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SOME APPLIED RESEARCH CONCERNS
USING MULTIPLE LINEAR REGRESSION ANALYSIS

Introduction
During the last fifteen years, multiple linear regres­

sion, the general case of the least squares solution, has
developed into a dominate research technique for the
social sciences. With this increase in usage of multiple
linear regression, there have developed two opposing view­
points with regard to its usefulness and its appropriate­
ness. The arguments of both .groups, the advocates and the
critics of multiple linear regression, can be found in the
recent literature. The advocates of multiple linear
regression state and defend the advantages provided to the
researcher who uses multiple linear regression. The
critics state a variety of limitations and concerns with
respect to utilizing multiple linear regression as a
research technique.

The purpose of this paper is to examine the advantages
claimed by the advocates of multiple linear regression and
some of the concerns expressed by its critics. More than $
anything else what the authors of this paper have attempt­
ed to provide is an overall reference on how a researcher
can apply multiple linear regression in order to utilize
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the advantages that it has to offer. Also, the authors

have attempted to provide a number of meaningful and

practical methods by which researchers can deal with the

concerns that are often cited by the critics of multiple

linear regression, which are correlation/causation, upward

bias , and multicollinearity.

Advantages of Using Multiple Linear Regression

While a great deal of money and time is currently

being directed toward research, there appears to be a

general lack of acceptance of the relevance of research

findings. One reason for the present skepticism has been

that the statistical models used by researchers have

frequently been unrelated or tangentially related to the

research question of interest. There are a variety of

reasons for this lack of agreement between the research

question of interest and the statistical model.

One such reason is that courses that teach research

methods generally emphasize data analysis, rather than

practicing appropriate methods and procedures for asking

and developing research questions. These courses do not

adequately develop the skills of evaluating the research

question and the statistical models that are most capable

of reflecting the research question.

Quite often, a student coming out of these courses

tends to select a familiar, "canned” standard statistical

design, or package (cookbook approach) such as a 2x3, or
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2 x 2 x 3, because he has not been taught to develop his

own models to reflect their research question. Therefore,

he uses these standard models which dictate the question

being investigated. Sometimes a researcher is aware that

these models do not completely represent his true research

question. In addition, a significant F-value on a factori­

al design is often difficult to interpret. When this

happens, he may then make inferential jumps from his data.

These inferences may well be inappropriate.

Therefore, in many cases the researcher is unaware that his

models are not really reflective of his research questions;

and quite often, the unsophisticated researcher allows the

statistical model to totally dictate his research question.

Under these conditions, we find research that is techni­

cally correct but is not relevant because it is not

related in a pragmatic way to a specific problem. (Newman,

et al., 1976)

1. One advantage of using regression procedures is

that the researcher finds it necessary to first state his

hypothesis and then write the regression model needed to

test that hypothesis. Thus, every test of significance is

directly testing a specific question posed by the research­

er. Also, regression is more flexible in allowing the

researcher to write the models that specifically reflect

his question of interest. The advantages provided by this

flexibility can be seen in research questions that deal

with interaction variables, directional and partial
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interaction covariance, trend analysis, and questions that

encounter the problem of disproportionality.

2. In dealing with interaction variables, a research­

er with regression can ask interaction questions between

catagorical variables, between catagorical and continuous

variables or between continuous variables. Since

regression can deal with catagorical and continuous vari­

ables, it is more flexible in its ability to reflect real-

world problems than other statistical procedures. With

regression, there is no need to catagorize variables that

are continuous in nature as required, for example, by

traditional ANOVA; therefore, one would not lose degrees

of freedom and power. .(McNeil, Kelly, McNeil, 1975,

Kerlinger, 1973)).

An example of how a hypothesis which involves the

group membership could be tested is listed below:

Example 1:

Yj = posttest score

Xj_ = control group

X2 ~ experimental group

X3 = I.Q. score

x4 = xi * x3 scores for the students in the
control group)

X5 “ x2 * x3 (I-Q- scores for the students in the
experimental group)

e1,2 = the error for each subject

U = the unit vector

aO' • • •/ ay = partial regression coefficients
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variance in accounted for by the full model

variance in Y accounted for by the restricted
model
the number of linearly independent vectors in the
full model minus the number of linearly dependent
vectors in the restricted model.

dfj = the number of subjects minus the number of
linearly independent vectors in the full model.

= the differences between the posttest scores
of the control group and the experimental group
are not constant across the range of I.Q. scores.

Model 1
Y.j_ = agU + al^l a2^2 a4^4 a5^5 R1

p2 =rr

df„ =n

Restrictions: a4 = a5 = 33

Model 2 Yx = aQU + a-jX-j^ + a2X2 + a3X3 + E2

By testing Model 1 against Model 2, that is, by determin

ing if the F-value calculated by:

F = -------------------
f1 " rf// dfd

is significant, the researcher could determine if there

is a significant interaction between the continuous

variable of I.Q. scores and the categorical variables

of the groups (McNeil, et al., 1975).

3. Regression also allows the researcher to test

directional and partial interaction questions (McNeil,

at al., 1975). For example, the researcher may hypothe­

size that I.Q. scores have a greater impact on the
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posttest scores of the subjects in the experimental group

than it does for the control group subjects. The

researcher could obtain the answer to his research question

by testing Model 1 against Model 2 (using the same variab­

les and models listed previously). If a significant

F-value was obtained and if 35 > a^, the research could

conclude that I.Q. scores had a greater impact on post­

test scores for the subjects of experimental group than

for the subjects of the control group.

Regression also allows the research to test inter­

action questions that the researcher would tend not to

ask if he was not familiar with regression procedures,

that is, partial interaction questions (McNeil, et al.,

1975). For example, a researcher might be interested in

testing the following hypothesis (Fraas, 1977):

Example 2:

= Previous economic training has a greater impact

on the average posttest scores of the students in

the two experimental groups than for students in

the two control groups. (Note: More than two

groups could be used.)

Y-^ = posttest scores

= Previous economic training (1 if yes; 0 other­
wise)

X2 = no Previ°us economic training (1 if yes; 0 other­
wise)

X3 = Control Group I (1 if yes; 0 otherwise)

Experimental Group I (1 if yes; 0 otherwise)
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X5 = Control Group II (1 if yes; 0 otherwise)

Xg = Experimental Group II (1 if yes; 0 otherwise)

X-j = * Xg Students in Control Group I with
previous economic training (1 if yes;
0 otherwise)

X8 = X1 * x4 Students in Experimental Group I with
previous economic training (1 if yes;
0 otherwise)

X9 = X1 * X5 Students in Control Group II with
previous economic training (1 if yes;
0 otherwise)

xio “ X1 * X6 Students in Experimental Group II with
previous economic training (1 if yes;
0 otherwise)

X,, = X_ * X Students in Control Group I with no
J previous economic training (1 if yes;

0 otherwise)

x12 = X2 * X4 Student in Experimental Group I with no
previous economic training (1 if yes;
0 otherwise)

X13 = X2 * X5 Students in Control Group II with no
previous economic training (1 if yes;
0 otherwise)

X = x2 * Xg Students in Experimental Group II with
no previous economic training (1 if yes;
0 otherwise)

x15 “ x8

X16 = X9 “ X7

• xi7 = xio + x;

X18 = X11 + X7 f

X19 “ X12 X7

X20 ~ X13 + Xy

X 7

Variables need to impose the

restriction required to test

the hypotheses.
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Model 1 Y1 ~ a0U + alXl + a8X8 + a9X9 + a10X10 +

anxn + ai9Xio + aiA, + an >iXt a11 11 12 12 11 13 14 14

Restrictions:

+ E

Model 2 = a0U + + a^X^ + a17X17 + a^X^ +

+ a X„„ + E21 21a19X19 + a20X20

If the researcher finds a significant F-value and if

the value of the left side of the restriction is greater 

than the value of the right side of the restriction, the

researcher would conclude that the data supports the

hypothesis. Without the knowledge of regression, the

researcher may not even ask such a question, let alone

be able to test it, even though the question may be of

great importance to his study.

4. A fourth advantage of regression is that by

using the multiple linear regression procedures, questions

that involve covariance are easier to test and interpret

(Kerlinger, 1973; Kerlinger and Pedhauzer, 1973; Ward and

Jennings, 1973; Williams, 1974; Draper and Smith, 1966;

Newman, et al., 1976; McNeil, 1976). This point can be

demonstrated by the procedure listed below:
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Example 3:

Hypothesis I: The posttest scores for the experimental
group are significantly higher than the
posttest scores for the control group over
and above the differences due to I.Q.
scores. (The variables listed in Example 1
are also used for this example)

Model 3
Y1 = a0U + alXl + a2X2 + a3X3 + E

Restriction: aq = a~1 2

Model 4
= 8qU + a^X^ t E

If Model 3 is found to be significantly different from

Model 4, this would indicate that there is a significant

difference between the groups. Also, if a-^ < a2, this

would suggest that the Experimental Group had higher

posttest scores than did the Control Group (at some

specific a level).
5. Another advantage of regression is that it facili­

tates the calculation and interpretation of trends (func­

tional relationships). When the research question of inter­

est is one of trends or functional relationships, one often

finds the use of inappropriate statistical models which

cannot accurately reflect the research questions (Newman,

1974).
When researching developmental questions, one is often

more interested in functional relationships than mean 

differences. There is generally a continuous variable that 
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ig of interest, such as time, age, population sizes, I.o,

When traditional analysis of variance is employed, for

example, continuous variables are forced into categoriza­

tions. This causes the researcher to lose degrees of

freedom, and there is a potential loss of information.

This loss is contingent upon how representative the

categories are of the inflections in the naturally occuring

continuous variable.

Since continuous variables are frequently artifically

categorized, the analysis produced by such a procedure may

not really reflect the researcher’s question or interest.

The most efficient method for writing statistical models

that reflect trend or curve fitting questions, is the

general case of the least squares solution, linear model

(Multiple Linear Regression Procedures, Newman (1974),

McNeil, Kelly, McNeil (1975), Draper & Smith (1966), Kelly,

Newman, and McNeil (1973)). This procedure allows one to

write linear models, which specifically reflect the

research question.

Linear Regression is an excellent statistical tool for
looking at a population trend or comparing multiple trends

over time (Newman (1974), Ervin (1975)).

Example, in Figure 1, a graph is presented that
reflects the researcher's interest in learning if there are

significant differences in trends (in this case slOpe

differences) between subjects who received a Developmental

Reading Program (xp and students who did not receive the
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Program (X2), as it relates to their cumulative G.P.A.

Example 4:

Hypothesis I: There are significant differences in slopes
for X_ and X? in predicting the student's
cumulative G.P.A.

The models needed to test this hypothesis are as

follows:

Model 1 Y, = anU + a X + a X + a,X4 + E------- 1 0 22 33 4 4

Restriction: a^ = a^

Model 2 Y = anU + a,X, + a_X_ + a_Xc + E------- 1 u ±JL Z Z □□

Y^ = cumulative G.P.A.

Xj = 1 if student had program, 0 otherwise

X = 1 if student did not have program, 0 other­
wise

3 = number of the quarter hours for the sub­
jects who had the program, 0 otherwise

4 = number of the quarter hours for the sub­
jects who did not have the program,
0 otherwise

X = X-^ + X = number of
5 4 subjects

quarter hours for all

U = unit vector, 1 if subject us in the sample,
0 otherwise

ao, . . . a5 = partial regression weight

E-l 2 = error Y - Y
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TREATMENTS AND CUMMULATIVE G.P.A. FOR STUDENTS

CUMMULATIVE

G.P.A.

FIGURE 1

If Model
Model 2, that

indicate that

und to be significantly different from
is, the P-value is significant, this would

a significant difference between the
did °t 9r°Wth °f StU<3entS Who took the program and students wh<

; "" — m terms of their cumulative G.P.A.

Regression will also alin
askAr? u W many other questions to beasked when dealing with
third  analysis. Second degree or

----- xeidcionsnipsjcould be investigated
9ression models could be writtenthat would reflect such trends.
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6. The applied statistician and researcher is

plagued with the problem of disproportional cell sizes in

factorial experimental designs. This may occur because of

mortality in the laboratory animals being used in the

experiment; the required number of subjects not available;

someone who had agreed to take part in the experiment fails

to show up; or the data may represent the proportionality

that exists in the "real world." (Newman, Oravecz,1977)

When the researchers feel disproportionality is severe

enough to be of concern, there are a variety of procedures

that he can utilize to attempt to correct for the potential

problems. However, before any corrections are applied,

one should be sensitive to the underlying assumption that

they are making about the population from which their data

is drawn, and the investigator must also be very clear

about the research question he is interested in asking.

The following are a set of questions adopted from Newman and

Oravecz (1977), of the type of information that a research­

er should investigate before selecting a method for correct

ing for disproportionality:
a. know something about the theoretical and/or

empirical relationship between the variables being studied;

b. know some of the descriptive data about the

population one wishes to generalize to in relation to the

specific variables being studied;
c. know the specific research question under investi­

gation if one decides an adjustment for disproportionality 
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is needed, then
d. know the underlying assumptions and implications

for different adjustment procedures, and

e. know the consequences for using the selected

adjustment procedure on the interpretation and generaliza­

tion of the data.
A detailed discussion of the underlying assumptions

can be found in the article by Newman and Oravecz (1977).

There are a variety of solutions to the unequal N's

problem, which can be divided into two major categories—

approximate and exact.

Examples of approximate solutions are: randomly

eliminating data and running the analysis on just group

means, therefore, decreasing the number and power. A

researcher using any of these solutions is generally aware

of the limitations and problems.

What may be more misleading are the exact solutions

which are all technically correct but which, like the mean,

median, and mode, are answering different questions. The

three exact solutions, which are listed below that are

frequently used.

Example 5:

A- Solution 1 -(Full Rank Solutjon)

ymbolic example of this procedure is presented
below for a two factorial design.
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Model 1 Ykab - « + bi“a + Vb + b3«Bab + ekab

Model ? Ykab “ 6 + b4sb + b5apab + <=kab

MO-dg-1-3- Ykab = 5 + b6“a + ^ab + ekab

Model 4 Ykab = 6 + b8“a + b9®b + Ekab

^kab = th® score for subject k in row a and
column b

6 = is the grand X

a_ = is the effect for row "a"
d

6^ = is the effect for column "b"

a£ , = is ^e interaction effect for the row "a"
and column "b"

ekab ~ the error term for each subject

b, . . . b are partial regression coefficientsn

Adjustment for Solution 1

Adjustment for A main effects test Model 1 against

Model 2

Adjustment for B main effects test Model 1 against

Model 3

Adjustment for A*B effects test Model 1 against

Model 4
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B. Solution 2
The following is a symbolic representation of this

solution:

Adjustment for Solution 2

Model 4 Ykab = « + b1Qaa + b-^Bj. + ekab

Model 5 Ykab = 6 + b126b + ekab

Model 6 Y = 6 + b,+ e------- kab id a kab

Adjustment for A main effects test Model 4 against

Model 5

Adjustment for B main effects test Model 4 against

Model 6

Adjustment for AB interaction effects test Model 4

against Model 1

C. Solution 3 - (Hierarchial Method) (Cohen (1968) ,
Williams (1974) .

The following is a symbolic representation of this

solution:

Adjustment for Solution 3

Model 7 Ykab 6 + b ct +14 a Gkab

Model 8 Y = 6 + ekab kab

Ykab = « + b15a + b^B +
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Adjustment for A main effects test Model 7 against

Model 8

Adjustment for B main effects test Model 9 against

Model 7

Adjustment for AB interaction test Model 1 against

Model 9

Each of the three least square solutions make differ­

ent assumptions about the meaningfulness and "usefulness"

of the correlations between the A main effect, B main

effect, and AB interaction.

Solution 1, for example, when testing the A main

effect, assumes the correlation between A and B and the AB

interaction is of an accidental nature, and therefore

should not be considered (Rock, et al., 1976). This

solution is most likely to be prefered when one can assume

that the missing subjects producing disproportionality

were random. If one is unable to make this assumption

then it would be inappropriate to use Solution 1, (which

may be the case most frequently).
Solution 2 assumes that there is no correlation

between the A and B main effects in the population. There

fore, the correlation between A and B in the sample is

a function of disproportionality and not representative of

the population. Solution 2 then attempts to adjust for

this correlation.
However, Solution 2 assumes that the correlations
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between the main effects and the interaction, which re­

sults from the disproportionality, are not spurious and

are characteristic of the population. Therefore, it does

not attempt to adjust for this correlation.

If one cannot assume that the correlations between

the A and B main effects due to disproportionality are

due to chance, then Solution 2 would be an inappropriate

correction.

Solution 3 requires an a priori ordering of the

importance of each variable. Let us assume that the

a priori ordering are: A main effects, B main effects,

AB interaction, respectively (Newman and Oravecz, 1977).

It is important to determine which of these methods

are reflecting the question that we are interested in

answering. One can only do this by being sensitive to

one's research question and by being aware of the differ­

ent statistical techniques which are more appropriate

than others.

Methods That Can Be Utilized

To Deal With The Concerns Of
Correlation, Upward Bias R2 Values, And Multicollinearity

There are three concerns which have been expressed

by the critics of multiple linear regression that have

drawn a great deal of attention. One concern expressed by

some critics is that causality cannot be inferred from

studies that use regression procedures. Another concern

that has been expressed by some researcher is the 
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tendency for multiple correlations to be upward bias.

The third major concern, called multicollinearity,

problems produced by the non-orthogonality of the inde­

pendent variables. [Note: One of the problems with

disproportionality, a concept discussed in the preceding

section of this paper, is that disproportionality produces

correlation between its variables, i.e., multicollinearity.]

It is the purpose of this section of the paper to

present a discussion of possible methods that a researcher

could use in order to deal with these problems.

1. One of the concerns that has been expressed by

the critics of multiple linear regression is that one

cannot infer causation if regression or correlation is

used. This concern which has been expressed both formally and in­

formally, can be found in a recent article entitled "Regression

Analyses and Education Production Functions: Can They Be

Trusted?" The authors Lyecke and McGinn (1975) conclude

that a researcher cannot appropriately infer causation

from regression techniques.

The statement by Lyecke and McGinn (1975) is correct.

However, causation cannot be inferred from any statistical

tool unless an appropriate research design is utilized.

If causation is to be inferred, regression as a statistical

tool, as is the case for any other statistical tool, must

be used m relationship with some research design that

can be found, for example, in Stanley and Campbell (1969).
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To the extent that this design has internal

validity, the researcher can infer causal relationships

between the independent variables and dependent variables

If a research design is ex post facto, where the

independent variable is not under the control of the

researchers, no matter what technique is used, one cannot

infer causation. It is not technically legitimate to

infer causation when the design is ex post facto. Even

though a variety of statistical techniques such as path

analysis as developed by Blalock (1962, 1964, 1970, and

1972) and more recently component analysis developed by

Mood (1971), have attempted to get at causal relation­

ships of ex post facto data, through the manipulation of

regression techniques, one still cannot technically infer

causation (Newman & Newman, 1975). Newman and Newman

stated the following with regard to causation and

component analysis:

Since one of the major purposes for calcu­
lating component analysis is to attempt to
improve the explanation of ex post facto
research designs,this can lead one to mistaken­
ly believe that the unique variance accounted
for by an independent variable with a criterion
is of a causal nature (p. 45).

In a similar fashion, Lee Wolfle (1977), states the

inability of a researcher who is using path analysis on

ex post facto data to infer causality as follows:

Although path analysis is a method for con­
sidering cause, neither it, nor any o e
od, can be used for inferring causali y
non-experimental data (p. 39)
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It is, therefore, not the use of multiple linear

regression that precludes the researcher from infering

causal relationships between the variables. It is the

lack of a true experimental design that prevents the

researcher from making such inferences. Causation can

only be inferred if a true experimental design was

utilized, irregardles of the statistical tools that were

used to analyse the data.

2. Many researchers mistakenly believe it is

meaningful to include in their, reports only that a

manipulation of an independent variable was shown to have

a significant effect upon a dependent variable. The

magnitude of this effect is not given to the reader.

The magnitude of this effect, which could be presented
by citing the R^ or g 2 values, must be taken into con­

sideration when a researcher is interpreting the practical

significance of experiment results (Byrne, 1974,

Cohen, 1969, Fredman, 1972).
2

Most researchers are aware that a R-value tends to be

higher in the sample than in the population from which the

sample was drawn. This shrinkage is due to the fact

that the regression weights are calculated to maximize

the prediction of the criterion. The sampling error is

capitalized on when calculating the regression weights,

so that the predictive power for any one sample is

maximized. it should be noted, however, that in an

article by Dalton (1977) it was suggested that this
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2overestimation of R may not be too great in many cases

and is really a good estimate of the population value.

Dalton (1977) used Monte Carlo methods to compare
£2, R2 (R2 after a shrinkage formula has been applied), and

2 .2R . The bias m R was consistently positive and it

decreased as the sample size increased. However, Dalton
concluded from his study that even though R2 and u»2 were

superior to R^ when n _< 30, Rz showed little bias in large

samples. Therefore, this study may suggest that the

upward bias tendency for R values is not as prominent a

problem as once thought. However, there was one short-

comming of Daltion’s (1977) study and that is he only ex­

amined at the three variable situation. This greatly

limits the possible generalizablity of the study.

There are four possible methods which can be used
to obtain a corrected R2 (R^)• These methods are

entitled the Wherry Method, McNamara Method, Lord Method,

and Cross-Validation Method. Uhl and Eisenberg (1970)

empirically investigated the accuracy of three of these

methods; Wherry's original formula (1931), McNemar s
modification (1962), and Lord's (1950) formula. These

formulas are:

R2 = 1 - (1 - R2)-5HT (wherry)

R2 = 1 - (1 - R2)-^-T~ (McNemar)

R2 = 1 = (i . R2) N+K4- (Lord)
k 1 N-K-l
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where:
r = the corrected estimate of the multiple

correlation
r = the actual calculated multiple correlation

K = the number of independent variables

N = the number of independent observations

Uhl and Eisenberg found that even though Wherry's and

McNemar's formulas are the most commonly used, Lord's

formula consistently gave more accurate estimates for

the five different N sizes they investigated (N = 50, 100

150, 250, 3 25) and for the situations using two through

thirteen predictor variables.
A study conducted by Klein and Newman (1974) indi­

cated that when there are 100 subjects for each

variable all three formuli produce the same estimates.

When the ratio is less than that, Lord's formula is con-

ently more conservative, that is, it shrinks more.

ariables increase, there seems to be a tendency

Nemar and Wherry to produce more similar results.

Isadorel-In a discussion between Keith McNeil and — sub-
Newman, the topic of the ratio between variables an
jects was reviewed. McNeil stated that this ratio
be equivalent for continuous variables and dichoto .
variables. McNeil suggested that in order to esta
a 10:1 ratio for a continuous variable, one may have . ^s,
have ten subjects per "grouping" of the variable, tn
if the values of a continuous variable distribute t e
selves into approximately three distinct groups, ten
jects are needed for each group in order to retain a 1 ‘ re
ratio. This is probably a conservative estimate, bu
is no data to empirically support the claim of equivaie
ratio for continuous and dichotomous variables.
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Klein and Newman further stated that it is conceptu-

• 2ally meaningless to interpret negative R , and since the
2lowest possible R one can legitimately obtain is 0, it

seems that these formuli need a correction factor added

so that they are bounded on the low and by R2 = 0.0 and

on the high end by R4 = 1.0. It is therefore suggested

that if one uses any of these three shrinkage estimates
2 . 9that any negative R be interpreted as if it were R = 0.

Kelly, et al. (1969) , suggest cross validation

procedures as estimates of shrinkage instead of using the

more mathematical approaches used by Wherry, McNemat, and

Lord. The cross-validation procedure estimates the

shrinkage by applying the weighting coefficients from the

original sample to a new sample of subjects from the same

population.

For example, assume the weights for Model 1 in

Example 3 are as follows:

Example 6:
Model 1 Y = 10U + 6.85 Xn + 5.00X? + -05 X + E

- 1 x z J

A new sample should be taken from the same population

and the variable X6 (the predicted criterion) should be

generated for this sample by using the weights obtained

from the first sample. The transformation needed would

as follows:

x6 = 6.85 * X1 + 5.00 * X2 + -05 * X^ + 1°
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If the correlation between Xg (the predicted criterion)

and

for
1

Model

(the observed criterion) was as high as the R-value
21 the researcher could consider the R -value 

for Model 1 to be stable.

Some of the differences in the shrinkage estimates, 

using the different procedures amy be explainable. For 

example, Wherry's and McNemar's formulas both attempt to 

estimate the population R, based on the sample, while *

Lord's formula attempts to estimate the R from the sample 

to antoher sample. This is conceptually similar to the

Cross Validation procedure suggested by Kelly. In deciding

which method of estimating shrinkage is to be used, it is

important to consider the underlying assumptions of each

procedure (Klein and Newman, 1973). That is, cross

validation will tend to be more conservative estimation.
Thus, it will tend to produce larger shrinkage in R2. If

one is interested in making predictions based on one sample
to another sample, cross validation and Lord's approach

to be the better estimates. However, if one wants

estimate population values from a sample, Wherry's and

McNemar’s approaches would be preferable.
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3. The third major concern, which has drawn a great

deal of attention, is multicollinearity, that is, a situa­

tion in which the predictor variables are nonorthogonal.

One of the problems that multicollmearity can cause is

large standard errors in the sampling distributions of the

standardized regression coefficients. These large standard

errors allow small changes in the relationships between

independent variables from sample to sample to produce

large regression weight differences even though their

signs tend to be stable. Therefore, interpreting regres­

sion weights can be highly misleading due to this high

variability (McNeil, et al., 1975). Another problem

caused by multicollinearity is that a researcher is more

likely to committee a Type II error. (Vasen & Elmore,

1975) .

There are a number of ways to deal with the problem

of multicollinearity. Five such methods are:

a. component regression
b. factor regression
c. ridge regression
d. "benign neglect’1
e« a system of equations.

HI. A. One method suggested in the literature for

baling with multicollinearity is component analysis
(Newman and Newman, 1975; Massy, 1965). Component analysis

is a procedure which divides variance into two proportio

Unique variance(Uq) is the proportion of variance
attributed to a particular variable when entered last

the re<Jression equation. Common variance (Cv) may 
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conceptually thought of as the degree of overlap of

correlated variables in the prediction of the criterion.

Any given common variance must be independent of unique

and other common variance.
The calculation of unique variance for three predictor

variables could be handled as follows.

Example 7:

Let

= grade point average

= SAT score

X2 = I.Q. score

= high school class work

The number of independent components can be calculated

by the equation:
2N -1

where: N = the number of predictor variables

Thus, for this example, the number of independent

components would be equal to:
32-1 = 7

The number of sets of unique variance is equal to the

number of predictive variables. For this example, there

would be three sets of unique variance [Uq (1), Da (2),

Uq (3)]. The number of second, third, etc., order variance

can be determined by the following formula:

NC = N!
n! (N-n) i
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m = number of predictor variableswhere: «
n ;= number of variables taken at a time

NC = number of combinations of N objects,
n taking n number at a time, independent

of order.

In this example, the number of second and third

order commonalities are equal to the following:

3 •  =3 NC = '____  = 1NCn " 2! (3-2) I n 3! (3-3)1

The three sets of second order commonality are

. Cv,o 3 V and the third order common-C’(l,2,), Cv(l,3)’ CV(2<3'’'

ality variance is Cv(1/2,3)*

These components are additive and when summed

will equal the total proportion of variance accounted for
by the r| of the full model. Mood (1969) develops

rale for determining the necessary for cal

zAT-iance. The rule isunique and common components or

• being considered.to develop products of the variab

For example, if one is interested in the^qt^

this example with three predictor varia 1

t (X ) from 'first subtract that variable of interes y

,_r variables in tnemuitiplied by a -1, and multiple other

Nation.

rule: -l(l-X^) X2/ ^3

-x2x3 + xLx2x3

a ct of the^ext' ta^e the variables that are a pr each

o • -indicated byMansion and calculate the Rg that is



set (separated by + and - signs)

2 2Uq(X ) = -R v-23 + Rz *123
-L •* -4

In a similar manner, one of the second order and the

third order commonality variances would be calculated as

follows:

rule: -Kl-X-,) (1-X ) X =

-X3 + X1X3 + X2X3 - X1X2X3
Cv(l,2) = -R2y.3 + r2v.13 + r2y.23 ’ r2v,123

rule: -Kl-X,) (1-X ) (1-X_) =J-
-1 + xx + X2 -X3X2 + X3 - XjX3 - X2X3 + xxx2x3

y.i

in the expansion.

should be calculated.]

can be employed most

some of the limitations

using component analysis

R2
y.!2

CV(1,2,3) = r2

itself
2
s

For further details in how
analysis

d2 „2 2R - R + R 101y-13 y.23 V-123
[Note: When a one is by

ignored in determining which R

to calculate component
, see Mood (1969, 1971), Kerlinger (1973) and

Houston and Bolding (1975).

With all techniques, one must be aware of the
limitations so that the technique

efficiently. The following are

one should be sensitive to when
(Newman and Newman (1975)):

1. As in the example, when there are three predict
variables, there will be seven components. One can eaS

see the rather large number of R^s that have to be calcU 
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lated for just three predictor variables in theHowever, in using multiple regression m°del
' the lnvestigator

frequently has many more than threA •-Victor variables

Therefore, the number of componentsS °an easHy become

impractical to handle. •

2. An integral part of component analysis is the

concept of Uq. Uq is operationally defined as:

variance accounted for by a variable when
entered last in a multiple regression equa­
tion.

Therefore, the Uq depends upon and is affected by the

variables that are already under investigation.- Even

though the Uq is independent, in the set of variables

for that sample, the variable is not independent.

3. As the number of predictor variables increase,

the number of higher order commonality components also

increase. Just as it is difficult to interpret higher

^an third order interactions in traditional analysis

°f variance, it is also difficult to interpret higher tha

bird order commonalities.

i• fnr calculating4* In examining some of the formu i

Coinmonality components, one becomes sen
•iv accountP°Ssibility that some of the components can easi

for a whpn thisnegative proportion of variance.
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situation is encountered, it becomes very difficult to

interpret or make conceptual sense out of the analysis.

5. Mood (1971) stated an important limitation one

should consider. The unique variance (Uq) accounted for by

an independent variable can change radically from situation

to situation. However, the Uq attributed to a factor that 

the variable is a part of is not likely to change. There­

fore, Mood suggests that one should group the variables

based on the underlying concept they seem to be measuring.

This would produce a more stable estimate. This group 

process will also have a side benefit of reducing the 

total number of predictor variables which will make the

component analysis much more manageable. However,
uses the procedure suggested by Mood, the weighting of

. nn the factors accounteach variable becomes a problem.

s

go together.

are measuring

III. B.

with the problems

Quite often, variau
the same underlying
Another method by which a

. 4- r'-F the proportion of variancefor the same 100 percent of tne P P
. „nt-labie is used separately? If

accounted for when each vari
significant information.

not, one is loosing possib y
which variables should

that look as if they

variables is factor regression.
Factor multiple regression

circumvent some of

regression (Massy

the problems

(1965), Duff,

is a procedure that may

associated with component

Houston and Bloom (1971),



Connett, Houston and Shaw (1972), Newman (1972)). It is

a method that enables one to empirically determine the

factors with which the variables are associated.

The first step in the procedure is to orthogonally

factor a set of independent variables into a nXn factor

matrix. Connett, et al. (1972) suggests that this factor

matrix may be rotated, but only with a rotation that

preserves the orthogonality of the factors. The next

step is to standardize the independent variables. This

matrix of standardized variables is postmultiplied by the

matrix to obtain the factor variables. Because these

factor variables are orthogonal, the beta weights of these

variables, when used in a regression equation, will tend

to be stable. Therefore, this procedure allows greater

interpretation of the beta weights to be made.

An additional advantage of using factor scores is

that when a matrix is factored much of the error variance

tends to be distributed in the factors that account for

the least variance. Therefore, one of the possible by­

products of using factor scores which account for most

trace variance as predictors is the likelihood of in­

creasing reliability; therefore, decreasing shrinkage
(Newman, 1972).

If one is interested in improving the multiple

regression equation by using factor techniques, there is

only one way this can be done. That isu the number of
factors used must be less i-hsnless than the number of original
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variables. This will increase the df and also possibly

decrease shrinkage-estimates. Because of this, some

researchers have used only the few factors that account

for the "greatest" amount of the factored trace. However,

when this is done, one may be losing information that

can account for criterion variance by eliminating a

factor that accounts for very little trace of the

factored matrix but is highly correlated with the 

criterion scores.
Using only the factors that account for most of the

trace should be avoided when the prdictor variables th

are being factored are likely to be highly reliable.

examples of such variables are: height, weight, re 'g*

sex, income, age, etc. Under these conditions, a variable

that accounts for little of the trace variance may be

a good and highly reliable predictor of 

variance.

and there are a minimum
for, especially when

relatively large

for every variable. However, if one 1S

should be aware ofWhen using factor regression .
when it can be most appropriately used.

e 4-or regression approach may
authors’ opinion that the fac

analysis when one is
be more appropriate than compon nunted

. -na the unique variance accounted
interested in determining . ,  ..

.hor regression proce—commonality, the fact iarcTe number of
o if one has a large

appropriate. In this cas
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variables and subjects, it is possible to use factor

analysis with oblique rotation. This procedure will

condense the large number of variables into factors

which can be used as a new set of predictor variables.

Since these factors may be oblique (correlated) , one may

then wish to do a component analysis which will yield

estimates of the unique and common variance attributed

to the factors. Obviously, the oblique solutions lack 

many of the desirable characteristics which make the 

orthogonal solution easier to interpret. However, there

are times when a researcher may be interested in the

common proportion of variance attributed to factors

which are theoretically and empirically related.

III. C. A method called ridge regression has been 

Matrix is inverted.

for multiple linear

Y

X

X matrix (where t
X^X has the form of

of p predictor variables at each

e X variables are scaled so that
a correlation matrix) before the
That is, consider the standard model

regression

= X0 + E
= nXp matrix

n data

proposed as a possible means by which a researcher
cients (Hoerl (1962), Hoerlobtain stable regression coeffi

and Kennard (1970 (a) , 1970 (b)) , Marquardt and Snee
(1975)). The ridge regression procedure requires that

a constant be repeatedly added to the diagonal of the

Y vector of observed values



0 = pXl vector of population values of the para­
meters

e = nxl vector of experimental errors (E (e) = 0)

where
3 = (X/X)"1(X/Y)

x/x  the product of transposed X and X

x/y = the product of transposed X and Y

g = least squares estimator of 6

Ridge regression, as described in more detail in

Hoerl (1962) and Hoerl and. Kennard (1970a, 1970b) is an

estimation procedure based upon

3 = (XZX + KI) x(X Y)

I = identity matrix
K = O 5. K < 1

A*

g = ridge estimator of 3

where K is a conststant number added to the identity
matrix I. The researcher can determine the appropriate
K value, i.e., the K value that stabilizes the regression

coefficients by examining the Ridge Trace. The Ridge

Trace is a plot of the coefficient weights vs. the
K values. A hypothetical diagram of the Ridge Trace 1s
given in Figure 2 for the variables X-. , X9, and X3-
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RIDGE TRACE

Regression

Coefficients

FIGURE 2

At the K-value where the ridge traces for the variables 

appear to become approximately parallel 
the regression coefficients become stable. In
Figure 2 the ridge traces become approximately parallel

where K = .04. Thus, the researcher would use the

ultimately force all coe
Uncommon to see a coeffi'

sign change) to increase

. • 4- that correspond to that point.
regression coefficients tha

, 47 that for models with low
The researcher will fi

■f v than do models with
R2 values require larger values o

• ~ x indefinitely will
high R2 values. Also, increase

.. to zero, but it
y after an initial

value as K increases

(Marquardt and Snee, 1975)
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Before this procedure is used, however, a researcher

should be aware of the differences between the coefficients

produced by the least squares solution and coefficients

produced by ridge regression. The least squares solution

yields coefficients that minimize the residual sum of

squares. The expected value of the coefficients are

unbias (E (|3) = 6) and have the minimum variance among all

linear unbiased estimators (see Figure 3a).

In ridge regression, the variance of the coefficients

decreases (see Figure 3b) as the value for K increases.

However, the bias of this estimator increases (E (0) B)

as the value of K increases. What the researcher is doing

with ridge regression is accepting a little bias in the

expected value of the coefficient in return for a lower

mean square error [MSE = variance of the coefficient +
(bias) ]. in fact, the objective of ridge regression is

to find a value of K which gives a set of coefficients

with smaller MSE than the one produced by the least

squares solution. As the K value increases, the residual

sum of squares will increase. But remember, it is not the
objective of ridge regression to obtain the "best fit" f°r

the sample data but rather to develop stable coefficients
(Marquardt and Snee, 1975).



38

FIGURE 3a

(Marquardt and Snee, 1975)

VARIANCE AND BIAS IN AN ESTIMATOR

FIGURE 3b

Zero Bias

Large Variance
E (S)

Non-zero Bias

Small Variance
E (£) = 8

on the

testing would be que
is attempting to tes

Thus, ii ---
, ridge regression may not

differences between
-nnrpssion does point

the least squares solution an Because the
ridge regression.

out one limitation to using hypothesis
fficient is bias,

ospected values of the coe . ^searcher



be the
correct method for him to use in handle the problem of

ofmulticollinearity (unstable coefficients) .

III. D. A fourth possible method for dealing

wth the problem of multicollinearity is not to deal

vith it! The argument for this position can be

demonstrated by the following example:
Example 8:

= posttest score
X1 = I.Q. score

X1 = X1 *
El,2,3 = error for each subject

U = unit vector
a a .o • .^2 - regression coefficient weights

Model 1~~~ Y1 - aou + a1X1 + a2X* + E \ ’ 1

Model 2--- - 2Y1 = ao0 + a1X1 + E r2 = 0
Model 3

Y1 = aoU + a2xl + E R3 = 0

\ in the
Assume that the variable Xx is related to variable

manner indicated in Figure 4.

FIGURE 4 *
THE RELATIONSHIP BETWEN Xx AND YT

>te: Example in Figure 4 was given by
Convention to support the argumen
may be eliminating surpressor var

aC the 1977 A.E.R.A.
rd Stepwise Regression
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The r2 value for Model 1 would be equal to one. How-

pver the R? value for Model 2 would be equal to zero for

the relationship between Xx and Y^ Also, Model 3 would

have an R2 value equal to zero for the relationship between

X2 and Yj.

Model 1 is attempting to account for the variance
2in by using variables X-^ and X^. It is important to

2 .note that the correlation between X^ and X^ is high. That is,

multicollinearity is present in Model 1. In Model 2 and

Model 3, the multicollinearity is eliminated by the 

traditional procedure of eliminating one of the correlated

independent variables. What has also been eliminated, how­

ever, in both Model 2 and Model 3 is a surpressor variable

(Surpressor variables have also been called in intervening 

variable or a sleeper variable).

A surpressor variable is present when a variable

has a low correlation with the criterion and is highly

correlated with some other variable in the predictive

equation. In addition, when this variable is placed in

the predictive equation along with the variable with which
it is highly correlated, the R^ of the predictive equation

will increase significantly. Such a surpressor variable
is present in Model 1. When both X1 and x|, variables which

are highly correlated, are used together as they are in
Model 1, the R^-value of Model 1 increases significantly

2over the R values of Model 2 and Model 3. The point is
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that the researcher does not want to eliminate a

surpressor variable.

Consider the following example:

Example 8:

Let = achievement scores

X = treatment group

X2 = control group

X3 = reaction

Assume that X^ is

correlated with X^.

The hypothesis to

There is a significant difference between
the achievement scores for the control group
and the experimental group over and above
the differences due to reaction time scores.

The models below:

the hypothesis:

Model 1
*1 = aou + a1X1 + a2X2 + a^ + E

Restrictions: a-^ = a2

Model 2
= aoU + a3X3 + E

time

correlated with and X2 is also

be tested is as follows:



^2

It is important to note, however, that the

researcher must select his variables carefully. That is,
his hypothesis should probably not include X if the

relationships between X3 and the groups (x, and X ) are

not found in other research in the discipline or are illogical.

If these relationships are not usually found or are unstable

the results of the hypotheses tests may vary from sample

to sample.

The researcher should also be aware that he is more

likely to commit a Type II error when the relationship

between X3 and the groups is not consistent across the

continuum of Y. That is, there is an interaction between

groups and the reaction time. In fact, when there is an
interaction between groups and reaction time, one

conditions of covariance has been violated (homogenuity

- oiwcic; of covariance is noof regression) and, therefore, analy

longer appropriate.

III. E. Soper (1976) suggested in a review of
study on the use of programmed instruction m

that a system of equations should be established in order

-F the t nd ops nd-to correct for the nonorthogonality o

. the following hypothesisvariables. For example, conside

and variables:

Example 9:

IT e1• There is a significant difference between
the control group and the experimental
group in posttest scores over and above
the difference due to scholastic ability.
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y = posttest score

X = pretest score

y = SAT score (Scholastic Aptitude Test score)
a2

= experimental group

X = control group
4

a . . .a = regression coefficient weights

. E = the error terms (Y - Y) for the different models

The traditional method of analyzing the data would be

to test Model 1 against Model 2.

Model 1
Y1 = aoU + alXl + a2x2 + a3X3 + a4X4 + E1

a3 = a4

Model 2
X-. = a U + a X + aX + Eo-1 o 1 J- 2 2 2

If X3 and X4 are correlated with Xx (SAT scores) ,

Soper (1976) would suggest that a system of equations,

or in this case on equation, would need to be specified*

The needed equation would be as follows:

Model 3
X2 = aoU + a3*3 + a4X4 + E3

The value for E^ would represent the amount of

ar^-ati°n in SAT scores that are unrelated to group

membership.
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Next, E3 would be used as an independent variables in

Model 4, and Model 4 would be tested against Model 5.

Model 4 and Model 5 are as follows:

Y1 = aoU + aiX1 + a3X3 + + E4

Restriction: a^ - a

Model 5 Y1 = aQU + a1X1 + a5E3 + E,.

However, the researcher has not tested his original

question of interest (Type VI error) which was: Is there
a significant difference between the control group and the

experimental group on posttest scores over and above

differences due to scholastic ability? What he h

fact, tested is the hypothesis: There is a sign'

difference between the control group and the experim
group on posttest scores over and above the differences in

I.Q. and SAT scores unrelated to group membership

tation of the results very

Also, one must be aware
variables for multicollinearity

that correcting numerous
tends to make the interpre-

cult. The researcher may
in what a significant

F-value indicates.  n and sex,
two variables, I-Q-

For example, assume & system of
, .i-he researcher s

were correlated and tn . equation:
. . the foll°wing q

equations which inclu e
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I.Q. = a U = a sex + Eo 1 6

The question is, How do we interpret E6? it is whatever

I.Q. is after sex has been removed from it. Is it still

I.Q.? Most probably not.

In conclusion, the authors hope that this presentation

which dealt with some of the currently identified problems

in conducting research, speciffically when using regression,

has sensitized the applied researcher to these problems

and alternative solutions. The authors feel that no one

paper can do justice to all the topics covered. However, we

feel that this paper can be used as a guide to where one

may go for more detailed information.

It should be kept in mind that the authors felt the

regression approach is probably the most flexible and useful

single tool available to the researcher. However, like any

other tool, it is only as good as the insights and

sensitivity of the user. Do not commit the classical error
of asking a research question and testing it with a statis

tical model that is incapable of reflecting that question

(Newman, et al., 1967).
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