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NONLINEAR TRANSFORMATION
OF THE CRITERION
Keith McNeil, NTS Research Corp.
Joe Evans, Evaluation Technology

Judy McNeil, Educational Monitoring Systems

ABSTRACT

The utility of a non-linear transformation of the criterion is
established. A well-known law from a field other than education is
used as the example to demonstrate the point. The functional rela­
tionships may be such (as in the Pythagorean Theorem) that an R2 of
1.00 cannot be found without making a non-linear transformation of
the criterion. The goal of predictability (R2 = 1.00) thus may not
be reached without making a non-linear transformation of the criterion.

There seems to us to be little justification for the present over­

dependence in the behavioral sciences on the investigation of linear

relationships. Since many of the simplest functional relationships in the

physical sciences have been found to be non-linear or interactive, we find

it interesting that few non-linear relationships have been established in

the behavioral sciences, especially since most behavioral scientists would

maintain that human behavior is no less complicated than physical behavior.

We believe there are a number of historical reasons for the emphasis on

linear relationships and these will be reviewed later.

There are some historical precedents, though, which provide excellent

examples of the value of considering non-linear relationships. Newton's
o

development of the law of gravity (d =^gt ) within the framework of multiple

linear regression has already been discussed elsewhere (McNeil, 1970; and

Presented to Special Interest Group on Multiple Linear Regression:
Methodological Advances and Application during the 1979 Annual Meeting
of the American Educational Research Association, San Francisco, April,
1979.
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reprinted in McNeil, Kelly and McNeil, 1975). Newton's functional relation­

ship relates the criterion (distance) to only one predictor variable, and

that one variable is an interaction between a linear term and a non-linear

term (gravity and the square of time). No linear interactions, no linear

terms, and no "constants" were needed. We have hopes that the Newton dis­

cussion has influenced a number of behavioral scientists to investigate non­

linear transformations of predictor variables. We turn now to discuss non­

linear transformations of criterion variables.

Pythagoras Had a Reason for Considering a Non-Linear Transformation of the
Criterion ~ ~ ~ '

Pythagoras was attempting to determine the length of the longest side

of a right triangle from the lengths of the other two sides. Using regression

models with linear terms was leading to only moderate success (R2 = .80):

Model 1: C-] = agU + a^A^ + a2B.j +

Where: C^ = length of longest side of right triangle;

U = 1 for all triangles;

A-j = length of one of the shorter sides;

B.| = length of the other shorter side; and

ag, a-j, and a? are least squares weighting coefficients

calculated so as to minimize the error in E-j.

After reading the paper describing Newton's success, Pythagoras con­

sidered some non-linear transformations:
2 2Model 2: C] = aQU + a]A] + a^ + a^ + + E2

2
Where: = the square of the value in A-j; and

2
B1 = the square of the value in B^.
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When using the above model, the R increased to only .83, a non-significant

increase. Pythagoras got frantic and gave the prediction terms the fifth

degree:

Model 3: C, = aQu + a,A, + a.,8, + a// + ,<8 2 + aA3 <■ a,8 3 +

Alas, the increase in predictability was still only minimal: R2 = .84.

A flash of insight (akin to a falling apple) led Pythagoras to

transform the criterion, ending up with the following model:
Model 4: C,2 = aQU + a,A, + a^ + a3A,2 + a^2 + a^3 + a^3 +

a7fll4 + a8B14 + a9Al5 + aWB1 + E3 +

(Actually, the criterion variable was squared accidentally when Pythagoras

was hastily transforming the predictor variables. Hence another in a

long history of serendipitous findings.) As with most.flashes of insight,
2

the results led to an R of .999 ... Pythagoras was delighted in finally

reaching the first Goal of Research—Predictability. Pythagoras realized,
of course, that the scientific community was not really interested in

accounting for variance in C-| ; their interest was in . But Pythagoras

realized that this new model would allow the indirect prediction of C]

and would do it better than previous models.

Pythagoras also realized that there were other Goals of Research:

Parsimony, Replicability, Vaiidity Generalization, Control, and Explana­

tion. (See McNeil, et al, 1975 for discussion of these Goals within

the regression framework.) In striving for a more Parsimonious model,

Pythagoras considered some restricted cases of Model 4, one of the more

parsimonious being:
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Model 5: 0^ = aQU + + a^ + a^ + a^ + E5

o
Model 5 continued to yield an R of .999... but contained only five

pieces of information. Eliminating the second degree terms from Model 5

reduced the R2 to .81, a significant and non-acceptable reduction. That

is, Pythagoras preferred the less parsimonious model (Model 5) because

of its higher degree of predictability.

Fortunately for Pythagoras, a maverick statistician was available for

consultation and recommended eliminating either one or both linear terms

from Model 5. Most statisticians at that time felt that all lower power

terms belonged in a model. The maverick statistician, as well as Pythagoras,

realized that the only terms which belonged in a model were the ones

which were useful for prediction. Restricting the linear terms from Model 5

yields:
? 2 2Model 6: C, = anU + a-A< + a,B, + EcI U 3 1 4 1 o

2
Model 6 yielded an R of .999... and the numerical values for the weighting

coefficients were aQ = 0; a-j = 1; and a2 = 1. Thus the unit vector could

also be eliminated from the model, leaving only two pieces of information in

2 2the model. Any further restrictions (eliminating either A^ or ) pro-
2

duced an R too low to be acceptable. Thus, Model 7 was considered to be

a better model because it met the Goals of Research of Predictability and

Parsimony simultaneously:
2 2 2Model C: + a^ + E?

Pythagoras was concerned about Replicability, because Model 7 was ob­

tained through data snooping and may well have been applicable only to the

original set of data. Indeed, the high degree of predictbabi1ity (including

the values of the weighting coefficients) of Model 7 held up under other sets 
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of data, thus meeting the Goal of Replicability.

The Goal of Validity Generalization did not prove to be of much con­

cern to Pythagoras. Model 7 held up (continued to yield an R2 of .999...)

under a number of diverse conditions—such as color of right triangle, medium

on which the right triangle was drawn, and altitude at which the right

triangle was measured. (Newton's models did not hold up under varying

altitudes and thus had to be modified before the model could validly be

generalized across various altitudes.) The fact that Pythagoras' model was

applicable to various kinds of right triangles meant that the model was not

limited in scope, but was applicable to situations which were of interest

to the scientific community at that time.

The Goal of Control was investigated by drawing the two sides which

were at 90° to each other and then predicting the length of the hypotenuse.

Additionally, varying the length of one of the two 90° sides had predictable

effects on the hypotenuse. These studies confirmed that the length of the

hypotenuse could be controlled (in a predictable fashion) by manipulation

of either or both of the two 90° sides.

Linear and Non-Linear Relationships

The majority of the literature in any field has consisted of linear

relationships. Hays (1963) indicates three major reasons why reasearchers

have focused of linear relationships, none of which seem to be persuasive

reasons to continue the practice.

First, "as a practical first approximation to a complicated relation­

ship, a linear function rule often serves quite well" (Hayes, 1963, p. 565).

This may be true in terms of a measure approximating a construct. But in

relating one variable to another, many researchers have finally determined 
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that either a U-shaped or an inverted-U-shaped functional relationship exists

between two variables. In such an instance, the bivariate correlation of

both the linear component with the criterion and second degree component

with the criterion will be close to zero; and if one were using a stepwise

regression program neither would end up in the "best model". The "best

model" simultaneously requires both the linear and second degree components.

Hays (1963) goes on to say that, "the needs of practical prediction may be

met quite well by a simple linear regression equation". The point that we

would like to make is that settling for a moderate degree of predictabi1ity

may no longer be an appropriate stance to take. In this day of abundant

literature, ease in communication, funding for wide-scale studies, and

availability of computer processing, one should attempt to achieve a fairly

high degree of predictabi1ity—especially when predictability might be

achieved by better use of data already collected, not at the expense of extra

data collection.

As a second reason for the past focus on linear relationsips, Hays

reminds us of the tie between correlation and multivariate normal assumptions.

If one's data is normally distributed, then "the absence of a linear relation

is the absence of any systematic relation" (Hays, 1963, p. 565). We only

need to point out that many interesting criteria and predictors are not

normally distributed. In addition, a "normally distributed" criterion

could be highly predicted by a set of non-normally-distributed predictors.

Hays' third point is that many measurement and statistical techniques

have been developed on the assumption of linear relationships. We would

like to point out that the vast majority of computer programs deal only

with linear relationships, or at least make it difficult to consider 
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non-linear relationships. On the other hand, most computer installations

have a linear regression program which can investigate non-linear rela­

tionships. We find hope in Hays' statement that, "current practice and

practical necessity should not be confused with the way nature or man

behaves" (1963, p. 565). We have been known to express this same notion a

little bit more strongly by pointing out that God did not make the world

linear--all that one has to do to verify this point is to look closely at

the horizon.

Why Investigate Non-Linear Relationships?

There are two major situations wherein one would investigate non­

linear relationships. As discussed in more detail in McNeil, Kelly and

McNeil (1975), one situation is when the functional relationship is indeed

non-linear. The second situation is when the measure of the construct

does not map the construct, and some rescaling of the measure is necessary.
2

Newton's law of gravity (d = ^gt ) is an example of a non-linear

functional relationship. Any instance wherein raw scores are transformed

to standard scores, or any type of scale, would be an example of a rescaling

of the measure. Multiple linear regression rescaling applications in the

areas of 1) difficulty of items, 2) ceiling effect, 3) guessing effect,

and 4) conceptual rescaling are given in McNeil et.al. (1975, pp. 292-300).

The Pythagoras example required a non-linear transformation of the

criterion in order to ascertain the functional relationship. Usually,

one is interested in accounting for variance in the criterion in order

to understand why subjects vary on the criterion. Once Pythagoras made

a non-linear transformation on the criterion, the interest was on accounting

for variance in the transformed criterion for the sole purpose of under-
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standing why subjects vary on the untransformed criterion.

Conclusion

Pythagoras was not interested in accounting for the variance in the

non-linear criterion per se. Instead, Pythagoras was interested in deter­

mining the functional relationship between the length of the hypotenuse

of a right triangle and the length of the other two sides. The use of

a transformed criterion led to the solution of the problem. Indeed,
2

Pythagoras could not have obtained an R of 1.00 by considering only the

non-transformed criterion. That is, the hypotenuse is only determinable

from the two sides of the triangle by the indirect route of the square of

the hypotenuse.

Pythagoras was interested in determining the precise relationship

between the hypotenuse and the other two sides of a right triangle. He was

correct in measuring the two sides and using them as predictors of the hypo-
2 2tenuse. Although the initial results yielded an R or .80, this R was not

sufficient for purposes of practical predictability, such as building bridge

supports with right triangles. Pythagoras would have been wrong in

assuming that the small amount of error existing in the initial results

was due to the existance of some unmeasured variable(s) or to error of

measurement. The initial results were due to the fact that the original

measurements (both predictors and criterion) were not organized into the

proper functional relationship.
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MULTIPLE REGRESSION AS A
TECHNIQUE FOR PREDICTING

COLLEGE ENROLLMENT
Ambrose A. Clegg, Jr.

Karen Prichard
Paul Weigand

Kent State University

Abstract: This paper deals with the application of multiple linear re­
gression to the problem of identifying appropriate criterion variables and
predicting enrollment in college courses during a period of major rapid decline.
Data was gathered on course enrollments for 1972 - 1978 and organized around
five criterion variables. Total college enrollment proved to be the best
single predictor with correlations of .89 to .99 with each of ten departmental
course enrollments. The technique has proved to be 96 to 100 percent accurate
in estimating course enrollments in seven of the ten courses. It is also a
valuable means for data-based decision making and long range planning when
faculty committees must advise on administrative decisions.

A problem faced by most administrators in scheduling staff to meet

teaching requirements. In periods of changing enrollments in colleges and

universities, it becomes important for administrators to have available a

reliable means for predicting enrollment patterns in courses and departmental

programs. Such a tool can be used to allocate resources more efficiently

(staff aqd building use), as well as to provide a sound, empirical base for

informed decision making—particularly when management decisions are shared

with other groups.

This paper deals with the application of multiple linear regression

to the problem of identifying appropriate criterion variables and predicting

enrollment in college courses. While the initial focus was to develop

enrollment patterns and predictions for a single department, the model can

be used as a comprehensive tool for colleges or universities.

7
authors wish to thank

University for their help
Sonya Blixt and Madeleine Mathis
with the statistical analyses.

of Kent State

10



11

Background

In 1972 more than 1,862 students graduated from the College of Education

at Kent State University. Of these, 566 were majors in the Department of

Elementary Education (ELED). At that time Kent State ranked third in the

nation in the number of elementary school teachers graduated. Two factors

dramatically reversed this situation. The first was the tragic events of

the shooting of four students on the campus on May 4, 1970 which produced

a sudden, rapid decline in university enrollments. The second major factor

was the growing surplus of teachers in the 1970's. Since 1972 there has

been a continual, rapid decline in the number of students enrolled in the

college and in elementary education. This decline of about 23 percent per

year was evident in the number of new freshmen majors enrolled in ELED, but

it was not so readily apparent in ELED class enrollment for two reasons:

1) the impact of loss in freshmen majors was delayed for two years because

ELED courses are taught at the junior-senior level; and 2) there was sig­

nificant increases in the majors in special education and early childhood

from 1971 to 1975 in response to national and regional needs. Many of these

students took ELED courses as dual majors or as service courses for their ow-

major.

In the past years, class scheduling and faculty assignments were made

on a short-term basis, usually only one or two quarters in advance. Reason­

able estimates could be made using an inventory which provided historical data

on class enrollments and on the number of sections offered during the previous

six quarters. Estimates could be adjusted on the basis of pre-enrolIment

figures which were available about six weeks before the start of a new quarter.

In the fall of 1976 freshmen majors in ELED dropped to an all time low of

81. Enrollments in special education and early childhood education also dropped 
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noticeably. The University's tight financial position and major budget

cuts in the College of Education made it evident that no additional faculty

appointments could be expected even to replace losses due to retirement

or resignation. The purpose of this study, therefore, was to identify those

criterion variables that could be used to predict department enrollments in

order to provide more orderly planning for scheduling of classes and in the

management of faculty assignments.

Source of Data

The data for the study was derived from several official university re­

cords for the years 1972 through 1978. These included enrollments by course;

the number of students enrolled as majors in elementary education and other

departmental areas; total college enrollment; and total university enrollment.

Five independent variables were selected to determine the most likely

indicators of future enrollment trends. These were: 1) total departmental

majors in elementary education for the years 1972-1978; 2) elementary education

majors plus all those enrolled in service courses and allied majors; 3) the

number of elementary education freshmen enro-led for each year; 4) total

enrollment of the College of Education by year for the period 1972-1978; and

5) total university enrollment.

Data Analysis

Data were analyzed using Multiple Regression Analysis: Subprogram -

Regression from the Statistical Package for the Social Sciences (SPSS; Nie,

Hull, Jenkins, Steinbrenner, & Bent, 1975). Enrollment totals by year for

ten ELED courses were the dependent variables with the five variables listed

above as the independent variables. Criterion for inclusion of successive

variables in the stepwise regression was p_<.05.
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Results

Results of the multiple regression analysis indicated that the best

single predictor was total college enrollment. When other variables were

entered in the stepwise regression, their contribution was nonsignificant.

As Table 1 indicates correlations between individual courses and total college

enrollments were exceptionally high ranging from .89 through .99.

Table 1

Multiple Regression Analysis for Total College

Enrollment with ELED Course Enrollment

.05

Course
Multiple

R_
Multiple

R*

Degrees
of

Freedom F

31122 .942 .888 1,4 31.758**

31123 .890 .792 1,4 15.272*

31124 .962 .926 1,4 50.099**

31125 .996 .992 1,4 512.455**

41114 .924 .855 1,4 23.517*

41122 .984 .969 1,4 123.828**

41125 .976 .953 1,4 80.939**

41131 .980 .961 1,4 97.567**

41137 .994 .987 1,4 310.421**

41138 .990 .■980 1,4 198.895**

.01
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Examination of the correlation matrix shown in Table 2 indicated that

two other varibles (ELED majors, and ELED majors plus those enrolled in

service courses and allied majors) correlated highly (.79 to .91) with total

college enrollment.

Table 2

Correlation Matrix of Total College Enrollment with Five Variables

Course
Course

Enrollment
ELED
Major

ELED
+SVC

ELED
FRESH

Total
Univ

31122 .94 .91 .80 - .70 .23

31123 .89 .91 .87 - .70 .35

31124 .96 .91 .87 - .69 - .41

31125 .99 .91 .87 - .70 .23

41114 .92 .86 .81 - .76 .23

41122 .98 .86 .81 - .76 - .32

41125 .98 .86 .81 - .72 .23

41127 .98 .86 .81 - .76 .23

41131 .98 .86 .81 - .76 .23

41137 .99 .86 .79 - .76 .23

41138 .99 .86 .81 - .76 .23
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On the other hand, total university enrollment had only a moderately low

correlation (.23 to .35) with college enrollment, suggesting that factors

related to college enrollment were probably quite different from those re­

lated to total university enrollment. The strong inverse relationships

between freshmen in elementary education and total college enrollment probably

is accounted for by the fact that all ten courses are offered at junior-senior

level and thus no freshmen are included in the enrollment data.

Figure 1 shows the correlations between course enrollment and total

college enrollment, and the equations used to predict enrollment.

Figure 1

Correlations and Regression Equations

For Course Enrollments

Course Corre lation Equation

31122 .942’ PE = .072(TC) + 29.018

31123 .890 PE = .052(TC) + 40.492

31124 .962 PE = .143(TC) - 151.660

31125 .996 PE = .135(TC) + 10.349

41114 .924 PE = ,136(TC) + 43.606

41122 .984 PE = . 159(TC) - 246.483

41125 .976 PE = .196(TC) - 168.551

41131 .980 PE = .145(TC) - 103.324

41137 .994 PE = .195(TC) - 236.180

41138 .990 PE = .114(TC) - 25.380
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Predicting Course Enrollments, 1978-1980

Several steps were involved in determining enrollment estimates for

1978-79 and 1979-80. The first step was to develop an accurate estimate of

total college enrollments for the two-year period. This was done by averaging

the annual decrease over the years 1974 through 1977. The average decrease

was 297. Since it appeared likely that the total college enrollment will

continue to drop, a decrease of 297 was estimated for both years 1978 and 1979.

While the declines in elementary education and in other areas are more rapid

and would indicate a greater decrease, those losses are offset by increases

in vocational education where older students are enrolling to seek certifi­

cation in trades and industries and related programs.

Once total college enrollments were estimated, individual course enroll­

ments were estimated using the general regression equations indicated in

Figure 1. In order to allocate the total number of students predicted for

the year in any one class to each of the four quarters, a format similar to

that shown in Figure 2 was devised.

Figure 2

Estimated Quarter Enrollment Based On

Percentage of Predicted Course Enrollment

Surmer
1978

Fall
1978

Winter
1979

Spring
1979

Predicted
Yearly

Enrollment

% of Yearly
Total 07 38 30 25

66
Course

Enrollment 4 25 20 17
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This allocation over quarters was baded on an analysis of tho preceding

five-year enrollment pattern for that particular course for each quarter.

As shown in Figure 2 the percentage that each quarter represents of the total

year's enrollment is then determined. Using ELED 31122 as an example, Fall

quarter 1978 represents 38 percent of the estimated enrollment for that class

or 25 students of the predicted total of 66. A similar determination was

made for the remaining quarters. Enrollment figures for each quarter were

based on similar estimates for each of the departmental courses.

How accurate were these predictions? An analysis of actual enrollment

data during Fall quarter 1978 indicated that in seven out of ten of the courses

the estimates ranged between 96 and 100 percent accurate. In three courses

the margin of error was ten per cent or 90 per cent accuracy. In practical

terms this meant that in one course 96 students were predicted and 100

enrolled; in another 93 students were predicted and 96 enrolled. In a third

case, 43 were predected and 43 enrolled! In each case actual enrollments

were slightly higher than the predicted figure.

Discussion

A number of important implications appear to stem from this study. The

accuracy of prediction described above leads to more precise advanced plan­

ning of faculty resources. Faculty teaching loads can be worked out for an

entire academic year. Where necessary, faculty can be shifted to other

responsibilities if enrollment estimates are low. If additional sections

of a course are warranted, temporary faculty can be hired well in advance

rather than waiting for final registration figures. Rooms and other univer­

sity resources can also be more efficiently allocated based upon highly

accurate predictions. This technique has also proved useful in long-range

planning in that enrollment trends can be used to validate decisions

whether or not to retain faculty positions when they become vacant through 
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retirement or resignation, or to reallocate faculty and bedgetary resources

to other areas where student enrollment needs are greater.

Another important implication is that use of the technique described here

provides an empirical basis for informed decision making when such decisions

must be shared with other constituent groups. It also reduces the influence

of subjectivity and personality in decision making. For example, during a

time of considerable tension and anxiety among faculty about declining enroll­

ment and possible retrenchment, this technique proved an excellent source of

data for making difficult decisions about the number of classes to be sched­

uled, faculty loads, and reassignment to other duties. Data from a preliminary

version of this study was used to validate the need for a reduced summer

school program and a more limited employment of faculty for summer school

teaching. When administrative proposals were accompanied by the data on

enrollment predictions as described above, the department executive committee

recommended the acceptance of the reduced program and turned its attention to

the consideration of other alternatives.

Several other uses might be considered for further application of this

model. Whereas this study dealt with the enrollment in a single department,

the model could be extended to a number of departments in a college or to

an all-university model. Obviously, other relevant variables would need to

be examined and selected carefully depending on the circumstances at hand.

However, most colleges or universities have easy access to a wealth of

statistical information which can be used to determine a long range history

for each of the variables. Other uses might include assessing the impact

upon enrollment patterns of mandated educational policies such as P.L. 94-142

(mainstreaming) or state required changes in teacher education programs.
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In summary, multiple linear regression analysis provides a much better

method of predicting college enrollment than the informed "guestimate" method

that had been previously employed.
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UNMEASURED VARIABLES
IN PATH ANALYSIS

Lee M. Wolfe
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Structural equation models have been useful in estimating parameters

of many substantive problems in educational research. Such models have

been applied to study the effect of educational attainment in inter-

generational occupational mobility (Blau and Duncan, 1967), the social

psychological effects of one’s best friend’s college plans on the

respondent’s further education (Duncan, Haller, and Portes, 1968), the

effect of parents' and teachers' encouragement upon educational attain­

ment (Sewell and Hauser, 1975), and ethnic and social psychological

effects upon academic achievement (Anderson and Evans, 1974; Anderson, 1978).

All of the cited analyses (indeed, most studies incorporating

regression or structural equation procedures) have rested upon the implicit,

but unrealistic, assumption that the independent variables were measured

without error (see Blalock, 1964: 49). In practice, measurement errors

in independent variables have been ignored, because it was felt that ignoring

random measurement errors merely led to conclusions more conservative than

would otherwise be the case. For example, it is well known that least-squares

estimating procedures yield attenuated estimates of the regression slope and

correlation coefficient in the bivariate case (see Appendix). Thus, it has

been believed that such results understate the true relationships. In the

* This paper was prepared for presentation at the annual meetings of
the American Educational Research Association, San Francisco, April 8-12,
1979. Work on this project was in part supported by the National Center
for Education Statistics, Department of Health, Education and Welfare
(No. 300-78-0516). Susan Rothschild assisted in computations using
facilities of Virginia Polytechnic Institute and State University,
Northern Virginia Campus. Maureen Moment provided helpful suggestions
and criticisms which are gratefully acknowledged.
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case of multiple independent variables, however, the existence of measurement

errors becomes a serious problem (Blalock, 1965; Bohmstedt, 1969).

From a formal point of view, assuming measurement error in structural

equation models is much the same as assuming variables to be unobserved.

In the former case, one assumes that the true variable is observable, but

only with error; in the latter, one assumes that the true variable is

unobservable, and uses in its place one or more imperfectly measured

indicators. Because true variables may never be measured exactly, in a

strict sense all true variables are unobserved. In practice, then,

observations are collected on manifest variables thought to be related

to the latent variable of real theoretical interest.

Measurement errors and unobserved variables constitute a large topic.

Indeed, the field of psychometrics addresses itself almost entirely to the

problem of errors in variables. In sociology, substantial efforts are

under way to estimate error in data collection (for example, Schuman and

Presser, 1978), and in estimation procedures (for example, Blalock, Wells

and Carter, 1970; Wiley, 1973). In path analysis, models containing

unobserved variables have been a part of the literature for years (Hodge

and Treiman, 1968; Siegel and Hodge, 1968; Duncan, 1969b; Hauser, 1969;

Land, 1970; Wiley and Wiley, 1970; Hauser and Goldberger, 1971; Duncan,

Featherman and Duncan, 1972; Hauser, 1973; Otto and Featherman, 1975;

Bielby, Hauser and Featherman, 1977). Indeed, one of the earliest

substantive applications of path analysis was by Sewell Wright (1925) to

the interaction between corn crops and hog prices, and included hog

breeding variables which were unobserved.

The application of structural models incorporating unmeasured

variables may influence the explanation of educational phenomena.
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As Kerlinger (1977) pointed out, models including unmeasured variables make

possible the rigorous testing of theories previously difficult to test

adequately because of fallible measures of the theoretical variables.

And as Cooley (1978) noted, such models now define the ’’state of the art"

in educational research. Unfortunately, both expository articles and

reports of substantive applications of structural equation models incor­

porating unmeasured variables have been rare in educational research

literature. This paper first discusses a simple causal model, incorporating

a single unmeasured variable for the purpose of exposition. A substantive

example will follow, incorporating several unmeasured variables for which

multiple indicators were available. This paper thus extends the work of

Wolfle (1977) and Williams (1978), who provided introductions to the

subject of path analysis from the perspective of regression analysis,

Wolfle (1978), who exposited path analysis as a means of substantive

interpretation of data, and Anderson (1978), who exposited a nonrecursive

equation model.

Let us begin with a simple example. Consider a simple causal chain

of the process of intergenerational occupational mobility from father's

socioeconomic status (X^), to respondent’s educational attainment (X^),

to respondent's socioeconomic status (X^). However, let us revise the

model such that true educational attainment is not directly observed.

Instead, its observed indicator, educational attainment, is contaminated

with errors of measurement. We assume that the amount of education actually

recorded is caused by the respondent’s true educational attainment, in

addition to several other factors. For example, the respondent may be more

or less ignorant of the number of years of regular school or college he or

she completed and got credit for." The respondent may tend to round off 
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educational attainment to even years, or multiples of four (such as 8, 12,

16, or 20). Some respondents may wish to appear to have acquired more (or

less) schooling than was actually the case.

The complete model consists of three equations, the first of

which describes the fallible measurement of observed education, while the

other two represent the causal model as such. The three equations may

be written:

x2 " b2nn + e>

n ‘ bn3x3 + u>

X1 ' blnn + v’

where x^ is the respondent’s Duncan (1961) socioeconomic index score as

revised by Hauser and Featherman (1977), is the respondent's recorded

educational attainment, x^ is respondent's father's Duncan socioeconomic

index score, n is true educational attainment, and e, u, and v are residual

errors. All of these are measured as deviations from their means. The b's

are, therefore, regression coefficients, and b^^ = 1.00. These structural

relationships may be diagrammed, as shown in Figure 1.

Figure 1. A Causal Chain of Intergenerational Status Attainment
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A remarkable property of this model is that unbiased estimates of

the coefficients may be obtained for both the causal parameters and the

measurement process. This occurs because the model is just identified

as a result of some restrictive assumptions imposed on the expected

associations of the residual errors with other variables in the model.

The usual specifications in such models is that the residual errors are

uncorrelated in the population with other, predetermined variables in

the equation. Thus,

E(x^u) = E(nv) = E(x^v) = 0.

In addition, it is assumed that the residual error of measurement is

uncorrelated with the true score, n, and also with both x^, and x :

E(ne) = E(x^e) = E(x3e) = 0.

These strong assumptions are roughly equivalent to assuming the error of

measurement is random, and not systematic. These oversimplifying assump­

tions are properties of the model, not necessarily of what the world is

really like. In any realistic context, these assumptions are problematic,

and must be assessed against the researcher’s knowledge of the topic under

investigation. For example, it is possible that respondents whose fathers

are employed in occupations of low socioeconomic status, or who themselves

are employed in such occupations, tend to overstate their educational

attainment. Complex models can be constructed which permit the inter­

correlation of residuals, but the simple alternatives for this simple example

are either to abandon the exercise or to accept the restrictive assumptions.

The three equations in the model may be reduced to three equations

with three unknowns. The details of these computations are shown 

in the Appendix. For purposes of illustration, the model was estimated 
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with data taken from the 1977 general social survey of the National Opinion

Research Center (1977), for whites and blacks. The correlations, means and

standard deviations are shown in Table 1, and the results in Table 2.

The upper panel of Table 2 shows the results one would obtain

with ordinary least squares (OLS). The structural coefficients (regression

coefficients in their original metric) are shown, and below each in paren­

thesis are the standardized (path) coefficients. When comparing socioeco­

nomic returns across groups, the structural coefficients should be used

(see Kim and Mueller, 1976). The coefficients of determination are shown

in the right-hand column. For whites, one would conclude that one point of

father's socioeconomic index (SEI) returns about .05 years of education,

and that one year of education was converted into about 4.5 points of respon­

dent's own SEI. For blacks also, one would conclude that one point of

father's SEI yielded about .05 years of education, but that blacks were able

to convert one additional year of education into only 3.4 points of their

own SEI.

The lower panel of Table 2 shows the results that one would obtain

from the model diagramed in Figure 1. Note that measurement errors seem

to be larger for blacks than for whites; that is, the standardized coeffi­

cient relating true education to observed education is larger for whites

than for blacks. Comparing the OLS estimates to the corrected estimates

for the regression of education of father's SEI, one should note that the

OLS estimate is identical to the corrected estimates. Random measurement

error in the dependent variable does not bias the OLS estimate. However,

random error of measurement in the independent variable imparts a down­

ward bias to the OLS estimate. And the lower the precision of measurement
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Table 1. Correlations, Means, and Standard Deviations of Status

Variables; Whites Above Diagonal (N = 1333), Blacks Below
Diagonal (N = 172).

Father’s SEI

X3

Education

X2

SEI

X1

White

Mean S.D.

Father’s ,v .
SEI tX3? 1.00 .370 .263 28.05 23.57

Education .255 1.00 .570 11.83 3.14

SEI (X}) .279 .560 1.00 37.48 24.53

Black Mean 14.48 10.43 23.39

Black S.D. 17.90 3.66 21.85 *



27
Table 2. Ordinary Least Square and Corrected Estimates of

Parameters in a Causal Chain Model of Intergenerational Status

Attainment

—
Predetermined Variables

-

Dependent
Variable

Father’s
(x3

SEI
)

Observed True
Education Education

(x2) (n) R2

Ordinary Least Square Estimates

Whites

Observed
Education (X2)

.0493
(.370) • • .137

SEI (X ) • • • 4.451
(.570)

. • . .325

Blacks

Observed
Education (x2)

.0521
(.255) • • • • • • .065

SEI (xp • • • 3.346
(.560)

• . • .314

Corrected Estimates

Whites

True
Education (n)

.0493
(.413) • • • • • « .171

Observed
Education (x2)

• • ■ • • • 1.000
(.895) .801

SEI (xp • • * • • • 5.549
(.637)

.406

Blacks

True
Education (n)

.0521
(.356) • • • • • • .127

Observed
Education

SEI (xp
(x2) • • •

• • •
• • •

• • •

1.000
(.715)
6.546
(.783)

.511

.613

Note: Standardized (path) coefficients appear in parentheses
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the greater the downward bias. For whites, the corrected regression

coefficient leads one to conclude that one year of true educational

attainment was converted into 5.5 points of SEI. When measurement errors

were ignored for whites, SEI returns to education were underestimated

by about 20 percent, assuming the measurement errors were purely random.

For blacks, the corrected regression coefficient leads one to conclude

that one year of true educational attainment was converted into 6.5

points of SEI. When measurement errors were ignored for blacks, SEI

returns to education were underestimated by about 49 percent, again

assuming the measurement errors were well behaved.

This analysis was based on the assumption that the only kinds

of measurement error for both blacks and whites were random, and not

systematic. Our conclusions are, therefore, contingent on the correctness

of those assumptions, but suggest that previous studies (for example,

Duncan, 1969a) comparing the processes of status attainment for whites

and blacks have exaggerated racial differences in returns to education

by failing to account for measurement error. Bielby, Hauser and

Featherman (1977) estimated status attainment models for whites and blacks

incorporating both structural and response components. They found that

response errors for whites were random, but were not for blacks. Nonethe­

less, the substantive consequences were the same as here: ignoring

measurement errors exaggerated racial differences.
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STRUCTURAL EQUATION MODELS WITH MEASUREMENT ERRORS

Unmeasured variables may also be included in causal models in the

more general case in which unmeasured variables appear as underlying

causes of several observed variables. This type of model translates

into a confirmatory factor-analysis model with an assumed structural

order among the factors. A general method has only recently been

developed which incorporates recursive path analysis, interdependent

econometric models, factor analysis, and analysis of covariance

structures. This method, the analysis of linear structural relation­

ships, or LISREL, was introduced by Joreskog’s (1973) technical paper,

and has been updated in Jbreskog (1977). Less technical introductions

are available in Long (1976) and Jbreskog and Sbrbom (1978). A computer

program is available (Jbreskog and Sbrbom, 1978).

The LISREL model assumes a causal structure among a set of

unmeasured, latent variables, some designated as exogenous and others

as endogenous. These unmeasured variables are also related to a set of

observed variables such that (in the example to follow) the latent

variables appear as causes of the observed variables. The LISREL model,

therefore, consists of two parts: the measurement model, and the

structural equation model (Jbreskog and Sbrbom, 1978: 3-4).

By way of example, Lichtman and Wolfle (1978) are studying the

processes of educational attainment among several ethnic groups,

including whites, blacks, and Hispanics. They proposed to compare

structural equation models among ethnic groups in order to determine

the extent to which differences exist in the educational returns to

socioeconomic background and within-school variables. The population
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under study is the high school graduating class of 1972,

described in detail by Levinsohn, et al. (1978). One should expect

that members of this high school cohort have not all completed their

education as of 1976 (the latest followup), so the results pertain to

educational returns as attained four years after graduation. The

respondents were initially surveyed in 1972, and followed up in 1973,

1974, and 1976. Because some questions were repeated in various

questionnaires, or because alternative means exist for constructing

manifest variables, in many cases multiple indicators exist for

latent variables. This becomes important in light of Bohmstedt and

Carter's (1971: 142) admonition that, "sociologists seem to be blatantly

unconcerned with the problems of measurement error." Moreover, Bielby,

Hauser, and Featherman (1977) showed that differential measurement

errors existed between blacks and whites in the 1973 replication of

Blau and Duncan (1967), thus leading to exaggerated racial differences

in models ignoring measurement error.

For the expository purposes of this paper, a preliminary model

incorporating structural associations among several latent variables,

and components of measurement errors, has been constructed. This

model, shown in Figure 2, includes two manifest measures for father’s

educational attainment, mother's educational attainment, and the

respondent's high school curriculum. Three manifest measures are

included for respondent's educational attainment. Single manifest

variables measure father's socioeconomic index, the number of siblings,

and high school class ranking. The LISREL model specifies that each

manifest variable is generated by a latent factor for that variable,

plus a response error which is independent of the latent factor. In

LISREL terminology:
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two random vectors n’ = (rij n2’ n3^’ and

represent the latent endogenous and latent

respectively. The model specifies a fully

f = (Cp e2, e3, c4)

exogenous variables,

recursive causal structure

among the latent variables, such that: 

B H = r + C

where 3(3 x 3) and T(3 x 4) are matrices of structural coefficients■w >M

in which P is a full matrix relating the exogenous vector to each of

the endogenous latent variables, and 3 is a matrix relating the

endogenous variables to each other. C' = (Cj, ?2> is a random

vector of residuals uncorrelated with 5.

n E

and

65x

where e and 6 vectors of errors of measurement in y and xare

These errors of measurement represent both specific and respectively

A
~y

A~x

observed, such that:

The vectors n and C are not observed, but y* = (y15---,y6) and

x* = (xp.-.jXg) are

random components of variation (see Alwin and Jackson, forthcoming).

They are assumed to be uncorrelated with n, and 4, but may be** A*
correlated among themselves. The matrices A^(6 x 3), and A^(6 x 4)

are regression matrices of y on n and of x on £, respectively.*** A*
Let $(4x4) be the covariance matrix of Let 'P(3 x 3) =

diag(i^i, ^22’ ^33^ t^ie var^-ance matrix of Let 0£ and 0^

be the covariance matrices of e and 6, respectively. In application,

some of the elements of the four regression matrices, and the four 

covariance matrices, are fixed and equal to assigned values. Other 
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elements are free parameters to be estimated by the method of maximum

likelihood. This defines the LISREL model.

The structural model is presented in the path diagram of Figure 2.

The variables enclosed in ellipses are unobserved, latent variables.

The manifest variables included in the model are as follows, in which

the number in parentheses refers to the variable number as given in

Levinsohn, et al. (1978):

= father's socioeconomic index (V2468),

X£ = composite measure of father's education (V1627),

X3 = father's education (V1009),

X^ = composite measure of mother's education (V1628),

X^ = mother's education (V1010),

X^ = sum of older and younger brothers and sisters

(V1460 + V1461 + V1462 + V1463),

Y^ = high school program as reported by respondent ( = 1 if

academic, = 0 otherwise) (V209),

Y3 = high school program as reported by school record ( = 1 if

academic, = 0 otherwise) (V196),

Y^ = percentile rank in class (V631),

Y^ = educational plans as of 10/1/76 (V1855),

Y5 = educational attainment as of 10/1/76 (V1854), and

Yg = educational recode (Melone, personal correspondence).
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The substantive portion of Figure 2 is a fully recursive model

among the latent variables, represented by the following structural

equations:

nl " Y1151 + Y12^2 + Y13^3 + Y14^4 + C1

n2 " Y215l + Y22S2 + Y23^3 + Y24?4 + B21nl + ?2

n3 “ Y31?l + Y32?2 + y33?3 + Y34^4 + P31nl + 632n2 + C3’

In algebraic form, the measurement portion of Figure 2 is:

*1 = £1

x2 “ X2252 + S2

x3 " X3252 + S3

x4 " X4353 + 64

*5 ' X53£3 + S5

x6 ’ C4

yl " hl"! + el

y2 - X2fll + e2

y3 - n2

y4 ’ X43n3 + e4

y5 ‘ X53n3 + e5

y6 " X63n3 + e6

A metric for the latent variables is established by fixing

= = 1-0- That is> the metric of the latent

variables father’s education, mother's education, curriculum, and

respondent's education are fixed to be the same as that of the 

composite measures of education for father and mother, respectively,

the school report of curriculum, and educational attainment as of

10/1/76. The metrics of father's socioeconomic status, siblings, and

class rank have already been fixed by the algebra of the measurement 
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model. Normalizations of this kind are necessary because the metric of

an unobserved variable is arbitrary. Consequently, the regression

slopes of manifest variables on latent variables are identifiable only

relative to each other.

The model was estimated with data for white male 1972 high school

graduates (N = 2955) with the specification that the response errors

2were uncorrelated. The resulting x = 150.75, with df = 38, indicated

that the model did not do a very good job of reproducing the observed

variance-covariance matrix. Examination of the first-order derivatives

indicated the possibility that the specification of uncorrelated response

errors may have been untenable. Specifically, the response errors of

and x^ may be correlated. These variables are the composite measures of

father’s and mother’s education, and apparently systematic errors of

construction exist in both variables. Re-estimating the model allowing
2for correlated response errors between and x^ resulted in a x = 95.00,

with df = 37. Because the difference in these chi-squares is itself

distributed according to chi-square with one degree of freedom, it is

obvious that the correlated response error was statistically significant.

Yet once again the model does not do a very good job of reproducing the

variance-covariance matrix. Re-examination of the first-order derivatives

suggested that y^ and y& had correlated response errors. Re-estimation
2

yielded ax - 73.85, with df = 36, which became the final model because

the addition of the next most likely correlated response error did not
9

significantly reduce the value of x (see Sbrbom, 1975).

Identical models were also estimated for black males (N = 257) with
2

X = 43.45, with df = 36, and for Hispanic males (N = 125) with = 51.59, 
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with df 36. Estimates for the measurement model are shown in Table 3

for white males, Table 4 for black males, and Table 5 for Hispanic males.

Shown in column 3 of these tables are the standard deviations of manifest

variables; column 4 contains the standard deviations of response errors

not accounted for by the underlying latent variables; column 5 shows the

standard deviations of the latent variables; column 6 contains the

relative slopes of the manifest variables regressed on the latent

variables; and column 7 shows estimates of the reliability coefficients.

Among white males in the NLS sample, different reports of the same

underlying variable were likely to have different slope coefficients.

For some variables, such as curriculum track, these different slopes

indicate different fits between the manifest and latent variables. For

example, among whites the school record measure of curriculum track was

a more reliable indicator of the true variable than was the student's

own report. For other variables, different slopes reflect different

scales of the manifest variables. For example, the composite measures of

parental education were scaled from 1 (less than high school) to 5 (MA, or

PhD), while the first followup questions of parental education were scaled

from 1 (none, or grade school only) to 9 (PhD or equivalent). However,

the reliability coefficients for these variables indicate that the

composite measures of parental education, which were based on responses

to baseyear, first followup, and activity state questionnaires, were more

reliable measures of the underlying latent variables than were the first

followup questions alone. However, caution should be exercised in

generalizing from these preliminary results. The fact that the two 

measures of parental education differ in their scales of measurement may
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indicate that the two observed variables are not manifestations of the

same true score.

Caution is particularly recommended in interpreting the results of

the measurement of respondent's education. The preliminary model estimated

here included two measures of education measured on the same scale:

educational plans as of 10/1/76 and educational attainment as of 10/1/76.

A third composite measure was included, one suggested by the staff of

NCES in which 1 = no higher education, 2 = some college, and 3 = BA and

higher. The relative slope of this composite measure varies so much from

the other two manifest variable regression slopes, and its error variance

is so different, that it should probably not be viewed as a manifest

component of the same latent factor that underlies the other two education

variables. One result of the mismatch is a meaningless reliability

estimate greater than unity.

One further caution of interpretation is worth noting. Classical

true score models express an observed score in terms of two orthogonal

components composed of a true score and an error score. As a result,

errors based on true score models are uncorrelated with true scores and

other error scores. However, the vectors of residual factors, 6 and c,

contain both measurement error and reliable variation specific to each

manifest variable (Alwin and Jackson, forthcoming). As a result, it is

possible for some or all of the residual errors to be correlated even in

the population, much as we have seen that the errors of anc^ x4’ two

composite measures of parental education, were correlated. Apparently,

whatever errors of measurement entered into the construction of one

Parent's education composite score also entered into the other parent s.
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Comparison of the measurement-model results for white males to those

of blacks and Hispanics indicates that within each population the most

reliable measure of parental education was the constructed composite

variable. The most reliable measure of curriculum membership was the

school record. The most reliable measure of true education was the

respondent’s report of bis educational attainment as of 10/1/76. Across

populations, the reliability coefficients for blacks and Hispanics were

lower than those for whites. Both blacks and Hispanics exhibited less

variation in the observed measures than did whites. Blacks and Hispanics

also exhibited less variation in the latent factor scores; proportionately,

there were even greater disparities among the latent variances than among

the observed. As a result, the reliability coefficients for blacks and

Hispanics were substantially lower than those of whites.

Clearly these findings suggest caution in interpreting models of

status attainment among minority groups that do not take account of

response error, especially when comparing structural coefficients across

groups. Table 6 presents ordinary least square (in parentheses) and

corrected LISREL estimates for the structural equation portion of the

model represented by Figure 2. Comparison of these estimates provides

some indication of the biases encountered when measurement errors are

ignored. (Another example has been offered by Bielby, Hauser, and

Featherman, 1977.)

First, the ordinary least squares regression of educational

ttainment on four family background variables and two intervening

measures of high school effects accounts for two-fifths of the variance

in educational attainment for white males, but only one-fourth of the
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variance for both blacks and Hispanics. However, these results confound

measurement error with true variation and result in coefficients of

determination that understate the ratio of explained to total true

variance by nearly 30 percent for whites, but by nearly 40 percent for

blacks and 60 percent for Hispanics. By taking measurement errors into

account, over half the variance in true educational attainment can be
2 7

explained for Hispanics (R = .582) and for whites (R » .558), but not
2

for blacks (R = .411).

Comparison of the OLS to corrected estimates in the regression of

educational attainment again indicates the biases due to ignoring measure­

ment errors. In particular, notice that ignoring measurement errors does

not necessarily produce attenuated estimates. Indeed, some of the OLS

estimates are substantially larger than the corrected estimates. For all

three groups, corrections for measurement error produce nearly identical

effects, at least in the direction of the bias. There appear to be

downward biases (the OLS estimates underestimate the corrected estimates)

for mother’s education and curriculum track. There appear to be upward

biases for father’s education, the number of siblings, and high school

class ranking. There is also an upward bias for father's socioeconomic

index among whites and blacks, but for Hispanics the OLS estimate for

father’s SEI understates the corrected estimate.

Although the direction of bias is nearly uniform across ethnic

groups, the magnitude is not. One example is provided by the effect of

membership in an academic track on educational attainment. Ordinary

least squares regressions would indicate that membership in an academic

track results in about one and one-third additional years of education 



45

for whites (measured four years after high school graduation), and one

additional year for blacks, but only one-half year for Hispanics. However,

when the confounding effects of measurement errors are removed, Hispanics

are estimated to convert membership in a high school academic track into

2.8 additional years of education, while whites have a comparable estimate

of 2.3 years, and blacks 1.8 years.

Another example is provided by the effect of high school rank on

educational attainment. Ranking the magnitude of the OLS estimates would

lead one to conclude that Hispanics were best able to convert increased

high school class ranking into educational attainment, followed by whites,

then blacks. However, when corrected for measurement errors, all three

groups were apparently equally able to convert class ranking into educational

attainment.

Overall, the consequences of ignoring measurement error appear to be

greater in the case of Hispanics than of either whites or blacks, and

greater for blacks than for whites. Since the biases in structural

estimates ignoring measurement error are larger among Hispanics and

than among whites, uncorrected ethnic comparisons show unrealistically

large differences between ethnic groups in the effects of familial background

and high school process effects.

CONCLUSIONS

researchers have long known that ignoring measurement

ill lead to biased estimates of structural effects. However, until

recently multivariate
y c procedures which correct for measurement

generally available. Recent developments by Jbreskog 
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and Sbrbom (1978) have made available a general computer program that

permits estimation of structural effects corrected for measurement

errors. The application of these techniques to a substantive problem

in education has indicated the advantages of the LISREL approach, along

with several cautionary reservations.

The most important substantive conclusion inherent in this

analysis supports the findings of Bielby, Hauser and Featherman (1977):

measurement errors differ between blacks and whites; ignoring them

leads to biased estimates of structural effects. Moreover, the present

analysis shows that Hispanics also report data with inherent measurement

errors, and ignoring them will lead to estimates even more biased than

among either whites or blacks.

Another set of substantive conclusions could be drawn from the

estimated parameters of the Hispanic model of educational attainment.

To the best of my knowledge, these are the first estimates, unbiased by

measurement error, of the process of status attainment for any ethnic

group in America other than whites or blacks. However, I have refrained

from discussing Hispanics because the model explicated in this paper was

a preliminary construction, and is already outmoded. In particular, the

model omits measures of ability, and as Scarr and Weinberg (1978)

demonstrated, the omission of ability leads to spurious estimates of

causal effects.

Finally, a cautionary note is in order. Kerlinger (1977) correctly

Pointed out that the LISREL approach toward multivariate analysis

contains a great deal of promise for testing theories that have been

difficult to test adequately with previously available analytic procedures. 



However, application of LISREL (indeed, any analytic procedure) depends

upon the collection of appropriate data. Specifically, measures of

different variables must be ascertained on different occasions, or by

different means, data collection procedures that can be considerably

more expensive than the usual survey.

My own view of the utility of LISREL is more skeptical than

Kerlinger’s (1977). Unless the data to be analyzed have been collected

by appropriate procedures, and unless the model is adequately specified,

LISREL is unlikely to produce the definitive tests Kerlinger suggests are

possible. The past decade has seen recursive path analytic procedures

faddishly applied to implausibly constructed models. Except for the

inherent difficulties in specifying the model of the computer program,

the next decade may see implausible examples of substantive analyses

based on LISREL. In the past six months I have twice had manuscripts

returned to me with reviewer's naive suggestions that the problems they

recognized could be solved by reanalyzing the data with LISREL. They

could not. As Cooley (1978: 13) so insightfully pointed out last year,

more important than number crunching is the careful measurement of a

few right variables, variables that permit statistical controls for

rnative explanations. Data analysis may stimulate thinking,

but it is not a substitute for it.
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APPENDIX

The three equations which define the structural model are:

x2 = ’>2nn + e (1),

” = %3X3 + u (2),

X1 “ blnn + v (3).

The notation may be revised such that x , x , x , and n refer

to the standardized values of these variables. Equations (1) through 

(3) may be rewritten using the using the usual equalities:

P = b (a /a ) //.xyx yx x y W,

P = a /a zsx
yu u y

These coefficients were termed path coefficients by Sewell Wright

(1921). Rewriting equations (1) through (3) in terms of path

coefficients and standardized variables yields:

x2 ’ W + p2ee (6)>

n " Pn3X3 + V (7)’

X1 " Plnn + plvv <8>’

with the specifications

E(x^u) = E(nv) = E(x^v) = 0 (9),

E(ne) = E(x^e) = E(x^e) - 0 (10) •

To solve the path coefficients in equations (6) through (8), we will

multiply through these equations by one or another of the variables, and be

taking expectations. Because the covariance of two standardized variables

is the coefficient of correlation, taking expectations of a covariance 

will yield the population correlation coefficient, p.
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(11),

multiplying equation (7) through by and equation (8) through by

First, multiply equation (6) through by n, and we have:

p2n p2n
since E(nn) = 1, and E(ne) = 0 by assumption. In similar fashion, 

n, yields:

pn3 pn3 (12),

pln pln

Multiplying equation (6) through by x^,

(13).

and taking expectations

yields:

(14),

(15),

(16),

p13 plnpn3

and multiplying equation (8) through by yields:

P12 PlnP2n

because E(x£v) = 0, an equality implied by equations (9) and (10).

Equations (14), (15), and (16) form three equations in three

unknowns, and:

p23 P2nPn3

because E(x^e) = 0, by assumption, and p^ = by equation (12).

Multiplying equation (8) through by x^, and taking expectations, yields:

- J / (17),
pln p12p13/p23

p2n = /p12p23/p13 (

pn3 = /p13p23/p12

Using the sample correlation coefficients given in Table 1 to

estimate the population coefficients in equations (17) through (19)

give the standardized results presented in Table 2.
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The corrected regression coefficient b 
n3 in equation (2) as

implied by equation (4), is given by:

b = /ao)n3 n3 n 3 (20),

in which

% ' p2na2 <21>,

the usual association between the true and observed standard deviations

(for example, Gulliksen, 1950: 23). Note therefore that:

bn3 ' pn3(p2n°2/o3) <22)"

but pn3P2n " p23 ‘ p23- So that

bn3 " P23^2/a3'> (23)'

That is, the corrected regression coefficient of true education 

regressed on father’s SEI is equal to the OLS regression coefficient

one would obtain from regressing observed education on father’s SEI.

The corrected regression coefficient b^ in equation (1) is

given by:

b?n = P?r/a-/CTr?zq Zn Z n
but substitution by equation (21) reveals that

. b = 1.00 (25>-
2q

Finally, let’s consider the corrected regression coefficient b^

in equation (3). From equation (25), equation (1) may be rewritten

x2 = 11 + e» and by substitution, equation (3) becomes;

X1 = bln(x2 " e> + v (26)’

x. = b x - b e + v (27).
1 In 2 In

Multiplying equation (27) through by x? and taking expectations

yields:

(28)2
= b o„ - b, on + oo12 in 2 In 2e 2v

but °?w = 0 as above, and on = a2, which may be verified by multiplying
zv ’ 2e e’
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equation (1) by e and taking expectations. Thus,

012 - bln - ?) (29);

9 7 2 2 2 2
b. = o.9/(a, - %) = a12a2/(a2{a2 “ae}) (30)’

In 12 Z e iz z z z t:

and
2 2 2

b. = b._ (a,/{a, - a }) (31).In 12 2 2 e

That is, the corrected regression coefficient of respondent’s SEI

on true education is equal to the OLS estimate only when the error

of measurement variance is zero. Otherwise, the greater the variance

of errors, the greater will be the downward bias in b^. In this

example, because the variance of errors was greater for blacks than

for whites, the OLS estimates were more biased for blacks.
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ABSTRACT

This study employs a Monte Carlo simulation to
determine the accuracy with which the shrinkage in R
can be estimated by five shrinkage formuli and cross-
validation. The study dealt with the use of shrinkage
and cross-validation for different sample sizes, dif­
ferent R^ values, and different degrees of multi-col-
lineari
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It was assumed that cross-validation would be the least ef­

fected by multicollinearity, however, the study did not support

this hypothesis. Apparently, multicollinearity had very little

effect on each of the shrinkage estimates.

Applied researchers who use multiple regression frequently

are interested in:

1) estimating the relationship between a set of pre­
dictive variables to a criterion in a sample for
the purpose of generalizing to the population

2) estimating the magnitude of relationships from the
sample to the population

3) estimating accuracy of prediction from sample to
sample and then to the population

In both estimating the magnitude of relationships and the accuracy

of prediction, shrinkage estimates are both utilitarian and poten­

tially misleading. Since there are a variety of shrinkage esti­

mating procedures and formuli it is important to understand the

differential effects of the shrinkage estimates for different sit­

uations and try to identify which is most appropriate under

different conditions.

In the classical artiqle by Charles Mosier (1951) he defines

he defines sixsix purposes for doing cross validations. Similarly

different types of cross validations.

1) Cross validation using weights determined in one
sample applied in a second sample drawn from the
p^mL^°PU^a^On to determine the differences in

the tW0 SaTnPles (this type of shrink­
age is the one that will be used in this study)

2) buti?hey.^^aliZati2n is similar to the first
ferent nonnl come from two distinctly dif-lerent populations
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3) Validity extention in which the samples come
2 from different populations and the two sam­

ples criteria are also different

4) Simultaneous validation in which the purpose
is to select a set of items (batteries) ef­
fectiveness in two different samples from
different populations for the purpose of hav­
ing the single best most useful battery for
both populations

5) Replication is a method of determining the
best set of weights by drawing a variety of
samples from the same population and deter­
mining the best combination of weights by
using information from these several samples

6) Double-cross validation in which two samples
are drawn simultaneously and the weights cal­
culated for each sample are then applied to
the other sample

The major problem with cross-validation is that when one

estimates shrinkage one tends to estimate the weights upon half

of the available data when it is well known that the stability of

the weight increases as the ratio of the number of subjects in­

creases in relationship to the number of variables (producing less

hrinkage). a suggested path around this dilemma has been to use

d°uble-cross-validation. If the weights in each sample are applied

the other sample (weights of Sample 1 to Sample 2 and vice

) without too much shrinkage (subjective decision) then one

combine the samples and calculate the final weights on the

sample. Another suggestion is to look at which weights

1 Dlple 1 applied to Sample 2 or Sample 2 when applied to Sam

6 Produces the least amount of shrinkage and then use those

lights.

The assumption made by Mosier is that the best way to estimate 
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the accuracy of the weights in one sample to predict the other

sample is by using separate samples. He bases this argument on the

work done by Cureton (1950) and Kurtz (1948) . This assumption is

questioned by Dalington (1969), Lord (1950), Schmitt, Coyle and

Rauschenberger (1977) , and Claudy (1978). If a mathematical cor­

rection can be used based upon the entire sample that can predict

the shrinkage in R from sample to sample accurately, it would be

preferable to use cross-validation procedure which requires two

samples. It would also produce more stable weights since it would

be done on the entire sample instead of just half the sample. This

mathematical correction procedure has been criticized because of

some simple misunderstandings.

As stated by others (Newman, 1973; Uhl, 1970, Lord, 1950,

Darlington, 1968, etc.), there are a variety of mathematical

shrinkage estimate corrections, which we shall call McNemar, Wherry-

McNemar, Lord 1, Darlington, and Lord 2.

^2 o T'J 7
R “ 1 (1-R ) (McNemar 1949)

R = 1 - (1-R ) ^21 (Wherry/McNemar (W/M) 1931)
IN — K— X

A 2 9
R = 1 - (1-R ) N+K+l (Lord x

N-K-l 1

where:
2

R the corrected estimate of the multiple correlation.

R the ac .ual calculated multiple correlation.

K the number of independent variables.

N the number of linearly independent observations.
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Also, Schmitt and Rauschenberger (1977) presented several
shrinkage estimation formuli which will be included in the analvsi«
These were: raiysis.

2 _ -I N-l N-2 v N+l ,, .?C " 1 N-p-1 N^2 ~n“ (1 R } (Darlington (D) )

2 _ i N—1 NH'dH'I zt t>2\ .Vc " 1 ■ FPFT —n (1"R ) (Lord 2 <L2) >

where:
2

— the correlated estimate of the multiple correlation.

R — the actual calculated multiple correlation.

N = the number of linearly independent observations.

P = the number of independent variables.

The McNemar and Wherry-McNemar' s shrinkage estimate was devel­

oped for and is only appropriate to use when one is interested in

predicting a population value from a sample. The others, Lord 1,

lord 2, and Darlington, were derived for the purpose of estimating

shrinkage from sample to sample, that is the stability and ac-

racy of the weights from one sample predicting to another.

A Monte Carlo study was run to estimate the efficiency and

lionship between these five equations and cross-validation in

ioting known population values for differing population R s,

ring levels of correlations between four predictor variables

ee multicollinearity) and for four different N sizes (14,

and 100). To summarize, the Monte Carlo design will look
st *SLX estimates of shrinkage (McNemar, Wherry-McNemar, Lord 1,
Lord 2

’ Darlington, and Cross-Validation) for three different

know population ’s (Situation 1's R^'s = .06, .07,
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.08; Situation 2 R2,s = .31, .32, .33, .34, and Situation 3 R2's =

,45, .47, .46, and .55). For each of the three Situations, there

were four differing correlations between the four predictor vari­

ables (estimates of multicollinearity (r)). These were for Situ­

ation 2, the correlations (r) between the four predictor variables

were .13, .30, .52, .80; and for Situation 3, the correlations (r)

were .15, .29, .53, .82. For each of the twelve populations (that

is a particular population R for a particular level of multi­

collinearity) there are four different N sizes (14, 30, 50, and

100). Therefore, the Monte Carlo Study is a 3x4x4 design, a range

of three sets of population values, a range of four different multi­

collinearity conditions for four different N sizes. (see Table #1

for results) The data is Table #1 is based upon 100 random samples

picked for each situation from each of its 12 specific population.

The r for multicollinearity is the average for the 100 samples.

In total there were 4,800 samples drawn (3x4x4x100 (samples)).
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table of shrinkage estimates

Situation I

- --- ------ ’ n i. L L ’ -r, 7
. j N t r2 ’ r2 1 r.2 » r2_ ’ d » R T ’R »RPopulation 1 , N , Rs i M ’ W/M' ’ L2 , CV1 ,CV2

------------- --------- i----------1 ~ i ' 5 7----------- - ---------
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R2 = .06 A : 14 f .34 ’ .15 ’ .05 ’ -.38 ’ -.48 ’ -.29 ’ .70 ’ .17
B ' 30 t .19 ’ .10 ’ .06 ’ -.13 ’ -.13 ’ -.09 ’ .31 ’ .08

r = .54 C ' 50 ! .13 1 .08 ’ .05 ’ -.06 ’ -.06 ' -.04 ’ .22 ’ .06
D '100 V .10 ’ .07 ’ .06 ’ .01 ’ .01 ’ .02 ' .13 ' .05
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^ere. Rg = r2 for sampie

M = McNemar’s shrinkage estimate
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continued on next page
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Situation II

--------------------------- ---------- ' ' ' '—rT—’rz 'r2
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D '100 ' .34 ' .32 ' .31 ' .27 * .27 ' .28 ' .37 ' .30

1 t f T 1 I I II

Population 7 ' ' ’ ' ’ ’
i i i i i i i it
- . j . - -

2 = A ’ 14 ’ .50 ’ .35 ' .28 ' -.05 ’ -.12 ' .02 ’ .76 ' .23
B ' 30 ’ .38 ”.31 ' .28 ’ .13 ’ .13 * .16 ’ .45 ' .26

- B 32 C ’ 50 ’ .34 ' .30 ’ .29 ’ .20 ' .20 ' .21 ’ .39 ’ .24
D '100 ' .33 ' .31 ' .30 ’ .26 ’ .26 ' .26 ' .36 ' .27

i i i i i t t ti

Continued from Table 1:
R = Darlington's shrinkage estimates

1

Population 8 ’
1

f

!

T

I I

I I

1 I

t

!

I

t

f

!

r

f

i

I

1

1

t

f

t

1 f ! T 1 r t ! 1

R2 => .33 A 14 ! .50 ' .34 ' .27 ' -.07 ' -.15 ' .01 ' .71 ’ .25
B ’ 30 ' .41 ' .34 ' .31 ' .17 ' .17 ' .20 ’ .48 ' .24

r •= .80 C ’ 50 ' .36 ' .32 ’ .30 ’ .22 ' .22 ' .23 ' .42 ' -25
D '100 ' .36 ’ .34 ’ .33 ' .29 ’ .29 ’ .30 ' .37 ' .30

1 f i i 1 1 ! 1 f

2 7RCV1 = R calculated on 1/2 of the sample

^072 The cross validated shrinkage estimate based on the weights
from the first sample tcVlf applied to the second sample
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Situation III

9 ’ N ’ It2 'R2
Population , , S , M

>2 'r2
CV1 * CV2

< !

tit f f

A ’ 14 ’ .59 ' .47 ’ .41 ’
B ' 30 ' .51 ’ .46 ' .43 ’
C ’ 50 ’ .48 ’ .45 ’ .44 ’
D '100 ’ .46 ’ .45 ' .44 '

.13 ’ .05 ’ .20 ’ .80 ’ .33

.32 ’ .31 ’ .34 ’ .55 ’ .36

.37 ’ .37 ’ .38 ’ .52 ’ .39

.41 ’ .41 ’ .41 ' .46 ’ .41
« • i »

Population 10
! !

! r

1 i

1

f

T

f

f

f

f

f

f

f

f

r

f

!

t

f

T

f

V

f

f

t » T T 1 i f f V

R2 - .46 A ’ 14 ' .61 ' .50 ’ .44 * .18 ’ .08 ' .24 ' .80 ’ .29
B ’ 30 ’ .50 ' .44 ’ .42 ’ .29 ’ .29 ’ .32 ' .53 ’ .37

? = .29 C ’ 50 ’ .49 ' .46 ’ .45 ’ .38 ' .38 ’ .39 ’ .53 ’ .39
D '100 ’ .47 ’ .46 ’ .46 ’ .42 ’ .42 ’ .43 ’ .49 ’ .45» i ! f 1 f t 1
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Table 1 seems to indicate that the McNemar and Wherry/McNemar

tend to be relatively stable for the four different N sizes in

Situation 1, with the Wherry/McNemar being more consistent across

all four N's when the (population) is close to zero (.06). For

Situation 2 the R2's ranges from .31 to .34 and in Situation 3 the

R2’s range from .45 to .55. In both Situations 2 and 3 the rela-
2

tionship of the McNemar and Wherry/McNemar to the population R 's

seem to become even more similar than they were in Situation 1.

Lord 1, Lord 2 and Darlington, which are generally used for sample to

sample estimates instead of sample to population, tend to have

higher R 1 s as the N's increase from 14 to 100. However, for all

four populations in Situation 1, these are underestimates which one

would expect since they are estimates from sample to sample and not

sample to population. For Situations 2 and 3 when the N's were

50 and 100, Lordl and Darlington tended to be fairly decent esti-

mates of the population R , but they underestimated the population

more than does the McNemar and the Wherry/McNemar.

Surprisingly to us, the cross-validation shrinkage estimate

(CV2) for Situation 1 with an N=14 tends to overestimate the pop­

ulation R2. For the N=30, N = 50, and N=100, the CV2 is fairly

accurate. For Situations 2 and 3, CV2 are underestimates of the

population R 's for all N sizes. An interesting effect is that,

as the N s become larger, the CV^ values become smaller, unlike

Lord 1, Lord 2, and Darlington, whose values become larger as

the N's increase (for Situation 1 only). it seems that the CV2

values, except for Situation 1, tend to be more consistent than

the mathematical values across all N sizes
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However, the shrinkage (amount of shrinkage) between

nd CV? tend to decrease as the N's get larger.
CV 2

The degree of multicollinearity (r), that is the cor­

relation between predictor variables, seems to have virtually no

detectable effect on the accuracy of any of the shrinkage estimates.

Brief Discussion

Assuming that the data have been generated correctly (see the

appendix for the computer program) the data from Table 1 would then

strongly force the authors to question the preference for using

cross-validation as a standard since.

1) The shrunken R does not seem to be more accurate
than the mathematical approaches (Darlington (1969) ,
Schmitt and Coyle (1977), and Claudy (1978)).

2) The shrinkage does not decrease as much proportion­
ally as the authors expected when the N’s increase

3) Cross-validation forces one to split the sample in
half which tends to produce less stability than one
would get using the entire sample.

Suggestions for Further Research

Stein-type regression which 1Darlington (197 8) discusse  qtead of on t^ie

• r>n the weights ma shrinkage corrected regressi . n  s.
5 . -.w. are multiplied byR • The partial regression weig from the

. „ fnr shrinkage obtainedwhere: S is a correction
following formula

q = P~2 X 
n+2-p RZ

where-, p = number of predictor

n = size of the sample

R = sample multiple R (not corrects
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This procedure reduces the variability of the weights from sample

to sample. As stated previously, in this procedure, all of the

weights for the predictor variables are multiplied by the same

constant (1-S). The purpose of Stein regression is identical to

of Ridge regression (Newman and Fraas (1979) , Walton, Newman

and Fraas (1978); Hoerl and Kennard (1970)) except that in Ridge

regression all of the weights are not multiplied by the same con­

stant. Instead they are multiplied by a factor that is determined

by the importance of each variable’s contribution to the multiple

R. It seems that Stein regressions simplicity and ease in deter­

mining a constant can be very valuable. The authors are suggesting

that one may be interested in investigating the most appropriate

shrinkage estimates for the weights, given different conditions, as

has been and is being done in investigating the most appropriate

shrinkage for the multiple R, given differing constraints.

As with most Monte Carlo studies, one should be careful about

not overly generalizing from the artificially generated data to

the real world data. It is possible that there is something idio­

syncratic in the programs production of the data that one has to

at least consider. The data should be replicated to see how well

the shrinkage estimates predict from sample to sample.

The major purpose of this study was to check the differential

effects of multicollinearity on shrinkage estimates. We found

that multicollinearity has virtually no effect on shrinkage esti­

mates. This may be an artifact of the data generated and this should

be considered. In adc.ition, a variety of other shrinkage estimates 
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which were not considered in this paper may b> of value for fu­

ture studies. Such estimates may include:

Burket’s (1964) - weight validity estimate:
2 2= Nr -K

r(N-K)

Olkin and Pratt (1958);

o2 - 1 N-3 (1-r2) K (1.1; ^±1; 1-r2)
V x N-r-i z

Pratt's (1964) approximation of
estimate of

P2 = 1 - (N-3)(1-r2) f
< N-K-l 1+

the Olkin and Pratt unbiased

2(l-r2)
N-K-2.3

Herzberg (1969) which is a further approximation of the Olkin
and Pratt:

2 (N-3)(1-r2)
f = 1 - N-K-l 1+

2(l-r2)
N-K+l

It is hoped that this paper has at least raised some additional

questions that may lead to fruitful further investigations.
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MULTIPLE linear regression viewpoints
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missing cells and a curious case
OF DEGREES OF FREEDOM

John D. Williams
Mohan K. Wali

University of North Dakota

ABSTRACT

An experimental sampling procedure for plant communities on
surface mined areas yielded missing cells and caused a further
problem of yielding a “total” number of degrees of freedom equal
to N rather than the usual N-l. The discrepancy occurred because
the degrees of freedom are not necessarily additive for all missing
cell designs. A solution which may circumvent this problem is
proposed.

the two jkrman7 rese*rchere in aPPlied statistics have recently considered
case has not been*7 n 1SproportlonaI fixed effects design, the missing cells
design distrihnf reported- Because missing cells do occur either by
the present ™ ° ”atural Populations, or topographic influences (as in
treatment of th ^eserve due consideration. Perhaps the most extensive

Mkcinn „ Cases of missinS cells has been discussed by Searle (1971).
°f plant co 06 S.1? 0Ur study (Wali 1977) occurred in a systematic sampling
and one sit^H10111^65 S^tes: ^1Ve were Previously surface mined for coal
and federal m T ?nndned Pra*rie was chosen for comparison. Prior to state
like a series 7 at*?nS on reclamation, these surface mined areas looked
topography ° ,COne'^e mounds (commonly referred to as spoil banks). Since
distribution’ \°Pe ang^e and aspect are important determinants of plant
distribution’ f dec’ded to obtain quantitative information on the
along eight ° f- ant sPecies from crest, upper slope and mid-slope positions
species ComC COrnpass directions (Fig. 1). In the sampling procedure,
This yieldedPfF'tt°n eaCh suh‘area was determined at every major site.
Positions a I i 8 8 sampling areas in each of the upper and lower slope
the types a^ ^r°m CfeSt ^or a to^a^ The criterion measures were
ti°n with th” nuni^ers °f Plant species in each sample. The two-way classifica-

e number in each cell is shown in Table 1.
i

Contribution frfunded by u S Systems Approach to Reclamation of Strip-Mined Areas in North Dakota

............ Bureau of Mines, Grant No. 0264001 to M.K.W.
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Fig. 1. (a) a diagrammatic representation of a “spoil bank” showing the
position of the crest, and the upper and lower slopes; (b) a top view
of the same showing sub-areas sampled along compass directions.

Table 1

Number of Samples from Five Strip-Mined and
One Unmined Area by Sampling Units

NOTE: N = North octant; NE = Northeast octant; E = East octant; SE = South­
east octant; S = South octant; SW = Southwest octant; W = West octant;
and NW = Northwest octant.

Crest

Direction

SW W NWN NE E SE S

LEVEL
CREST 12 - - - - - - -
UPPER - 12 12 12 12 12 12 12 12
LOWER - 12 12 12 12 12 12 12 12



77

The unique qualitites of the research design can b * wn Q • •Table I. When confronted by data gathered front such a desig^ some m2

suggest that if the cell in the upper left-hand comer is dropped there k ™
problem. However, such a suggestion begs the issue. Also, the actual three wav
destgn ts such that the proportionality holds for the other two ways of
classification. An additional point is revealed by Table 1; the upper left handcell does not enter in any way into the interaction. Thus, the interaction “m
of squares and degrees of freedom (df = 7) would be the same whether orZ
the crest data are included. Iner or not

Models for Two Way Design

First, several variables are defined 

X1 =
x2 =
x3 =
x4 =
x5 =
X6 =
X7 =
X8 =

X10 =
X11 =
x12 =
X13 =
x14 =

x15:
X16 ~

X3»
X4;
x5;
x6;
X7»
Xg; and
X9.

the criterion score (number of distinct species in the subsample)
1 if the score is from a crest sample, 0 otherwise;
1 if the score is from an upper sample, 0 otherwise;
1 if the score is from the N octant; 0 otherwise;
1 if the score is from the NE octant; 0 otherwise;
1 if the score is from the E octant; 0 otherwise;
1 if the score is from the SE octant, 0 otherwise;
1 if the score is from the S octant, 0 otherwise;
1 if the score is from the SW octant, 0 otherwise;
1 if the score is from the W octant, 0 otherwise;
X2
X2
X2
X2
X2
X2
X2

Now several models can be defined:

Row Effect:

Y - u (0~ bQ + bjXj +b9X2 + ei;

Column Effect:

Y = bo + bjXj +b3X3+b4X4+b5X5+b6X6 + b7X7+b8x8 + b9X92+

e2i

and Column Effects:
Y = b0 + bjX! + b2X2 + b3X3 + b4X4 + b5X5 + b6X6 + b7X7 8^8

b9X9 + e3;
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and

Full Model:

Y = bg + bjXj + . . . + bjgXjg + 64, (4)

where the bj are regression coefficients which can differ from equation to
equation (i.e., bj will not necessarily be unchanged from equation to equa­
tion): Table 2 contains sums of squares generated from equations 1-4.

Table 2

Summary Table for Species Data

df SS MS F

Rows 2 11.18 5.59 .08
Columns 8 157.24 19.66 .28
Rows & Columns 9 158.93
Rows (Independent of Columns) 1 1.69 1.69 .02
Columns (Independent of Rows) 7 147.75 21.11 .30
Full Model 16 205.82
Interaction 7 46.89 6.70 .10
Error 187 13113.76 70.13

Total 203 13319.58

While in every case the F values are non-significant, perhaps the traditional
hypotheses tested are of less interest than investigating the interrelationships
(Table 2). If an unadjusted main effects solution (Williams 1972) is preferred,
the sources of variation would include rows, columns, interaction and error; the
corresponding degrees of freedom are, respectively, 2, 8, 7, 187, or a total of
204 (apparently 1 df more than customary). If a fitting constants solution
(Overall and Spiegel 1969) is preferred, the sources of variation are rows
(independent of columns), columns (independent of rows), interaction and
error; the degrees of freedom are, 1, 7, 7, 187, or a total of 202 (1 df less
than usual ) respectively. A hierarchical model (Cohen 1968) would of course
be additive; however, there would be attendant complications of the
hypotheses tested.

The Use of Full Rank Models

Timm and Carl: on (1975) gave full rank models a strong impetus for usage
with disproportiona) data; Dalton (1977) recently affirmed their usage. To use 
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the full rank models, X} - X16 are slightly modified:

X* = Xj except X j = -1 for scores in the lower samples;

X?) = X9 except X9 = -1 for scores in the lower samples;

X3 through X9 are respectively the same as X3 through X9 except X3 through

X9 =-I for NW samples;
♦ * * *

Xjq through X16 are product vectors using X3 through X9 in a manner

analogous to Xjq through Xjg.

Because there is some ambiguity as to the nature of the models (due to
the crest cell being in both a row and a column by itself) six models are
defined:

Full Model:
sfc jit sk

Y = bQ + bjXj+b2X2+. . . + b16Xi6+e5,

Restricted Model 1 - Rows and Interaction:

Y = bo + bjXj+b2X2+b10X10 + . .. + bi6X16 + e6,

Restricted Model 2 - Rows and Interaction, crest excluded:

Y = b0 + b2X2 + b10X1Q + .. , + b16Xj6 + e7,

Restricted Model 3 - Columns and Interaction:

Y = b0 + biXi+b3X; + ... + bi6Xi6 + e8,

Restricted Model 4 - Columns and Interaction, crest excluded:
v __ * *

b0 + b3X3 + . .. + b]6X16 + e9,

Restricted Model 5 - Rows and Columns:
V - . * *

kg + bjXj + . .. + b9X9 + ejQ.

1,16 results from using the full rank models are shown in

(5)

(6)

(7)

(8)

(9)

(10)

Table 3.
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Table 3

Results from Full Rank Models

Equation df dfFull-dfRest SS SSFuii - ssRest

5 16 16 205.82 205.82
6 9 7 58.07 147.75
7 8 8 48.58 157.24
8 15 1 204.13 1.69
9 14 2 194.64 11.18
10 9 7 158.93 46.89

Equations 6 and 8 correspond to the results for columns (independent
of rows) and rows (independent columns) for the fitting constants method
shown in Table 2; t.lso, equations 7 and 9 correspond to the columns and rows
effects for the unadjusted main effects solution in Table 2. The interaction in
either case is found from the use of equation 10 together with the full model.
It can be seen that, for data with the pecularities of the present design, the
full rank models do not yield new sets of results as will occur with either
disproportional or proportional (but unequal sized cells) data.

Hypotheses Testing through Restricted Models

Using the methodology of Bottenberg and Ward (1963) and Jennings
(1967) 17 cell variables are first defined (Table 4).

Table 4

Representation of Cell Model for Mining Cells Data

Crest N NE E SE S SW - W NW

Crest X1 - - • - - - —
Upper x2 X3 X4 X5 X6 X7 X8 X9
Lower • X10 X11 X12 X13 X14 X15 X16 X17

For example, Xj = 1 if the score is from a crest sample, 0 otherwise.
All other variables X9 - Xj7 are analogously defined (note that variables
Xj - Xj7 presented in Table 4 are different from variables Xi - Xi7 given
earlier).
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A full model can be defined by

Y = b]Xj+b2X2 + b3X3 + . .. + bI7X17 + elb (11)

Note that equation 11 does not include a unit vector, implied by the absence
of bg. Likely hypotheses that express the row effect are

b10 + bll +b12 + b13 + b14 + b15 + b16 + b17-

8

If these restrictions are expressed in terms of two of the coefficients (say bj
and bjg), then

= b2+b3 + b4 + b5 + b6 + b7 + b8 + b9
1 ------------------------------------------------------- and

8

b10 = b2 + b3 + b4 + b5 + b6 + b7 + bg + b9 - bj! - b12 - bI3 - b14 -

b15‘b16'b17.

If these two restrictions are placed on the full model,

Y = (b2 + b3 + b4 + bg + bg + b7 + bg + b9) Xj + b2X2 + ... + b9X9

8

+ (b2 + b3 +b4 + b3 + b^ + b7 + bg+b9-bj] - bj2-b|3-bj4-bj5-b|g-

bl 7^10 + bl ]\ i + . . . + bi7Xj7 + ei2-

Rearranging terms,

Y = b2(I/8X1+X2 + X10) + b3(l/8X1+X3+X10) + b4(I/8X1 +

X4 + Xlo) + b5 (l/8Xj +X5+XI0) + b6 (1/8X1 +X6 + X10) + b7(l/8X1 +

X7 + Xlo) + b8 (l/8Xj +X8 + X10) + b9 (l/8Xj + X9 + Xj 0) + bj j (XT! -

X10) + bI2 (X12 -X10) + b13 (X13 -X]0) + b14 (X14 - X10) + b^ (X]5 -

X|0) + b16<x16-X10) + b|7(XI7-X10) + e12. (|3) 
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Now, 15 variables are defined in relationship to b2 through bp and b| j through
b j 7. For example, the variable related to b2 is ~ 1/8 if from a crest sample,
1 if from a cell 2 sample, 1 if from a cell 10 sample, 0 otherwise. The restricted
model, after creating all 15 variables would be

Y = b2V2+b3V3 + • ■ ■+ b9V9+bllVl ] + • • •+ b17V17+e12- (14)

Programs such as those of McNeil et al. (1975) LINEAR or Ward and Jennings
(1973) DATRAN can use equations like (14) above directly. Most multi­
purpose multiple linear regression programs automatically include a unit vector,
thus including the bg term. Any one of the variables V2 - Vp or Vj j - V j 7 can
be dropped if a multipurpose multiple regression program is used; for the
present purpose Vj7 is (arbitrarily) dropped. The restricted model becomes

Y = h0 4-bjVj + b2V2+. . .+ bpVp+bj |Vj j+...+bj6V16 + e12- (15)

Using equation 15 as the restricted model, df = 14, SS = 194.64; thus, the
df for rows is 2, and SSrows 205.82 - 194.64 = 11.18, identical to those values
found both with the use of equation 1 and with the difference between
equations 5 and 9.

A similar solution could be set for columns as well. A set of hypotheses
likely to be of interest for the column effect is (in terms of the full model,
equation 11)

bl = b2+b10 = b3 + bll
2 2

bp + b|7-

- b4 +b12-b5+b13-b7 + b15-b8 + b16-
2 2 2 2

In a manner similar to that shown for the row effect a restricted model
can be found such that df = 8, SS = 48.58, yielding for the columns effect df =
8, SScojumns = 157.24, results similar to those found for equation 2 and for
the difference between equations 5 and 7.

Thus, while it may be somewhat troublesome initially to find that the
degrees of freedom, if totaled, exceed the total degrees of freedom (by one),
this oddity arises from testing what would appear to be a useful set of
hypotheses. Except for hierarchical models, those who have used dispro­
portionate cell frequencies are already familar that such data are generally
non-additive with respect to both the sums of squares and R“ values; in some
situations with missing cells the degrees of freedom may become non-additive.

;C-

The Effect of Dropping a Vector on the Hypotheses Tested

Some readers, particularly those familiar with the paper by Jennings
(1978), might wonder about the effect of dropping a vector, such as V^7 in
equation 15.
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Strictly speaking, the dropping of the VJ7 from the full model (equation
11) should be written
Y = b0 + ciX1 + c2X2 + c3X3 + .. • + ci6X16+e13 (16)

where each Cj = bj - b0.

Also, b0 = Y17; thus each Cj = Yj-Yp for equation 16. Letting bI7 = 0
in equation 11 is called setting a side condition; equation 16 is a re-para­
meterization of equation 11 (meaning that the expected values for all Y, are
the same in each equation; also, ej j = e13). The null hypothesis corresponding
to the row effect would be 

cj = c2+... +c9 = C10+ • • • +t 16+b0.

8 8
It should be noted that this expression of the row effect is testing the same
hypothesis as stated earlier; if bg is added to each portion of the present
expression, the previous expression for the row effect would occur. The
restrictions become (in terms of Cj and Cjq)
Cj = • ■ -+c9 and c10 = c2 + . . .+c9 - (c! j+.. .+c16 + bQ).

8
Placing these restrictions on equation 16,

Y = b0+(c2+ . .. +c9) X1+c2X2+ ... +c9X9 + [(c2+ ... +C9) - (cj 1+
----- —----

••• + c16+b0^X10+cllXll+- • •+c16X16+e14- (l7)

Rearranging terms,

Y = b0+c2(l/8X1+X2+X1Q)+c3(l/8X1+X3+X10Hc4(l/8X1+X4+X10)+c5

(l/8X1+X5+X1(^6(l/8X1X^-X10)+t>7(l/8X1+X7+X10)+€8(l/8X1+X6+Xj0>+-c9

(l/8X1X7+X10>h:i j(Xj 1-X10)+c12(X12-.X10Hc13(X13-Xlc)^14(X14-X10Hc15

^X15'xio^i6(Xj^Xlo>+e14

The similarity between equations 13 and 18 is striking; also ej2 e14.

A*1 e9uation similar to equation 14 can be constructed:

Y b0+c2v2+c3v3+- .+c9v9+cnvii+- • •+c16V16+e14. (19)
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Actually, equation 19 is the analog to equation 15; equation 15 would more
correctly be said to be the same as equation 19. That is, the values for the bj
in equation 15 are actually the Cj from equation 19. Similar models could be
developed for the columns as well.

The hypotheses tested by equation 19 use regression coefficients rather
than the means. The hypothesis in terms of the population means correspond­
ing to the restriction on equation 11 (not including the unit vector) is

m = U2+^3+- • -+ v9 = VlO^ll4--- -+U17- <2°)

8 8

The restriction on equation 16 (including the unit vector) corresponds to
the following hypothesis regarding the population means: 

(p]-ui7) - (p2'U17)+(v3‘U17)+-•-+(V9'U17)
no

(pi0‘ P 17)+(pi rni7)+- ■ -+(ui6‘U 17^
8r———

If pj7 is added to each side of the last expression, equation 20 would result.

Other Applications With The Present Design

The present design would be applicable whenever double entry tables are
used wherein all sampling units except for a control group are placed into a
treatment combination that includes two actual treatments. The present design
allows a control group within the context of a two-way analysis of variance;
other designs may include a no-treatment for each dimension of the design.
If there is an intrinsic interaction, the interaction might be overlooked in
designs that include the no-treatment group for both classifications crossed
with other treatments in the two-way classification.

As an example of such an experiment in reclaiming strip-mined land,
suppose an amendment program began so that four (non-zero) levels of
potassium are used as one way of classification together with the second way
of classification consisting of several amendments. If the interest is in looking
at possible interactions together with looking for the most effective treatment
combination, then perhaps a single control group would serve the experiment
as well as trying to incorporate a control group for each way of classification
by crossing them with the treatments of the other dimension.

A very different sort of biological application could be made in the area
of genetics. Suppose there is interest in cross-breeding an available strain of
laboratory mice with three genetically different strains. The intent is to
measure hybrid vigcr in the offspring when compared to similar offspring in
t e available colonj; further, care is taken to match animals from the four
strains such that se:: of the parent is also a factor. A table similar to Table 1
could be constructec so that the experiment could be executed:
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1 2 3

Orig. X1 ’

Male " x2 x3 x4

Female " x5 X^ X7

Except for cell 1 (Xj), all other cells would contain hybrids. It would
make sense to view cell 1 as a control group to measure the other cells against.

In ecological studies, consider an area such as that shown in the follow­
ing diagram, in which a natural transition occurs from a grassland to forest.
Assume that the burned and mowed/clearcut areas were well defined and were
established at the same time. Also assume that a relatively long period of time
had passed between establishment and sampling. The objective of the
experiment would be to determine the similarities (1) in species composition
by some appropriate measurement between the untreated grassland and each
of the treatments (burned former grassland, burned former forest, mowed
former grassland, clearcut former forest), and (2) the similarities of the
untreated forest to each treatment as well as the effects of burning vs. mowing,
fonner forest vs. former grassland.

cut 4

Forest

Grassland
3

1

6 Burned area
transition

5

table could then be depicted as

No treatment

Grassland x
former grassland
former forest
Forest

Burned No treatment

x3 X5

x4 x6
X2
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Educational Applications

While the example given was concerned with sampling plant species
in strip-mined land and the other applications had a biological orientation as
well, one might ask, “What value is the design in human experimentation?”
Within a design sense, an experimenter may have a two-way treatment classifi­
cation procedure; however, a true control group would be administered neither
treatment combination. In such a case, the crest cell would correspond to the
control group and the remaining rows and columns would constitute the
treatments.

Yet another application might arise from a concern for the cultural
bias associated with a given test. Suppose, for sake of argument that a critique
of the Iowa Test of Basic Skills (ITBS) asserts that, in regard to district wide
means, all the ITBS measures is the distance from Iowa (the further the
distance, the lower the mean score). Adjacent states might constitute the
“close” states and the next layer of states might constitute the “farther”
layer of states (undoubtedly a much more sophisticated sampling process
would occur with the actual choosing of subjects). In diagramatic form, the
cells would be represented as

Inner North N East East South West N West

Inner Iowa - - - - -

Close Minnesota Wisconsin Illinois Missouri Nebraska S Dakota

Farther - N Dakota Michigan Indiana Arkansas Wyoming Montana

Random samples of school districts could be chosen from the listed states and
the original hypotheses could be tested.
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Abstract

Repeated measures designs offer a relatively powerful
procedure for the analysis of behavioral data. In these
designs, research questions involve the change of indi­
viduals’ patterns of responses across time or across a
dimension with intervening treatment effects. The addi­
tion of one or more between-subject factors allows for
the comparison of treatment effects across the repeated
measures between groups of subjects. In most of these
researches, the grouping variable has been obtained by
arbitrarily dichotomizing a continuous variable. This
article presents an alternative analysis of data of cer­
tain repeated measures designs where the variable is
^ept in its natural continuous state instead of being
dichotomized. Such an analysis is argued to have two
advantages: (a) A more realistic interpretation of the
results and (b) A tendency toward an increase in power
in the F-tests of the repeated dimension and its inter
action.

0) and Lindquist (1953) are at least two authors who

advocate the Use repeated measures designs to enhance the work of

the '■eseareher Th. * . .
.me greater frequency of use of such designs m

^search te s to indicate their expanding popularity. The usual

issu paper originally appeared in ttie1T?^qUofi'the
autbe of Viewpoints. Due to a "^spelling ot

Or's name, it is being reprinted h 



increase in power of the statistical tests, as well as the advantage

of decreasing the number of subjects when more than one observation is

taken on a subject, have probably been advantages too great to be

passed by in favor of a logically less complex design such as a

completely randomized design.

A rather common use of a repeated measures design is found where

two or more groups of subjects are defined by median or quartile splits

on a continuous variable and observing the performance of the ’’groups”

over a series of treatments or time periods. Spielberger (1966), for

example, studied the effects of word-position and stress-non stress

conditions on performance in serial-verbal learning for the high (HA)

and low (LA) anxiety college males. The subjects (Ss), instead of

being classified along the continuum of the anxiety scale, had been

separated arbitrarily into two groups according to their raw scores on

the Manifest Anxiety Scale. Other common continuous between-factors

which have been dichotomized or split are age, IQ, grade and ability.

Corrigan (1975), for example, divided his subjects into five groups

ranging from 2.5 to 7.5 years old in order to study their use and

comprehension of the word "because", and Millar (1971) divided her

subjects into two groups of three and four years old in order to

determine their use and recognition of visual and haptic stimuli.

gel (1970) categorized his kindergarteners into groups of High,

"urn, and Low intelligence based on their Kuhlmann-Anderson

lligence Test scores to study the morphology of lower, class
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Mildren. Youniss et al. (1971) classified thei? subjects according

to both their grade and age to determine the children’s inferential

size judgment in the figurative or operative aspects or both.

Such a practice of "grouping", which is comparable to the "levels"

of a Treatment by Levels design, was probably done in order to make

the data layout fit the traditional repeated measures designs

described in the major design textbooks (Dayton, 1970; Hays, 1963;

Lindquist, 1953; and Winer, 1971). However, with the common availa­

bility of computer facilities and the greater flexibility of the

multiple regression analysis via the general linear model (Ward and

Jenning, 1973; Kerlinger and Pedhazur, 1973), we should be able to take

advantage of a more appropriate method of analysis.

This procedure was hinted at in a paper comparing power by Feldt

(1958) much earlier. However, whether due to lack of technical

facilities or the "Zeitgeist" of the field, the technique has not been

utilized.

In that same article, Feldt (1958) argues that the "blocking"

Procedure (on the concomitant variables) yields more power than the use

fhe concomitant variables as a covariate when the correlation is

leSS than -eo- His argument, however, rests partially on two assump-

(a) The researcher employs a large number of levels depending

N of -f-he research, anj (j,) The random variability of the group

°n the concomitant variable is a source of error resulting in

power. The first assumption appears to be impract-cal,

^hers seldom use more than three levels. The second argument 
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does not hold in a repeated measures design, as presented below, where

the mean of the concomitant variable is equal across treatment groups.

The following presentation argues for the use of such a concomitant

variable in its natural continuous state rather than using the scores to

arbitrarily define ’'groups”.

Winer (1971) has presented an analysis of a two-factor experiment

with repeated measures on one factor. This usually consists of the

observations of J groups of subjects from one factor B, where the groups

are designated as b^, bj,...bj, under different treatment conditions

of factor A, such as a. ...a., which are observations of the same11

subjects under various treatments. Each level of B consists of K

subjects. According to Winer (1971), each7 observation results from a 

number of sources of variability which can be represented as follows:

Y.-4i, = P + B. + a. + it ,.. + 0a. . + air., , + e. .. (Model 1)
x3k 3 i k(j) 13 ik(3) 13k

Where:

^iik* Observation made on subject k on level i under treatment
condition 3.

p : Grand mean of all potential observations.

Bj : Effect of factor B under level j.

aj_ ■ Effect of factor A under level i.

Kk(j): Effect of subject k under level B..

^aji" Effect of combinations of 0 under level j and a treatment
under level i.

“ik(j): ^ectnof interaction between subject k with treatment a
under level 3 of 0.

eijk: Experime rtal error nested within the individual observation.
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Given an example where B consists of two levels with three subjects

at each level and A of three treatments, the above* linear model can be

expanded into a general linear model where factor A is broken into

linear and quadratic components as follows:

v =u+B + ccn. + a _+tt + 0a . + Ba •, + air . + air + c^ijk lin quad Im quad lin quad 2

(Model 2)

Models (1) and (2) are similar with the exception that model (2)

has been expanded so that the factors have been broken down into linear

and quadratic levels according to the number of levels contained across

A. If the factors in model (2) are coded orthogonally, an estimate of

the model from a sample may be obtained by the model:

Y = a0 + alxl + a2x2 + a3x3 + %X4 + ••• +/a7X7 + aBx8 + a9x9 + a10x10 +

"• + a13x13 + alUxW + ••• + a17x17 + E3 (Hodel 3)

Where:

Y: Criterion scores

Intercept, estimate of p

al-a17: Partial regression weights

Vector representing the contrast of factor B.
(Bx = +1, B2 = -1)

^2’ ^3' Vectors representing respectively the linear and
quadratic polynomials of factor A.

: Vectors representing the subjects using effect coding
as in Kerlinger and Pedhazur (1973).

Xg: Vector representing the linear component of the AB
interaction.

Xg• Vector representing the quadratic component of the AB

interaction.
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X10 X13: Vectors representing the A linear x Persons interaction
(error within).

X14’X17: Vectors representing the A quadratic x Persons interaction
(error within).

The effects found in model (2) including Alin» Aguad> Aj_inB> and

A ,B can be tested with sample data in model (3) through a linear
quad

regression procedure. . This model is most appropriate with non-continu-

ous factors such as: different conditions (experimental versus control,

stress versus non-stress. But as was previously pointed out,

many of the between factors that are encountered in behavioral research

exist as continuous variables in their natural state- Then model (3)

becomes inappropriate because:

1. By dichotomizing or splitting the continuous B factors, we

lose the ability to examine the natural relationship (correlation)

between X and Y. This problem becomes especially severe when, as in

most designs such as this, the major research interest is in the inter­

action of A x B, i.e., the difference in performance across A depending

on the level of B. Model (3) does not allow the study of such an

interaction between the treatment and the natural continuum of factor B.

2. The least-square estimate is best represented by a regression

line rather than two or more arbitrarily defined points (Y.j), This

results m a smaller error estimate when B is used as a continuous

variable, thus decreasing the probability of a type II error and

increasing the power of the test.
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Designs that have continuous factors are best studied by not

dichotomizing or splitting B. This can be done by allowing the B

factor to be represented by its raw scores rather than, as in models

(2) and (3), hy a dichotomy. We can then translate model (2) into

model (4) as follows:

y = a + Y - + Y . + B(X-X) + 7T + y . B(X-X) + y ,g(X-X) +"lin quad lin 'quad

ytt + e4 (Model 4)

Where:

1Y. , : Criterion scores.i-k

a: The general intercept of X on Y.. .

fJ: The general regression of X on

(X-X): The deviation of the raw score of the continuum from the
mean of factor B.

y,. : Linear effect of factor A.lin

\uad: Qua^ratic effect of factor A.

By comparing models (2) and (4) it can be seen that p is repre

sented by a, a by y, and 6 by B(X-X).

Model (h) is analogous to an analysis of covariance design where

X is the covariate. The overall regression effect of X on Y is conta

in KX-X) of model (u). Hhile the interaction of A x B of model (2) and

l3) « contained in y, . B(X-X) and y„„ad B(X-X) of model (-)■ The
lin quae.

latter, interaction effects, contain sources of variance which

USUally considered heterogeneity of regression in the analysis of



95

covar i^ncp design. Rd th ex’■'than being a nuisance as m ANCOVA, however,

interaction effects for this model are often of primary research

interest.

The above models may be best understood with the following

illustration. An experimenter would like to study the relationship

between the performance on a ’’Reading Achievement” test of six subjects

in conjunction with their relative Aptitude score on three days: Day 1,

Day 2, and Day 5. The Aptitude scores of the students were obtained

before they were given the tests. The following results were obtained:

Table 1
Scores for the Sample Problem

Aptitude
Score

Score on

Day 1

"Reading Achievement" Tests

Day 2 Day 5

12 5 7 9

13 7 10 11

15 8 10 12

24 11 15 16

28 13 18 19

32 13 20 21

If model (2) is used for this illustration, subjects with the first

three scores on the Aptitude test could be classified as the "Low

Aptitude Group", and the three remaining scores as the "High Aptitude

Group". In that moc.el, B (Aptitude) would be orthogonally coded with
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(the low aptitude group) coded as +1 and B2 (the high aptitude group)

1 Model (U-) would utilize the aptitude information bycoded as •

• „ thP variable (X-X) into the model. In both models (2) and (4),running we vaixu

Factor A (day) would be orthogonally coded, with linear and quadratic

polynomials, and the criterion scores Y.jk would be the scores on the

Reading Achievement test.

Figurative representation of the data from Table 1 is presented in

Figures 1 and 2:

APTITUDE SCORES

i8Ure 1. j.jeHi3?! Achievement Scores in Model (2) for both
£ and Low Aptitude Groups on Day 1, 3 and 5.
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X

APTITUDE SCORES

Figure 2. Regression Lines of the Predicted Scores on Reading
Achievement and Aptitude Scores from Model (4) on
Day 1, 3 and 5

Figure 1 shows the analysis of model (2) by illustrating the means

for each of the high and low aptitude groups across days 1,3 and 5.

Figure 2 shows the three regression lines defined by model (4) between

Aptitude and Achievement for days 1, 3 and 5

In Figure 1, each bar represents the means of Reading Achievement

for the three scores in the respective high-low groups for day 1, 3 and

5. Whereas, in Figure 2 the natural relationship between Aptitude and
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Achievement is defined by a regression line deternined by the six pairs

of scores for each of days 1, 3 and 5. Although figure 1 representing

model (3) is a more simplistic representation of the data, Figure 2 is

a more precise and accurate representation of the relationships, given

that the relationship between Y and X is linear.

The day (A) main effect is seen in Figure 1 as the difference

between means of the days 1, 3 and 5 across High and Low Aptitude. The

same main effect in Figure 2 is seen by the differences among the

predicted reading achievement score at the mean of aptitude score (X)

for the different days: 1, 3 and 5.

The Aptitude main effect is seen in Figure 1 as the difference

between the means of the Low and High Aptitude groups across the three

days; whereas in Figure 2 it is depicted by the common regression line

between Aptitude and Achievement across days 1, 3 and 5 (dotted line).

The interaction between Day and Aptitude is depicted in Figure 1

by the differences between the increase in means from day 1, 3 and 5 for

bow Aptitude as compared to the increase across Day for High Aptitude.

That same interaction is more obviously shown in Figure 2 by the

difference among Aptitude Achievement regression slopes among days 1, 3

and 5.

Tn addition to achieving a more logical and realistic representa-

n °f the data, another advantage of using a continuous factor

lnCrease °f power of the statistical tests. This can be seen in the

^itude of sums of squares and the resulting F-tests when comparing

the summary Tables 2 and 3.
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Table 2

Anova of Data from Model (2)

Sources SS df * MS F-ratios

Between 289.1741 5 " 57.8348

B 249.4035 1 ‘ 249.4035 25.0841

error (b) 39.7706 4 9.9427

Within 97.3201 12 8.1100

A 86.3436 2 43.1718 98.2070

A x B 7.4594 2 3.7297 8.4843

error (w) 3.5171 8 .4396 8.4843

Total 386.4978 17 22.7351

Table 3

Anova of Data from Model (4)

Sources SS df MS F-ratios

Between 289.1777 5 /
6 (X2-X2) 282.6458 1 282.6458 173.08

error (b) 6.5318 (4) 1.6230
Within 97.7066 12
A 86.3436 2 43.1718 182.39
A x B (X2-X2) 9.4692 2 4.7346 20.0025

error (w) 1.8938 (8) .2367
Total 386.4978 (17) •
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By using Aptitude as a continuous vector, rither than dichotomizing.

We have increased the sum of squares of B from 2t9.4035 to 282.6458.

Along the same line, the sum of squares of A x B increased from 7.4594

to 9.4692.

The increase of sums of squares by using B as a continuous vector

is mainly due to the fact that the regression lines of the Aptitude

scores on the criterion (Achievement) is a better fit than a comparison

of the means between High and Low Aptitude groups.

Note that the Day factor sum of squares remains the same regardless

of which analysis is chosen. This is because the repeated factor (Day)

is independent of the continuous factor B (Aptitude Score).

The increase of the power of the F-tests is mainly due to the

reduction of the error terms when the continuous B factor is used. In

Table 2 and Table 3, the error of the between and within scores decreased

m their sums of squares from 39.7706 to 6.5318 and from 3.5171 to

1.8938, respectively.

In consequence of the reduced error terms, the F-tests for this

sample data increased drastically from 25.984 to 173.08 for the B effect,

m 98,2070 to 182.39 for the A effect arid from 8.4843 to 20.0025 for

x B interaction. In spite of the use of potentially biased sample

t is apparent that the use of a continuous between factor in its

tUr>aI State results in an increase of power for the tests of hypotheses

Th •variance components for the two models are shown in Table 4.
^16

between subject source consists of the variability between

iect means (Y.. ) and the overall mean (Y...) for either model.
3 K



M-t
O
CO

0)>
0)

CD

Mh
o

cpo
Pl
0)

3
C
II

P
CDx»6

II

101co

CD
o

co

CD CD

CO

nJ

n

‘<4O »■

C
O

O
CD

C/1
CD

CO
CD

II

TJ

O

4h
O

E
O
£

P
O
CO

p
co

o
CD

■PnJ
E

c
CD
E
P
nJ
CD

co
0)
P
0o
co

P«
CD
E
co

3
co

0
0)
•n
XI
□
co

si

Ip
O

0)
P
nJ
E

■H

I
nJ

•H
X+>

CD
CO

K
O

01

H

CD

P
CO
CO
op»
onJ c

CD
CD 0J
O
C ■Pn) CD
E XIP XIo

CH E
P o
CD p£

CQ

Mho

o
p
CD
X)
I
P
11

CD

CD>
CD



102

The B effect of model (2) consists of the variabilir, k .V beh/een the mean

of a given B level (Y. .) and the overall mean (V >J • • •)> whereas for

model (4) the variance is found in the deviation°n Of the regression line

Of X and Y._k (the subject mean) from the overall mean (?...)Mtneen subject error for model (2) consists of deviation of sub3Jt

seen %) from the B group means (?...), while the

component for model (U) consists of residuals from the regression of

Xonf..k.

Both the overall within subject effects and the A effect do not 

change from model (2) to model (4-). The A x B effect for model (2)

contains the discrepancies of the B effect across A, while in model (4)

the A x B effect contains the variability of the simple I regression

effect within day from the overall regression effect (X on Y). The 

within error term for model (2) contains variability between the score

(Y. ) and the A mean (Y^...) after differences between subjec

r- n•> (on ctHex*been taken into account. The within error or mo

hand, consists of residuals from the within A regres

estimate of

The degrees

•m<=d from thep is obtain^
source of variate . nUmber

freedom for the error between } ^^-nus

b. eC-£ means v. • -j k ■ for
number of random observations of ’ error1 estim

. . a to oM““ S“ Y.--» MhUe
of parameter estimates utilize B means j

lude the
^el (2) the parameter estimates

iect differences have been accounted for.

The number of degrees of freedom of model (2) does not change in

0d61 (4). The estimate of a single parameter is found in the numerator

Of p—4-
est for both models. In model (2) we find an

(U. _ V
1 whereas in model (4) the estimate is of B-.-

error between source of variance is ------
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for model (4) they are the estimates for a and B.. from the overall

regression effect of X on Y. In either case the example problem

contains 1 and 4 degrees of freedom in the F-test for the B effect.

The A main effect for the two types of analyses does not change

due to its independence of the B effect. Both the A x B interaction

and the error within (A x subjects) are subject to change given the use

of B as a continuous factor. The numerator of the F-test for the A x B

interaction contains 2 degrees of freedom for both model (2) and model

(4). Such estimates in model (2) include the three simple effect

estimates for the B effect at a given A (Y.^ . - Y.^.) minus the single

dependent estimate for the B main effect (Y.^. - Y.^.); whereas for

model (4), the two estimates include the three regression effects of

X on Y at each A level, (6_..) minus the overall regression estimate for

B--- The error term for the within subject effects, A x Subjects,

contains random variability of all observations after the estimates of

4’ V-j-» ajQ^ A x B interaction are taken into account. As

indicated above, the type but not the n:rmher of parameter estimate of

~ y.g.) is analogous to B... If a continuous variable is broken

into three or more categories, more degrees/ of freedom would need to

be utilized in the B and A x B effects at the expense of the respective

error terms. In such cases the number of parameter estimates and the

respective degrees of freedom would be different for model (2) and model

(4). General formulae for degrees of freedom are given in Table 4.

The design indicated in model (4) appears to be both a more realist10

representation of data and a more powerful test when the B factor is

continuous. There is Little reason, other than conceptual and comraunicatiVw 
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difficulty, why this scheme could not be utilized '.n more complex

designs involving more than one between factor or other extensions.

The greatest difficulty may be to overcome the traditional notion of

using a continuous variable as a covariate where heterogeneity of

regression is a restriction, whereas, in a design like that of model (4),

heterogeneity of regression, A x B interaction, becomes a potentially

interesting and testable hypothesis.
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Footnotes

: When the B factor, Achievement, is used as a continuous factor,

the subscript J is no longer needed. A dash (-) is used to hold

its place. Such notation is also used in Table *4. ,
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