merits of the correcting process in specific and the

2SLS process in general.

Why is the "Washing" of Data Necessary?

For the nonrecursive relationships, it was necessary to use "washed"

variables rather than the variables themselves. Were the variables used

themselves, then it is quite likely that, for example, X3 will be correlated

with the error term (sometimes called disturbance) in X^. By using X3

instead of X3 when generating the equation for X4, this correlation is

removed.

Whenever both X depends on Y and Y depends on X, we cannot assume

that the error terms from the two equations (for X and Y) are uncorre­

lated. The use of 2SLS as outlined herein allows the analysis to proceed

under the usual assumptions.

So that the assumptions (and their possible violations) can be

clearly shown, it is worthwhile to consider finding the residuals for the

various equations dealing with data set A. For the fully recursive model

wherein no paths are deleted, the error terms for predicting X?, X and X

were respectively ep e2 and e . All intercorrelations of these error

terms were 0 (r = 0). When p41 was deleted (e4), the resulting correlations

are ra a = and rene„ = "’G12*
e}e4 e2 4
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In the nonrecursive case, some of the predictor variables will be

correlated with the error term; the use of 2SLS removes this part of

the problem. Interestingly, even with the use of 2SLS the error terms

themselves will tend to be correlated; re32e33 = *286. Perhaps a few

more intercorrelations would be of interest:

re30e32 ' 1 and re3IC33 " E

Thus, the significance of the coefficient for the transformed

variable as a predictor of the other variable in the nonrecursive

relationship was already tested in the first stage of the 2SLS process.

This rather interesting finding points out the importance of the

exogenous variables. To illustrate, the significance of p was known

before Xq was regressed on X. and X_. The test for p._ was already

given by the test for b^ in equation 5.5. Similarly, the significance

of p_d is given by the test of b? in equation 5.4. One might argue

that 2SLS appears to have "thrown out the baby and saved the wash."

This is particularly so when it is considered that the model was changed

to accomodate the statistical needs of the model; that is, p and p
32 21

were dropped, losing some of the richness of the path analysis process.

It should be pointed out that Hout (1977) maintains that inappropriate

error variances are found by the just described 2SLS process; he gives

rather complex equations to correct the error variances. While these

data should not be construed to mean that 2SLS should be avoided as an

analytic technique, it should be clear that a considerable number of

pitfalls are involved with the technique. Further, the use of nonre­
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cursive models should not be undertaken if the researcher is using the

nonrecursiveness to avoid a specification error. Actually, such usage is

a specification error. Thus, nonrecursiveness should be entertained as

a model only if the underlying theory specifically predicts mutual

causation.



Chapter Six

Examples of Path Analysis in Educational Research

Introduction

The choice of reporting examples of any phenomenon is likely

to be idiosyncratic. If the entire population is not reported, or if

random sampling is not employed to choose the examples, then the selection

process is at the discretion of the selector; so it is in the present

case. The educational research literature is, despite the intentions

of the various abstracting systems (notably ERIC), too diverse to be

fully documented. Part of the difficulty (if difficulty is indeed

a correct interpretation) is that educational research is perhaps the

least bounded of the social and/or behavioral sciences; no core set of

a few journals is likely to include research that will be seen as

being "most important" to the discipline; some articles by those

identifiable as educational researchers will appear in what might seem

extremely unlikely sources and yet be seen as important additions to

the research literature. Beyond this, important implications to educa­

tional research can readily be produced by researchers who manifestly

are not identifiable as educational researchers.

Having given an appropriate caveat emptor, the present selections

can be described. First, the elaborate analysis of Jencks et al. (1972)

is considered. Jencks reanalyzed Coleman et al.'s (1966) data on the

51
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equality of educational opportunity and threw in a reassessment of

Jensen's (1969) controversial article for good measure. Perhaps it

was fore-ordained that Jencks would also come to very controversial

conclusions, but not before his analysis became abstruse; one might

guess only a small portion of those who read Jencks' book actually under­

stood the complex manipulations. Additionally, several examples of

path analysis are taken from retrievable sources, either the archival

journals or the ERIC system.

Jencks' Inequality

Briefly, Jencks used several available data sources, including the

Coleman et al. (1966) report, Project Talent and the 1960 census data

and arrived at a somewhat controversial conclusion; the most important

variable in economic success is luck. There is no need to again

review Jencks' conclusions here; in addition to the several reviews

that have been made, including Levine and Bane (1975), several papers

appeared in the Harvard Educational Review and were republished as

Perspectives on Inequality (1973).

The present interest is in the various path models used by Jencks.

They are perhaps as complicated as any that have appeared in the non­

technical literature. Several path models with up to 13 variables are

shown to measure intergenerational mobility. Jencks also uses path
2models to investigate the various values for h (the so-called heritability

index). Using Jencks' data, but using a much simpler approach,Li (1975)

shows an estimate of h = .61; Li maintains that Jencks' analysis,

despite its complications, fails to yield any meaningful estimates. Li
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also considered the importance of an unobserved variable; consider the

.29

Figure 6.1 Path Diagram for Li's
variable; C = child's IQ score; E
midparent (for foster parents) IQ

Example: H = unobserved heredity
= a measure of environment; F =
score (Data from Burks, 1928).

Not shown in Figure 6.1 is rFC; rFC = .23. Li derived rFE as rFC = rFEpcE = ’23;

r = .23/.29 = .793. The effect of heredity was determined by solvingr E •______
p 2 + p 2 = 1.00; thus, p =\/l - .292= .957; this is made under the

CE CH CH
assumption that heredity is a residual factor that accounts for everything 

except for the portion caused by the environment. Without detracting

from Li's “presentation, many would argue that his assumption regarding

heredity as the "cause" of the remaining variation is highly untenable.

Loehlin, Lindzey and Spuhler (1975) estimate that over a third of the

variance in intelligence is due to the joint influence of heredity and

environment. Additionally, error variance due to lack of reliability

artificially increases the estimate for the effect of heredity using

Li's approach. For additional criticism of Jencks' path models, see

Taylor (1973) and Asbury (1973). Jencks' (1973, 1974) rebuttals may

also be of interest.

An interesting review of Inequality is made by Hauser and Dickinson
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(7974). They reanalyze a 13 variable model that contains over-identifi­

cation. By makinq different assumptions than Jencks, they arrive at a

model with less disturbance between the actual correlations and those

implied by the path model. They end by calling the analysis in Jencks’

Appendix B as "technically sloppy". Further, the appendix . . gives

no evidence for the textual claims that the heritability of IQ is

unimportant in socioeconomic achievement", (p. 1A8).

Other Examples of Path
Analysis in Educational Research

Picou et al. (1977) showed, in a six variable analysis, that

several hypothesized paths differed significantly for black and white

students when aca emic self concept was used as the criterion. Their

methodology was similar to that employed in Chapter Two. Unfortunately,

when as many as six variables are used, even in a recursive model,

the nunber of path coefficients (and perhaps also correlation coefficients)

may be beyond the ability of many readers to digest. Unfortunately

for the consumers of research, six variables in a path analysis is fewer

than usual , rather than more than usual. This may not be problematical

for the fellow (sister) researcher, but decision makers rarely tend to

be attuned to current research methodologies. Thus, decisions may be

implemented on extremely shaky findings, but high in the currency of

public popularity.
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What might be called a "purely educational" application (vis-a-vis

either sociological or sociology of education application) was conducted

by Madaus et al. (1973). Using the six major taxonomic levels of

Bloom's (1956) taxonomy, a hierarchical structure is empirically

tested.

Gimmel (1974) used path analysis for determining course achievement.

A recursive model was used deleting non-significant paths. Not surprisingly,

Gimmel found that past performance had the highest direct effect. Sex

was found to be an important variable, but also showed a strong indirect

effect through past achievement. While an obvious interaction effect

was taking place between sex and past achievement, Ginrnel did not place

any interpretation on this interaction.

In an attempt to compare the efficacy of both path analysis and

a causal analysis approach, Braungart (1975) investigated university

students regarding family status, socialization and student politics.

His apparent orientation was methodological rather than substantive;

he concluded that both methods could serve as reliable checks on one

another. One might conment that these results were to be expected;

replication would serve as a more serious test of the adequacies of the

two approaches.
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In a methodologically oriented paper, Feldman (1971) shows how

path analysis could be used in researching various college environments.

Schmitt, Stone and Rabinowitz (1977) show, in a cross-lagged experi­

ment with three college classes, that quite different interpretations

occur when the data is pooled from the three classes and when the

classes are individually analyzed, using student ratings and course

achievement as the variables. The issue of student ratings would appear

of considerable complexity.

Two symposia have focused on path analysis-causal analysis. The

first, published in Goldberger and Duncan (1973), is mainly methodological.

One article of educational interest was completed by Joreskog (1973).

Scores were reported on the Scholastic Aptitude Test for both the mathe­

matics and science sections for students studied on a longitudinal basis

in the fifth, seventh, ninth and eleventh grades. One interesting outcome

is that science scores become increasingly less dependent on mathematics

scores at the higher grades. Joreskog interprets this to be the result

of science courses in the lower grades being based on logical reasoning,

whereas in the higher grades memorization of facts becomes more important.

The second symposium is published in Sewell, Hauser and Featherman

(1976) and is focused on measuring school achievement from an interdisciplinary

(but sociologically based) viewpoint. Sewell and Hauser (1976) show that 
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the effect of measured ability on educational attainment is not merely

a reflection of socioeconomic status, obviously conflicting with the

point of view of many social scientists. T. Williams (1975) explored the

possibility of a triple advantage model, i.e., children from high status

backgrounds benefit genetically, have more favorable environments and

interact more effectively with their environment. A surprising finding

is that the least important part of the triple advantage is the family

environment. Featherman and Carter (1976) found that the longer a

person takes to get a college degree (in continuous attendance) the higher

their social status is likely to be in their first position upon

graduation. Wiley (1976) found that the quantity of schooling (in days

attendance per year) was positively related to achievement. An extensive

application of two-stage least squares was made by Levin (1976) in comparing

the importance of family background by ordinary least squares and two-

stage least squares; the effect of family background is considerably

reduced in the two-stage least squares process. Finally, one of the

methodological conclusions of Hauser, Sewell and Alwin (1976) is that

differences among high schools (in Wisconsin) is quite small, and that

research should focus on issues other than school-to-school variations

in aspirations and achievement.
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Summary

Path analysis is seen as a potentially powerful technique to be

used in educational research. Most actual applications in educational

research have been sociologically oriented, reflecting the prior usage

of path analysis in sociology. Educational researchers who might

otherwise become familiar with path analysis from a sociological viewpoint

are encouraged to read a source such as Li (1975) which addresses many

of the same concerns but from a geneticist viewpoint; in that path analysis

had its origin in genetics, Li is well worth the reading.



Chapter Seven

Other Applications of Path Analysis

The applications of path analysis given in the previous six chapters

is by no means exhaustive; indeed, an exhaustive survey is impossible.

The bounds of path analysis are essentially only defined in so far as

users of the concept apply paths to some phenomena. In that sense, path

analysis is not bounded by mutliple linear regression, but easily moves

into multivariate considerations. Four addi tional'general areas of

application of path analysis will be briefly considered in this chapter:

(1) panel studies; (2) the concept of unmeasured variables, including

factor analysis; (3) canonical analysis, and (4) time series analysis-.

Panel Studies

Description of the panel studies, particularly the two wave, two

variable (2W2V) models are quite common in the sociological literature

(see Heise 1970, Duncan 1972, Kenny 1973, Hannan and Young 1977 and

Wheaton et al. 1977). Basically, a panel study involves measuring a set

of ^variables at _t points in time on the same subjects. In practise,

few panel studies are reported that are not either a 2W2V, three wave,

two variable (3W2V) or two wave, multiple variable (2WMV) application.

The use of panel studies was thought to be a way in which reciprocal

causation problems could be resolved, but Duncan (1972) has pointed out

the limitations of such claims. Figure 7.1 shows a 2W2V diagram.
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Time 1

Figure 7.1 A 2W2V Model.

The correlations among the variables have specific names: r and-
xlx2

r are termed autocorrelations since they involve measuring the same
yly2

variables at different points in time; r v and ry are termed
xlyl x2y2

synchronous correlations since they involve relationships at a given

point in time; r v and r are termed cross-lagged correlations since
T2 x2yl

the involve lagging the variables over time and crossing them.

When panel studies were first envisioned, it was thought that the

larger cross-lagged correlations would help determine causation between

the two variables. Later it was thought that the largest path coefficient

between the two cross-lagged variables would still allow this inference.

However, the effect of an unobserved variable could well affect the system

in such a way to alter this outcome also. Another possibility is that the

time intervals between measurements may not be sufficient to give the

variables a chance to have their full effect. As an example of this latter

problem, suppose a select group of individuals are followed throughout

their young adulthood. All are interested in electronics and pursue careers

in some phase of this field. Suppose that the X variables are years of

education and the Y variables are income since age 18 (corrected to dollars
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in the year age 18 occurs); measurements in terms of the two variables

are made at two year intervals to age 30. Those individuals who enter an

apprenticeship program immediately upon graduation from high school are

likely to have the least amount of education and perhaps the most

aggregated income at age 30. Individuals who pursued a graduate degree

program, particularly the doctorate, will, by age 30, tend to have a

smaller aggregate income. One might infer from this that education has a

negative impact on income. If the model is further‘complicated by using

reality, that is the vagaries of the economic system together with demo­

graphic change are included in the model, the inference becomes even more

difficult to make. That is, the payoff matrix will differ for people in

different age cohorts. Undoubtedly, the outcomes of differential education

will be substantially different for those who attained the age of 18 in

the years 1958, 1968 and 1978 respectively.

Unmeasured Variables

Concern for unmeasured variables has been frequently made in the path

analytic literature. The example from Li (1975) shown in Chapter Six of

the present monograph regarding the use of heredity as an unmeasured variable

to predict the child's intelligence score is one such type of use; a second

type of use of unmeasured variables concerns factor analysis. Figure 7.2

gives one possible approach to considering the use of factor analysis.

figure 7.2 Prototype of Using an Unobserved Variable with Three Measured Variables



62

Now, an interesting approach can be taken; we might either assune that

a single (or perhaps more than one) factor accounts for the intercorrelations

among a set of variables and that the factor F is causal to the various

X-j variables, .or we might alternately assume the Xj variables are causal

to the unobserved factor F. In either case, we could attempt to find a

composite variable F through factor analysis. While the final path co­

efficients in the two different approaches would differ, the factor analytic

process would remain the same.

Allen (1974) presents compelling reasons for the use of Rao's (1955)

canonical factor analytic technique, particularly if there is interest in

estimating factor scores. Canonical factors are unique (not always the

case for several factor analytic techniques) because the canonical

correlation interpretation of the factors guarantees that the canonical

factors are maximally related to the observed variables.

When using the canonical factor regression method (see also Harmon

1967, p. 363) to generate composite factor scores, several useful outcomes

are available (see Allen 1974, p. 61). The squared linear weight for

each X.j indicates the direct contribution of that variable to the variance

in the unobserved first common factor score. Also, the reliability

coefficient is the squared multiple correlation coefficient between the

first common factor and the observed (X^) variables.

Canonical Analysis

Canonical analysis has not often been employed in path analysis;

Hauser s (1973) attempt to disaggregate educational attainment is a

pointed exception. Mayer and Younger (1974) also consider the canonical 
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relationship. Hence what follows is speculative and subject to revision

If a variable in a path analysis is replaced by a set of variables, we

would still be interested in investigating the relationships among the

variables. To put the question in perspective, see Figure 7.3.

Figure 7.3 An Example of Canonical Path Analysis with Three Sets of Variables.

In Figure 7.3, Hp H2 and H3 are indicator variables of an unmeasured

variable H; similarly, Ej, E? and Eg are indicators of E and Ii, !£, I3 and

I4 are indicators of I. The problem is that the exact procedure to follow

is not well defined by the paths shown in Figure 7.3. One strategy would

be to factor analyze each set (probably by Rao’s procedure) and use at

least the first factor (actually, the factor scores on the first factor)

for each of the three sets of data. Alternatively, set H and set E might

first be used in a canonical analysis. The resulting canonical variable(s)

could then be used as predictors of - I4 in a second canonical analysis.

A third strategy would be to complete two canonical analyses; first set

H and set E are related, and then sets H and E, using the original variables,

could be combined into a single set and related with I. Other strategies

are possible also. Canonical analyses could be performed respectively

for: (1) set H with set E; (2) set H with set I; (3) set E with set I; and

(4) sets H and E with set I. In any case, interpretations are likely to be

faulted by other researchers on various grounds, including a predilection 
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for an analysis procedure not used by the original researcher.

Time Series

The analysis of time series would seem to be a natural area of appli­

cation of the causal model approach; because of the nature of serial

correlations, such has not been the case. Perhaps the major limitation

has been the non-familiarity of social researchers with the Box and Jenkins

(1970) methodology and the availability of appropriate software programs

for multiple linear regression. Hibbs (1974, 1977) has helped bridge the

gap between the Box-Jenkins approach and the use of structural equations;

he indicates the major difference between the two approaches when confronted

with time series data is that the structural equations approach additionally

involves specification and estimation of intervention effects in the

context of the specified structural models.

Recent explications of the Box-Jenkins approach are given by Nelson

(1973) and Glass, Willson and Gottman (1975). Other sociological uses have

been shown by Doreian and Hummon (1977) and Burt and Lin (1977).

Path Analysis — An Unbounded Arena

Hopefully, one outcome of this monograph would be that potential users

of path analysis are discouraged from trying to put blinders on path analysis

and try to implement a three semester hour course in "all there is to know

about path analysis" — surely they would be destined to failure. In a

sense, path analysis is more a systematic way of looking at data rather

than being a recipe book for getting answers to questions. In that sense, 
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path analysis - structural equations is as large as the body of study

of the entire area of statistics. Thus, while it might be helpful to

have courses devoted to path analysis, it is less than clear where pre­

cisely the right point might be to study such courses. Perhaps one or

more courses in path analysis might supplant (or partially supplant)

such courses as "Research Methods in Educational Research" or similarly

titled courses.
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APPENDIX A

CONCRETE FORMAL SPATIAL
ID AGE CONSERVER OPERATIONS OPERATIONS RELATIONS

1 186 1 23 13 49
2 189 1 23 11 55
3 189 1 26 12 52
4 189 1 27 10 25
5 190 1 26 16 48
6 190 1 14 8 39
7 191 1 22 10 47
8 191 1 21 15 48
9 191 1 20 9 43

10 180 1 19 13 ■ 41
11 187 1 24 17 43
12 189 1 25 10 50
13 190 1 19 11 52
14 190 1 23 12 56
15 191 1 25 20 54
16 191 1 23 15 53
17 187 0 19 8 47
18 192 1 25 11 51
19 194 1 26 20 48
20 196 1 23 12 43
21 196 1 23 -10 46
22 197 1 22 13 43
23 198 1 23 10 25
24 198 1 27 11 45
25 199 1 23 19 48
26 199 1 21 7 25
27 200 1 27 17 58
28 200 1 27 14 59
29 200 1 28 9 44
30 201 1 18 10 37
31 201 1 27 15 44
32 203 1 29 15 50
33 192 0 23 16 53
34 192 0 11 7 28
35 195 0 23 13 36
36 197 0 28 12 50
37 198 0 24 9 36
38 200 0 26 13 44
39 200 0 14 8 34
40 192 1 19 9 50
41 193 1 25 13 42
42 193 1 18 13 44
43 193 1 22 12 37
44 195 1 27 14 29
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APPENDIX A

ID AGE CONSERVER
CONCRETE

OPERATIONS

45 195 1 26
46 196 1 22
47 196 1 24
48 197 1 22
49 197 1 20
50 198 1 16
51 200 1 23
52 201 1 25
53 202 1 16
54 202 1 15
55 202 1 20
56 192 0 16
57 197 0 24
58 203 0 23
59 204 1 22
60 204 1 23
61 207 1 21
62 209 1 18
63 209 1 26
64 209 1 25
65 209 1 20
66 209 1 20
67 210 1 23
68 215 1 22
69 210 0 26
70 204 1 22
71 206 1 24
72 206 1 23
73 206 1 26
74 210 1 22
75 211 1 19
76 212 1 22
77 212 1 25
78 213 1 ■ 21
79 215 1. 24
80 204 0 23
81 206 0 17
82 206 0 27
83 215 0 22
84 216 1 18
85 216 1 17
86 217 1 24
87 217 1 23
88 217 1 27

FORMAL SPATIAL
OPERATIONS RELATIONS

15 58
9 51

14 43
14 39
10 28

7 43
6 48

16 51
9 33

13 38
9 51

11 52
16 57
16 43
12 51
11 39
15 54
10 33
17 42
14 51
11 43
11 49
13 50
10 45
13 50
15 48
16 44
17 43
14 54
11 49
15 60
14 43
18 43
15 37
11 42
11 46

5 31
13 51

9 42
11 46
4 41

10 4916
13 53

52
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APPENDIX A

CONCRETE FORMAL SPATIAL
ID AGE CONSERVER OPERATIONS OPERATIONS RELATIONS

89 218 1 17 12 50
90 220 1 24 11 53
91 220 1 25 10 36
92 221 1 19 12 33
93 221 1 21 17 55
94 221 1 20 14 27
95 222 1 25 13 60
96 224 1 25 11 49
97 227 1 25 15 46
98 218 0 18 12 34
99 221 0 23 11 45

100 222 0 21 13 31
101 216 1 24 . 14 32
102 217 1 22 19 58
103 218 1 25 14 46
104 218 1 23 12 36
105 220 1 21 14 48
106 220 1 23 13 56
107 221 1 19 15 48
108 222 1 18 7 26
109 223 1 29 17 57
110 218 0 21 7 32
111 219 0 22 12 56
112 221 0 14 5 20
113 223 0 24 10 55
114 226 0 18 8 31
115 229 1 21 4 48
116 235 1 21 13 45



ID

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
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AGE

188
188
180
178
185
177
191
185
168
181
177
182
195
180
184
184
180
172
187
186
190
180
188
180
157
163
158
159
173
161
163
155
156
183
163
155
159
160
168
160
167
163
149
161

APPENDIX B

CONSERVER
CONCRETE

OPERATIONS
FORMAL

OPERATIONS

1 28 16
0 24 14
1 18 13
1 22 12
0 17 13
0 17 9
1 21 10
1 27 21
1 20 17
0 25 12
1 21 11
0 24 13
1 15 11
1 28 16
1 24 18
0 18 14
1 25 17
1 28 20
1 24 14
0 23 11
1 26 9
0 27 16
1 27 ' 12
0 28 14
0 22 6
1 24 8
1 25 17
0 4 5
0 13 7
1 25 14
1 25 12
1 20 10
0 20 9
1 22 9
1 23 10
0 29 11
o 24 6
1 19 12
0 22 10
1 20 5
o 23 10
1 24 12
1 24 9
1 21 12

SPATIAL
RELATIONS

52
48
56
42
27
42
41
49
42
54
34
42
50
62
47
53
47
52
46
35
34
38
58
60
37
42
53
15
43
49
37
51
44
38
42
28
40
51
40
40
48
32
32
47
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45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

70

AGE

161
150
157
160
155
195
169
165
156
147
155
147
163
157
157
156
158
155
150
176
173
185
175
167
176
169
176
178
167
174
173
173
171
173
173
161
171
168
167
167
170
180
175
176

APPENDIX B

CONSERVER
CONCRETE

OPERATIONS
FORMAL

OPERATIONS
SPATIAL

RELATIONS

1 20 7 45
1 25 14 50
0 20 4 40
1 20 13 48
1 18 9 40
0 4 3 13
1 25 10 26
0 26 9 50
0 21 11 46
1 17 6 41
0 21 10 44
1 20 7 41
1 26 17 45
0 26 13 55
0 22 10 38
0 17 12 52
0 25 15 44
1 26 5 35
0 25 14 56
1 24 16 41
0 15 7 31
0 21 11 49
0 26 15 591 26 13 510 21 2 271 27 11 521 26 16 461 26 13 360«• 24 10 621 21 11 491
1
1
1
0
1
1
1
1
1
1

22
23
23
21
27
24
22
27
24
23
20

10
14
17
8

18
15

9
6

15
9*7

33
51
54
52
40
46
34
44
56
40

1 21 7 35
1 27 5 28
1 18 14

7
59
40



ID

89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111

71

APPENDIX B

CONSERVER
CONCRETE

OPERATIONS
FORMAL

OPERATIONS
SPATIAL

RELATIONSAGE

171 1 22
168 1 16
175 1 23
173 1 23
174 0 26
181 0 15
169 0 24
173 0 23
172 1 14
166 0 25
169 1 22
167 0 22
165 1 27
167 1 22
168 1 23
166 1 23
161 1 16
167 1 24
182 0 21
174 1 16
173 0 25
174 0 23
173 1 25

13 56
12 37
16 30
13 57
16 40

6 37
8 45

14 50
6 29

16 43
14 53
17 41
11 43
14 59
14 55
14 38

8 36
16 42

9 24
11 47

6 44
11 37
17 51
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APPENDIX C

VALUES FOR DUNN'S TEST
(.0? LEVEL)

\ m

V\

2 3 1+ 5 6 7 8 9 10 20

5 3.17 3.5U 3.81 1+.01+ U.22 It-38 1+.53 1*.66 1+ .78 5.60
7 2.81+ 3.13 3.31+ 3.50 3.61+ 3.76 3.86 3.95 1+.03 1+.59

10 2.6U 2.87 3.01+ 3.17 3.28 3.37 3.1+5 3.52 3.58 lt.Ol
12 2.56 2.78 2.91+ 3.06 3.15 3.21+ 3.31 3.37 . 3.1+3 3.80
15 2.1+9 2.69 2.81+ 2.95 3.01+ 3.11 3.18 3.24 3.29 3.62
20 2.1+2 2.61 2.75 2.85 2.93 3.00 3.06 3.11 3.16 3.1+6
2h 2.39 2.58 2.70 2.80 2.88 2.91+ 3.00 3.05 3.09 3.38
30 2.36 2.51* 2.66 2.75 2.83 2.«9 2.91* 2.99 3.03 3.30
l»0 2.33 2-50 2.62 2.71 2.78 2.Alt 2.89 2.93- 2.97 3.23
60 2.30 2.1+7 2.58 2.66 2.73 2.79 2.8U 2.88 2.92 3.16

120 2.27 2.h3 2.51+ 2.62 2.68 2.71+ 2.79 2.83 2.86 3.09
2.21+ 2.39 2.50 2.58 2.61* 2.69 2.7h 2.77 2.81 3.02
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APPENDIX D

VALUES 'FOR DUNN'S TEST
(.01 LEVEL)

\ m
v\

2 3 It 5 6 7 8 9 10 20

5 b.78 5.25 5.60 5.89 6.15 6.36 6.56 6.70 6.86 8.00
7 It. 03 U.36 b. 59 U.78 It.95 5.09 5.21 5.31 5.1*0 6.08

10 3.58 3.83 it. 01 lt.15 b.27 It. 37 It .1+5 b. 53 b. 59 5.06
12 3.U3 3.65 3.80 3.93 b.Ob It.13 It.20 It.26 It.32 It.73
15 3.29 3.b8 3.62 3.7b 3.82 3.90 3.97 b.02 It.07 lt.l*2
20 3.16 3.33 3.b6 3.55 3.63 3.80 3.76 3.80 3.85 1*.15
2b 3.09 3.26 3.38 3.h7 3.5b 3.61 3.66 3.70 3.7b b.Ob
30 3.03 3.19 3.30 3.39 3.b6 3.52 3.57 3.61 3.65 3.90
ho 2.97 3.12 3.23 3.31 3.38 3.1+3 3.1*8 3.51 3.55 3.79
60 2.92 3.06 3.16 3.2b 3.30 3.3h 3.39 3.1*2 3.1*6 3.69

120 2.86 2.99 3.09 3.16 3.22 3.27 3.31 3.31* 3.37 3.58
2.81 2.9b 3.02 3.09 3.15 3.19 3.23 3.26 3.29 3. **o
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