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CHAPTER I 

INTRODUCTION 

Several explications of multiple comparisons are available for the 

usual one-way analysis of variance (ANOVA) situation; Miller's (1966) text 

might be the most definitive. Most standard texts on statistical analysis 

typically present one.or more methods for the one-way ANOVA situation .. A 

presentation of multiple comparisons in a regression framework was made by 

Williams (1976) wherein most of the more common multiple comparison pro­

cedures were considered. 

For research situations more complex than the simple one-way ANOVA, 

most texts are silent. This silence is understandable; the issues, equa­

tions and other considerations become much more complex. Further, if the 

uncertainties of two or more issues are compounded, the morass of detail 

can be more than most authors wish to attempt a resolution for general 

readership. Winer (1971) presents some detail for more complex research 

situations that might shed light on the reluctance of traditional re­

searchers to address the issue. The computations are often sufficient to 

ward off all but the most hardy. Perhaps the lack of writing regarding 

multiple comparisons 1n more complex situations than one-way ANOVA should 

serve as a warning, but "fools rush in where angels fear to tread"; lacking 

wings, we'll rush right in. 

Background of the Reader 

At this point, ft is necessary to give some indication of the expec­

tancies regarding readers of this monograph. Some prior exposure to multiple 
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comparisons would be necessary, though no specific exposure is mandated. 

Hopefully, the reader is familiar with at least some of these tests: 

Dunnett's (1955) test for comparing one group to all other groups; Tukey', 

(1953) tests; Scheffe's (1959) test; Dunn's (1960) test; orthogonal com­

parisons; the Newman-Keuls test (Newman, 1939; Keuls, 1952); and Duncan's 

(1955) multiple range test. All of the foregoing tests are shown in a 

regression format by Williams (1976). For those whose exposure to 

multiple comparisons is minimal, articles by Ryan (1959, 1962) and Sparks 

(1963) would be useful. 

In that the technique employed in this monograph is multiple linear 

regression, prior exposure to the use of this technique is helpful. Use­

ful sources on multiple linear regression would include any of the fol­

lowing: Bottenberg and Ward (1963); Kelly, Beggs and McNeil (1969); 

Mendenhall (1976); Searle (1971); Ward and Jennings (1973); Williams (197 

Kerlin�and Pedhazur (1974); McNeil, Kelly and McNeil (1975); and Cohen 

and Cohen (1975), among many others . 

Error Rates for Multiple Comparisons 

In that several different kinds of error rates are used by various 

authors, it 1 s useful to remind the reader of the more common error rate 

Five of these arc defined as 

Per comparison. No. of comparisons incorrectly called significant; 
total number of comparisons 

Per experiment� No. of comparisons incorrectly called significant; 
total number of experiments 

Experimentwise = No. of experiments containing erroneous statements
of significance 
total number of experiments 



Per family 
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_ No. of com arisons incorrectl called si nificant 
total number o statements in t e am, y 

= No. of experiments containing erroneous statements 

(1.4) 

Familywi se 
of significance (1.5) 
total number of statements in the family 

Additional detail on error rates and concerns of!!.. priori and! poste­

riori tests can be found in Williams (1976, 2-5). 

The Use of Binary Coding and Dunnett's Test 

In that the technique employed in this monograph is to utilize Dunnett's 

test with binary coding, a complete example is shown. Because repeated use 

of the test is employed, it should be recognized that the test is, except 

when Dunnett's test is being specifically employed, only a quasi-Dunnett's 

test. That is, Dunnett's test is used as a simple method to arrive at a 

solution. The test (actually, the table used to judge significance) remains 

a judgement left to the researcher. 

Ounnett's Test for Comparisons of Several Treatment Groups 

with a Control 

Ounnett (1955, 1964) devised a test that would allow the comparisons 

of several treatment groups with a control group and still retain an ex­

perimentwise error rate. This test could also be used whenever an experi­

menter wished to test a group which might be called the "experimental group" 

against severa1 existing (but different) groups. 

For example, a business educator may have,devised a new approach to 

teaching beginning typewriting. The business educator may find that in­

stead of finding one typical approach to teaching typewriting there may be 



ll 

4 

methods being used. Rather than lumping all of the existing meth 

ods together and calling them a control group, it would seem more logical 

to test the new approach against each existing group separately, but in a 

single experiment. Dunnett's test is appropriate for this situation. So 

that the various tests can be compared to one another, a single data set 

is used several times in this monograph. That data set is 

TABLE 1. 1 

DATA FOR DUNNETT'S TEST 

Control Group 
Group One Group Two Group Three Group Four 

9 8 13 15 

8 7 10 12 

6 8 12 10 

6 11 17 

6 14 11 

Suppose the interest is in comparing the Control Group to Groups Two, Thr 

and Four. 

Viewing the problem from a regression viewpoint, it 1s helpful to d,· 

fine four binary predictors: 

x1 • 1 1f the score 1s from a member of the control group

(Group One); and O otherwi5e, 

x2 • 1 1f the score 1s from a member of Group Two; and O otherwise,

x3 • 1 1f the score 1s from a member of Group Three; and O otherwis,

x4 • 1 1f the score 1 s from a member of Group Four; and O otherwise.
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A linear model can be written for this situation: 

( 1.6) 

where 

b = 0 the Y-intercept,

b2 = the regression coefficient for Group Two, 

b = 3 the regression coefficient for Group Three,

b4 = the regression coefficient for Group Four and 

el = the error involved in prediction.

It can be noticed that the control group has seemingly been left out. 

However, if equation 1.6 is solved for the expected value for a member of 

the control group, 

E(Y) � bo + b2(o) + b3(0) + b4(o),

E(Y) ◊ b0.

The expectancy for a member of the control group is by definition V1. Thus,

a least squares solution for bo is V1, the mean of the control group.

For a member in Group Two, the expected value is 

E(Y) -Q- b0 + b2(l) + b3(0) + b4(o),

E(Y) � b0 + b2,

E(Y) � V
1 

+ b2, ( 1. 7) 

A least squares solution for tho expectancy of a given member of 

Group Two 1s the moan of Group Two. Thus 

V
2 

• V
1 

+ b2, from equation 1.7, or

Likewise 

b3 = V 3 - V l and b4 = V 4 - V l.
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1.6 can be rewritten 

(1. 9) 

·Equation 1.9 lists precisely the comparisons of interest for comparinc

several treatments with a control. Since equation 1.6 (and, therefore, 

equation 1.9) is the same model as has been given for a one-way analysis 

of variance (Williams, 1971, 1974a), this approach also yields results 

identical to the analysis of variance situation. Thus, using equation 1. 6' 

it can be seen that these two useful results can be obtained simultaneousl� 

the usual analysis of variance as one part of the output, and Dunnett's 

test as the other part. 

The information necessary for a regression solution, with equation 1.f 

as the linear model, can be conveniently placed in tabular form (see Table 

TABLE 1.2 

REGRESSION FORMULATION FOR COMPARING SEVERAL 
TREATMENTS �IITH A CONTROL 

y X
l 

X
z 

X
3 

X
4 

9 1 0 0 0 
8 1 0 0 0 
6 1 0 0 0 
3 1 0 0 0 
4 1 0 0 0 
8 0 1 0 0 
7 0 1 0 0 
8 0 1 0 0 
6 0 1 0 0 
6 0 1 0 0 

13 0 0 1 0 
10 0 0 1 0 
12 0 0 1 0 

11 0 0 1 0 
14 0 0 1 0 

15 0 0 0 1 

12 0 0 0 1 

10 0 0 0 1 

17 0 0 0 1 
11 0 0 0 1 
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For the data in Table 1.2, a general purpose multiple regression 

program was used. Table 1.3 contains the printout from that analysis. 

The criterion variable is given as Y; variable 1 refers to the Con­

trol Group, variable 2 to Group Two, variable 3 to Group Three and 

variable 4 to Group Four. Because variable 1 refers to the Control 

Group, no information appears in the printout using that variable num­

ber. The table of residuals has not been included herein. 

Table 1.3 contains the previously mentioned items. It can be re­

called that V
1 

= 6.0, V
2 

= 7.0, V
3 

= 12.0, V
4 

= 13.0. The intercept 

is 6.0 (within rounding error) and is V
1
. Also, b

2 
= 1 = V

2 
- -Y

1
, and 

is in keeping with equation 1 .9. Similar statements could be made 

concerning b
3 

and b
4
. The computed t values in Table 1.3 are identi­

cally the same values as would result from the use of 0unnett's test. 

It is only necessary to compare each of these values to 0unnett's 

table for the test of significance. From Table Id, a computed t 

value of 3.39 is needed for significance at the .01 level on a two­

tailed test. Thus, both Groups Three and Four are significantly higher 

than the Control Group. It thus can be seen that the computed t 

values, which are tests of the partial regression weights, should be 

evaluated in this instance n.oJ by the traditional t table, but by use 

of 0unnott's tables. 
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Variable 
No. 

2 

3 

4 

Dependent 

Mean 

0.25000 
0.25000, 
0.25000 

Y 9.50000 

Intercept 

Multiple Correlation 

St. Error of Estimate 

TABLE 1.3 

OUTPUT OF MULTIPLE REGRESSION PROGRAM 

Standard 
Deviation 

0.44426 

0.44426 

0.44426 

3.69210 

6.00000 

0.84515 

2.15058 

Correlation 
X vs Y 

-0.40109

0.40109

0.56153

Regression 
Coefficient 

1.00000 
6.00000 
7.00000 

Standard Error 
of Regression 

Coefficient 

1. 36014
1. 36014
1.36014

Analysi� of Variance for the Regression 

Source of Variation 

Attributable to Regression 

Deviation from Regression 

Total 

Degrees of Freedom 

3 

16 

19 

Sum of Squares 

185.00027 

73.99973 

259.00000 

Mean Squares 

61.66675 

4.62498 

Computed Beta 
t Value 

0.73522 0.12033 
4.41130 0.72197 
5.14652 0.84230 

F Value 

13.33340 

co 
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Organization of this Monograph 

The remaining portions of the monograph address multiple comparison 

concerns not usually addressed by most available sources. An additional 

objective is to reduce computations to a minimum. While computer programs 

could easily be written for each specific situation, all that is neccessary 

is a general usage multiple linear regression program. The print-out 

shown in Table 1.3 would yield sufficient information for completing any 

of the situations described in this monograph. 

Chapter Two addresses multiple comparisons in the analysis of 

covariance. The method described is much easier to accomplish than 

the process described by Winer. Chapter Three considers the treatments 

X subjects design (repeated measures). Chapters Four and Five consider 

the two-way ANOVA for the equal cell case and the disproportional case, 

respectively. The N-way ANOVA is considered in Chapter Six. Finally, 

Chapter Seven considers situations that do not lend themselves to a 

simple solution as described here. 



CHAPTER 11 

MULTIPLE COMPARISONS IN 

THE ANALYSIS OF COVARIANCE 

In the analysis of covariance, each separate comparison will have 

its own standard error of estimate even if equal N occur in each cell.

The equation for the standard error of estimate for a comparison in the 

analysis of covariance is given by Winer (1971, p. 772), 

where 

v
1
adj = the adjusted mean for group 1; 

Y.adj = the adjusted mean for group j;
J 

MS' • the error term in the analysis of covariance;w 
n
1
, nj • respectively cell frequencies for the 1

th and jth groups;

x
1
, Xj • respectively the means on the covariate for the i th and

j th groups; and

E • SS for the covariate. 
xx w 

While researchers may feel justifiably ill at ease in attempting to 

use equation 2.1, the use of regression can eliminate the tedious calcu­

lations. Further, more than one covariate can easily be accommodated. 

An Example 

Table 2.1 is taken from Williams (1974a, p. 104 and p. 109). In 

Table 2. 1, x1 is a binary variable for membership in group 1, x
2 

is a 

binary variable for membership in group 2 and x
3 

is similarly a binary 
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for membership in group 3. Also, X 4 represents a pretest score

• and·x5 represents a measure of intelligence; the Y value represents a

posttest score. Only the pretest is considered as a covariate in this

section; both the pretest and intelligence are considered_ as covariates

in the section under multiple covariates.

TABLE 2.1 

Data for the Analysis of Covariance 

y XI X2 X3 X4 X5
35 1 0 0 12 120 

27 1 0 0 17 98 

32 1 0 0 13 102 

29 1 0 0 10 106 

27 1 0 0 8 94 

38 0 1 0 29 123 

25 0 1 0 12 96 

36 0 1 0 17 108 

35 0 1 0 22 115 

31 0 1 0 15 128 

27 0 0 17 90 

35 0 0 22 110 

19 0 0 1 10 94 

17 0 0 1 8 95 

32 0 0 13 116 



Un der the assumpti on of a s ingl e regres s io n  li n e  o n  t he cov ari ate
(the pretest, x

4
) an an alys is of covaria nce c a n  be a cco mpli shed w it h  tw o

line ar model s: 

a n
d 

Y = bo + b4X4 
+ e2 . (2.3) 

In that a large part of th e print-ou t regar di n g equ ation 2.2 is use ful, t h e
print-out is reproduced in Table 2.2. 



TABLE 2.2 

Print-Out for Equation 2.2 

VARIABLE MEAN 

4 15.00000 

1 0.33333 

2 0.33333 

DEPENDENT 

y 

INTERCEPT 

29.66666

�ULTIPLE CORRELATION 

STD. ERROR OF ESTIMATE 

STAND. 
DEV. 

5.85539 

0.48795 

0.48795 

6.12566 

15.36000 

0.78714 

4.26230 

MULTIPLE CORRELATION SQUARED 

ONE MINUS MULTIPLE CORRELATION SQO. 

CORRELATION 
X VS Y 

0.68903 

0.03983 

0.39328 

0.61959 

0.38041 

REG. STD. ERROR 
COEF. OF REG. COEF. 

0.76000 o. 22783

5.52000 2.73396 

3.20000 2.92653 

Analysis of Variance for the Regression 

SOURCE OF VARIATION 

ATTRIBUTABLE TO REGRESSION 

DEVIATION FROM REGRESSION 

TOTAL 

df 

3 

11 

14 

ss 

325.49292 

199.83984 

525.33276 

MS 

108.49763 

18.16725 

F 

5.97215 

COMPUTED 
T VALUE 

3.33582 

2.01905 

1.09345 

.... 

w 
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The usual analysis of covariance can be completed by using 

F 
= 

(R� - R�)/(g - 1) 
= 

( 1 - R� ) / d fw2 
which for df = 2, 11, p > .05. 

(.61959 - .47476)/2 
( 1 - .61959)/11 

= 2.09, 

In equation 2, the x3 variable has been omitted. Thus b1=V1adj-Y3adj

and b2
=V2adj-Y3adj. To find the adjusted means, the following equations

can be used: 

Y3adj = bo + b4X4 = 15.36 + .76(15) = 26.76; 

V1adj = b1 + Y3adj = 5.52 + 26.76 = 32.28; and 

V2adj = b2 + V3adj = 3.20 + 26.76 = 29.96. 

The adjusted values agree with those originally given by Williams (1974a, 

p. 106), though the method shown here ·is simplified somewhat.

More importantly, the standard error of the regression coefficients 

corresponding to x1 and x2 are respectively equal to the standard errors

from equation 2.1 for comparing V1adj to V2adj and V1adj to V3adj. Thus ,

the computed t values given in Table 2.2 are directly usable in whichever 

multiple comparison procedure the researcher prefers. Were there interest 

fn comparing V1adj to Y2adj , a model of the form

Y • bo + b1X1 + b3X3 + b4X4 + el (2.4)

could bo used, wf th focus on tho computed t value for tho x1 varf,1ble.

Complex Comparisons 

Complex comparisors, or contrasts, can be completed 1n a regression ana­

lysis for the analysis of covariance as well . Suppose a contrast of the

form 
(2. 5) 

is contemplated. First, equation 2.2 is reparametized as 
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Y = b1X
1 

+ b2X2 
+ b

3X3 
+ b4X4 + e

1
. (2.6) 

Then a res tr ic tio n  cor re spon din g  to 'I' 
1
, b

3 
= 

½b
1 

+ ½b
2 

is pla ce d  on 
equation 2.6: 

y = b1X1
= b2X 2  + (½b

1
+ ½b2 ) X3 

+ b
4X4 

+ e3 .

Or ,

Two new var ia ble s  can be c on str uc t ed s uc h  t ha t  v
1

= 
1 i f  a membe r

o f group 1, ½ i f a mem be r  o f gr oup 3
, 

O 
i f  a member of grou p  2; an d

V
2
= 1 i f a mem be r  o f gr oup 2, ½ i f  a m embe r  o f gr oup 3, 0 i f  a member

o f grou p 1. The n  equ atio n  2.7 can b e  re wr i t ten a s

(2. 8) Equation 2.8 (an d a ls o  equ a tio n  2,6 ) co uld be pro cessed  u s ing a pr�g ram
such as War d an d Je n nings' (1973 ) 

DATRAN o r  
M
cNeil et a l  ,'s (19 75) L I

N
EA

i
How ever ,  equa tio n  2.8 c an a lso b e  repa r am eti z e d  b a ck int o  a for m  u s

a unit v�cto r a s  was do n e  e a rlie r .  Th i s  can be a c complished by setti ng 
eithe r b

1 
o r b

2 
eq ual to zero. Set t ing b

2 �
0 yi eld s

Y • bo + b1V1 + b4 X 4 + e3 
. (2

,
9)Then R� • .50151 

R� - R2 To test 'I' 
1
, t • ( l -R�)/�

l

.6
1

959 - .501
5

1 • (
1- .6195�

)
7 1

1 

t 
•

1.85, p > ,05. 

Concerns of Homo ge neity Re�re s sion 

To this po in t, the as s u mpt io n  o f  a s i ngle re gr es s io n  lin e  for t he
covariate has been ma de .  A test ca n  b e  m a de o f  thi s  a s s umption; t hree
new variable s  a re de fine d  s u ch t ha t  

X = X " X • 
6 

1 4

' 



X 7 = X
1 

·x
4
; and 

X8 = X3
.

X 4. 

Then a mo del can be writte n  as

16 

y 
=

bo + b1
X 1 + b

2 X
2 + b 6 X 6 + b7 X 7 + b8

X 8 + 

e
4�

i 
= • 7182 5. To t est t his for s ignif ic ance, 

F = 

F = 

( R1� - R�)/(g - 1 )
( 1 - f\� }/( N - 2g) ' 

,71825 - .61959 2 _ l 58· p >  05
1 - 1825 /9 - • 

' • • 

(
2.

10)

Had the F val ue be e n s i gn ific ant, s ome research ers would prefer to
aban don the an alys is giv e n  e arl ie r; interpr e tatio n s

b
ec om e  i n­

creas i ng ly difficul t. It w ou ld be i n ap pr opri ate to at tempt t o
u se t he comput ed t valu es for t es ti ng b1 

a nd 
b2 

i n  equation 2.
10

. 
T
he 

"adjust ed mean s" wou ld occur w here se p arate r egr e s sio n  1 in es a r e  used
for each gro up on t he cova riate. Since the c ov ari ance proces s  is o ccur­
ring separatel y for each group, differe nces i n  th e  adjusted me a ns would
not test any meaningful hy po theses re g ar d fng gr ou p  dif ferences on the
cri t erion score. Tabl e 2.3 s hou ld help show w hy th is is so.



TABLE 2.3 

Regression Output With Separate Regression Lines for Each Group on the Covariate 

VARIABLE 

6 

7 

8 

1 

2 

DEPENDENT 

y 

INTERCEPT 

MEAN 

4.00000 

6.33333 

4.66667 

0.33333 

0.33333 

29.66666 

9.22224 

MULTIPLE CORRELATION 0.84750 

STD. ERROR OF ESTIMATE 4.05527 

STAND. CORRELATION 

DEY. X VS Y 

6.12955 0.03995 

9.93311 0.50556 

7.46101 -0.16514

0.48795 0.03983

0.48795 0.39828

6. 12567

MULTIPLE CORRELATION SQUARED 0.71826 

ONE MINUS MULTIPLE CORRELATION SQD 0.28174 

REG. 
COEF. 

0.02173 

0.64045 

1.19841 

20.51697 

11.60924 

Analysis of Variance for the Regression 

SOURCE OF VARIATION 

ATTRIBUTABLE TO REGRESSION 

DEVIATION FROM REGRESSION 

df 

5 

9 

ss 

377.32568 

148.00757 

MS 

75.46513 

16.44528 

STD. ERROR 
OF REG. COEF. 

0.59792 

0.30396 

0.36127 

9.14573 

8.09397 

F 

4.58886 

COMPUTED 
T,VALUE,

0.03623 

2.10702 

3.31721 

2.24344 

1.43434 

..... 

...... 
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Does the information given in Table 2. 3 suggest that V1adj - V
3
adj

= 20.51697? The answer is a qualified "no". Only under the condition that

each group has its separate regression on the covariate, and its separate 

mean on the covariate would b1 = V1adj � V
3
adj. However, that condition

is very different than most users of the analysis of covariance would 

wish to use. 

It is clearly quite different from asking, "If the groups were 

equal (9n the covariate) at the beginning of the experiment, how do they 

compare at the end?" Even if all groups are "adjusted" by using a co­

variate mean of¼= 15, the difference in the regression coefficients

preclude interpreting b1 as "a treatment difference after covariate

adjustment between groups 1 and 3". The analysis of covariance is usually 

enlisted to test treatment differences in groups whose members were unable 

to be randomly assigned to a treatment group, so that a statistical control is 

used, While a test of significance on b1 can be legitimately done, ft

does not address questions usually asked by researchers using the analysis 

of covariance. 

If the expected values are found for each group at x4 • 15, then a

more useful result can be found: 

E ( V 1 X4 • 15) � bo + bl + b 6 ( 15 ) � 

9.22224 + 20.51697 + .02173 (15) � 30.06516. 

likewfse, E (V2, X4= 15) � bo + b2 = b7 (15) �, 

9.22224 + 11.60924 + .64045 (15) � 30.43823 

and 

E (Y3, X4= 15) 1 bo + ba (15) � 9.22224 + 1.19841 (15) ".;,

27. 19839.



;s > 1� 
..... , testing'for the ��alysis of covariance (locking homogeneity 

'.1 •":.i;}�'i11t�:0�Jf./' ·;. , A 

of regre�sfon), it is the difference between E (Y1, X4
= 15) = 30.06516 

•,:.,/•',, " /\ 

and E (v3, x4= 15) = 27.19839 or 30.06516 - 27.19839 = 2 .86677 that is 

liekly to be of interest rather than thinking b1 represents the difference 

between Yi adj and Y3 adj. 

Th� specific hypothesis tested in the analysis of covariance is 

E ( Y 1, X = X) = E ( Y 2 , X = X) = . = E (Y9, X = X).

Testing this type of hypothesis is shown in a series of steps in the 

preface of Ward and Jennings (1973 , p. xvii-xviii) test, Introduction 

to Linear Models. The interested reader is referred to that introduc-

tion; in the preface , testing this type of hypothesis is outlined in 

steps 3 to step 11. 

Multiple Covariates 

·Extensions to more than one covariate can easily be accorrmodated

both for the analysis of covariance and for multiple comparisons. The 

intelligence score, x5, could be used together with the pretest as co­

variates. Assuming single regression lines for all three groups on the 

two covariates, the model can be gfven as 

Y ■ bo + b1X1 + b2X2 + b4X4 + b5X5 + e5 , ( 2. 11) 

The use of the computed t values for b1 and b2 allow a test regarding

differences among the adjusted means for comparing groups 1 and 2 with 

group 3 respectively; t1 ■ 1,95059 and t2 • ,38191, To test tho differ­

ences between the adjusted means of group 1 to group 2, a model such as 

y ■ bo + b1X1 + b3X3 + b4X4 + b5X5 + es

can be used. 

( 2. 12) 

Here, t1 • 1.33421; also, t3 •·.38191, reafffnning the t value

for the difference between the adjusted means of groups 2 and 3. The 

sign is changed because the direction of the comparison has changed; 

for b2 in equation 11, t2 addresses V2adj - V
3
adj, for b

3 
in equation 12,

t
3 

addresses v
3
adj - v

2
adj. 



CHAPTER Ill 

MULTIPLE COMPARISONS FOR 

TREATMENTS X SUBJECTS DESIGNS 

To consider multiple comparisons for treatmerts X subjects designs 

(or repeated measure designs) an example taken from Chapter 7 of Williams 

(1974a, � 56) is used. See Table 3.1. 

TABLE 3.1 

THREE TREATMENT METHODS OF PAIRED-ASSOCIATE LEARNING 
WITH EDUCABLE MENTALLY RETARDED SUBJECTS 

Subject Treatment One Treatment Two Treatment Three 

1 18 27 15 

17 24 14 

14 13 12 

5 8 

5 11 14 10 

9 12 8 

14 16 15 

12 17 
22 21 16 

10 10 18 15 

The information 1n Table 3.1 can be placed 1n a tabular form suitable 

for use in a regression format; see Table 3.2. 



18 
27 
15 
17 
24 
14 14
13 
12 

58 
6 

11 

14 
10 

9 
12 

8 
14 
16 
15 
12 
17 
9 

22 
21 
16 
10 
18 
15 

21 

TABLE 3.2 

Illustration of Design Matrix for Treatments 
,. .i • , 

X Subjects Designs

x
l

X2 X3 ·x 4 X
5 

x6 X7 X8 X9 XlO Xll X12 X13

1 0 0 1 0 0 0 0 0 0 0 0 0 
0 1 0 1 0 0 0 0 0 0 0 0 0 
0 0 1 1 0 0 0 0 0 0 0 0 0 
1 0 0 0 1 0 0 0 0 0 0 0 0 
0 1 0 0 1 0 0 0 0 0 0 0 0 
0 0 1 0 1 0 0 0 0 0 0 0 0 
1 0 0 0 0 1 0 0 0 0 0 0 0 
0 1 0 0 0 1 0 0 0 0 0 0 0 
0 0 1 0 0 1 0 0 0 0 0 0 0 
1 0 0 0 0 0 1 0 0 0 0 0 0 
0 1 0 0 0 0 1 0 0 0 0 0 0 
0 0 1 0 0 0 1 0 0 0 0 0 0 
1 0 0 0 0 0 0 1 0 0 0 0 0 
0 1 0 0 0 0 0 1 0 0 0 0 0 
0 0 1 0 0 0 0 1 0 0 0 0 0 
1 0 0 0 0 0 0 0 1 0 0 0 0 
0 1 0 0 0 0 0 0 1 0 0 0 0 
0 0 1 0 0 0 0 0 1 0 • 0 0 0 
1 0 ·O 0 0 0 0 0 0 1 0 0 0 
0 1 0 0 0 0 0 0 0 1 0 0 0 
0 0 1 0 0 0 0 0 0 1 0 0 0 
1 0 0 0 0 0 0 0 0 0 1 0 0 

0 1 0 0 0 0 0 0 0 0 1 0 0 
0 0 1 0 0 0 0 0 0 0 1 0 0 
1 0 0 0 0 0 0 0 0 0 0 1 0 
0 1 0 0 0 0 0 0 0 0 0 1 0 
0 0 l 0 0 0 0 0 0 0 0 1 0 
1 0 0 0 0 0 0 0 0 0 0 0 1 

0 1 0 0 0 0 0 0 0 0 0 0 1 

0 0 l 0 0 0 0 0 0 0 0 0 l 

The values fn Table 3.2 are defined as follows:

Y • the criterion score; 

xi-
1 if the score corresponds to Treatment 1, 0 otherwise;

X2• 
1 ff the score corresponds to Treatment 2, 0 otherwise;

X3"' 1 ff the score corresponds to Treatment 3, O otherwf se;

X = 1 
4 

ff the score fs obtained from Subject 1, O otherwise;

X
5

= 1 ff the score is obtained from Subject 2, O otherwise;

Xl4

60 
60 
60 
55 
55 
5539 
39 
39 
19 
19 
19 
35 35 35 
29 
29 
29 
45 45 
45 38 
38 
38 
59 
59 
59 
�.3 
43 
43 



X5 
X
7 

Xg 

X 9  

= 1 

= 1 

= l 

= 1

i f the score is ob tain ed fro m  Subject 3, o otherwise;if the s cor e  1s obtain ed from Subject 4, o otherwise;if th
e sco re is ob taine d  fro m  Su

bj ect 5, o otherwise;if th
e score fs obtai n ed fro m  Subject 6, O otherwise;

X 10 
= 1 if the score is obtaine d  fro m  Subject 7, 0 otherwise;

X
1

1 
= 1 ff the score is o btaine d  fr om Subject 8, 0 otherw ise; 

X12
= 1 ff the score is o btai ned fro m  S ubject 9, 0 otherwise; X

13 
= 1 if the scor e  1s ob taine d  from Subject 1 0, 0 otherwise; and x

1 4  
= the sum o

f t
he c rite ri on score s  for each subject separat el

y
.

The a n aly sis in W ill
iams (1

974a )procee d s  as fol lows: three lin ear mod els are define d , one for th
e 

tr eatment s  e ffect, one for the subjects eff ect and one fo r the c ombine d  tr eatment s  and 
s
ubjects 

ef fe
cts. Th

e
s
e

models are given as 
Y • bo + b

1
X

1 

+ b
z
X

2 

+ e
1
, 

(
3, 1

) 

y. bo + b
4
X4 + b5 X

5 + b5 X
5 + b7 X 7  + baXs + b9

X
9 + b 1

0 X
10 + b1 1X1 1  +

b12X12 + 
e z, 

(3.2) 

a n
d 

y • b
O 

+ blXl + b2X2 + b4 X
4 + b5X5 + b6X 6  + b7X7 

+ b8X8 + b9X9 +

b10X

1
0 + b11

X
1 1  + b12X12 + 

8 3
· (3

.
3)

The associated 
R
2 

va
l
ues and sums of �a re s  (S S) f or equati on s  1-3

2 2 

2 

are R
1 

• , 1784 ; ss
1

• 136,2 7 : R2 
• . 6

8
23; ss2 • 5 21.�o; R3 • .8607; 

ss 3 
� 657. 47; S S

T
= 763.86 .  A comple te su

1T111
ar

y 
table 

1
s 

$
h
ow

n in Ta
ble 3

.
3,
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TABLE 3.3 

SUMMARY TABLE FOR THE TREATMENTS X SUBJECTS DESIGN 
.... 

Source of Variation df 

Treatments 2 

Subjects 9 

Error 18 

Total 29 

ss

136.27 

521.20 

106.39 

763.86 

MS F 

68.13 11.52 

5.91 

An alternative analysis using x14, the sum of criterion scores

for each subject, would use the following equations (Williams, 1977a): 

Y = bo + blXl + b
2
X2 + 

el, (3.1)

Y = bo + b14x14 + e
2
, (3.4) and

y = bo + b1X1 + b2X
2 + b14x14 + e3. (3.5)

The results, in tenns of sums of sq.iares and R2 values, is identical to 

that already given, with R2

4 • R2 , ss
4
• • ss , R2 • R2 and ss • ss.

2 2 5 3 5 3 

However, care must be taken with the degrees of freedom. Equation 3,4 

uses only one predictor; thus, the II apparent" degrees of freedom is 

one. It must be remembered that the actual df • N - 1. 

The analysis to this point has been focused on constructing the 

usual ANOVA sumnary table rather than being concerned with· the possible 

comparisons of means. Suppose there is interest 1n testing hypothes�s 

regarding the means: µ 1 • µ 
2

; µ 1 • µ 3 and µ
2 

• µ 3. Testing

these hypotheses can be accomplished with two different fonnulations 

of the full model, equation 3.3 and 

Y = b0 + b1X1 + b3x3 + b4X4 + b5X5 + b6X6 + b7X7 + b
8
X
8 + b9X9 +

b10X10 + bllXll + bl2X12 + e3,(3•3a)

Part ,of the printout from the use of equation 3.3 is shown in Table 3.4. 



TABLE 3.4 

OUTPUT OF FULL >U)EL FOR TREATMENT'S X SUBJECTS DESIGN 

Variable Hean Standan1 Correlation Regression Std. Error Computed Beta 
No. Deviation X VS Y Coefficient Of Reg. Coef. T Value 

1 0.33333 0.47946 -0.12145 1.19998 1.08732 1.10362 0.11210 
2 0.33333 0.47946 0.41105 4.99997 1.08732 4.59846 0.46710 
4 0.10000 0.30513 0.39195 5.66663 1.98515 2.85451 0.33690 
5 0.10000 0.30513 0.28185 4.00001 1.98515 2.01496 0.23781 
6 0.10000 0.30513 -0.07046 -1.33331 1.98515 -0.67164 -0.07927
7 0.10000 0.30513 -0.51085 -7.99992 1.98515 -4.12987 -0.47562
8 0.10000 0.30513 -0.15854 -2.66665 1.98515 -1.34329 -0.15854
9 0.10000 0.30513 -0.29066 -4.66664 1.98515 -2.35077 -0.27745

10 0.10000 0.30513 0.06166 0.66668 1.98515 0.33583 0.03964
11 0.10000 0.30513 -0.09248 -1.66665 1.98515 -0.83956 -0.09909
12 0.10000 0.30513 0.36993 5.33332 1.98515 2.68661 0.31708

Dependent 
y 14.06667 5.13226 

N 

INTERCEPT 12.26667 ""' 

MULTIPLE CORRELATION 0.92774 

STD. ERROR OF ESTIMATE 2.43131 

MULTIPLE CORRELATION SQUARED 0.86070 

ONE MINUS MULTIPLE CORRELATION SQO. 0.13930 

ANALYSIS OF VARIANCE FOR THE REGRESSION 

Source of Variation Degrees Sum Of Mean F Value 
Of Freedom Squares Squares 

Attributable To Regression 11 657.46021 59. 76910 10.11102 
Deviation From Regression 18 106.40308 5.91128

Total 29 763.86328 
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From Table 3.4, it can be seen that t
1 

= 1.10362 and t2 = 4.59846;

these t values are respectively the tests regarding comparing V
1 

to V3 � 

and V2 to V
3
, taking into account that the subjects serve as their own

controls. A similar printout could be generated using a model corre­

sponding to equation 3.3a. Values from this printout show t
1 

= -3.49484 

t
3 

= -4.59847; these t values correspond to comparing V1 to V
2 

and

V
3 

to V
2
. Also, the corresponding means are V

1 
= 13.20, V

2 
= 17.00

and V
3 

= 1 2.00. Because the comparisons are being done on an�

posteriori basis, and because all possible simple comparisons are 

being evaluated, Tukey•s (H.S.D.) test is an appropriate multiple 

comparison procedure to evaluate the differences in means. Tables 

Ila and lib utilize the computed t values directly for the Studentized 

range statistic; for a •  ,01, t • 3.326 and for a • .05, t • 2 ,553 , 

Two t values are significant; comparing V1 to V
2 

(t • 3.49484, dis­

regarding the sign) and comparing V
2 to V3 (t • 4.59846),both exceed

3.326 (p < ,01), To complete these comparisons using Tukey's test,

v a dfw • 18 and r • 3.

Using the Shortcut Method 

The solution just given in the last section presumod that each 

subject (except one) is separately coded using a binary coding scheme. 

Clearly, if the number of subjects is at all large, the coding procedure 

described in Williams ( 1977a) and using equations 3.1, 3.4, and 

3.5 might be preferrable. However, one difficulty with using this 

shortcut procedure is that the standard error of the regression 

coefficients for x1 and x2 are too small due to the degrees of freedom,
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as generated by the computer program, not being accurate for deviation 

from regression. These t values could be adjusted by multiplying by an 

appropriate constant. The appropriate constant is: c =/
MSw3.5 -(3.6)

\ MSW3. 3 

where MS is the mean square within (or deviation from regression)
W3,5 

for equation 3.5 and MS is the mean square within for equation 3.3.
W3. 3 

The MS is 4.09225 and MS is 5.91125. Thus, c = .83203. The 
W3,5 W3,3 

values generated by equation 3.5 for t
1 

and t2 (comparing V
1 

to V
3 

and 

V
2 

to V
3
) are t

1 
= 1.32641 and t2 = 5.52678. Multiplying t1 and t2 

by c yields corrected t
1 

= 1.10361 and corrected t
2 

= 4.59845, within

rounding error of the values found earlier. Of course, MSw3 _ 3 
would 

not be available were the researcher using the shortcut method. 

However, MS
W 

= SSw3,5 (3.7) where N is the total number of scores,
3.3 N-S-g +1 

S 1s the number of subjects and g is the number of groups. The denom-

inator 1n equation 3.7 can also be found as (S-l)(g-1). 

i • 



CHAPTER IV 

MULTIPLE COMPARISONS 

IN TWO-WAY LAYOUTS 

Before considering specific questions in a multiple comparison frame­

work given two-way designs, it is useful to consider several unique con­

cerns of such analyses. First, some rectification needs to be done 

regarding decisions on whether to employ a family approach, or to use the 

experiMent with all of its dimensions as the unit for deciding upon the 

number of comparisons. That is, are results for rows to be interpreted 

without considering the results for columns and/or interactions? Similar 

questions could be posed for columns .and interactions as well. On the 

one hand, statistical tradition would be on the side of using familywise 

error rates where the row comparisons, column comparisons and comparisons 

involving interactions would be interpreted with their own error rates. 

On the other hand, if the row, column and interaction effects are tested 

independently at, say, the .05 level, then the overall error rate is 

1 - {1-,0�)3, The logic of multiple comparisons would suggest that all

comparisons in the experiment be taken into account in reporting proba­

bi11t1es. 

In the long run, the researcher has to take the responsibility of 

deciding whether to· use a family approach or to use an approach that uses 

the experiment as the unit for comparisons. Whatever decision is made, 

communication should be made to readers so that they understand the 

ground rules used by the researcher. Having at least brought up sor,;e of 

the unique concerns of a two-way layout, we can now turn our attention to 

27 
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an actual problem. 

An Example for A Two-Way Layout 
# 

The following example is taken from Williams (1974a) 

Suppose a researcher wishes to measure the effects of three 
different approaches to teaching arithmetic combined with 
four different methods of assigning homework. Suppose there 
are 24 students available, so the students are randomly 
assigned to one of the 12 (3x4) treatment combinations. 
When the experiment is concluded, a standardized arithmetic 
test consisting of 20 items with the items in a multiple 
choice format is administered. The three different methods 
of teaching arithmetic are 1) teaching arithmetic with the 
problems very similar to the final test; 2) teaching arith­
metic with half the problems similar to the final test, and 
the other half dissimilar to the final test; and 3) teaching 
arithmetic with the problems dissimilar to the final test. 
The four different methods of homework are 1) problems in a 
multiple-choice format; 2) homework is of a project nature; 
3) problems from the book in which the student supplies his
own answer, and 4) no homework. The data for this experiment
are in Table 4,1,

TABLE 4.1 

DATA FOR METHOD OF TEACHING X TYPE OF HOMEWORK 

Method of Teaching 

Type of Homework Very Similar Half Similar, Dissimilar 
Material to Half Dissimilar Material 

Final Material to Final to Final 

Multiple Choice 18 10 12 

Items 10 6 10 

Project 5 2 9 

3 2 3 

Student Supplies 7 6 4 

Own Answer 3 2 2 

No 2 7 10 
Homework 0 5 6 
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When proportionality is present, several alternative approaches will 

yield the same end products in the sunmary table. A simple to use approach 

is to successively analyze the data into three different one-way layouts. 

One layout would consider each treatment combination as a separate group. 

Thus, there would be (4)(3) = 12 groups. An analysis of variance could be

generated by the following model (Model 1): 

Y = bo + b
1

X
1 

+ b2X2 + b3X3 + b4X4 + b5X5 + b6X6 + b7X7 + baXa +

( 4. 1) 

where 

Y = the criterion variable, 

b0 = the Y-intercept (in this model, b0 will equal the mean of

Group Twe 1 ve) , 

x
1 

= 1 if a score is from a member of Group 1 ; 0 otherwise, 

x2 - x
12 • 1 if a score is from a member of the group corresponding

to the subscript number; 0 otherwise, 

b
1 

- b
11 

• the regression coefficients for x
1 

- x
11

, and 

e
1 

• the error in prediction with this model. 

A second model (Model 2) would include only information regarding the rows, 

disregarding the particular column: 

where 

y • bo + b13X
13+ b

14X
14 + b

15X15 + e
z
, (4,2)

bo � the Y-intercept for this model (fn this Model, b0 will

equal the mean of the fourth row, no home�ork), 

x
13 = 1 ff the score fs from a member in row 1 (Multiple

Choice Items); O otherwise; 
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x14 = 1 if the score is from a member in row 2 (Project);
0 otherwise; 

X15 = 1 if the score is from a member in row 3 (Student
, 

Supplies Own Answer); o otherwise; 

b13 to bis = the regression coefficients corresponding to

x13 to x15 and

. e2 = the error in prediction for this model

A third model (Model 3) would include only information regarding the 

columns, disregarding the particular row: 

where 

b0 = the .Y-intercept for this model (in this case, b0 will equal

the mean of the third column, Dissimilar Material to the Final) 

X17 • 1 if the score is from a member in column i (Very Similar

Mdterial to the Final), 

Xia• l if the score is from a member in column 2 (Half Similar, 

Half Dissimilar �aterial to the Final), 

b17, b1a ■ are regression coefficients for x17, Xia• and

e
3 

■ the error in prediction for this model, 

A fourth model (Model 4), while not necessary when 

is useful in understanding the process: 

where 

y • bo + b13X13 + b14Xi4 + b15X15 + b17Xi7 + b19X19 + e4, (4-4)

b0 ,. the Y-intercept for this model.

Xi3 to Xia= as defined in Models 2 and 3 (excluding X15)



' Note 

b13 to b
18 

= are regression coefficients for x13
to x18

for 

this model (excluding b16), and

e4 = the error in prediction with this model. 

that x12, x16 and x
19

, corresponding respectively to the score is from 

Xl2
= 1 if the score is from a member of the 12th cell; O otherwise, 

X16 = 1 if the score is from a member of row 4; O otherwise and

X19 = 1 if the score is from a member of column 3; O otherwise

are not used in the formulation of the analysis; in that they may be useful 

for multiple comparisons, they should be included. All of the information 

regarding a regression solution is given in Table 4.2. 



oo 

, .......... o o o o ..... ,.... o o o o .......... o o o o ..... ....... o O O 0· 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O ....... ....... ....... ....... ....... ,.... ·. 

oooooooooooo ................................... ..... 0 0 00 0 

I.LI 
u 
z 

c( 
.... 

a: 

;; 
LL. 

.................................... 00000000000 0 0 0 00 00 

0 

V') 
.... 

V') 
>-

00000000000000000 0 0 0 00 ....... 

...J 

i 
>-

00000000000000.ooo o o o  .............. o 

:i 
N I 

,q- � 
l,iJ 

00000000000000000 0 ..... .......  oo o 

...J l,iJ 

� � 
LL. 

0000000000000000 ..... .......  o o oo o  

0 

0 
.... 

00000000000000 .......... o o o o oo o  

fr 

oooooooooooo ........... 000 0 0 0 00 0  

! 
.... 

0000000000,.....,,.....,ooooo o o o oo oo 
V') 

8, 00000000,.....,,.....,ooooooo o o o oo oo 

oooooo ...... ,.....,000000000 0 0 0 00 00 

0000 ..... ,.....,ooooooooooo o o o oo oo 

00 ........... oooooooooooooo o o oo oo 

........... ooooooooooooooo o o o o o oo 



.. 

33 

Jsing the four models (Models 1-4), the portion of the summary table for 

·egression can be used directly, The portions of interest, taken directly

From the printout, are reported in Table 4.3. 

TABLE 4.3 

VALUES FOUND FROM THE REGRESSION ANALYSES 

df ss R2

1ode l 1 
Attributable to Regression 11 312 .77228 
Deviation from Regression 12 92 . 22772 
Total Sum of Squares 23 404 

1odel 2 (Rows) 
Attributable to Regression 3 204 .50495 

,1odel 3 (Columns) 
Attributable to Regression 2 16 .03960 

'1ode l 4 ( Rows & Columns) 
Attributable to Regression 5 220 .54455 

fhe data from Table 4.3 can be put into a summary table. There are four 

;ources of variation of interest in a two-way analysis of variance: rows, 

:olumns, interaction (among rows and columns) and the within group varia-

t ton. The sum of squares for rows can be found directly from Model 2 as 

tho valuo for attributable to regression and is 204. The sum of squares 

for columns can be found directly from Model 3 as tho value for attributable 

to regression and is 16, The sum of squares within is equal to the devia­

tion from regression for Model 1 and is 92. The interaction can be found 

JS the difference in sum of squares between the attributable to regression 

for Model 1 and the attributable to regression for M�del 4: 312 - 220 = 92, 

Also, the degrees of freedom are necessary for each source of variation.

The degrees of freedom for rows is the number of rows minus one (r - 1);

the degrees of freedom for columns is the number of columns minus one (c - 1);

: .. --.-.�: 
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t h e  degree s  of free dom 
for inter action i

s 

the product of th e  d egrees 0 fr
e e dom for rows a nd colum ns fr - l)(c - 1"'i] ; t h e  tot al d egrees of .'

1 

fr
eedom are the total number of s u bjects min us one (N - 1). 

All,,of t he information for t he data in T able 4.3 can be put
s

umm

ary tab le. Se e  Tab le 4.4. 

Sou rce b f  Variat io n  
Row s
Co l

umns
Interact io n  

With
in

T
o

t

al 

TA B L E  4.4 
Summary Table For Data For Method

Of T
eaching X Type of Ho mework 

df s s  

MS
3 2 0 4.0 0 68.0 0

2 1 6.0 0 8.00

6 9 2.0 0 15.33

g_

2?..:QQ. 7.6 7

2 3 4 0 4.0 0

F 
8.8 7

1.0 4

2.0 0

Tra
d

itionally, e ach F val u e  is in
t

erpreted as e ss entially a separ�,;ij
exper

i

me nt ;  the word
i

ng u s ed is i n depende nt. For this model, the row .arid i\'ii� 

co
l

umn e
f

f ects are inde p e nd e nt, as we 11 as b oth effects b eing i ndepend�d\
i ,_-;��:­o

f 

fnte ractfon. This fs no t  t he 
s a m e  a s  

saying the F v alu es are inde- !l�· 
. •t

f>p en
d

e nt ;  t he F v al ues a r c  correlated du e  to sharing a common denomrnator,r 
The nume r ator s ums of square s  a r e  f ndopendent. The proba bility of a I'

:.��: �t Ty pe I e r ror fo r  t he e x p er i me nt is n ot a, b ut 1 (1 - a.)3. For those :,i,1-lf' 
who prefer to us e  a fa m

ily ap
p

r oac
h an d  in

t

erp r et rows s eparately from 
,
I
i

, 
:i��f �

co
l

umn s, etc., t
h

ey mig ht r epeat t he e r r or r ate a s  a. for�� effe c t,i,' 

but n ot fo r  the ex pe rime nt. In any e ven t, the d ata reported here ar e  
u n equ

i

v ocal i n  t heir inte rpr etatio n. C le a rly t he re is a s i gnifica nt 
row ef fe ct, a n d  n o  oth e r. 

,,,t
::•::: 
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An Alternative Formulation for Model 1 

The linear model given for Model 1 was a model that ignored row and 

column information, and viewed the problem as one that contained twelve 

groups. An alternative formulation (Model la) is: 

where 

y = bo + b 13X
13 + b14X

14 + b15x15 + b 17x17 + b 18x18 + b20
X
20 +

b21X
21 + b22X22 + b23X

23 + b24X24 + b25X
25 + el' (4•5) 

b0 
= the Y-intercept (and equal to the mean of group 12), 

X13 to x18 = as defined previously, 

x
20 

= the product of \3 times x17 (X
13·x 17),

X21 = Xi3 Xia· 
X
22 

.. X •
14 

X23 = X
14 

X24 " \5 

X25 11 X15 

Xi7•
Xia•
Xi7, 

Xia• 
b13 to b25 • are regression coefficients corresponding to

x13 to x25 (excluding x16 and x19) and

e1 • the error fn prediction with this model. 

Both Model 1 and Model la can be referred to as full models. It can be seen 

that x
13 to \s 

impart row fnfonnation, x17 to x18 impart column information,

and x20 
to x25 report the product of row and column information. Thus, inter­

action is the difference between the full mode 1 and the mode 1 that does not 

include the product of row and column information .• 

Also, reflection on x20 
to x

25 would show that X
20 

= X l' X21 = X
2
, 

X22 = X4, X23 = X5, Xz4 = X7 and X25 = Xg; thus, X1, X
2

, X4, X5, X7 and Xa 



3
6

c an rep re sent 
x

2 0  

to x
2 5

. Se e .Table 4.5.

Mu lt
iple Compari sons for,.Ro w s

Mos t o ften, s olu tions to t he two-way ANO VA 
·
desig

n
, si mil ar to e q u ati on 4.

5

(Model la) whe re t he ro w, column and in ter action effe cts are s hown in the same m odel. T he first m odel (Model 1, equat ion 
r:

·Jf
�::

4.1 ) is m ore u s e ful as a full m odel
if

an y  mult iple c ompari sons are conte�:rplated. Be fo re pro cee ding, an intermed iat e  m odel, a re paramet erization O .Mode l 1 can be g iven as

Y =

b1X1 + b2X
2

+ b3X 3  + b4X4 + b
5

X
5 

+ b6X6 + b7X7 + ba
Xa 

+ b
g Xg 

+

b1 0X1 0  + b1 1X1 1  + b1
2

X1
2 

+ el (4,6). (Model lb).
Th e diffe ren ce be tween Models 1 a nd lb is th at M odel 1 contains a unit
bu t no t b1 2x1

2

, w he reas Mo de l 
lb contain s  b

12
x
12 b

ut not a unit ve ctor.
Mode l l b ser ves as a goo d c oncep tu al start ing p oint that, de p e nding upon
th e pro gr a m  ava il a ble, may have to b e  r e paramet eri zed.

Su ppos e  there is an in te rest in comp ar ing ro w  one to ro
w 

fou r. A
co mrar is o n o f in te re st m iqht be:

(4
. 

7) 

In that eac h n
1 

• 2, equa tion 4.7 reduces to
V1 + V z + V

3 
• V

10
+ Vu+ V1 2· 

In terms o f the r egres s  ion coeff icients
, 

th e  comp
aris on can be stat e d

as b1 +b z
+b 3 • b1o+ h11 +b1

2

· (4.8)
Transfor m ing eq ua tion 4. 8 by is olating b

1
,

bl� b1
0 

+ b11 + b1
2 

- b
2 

- b3, (4
.
9)
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REGRESSION OUTPUT FOR FULL 1-K:lDEL WITH ROW, COLUMN AND INTERACTION EFFECTS 

Variable ��ean Standard Correl at ion Rearession Standard Error Computed 
No. Deviation X VS Y Coefficient of Regression t Value 

Coefficient 

13 0.25000 ().44233 0.70360 2.99993 2.76885 1.08346 

14 0.25000 0.44233 -0.28144 -1.99999 2.76884 -0.72232

15 0.25000 0.44233 -0.28144 -5.00002 2.76884 -1.80582

17 0.33333 0.48154 -0.00000 -7.00007 2.76885 -2.52815

18 0.33333 0.48154 -0.17235 -1.99997 2.76884 -0.72231

1 0.08333 0.28233 0.58791 10.00017 3.91578 2.55381

2 0.08333 0.28233 0.14698 -0.99997 3.91576 -0.25537

4 0.08333 0.28233 -0.14698 5.00005 3.91576 1.27690

5 0.08333 0.28233 -0.29395 -2.00003 3.91574 -0.51077

7 0.08333 0.28233 -0.07349 9.00010 3.91576 2.29843

8 0.08333 0.28233 -0.14698 2.99998 3.92574 0.76613

Dependent 
6.00000 4.19108 

Intercept 8.00000 

Multiple Correlation 0.87879 

Std. Error of Estimate 2.7688f-

Multiple Correlation Squared 0.77228 

One Minus Multiple Correlation Sqd 0.22772 

ANALYSIS OF VARIANCE FOR THE REGRESSION 

Source of Variation Degrees of Freedom Sum of Squares Mean Squares 

Attributable to Regression 11 311.99951 28.36359 

Deviation from Regres$ion 12 91.99878 7.66656 

Total 23 403.99829 

:·\\��---"--'-"- -----�-c"_..e,_-_____ _  •• _ .. 
-- --- " 

• •� c� 

s � ; • • 

• ;. < �. 
.; � 

})-

-�. ! 

Beta 

0.31661 

-0.21108

-0.52770

-0.80429

-0.22979

0.67365

-0.06736
0.33682

-0.13473

0.60629

0.20209

F Value 

3.69965 
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Equ ation 4.9 is a restriction on Model lb (equat
i
on 4 .6); 

t
h
e r ig h t  hand

side of eq ua ti o n  4.9 ca n  be su bst
i
t ute d  for b1 i

n Model lb: 
y = (b1 o+h 1 1+b 1 2-b2-b3)Xl + b2 X 2  + b

3
X3 + b4X 4  + b5X5 + b6X6 +

�7X7 + bgXg + b9X9 + b10 X1 0 + b1 1X 1 1  + b12 X12 + e 5
;

y = bl X2- X 1 )  + b3( X 3-X1) + b
4
X 4  + b5X 5  + b6X 6 + b7X7 + b

8
X8 +

b9X9 + b1 o(X1 o+X 1) + b1 1(X1 1+X 1 )  + b12 (X12 + X 1 )  + e 5.
Five new varia b les c a n  b e  de fined: 

v
1 = 1 

if fr om ce 11 2
, -1 i f fr

o m  ce 
11 

1, 0 
o t

h
e
rw is e

;
v 2  = 

1 if fr o m  cel l 

3, -1 if from cel l  1, 0 
ot

h
e
rw is e

;
V3 = 

1 if f rom ce 11 1 0 or cel l  1, 0 
ot he

rw is e
; 

v4 = 
1 
i

f fr om cel l 11 or cel l 

1, 0 
ot

h
e
rw is e; 

and

V
5 " 

1 if from ce 11 1 2 or ce ll 

1, 0 
ot

h
e
rw is e. 

Equation 4.
1

0 ca n  be tr a ns forme d to 

(4
.11)

Equation 4. 1 1  c a n  be u se d direc tly by p r og ram s  t
h
a t  d o  not requ i re a uni

vector. 
I

f the av a ila bl e p rogram� r equ ir e the us e  o
f 

t he u nit v ecto r  (
is

, 
a constan t term is in clu de d ) t hen a ny .2.!!! 

of 
t
h
e v ariabl es c ould b e 

excluded (say v5 ) by se tt in g .2.!!! of t he regr ession coe
fficients equal

zero. If b1
2 

• 0
, 

then equ ation 
4
,11 is r ep a ram et e r

i
ze d  to b e  

Y • bo + b
2
V
1

+ b3V2 + b
4
x
4 

+ b
5
x
5 

+ b
6
X
6 

+ b7 X7 + b
8

X

8 
+ b

9
X
9 

+
(
4 
.1 2 )

Usina eq u ation 4.12
, 

the fo ll owi
n g  r esult was obtain ed:

RI2 = ,50496. 
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Now, the following equation is necessary: 

(4.13) 

where 

Ri = the R
2 

value for the full model, 

R� = the R
2 

value for the restricted model, 

k = the number of restrictions, and 

dfw= the degrees of freedom for the within term in the full model,

For the comparison of row 1 to row 4, 

Then 

2 2RF
= .77228, k = 1, RR

= .50496 and dfw = 12.

F = 
(.77228 - .50496) 1 1 = 14.08682;(1 - .77228) / 12 

ff= t = 3.75324. This t value could be compared to an appropriate 

table of critical values for multiple comparison procedures. This brings 

us back to the original point made in this chapter; the unique concerns of 

two-way AN0VA's as it relates to multiple comparisons need to be addressed. 

Choosing An Appropriate Multiple 

Comparison Procedure for Two-Way AN0VA's 

Ideally, a researcher wi 11 have chosen ! prf or1 comparisons ( or con­

tras ts). Perhaps tho most 11 kc ly ! pr1 ori procedure to be of use 1 s 

Dunn's (1961) test. If a limited number of comparisons are chosen on 

a reasonable basis, then the two-way AN0VA design can be handled without 

any new complications. 

The more difficult situation arises if i posteriori contrasts are en­

visioned. For example, the t value found in the previous section might be
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tested 
by Scheffe 's test; th e t value coul

d be directly compa
red to 

S = � (  k-1) F where k is the number of groups (12) 
a
nd F is th

e 
tab 

1 ed 1

F value fo r k-1 and N-k degrees of freedom ; S ='1TI (2.72) at the .
05

level; S = 5.47. This outcome may seem bew
i
lder

i
ng; what seems to

b e a l ikely sign
i

ficant outcome, testing row 1, with a mean of 11
, aga

i
nst row5, w ith a mean of 5, fails to achieve significa nc e. Cle arly, so

m
e ot h er strat e gy needs to be used for the two-,way situation.

Refe rence can be made back to the idea of a family of co
mpar

isons ;there are three likely kin ds of families; t he f
amily of comparisons 

for row s, the fa mily of compariso ns for columns, and the fami
l
y of 

compa
r

is o ns 
fo r interactions. By apportioning the error rate to differ

e n
t portions ofth e  expe rim ent, 

t he total experim ent can rema
i
n as the basis fo

r interpre­
ta ti

ons. \for example, the rese archer might report the ove
r

all 
er

ror 
rate as , 05, apportioning .02 to each of the main ef

f
ec ts and .01 to the in

ter-
actio ns. Thenthe critical values wou·ld b e 

for row s, S
r • {(r-1) .o{r -1,dfw 

a) 

b) 

c) 

,. 1{;-,.:  
' 

'/

• .
<l

'
} 

for columns, S
c • V{c•l).o{c-1,dfw ;and

for fnteractfons s 1-�(k-l) .O if k-1
,

d
fw 

· 
, ,  

-:� 

.,,. 
These valu es are respectively Sr• 3.S6; S

c
• 3.38; and s

1 
= 6.8

1. Ev en 
u s fng the first critical va lue, the previously found t value (t 

= 3 .7532 4) 
" '

:'! '!

f a ll s to ac hieve s i gnificance. Had a slfghtly different alloca
tio

n been·.· 
mad e ( s ay .

025 for bot h r ow and columns), elfmfn
atfng compariso

ns of ce
ll
"' "}' 

mean s , then S
r

• 3.66 and Sc• 3,19. In that case, the pre
v
ious

l
y 

foun
cft value would be sig nificant. If 

r
ow 2 and row 3 are compa

re d to 
row 1

in a ma nner simi lar t
o t hat d escri b e d here for comparing row 1

to
row 4, 
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• then in both cases, t = 4.37883, both showing significance by the earlier

critical value of 3.86.

Multiple Comparisons for Columns 

Testing for differences among columns can proceed in a manner similar 

to that shown for rows, columns 2 and 3 could be compared. The corresponding 

comparison (or contrast) is: 

n2� + n5V5 + naVa + n11V11 = n3V3 + n6V6 + n9V9 + n12v12

n
2 + n5 + na + n11 n3 + n6 + ng + n12

Since all of the n's are equal, equation 4.14 reduces to 

Y
2 + V5 + Ya + vll = V

3 + v6 + V
g + V12 ·

(4.14) 

In terms of the regression coefficients, the comparison can be stated 

as 

b2 + b5 + b3 + b11 = b3 + b6 + bg + b12·
If b2 is isolated,

bz • b3 + b6 + bg + b12 - b5 - ba - b11 · (4. 15)

Equation 4.15 is a restriction on the full model (equation 4.6) corresponding 

to the null hypothesis in equation 4.14, comparing columns 2 and 3. 

Substituting equation 4.15 for b2 in equation 4.6 yields

y • b1X1 + (b3 + b5 + bg + b12 - b5 - ha - b11IX2 + b3X3+ b4X4 +

b5X5 + b5X-O + b7X7 + bnXa + b9X9 + b10X10 + b 11X11+ b12X12 + e5 ;

Y • blXl + b3(x3+x2) + b4X4 + b5(x5-x2) + b6(X6+X2) + b7x7 + b8(X3· X2) +

bg(Xg+X2) + b10X10 + b11(X11·X
?.
) + b12(X12+X2)+ e5, (4.16)



j,\ 
Seven new variables can be defined 

Vs = 1 if cell 3 or cell 2, 0 otherwise; 
)::, 

V7
= 1 if cell 5, -1 if cell 2, o otherwise; 

Va = 1 if cell 6 or cell 2, 0 otherwise; 

Vg = 1 if cell 8, -1 if cell 2, 0 otherwise; 

V10 = 1 if cell 9 or cell 2, 0 otherwise; 

V
11 = 1 if cell 11, -1 if cell 2, 0 otherwise; and 

V12 
= 1 if cell 12 or cell 2, 0 otherwise.

Equation 4.16 can be transformed to 

Y = b1X1 + b3V5 + b4X4 + b5V7 + bsVa + b7X7 + bgVg + b9V10+ b10X10 + f .

bllvll + b12V12 + e6.

Reparameterizing by setting b
12 

= O yields 

Y • bo + b1X1 + b3V5 + b4X4 + b5V7 + b5Vg + b7X7+ bgVg + bgVio +

blOxlO + bllvll + e6. 14.i7)

Using equation 4.17 as the restricted model and equation 4.6 as the full 

model yields 

F • 
.77228 - .73267 1 

■ 2,08730.
( 1 • , 77228 /12 

t •ff• 1,44475, Thfs t value fs of course non-significant. Other

column comparisons could be achieved fn a similar manner. 

Comparisons of Cell Means 

Comparisons regarding cell means can be fairly simply conceived by 

viewing the analysis as a one-wa:1 layout; comparisons can be achieved into 

different approaches (but which yield identical t values). The more 



important issue is: Are the number of comparisons of experimental interest, 

decided on prior to the analysis, sufficiently small to justify the use 

• of Dunn's test? If so, then a much more powerful test can be performed.

• Ideally, the number of cell comparisons can be integrated into the row and

i column comparisons so that the interpretation can be made in an unambiguous

: manner. However, the error rate can be partitioned into three distinct 

"units and a separate portion for comparisons among cell means can be used. 

If any comparison (including complex contrasts) is envisioned, the use of 

full and restricted models can be followed as outlined for both rows and 

columns earlier in this chapter. For example, suppose there is interest 

1 in comparing V
1 

to V
12

. The restriction to accomplish this comparison is 
,, 

b
1 

• b
12 

when using Model lb (Equation 4.6) as the full model. Then

or 

where 

Then 

y • b12X1 + b2
X
2 + b3X3 + b4X4 + b5X5 + b6X6 + b7X7 + baX8 

+ bgXg + b10X
10 + b1 1

X
11 + b12

X12 + e7 ,

y • bl2(Xl+X12
) + b

2
X2 + b3X3 + b4X4 + b5X5 + b6X6 + b7X7

+ b8X8 + bgXg + blO xlO + bllxll + e7;

y • bl2
Vl3 + b

2
X
2

+ b3X3 + b4X4 + bSXS + b6X6 + b7X7 + b8X8

+ bgXg + blOxlO + bllxll + e7

v13 • 1 if cell 1 or cell 12, 0 otherwise (v
13 happens to equal V5).

F = = 

(.77228 - .68317) )1

(1 - .77228) / 12

'.}i'I
1

i[i',�i'1iii}�O�t;;;:;(� {';:'):,:;;i:i!Ii\:� :1R�itf ;i;f 
,· .. ,'.·••>:•;)/t(}J:i;;ii}.� .... 



F = 4.69576; therefore t =ff� 2.'16697. 

In the specific case wherein' twc/��•11 m�a'ns 1are being compared, a 'tl 
Al . . - . simplified process will yield the same·t value; if either b

1 
or b 

12 is

set equal to zero and if a unit vector is available (as ·is true of most 

general purpose multiple linear regression computer programs), then the 

remaining b value is tested by the computed t value as a test of the partial· 

regression coefficient. As an example, b12 = 0, so that a model identical "' 

to equation 4.6 is employed. See Table 4.6. 1 •. 
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Variable Mean Standard Correlation Regression. 
No. Deviation X vs Y 

1 0.08333 0.28233 0.58791 

0.08333 0.28233 0.14698 
0.08333 0.28233 0.36744 
0.08333 0.28233 -0.14698

5 0.08333 0.28233 -0.29395
0.08333 0.28233 0.00000
0.08333 0.28233 -0.07349

8 0.08333 0.28233 -0.14698
9 0.08333 0.28233 -0.22047

10 0.08333 0.28233 -0.36744
11 0.08333 0.28233 0.00000

Dependent 
6.00000 4.19108 

Intercept 7.99999 

Multiple Ccrrelation 0.87879 

Std. Error of Estimate 2.76886 

Multiple Correlation Squared 0.77228 

One Minus Multiple Correlation Sqd 0.22772 

Coefficient 

6.00002
0.00001
3.00002

-4.00000
-5.99999
-1.99998
-2.99998
-3.99998
-4.99999
-6.99999
-1. 99998

Standard Error
of Regression 
Coefficient 

2.76889
2.76889
2.76889
2.76889
2.76888
2.76888
2.76888
2.76888
2.76888
2.76888 
2.76888 

ANALYSIS OF VARIANCE FOR THE REGRESSION 

Computed Beta
t Value 

2.16693 0.40419
0.00000 0.00000 
1.08347 0.20209 

-1.44462 -0.26946 
-2.16693 -0.40418
-0.72231 -0.13473 
-1. 08346 -0.20209
-1. 44462 -0.26946
-1.80578 -0.33682
-2.52810 -0.47155
-0.72231 -0.13473 

Source of Variation 

Attributable to Regression 

Deviation From Regression 

Total 

Degrees of Freedom 

11 

Sum of Squares 

311. 99927

91.99902

403.99829 

Mean squares 

28.36356 

7.66658 

F Value 

3.69963 

12 

23 

e-::.;..., 

{� 

<::�:�. •, ·.-5;� - -
', 

: ·;\·. 

l��-��*.t����!i���-$��tiH�4��-��ii���;J,,;',4;ii;�����;t�h�F{;f,'.;�_o'ie);"
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As can be seen from Table 4.6, the computed t value for x 
.. . 1 

(variable 1) is 2.16693, within rounding error of,the value found
earlier through the use of"'the full and restricted models; this 
computed t value can be directly .compared to the appropriate table, 
depending upon the multiple comparison test used. The remaining 
t values are available in case there were interest in testing any of 
ce 11 s 2 through 11 to ce 11 12. 

Suppose there was an interest in testing V
3 

to V
6

.

could be accomplished by either of the following models: 

This 

y = 
bo + bl X1 + b2X2 + b3X3 + b4X4 + b5X5 + b7X7 + b8

X
8 +

bgXg + b1ox10 + b11x11 + b12x12 + e1 (4.18) or 

Y = bo + b1X1 + b2X2 + b4X4 + b5 X5 + b5X5+ b7X7 + bsXa +

b10 X10 + bllxll + b12xl2 + el. (4.i9)

In equation 4.18, b6X6 has been omitted, and hence, bo = Y5 and

b3 • V3 - V
6

; the test of the regression coefficient (the computed t 

value) is the test of significance for the difference between Y3 and 

V6 • Equation 4.19 simply reverses the roles of variables 3 and 6

respectively for equations 4.18 and 4.19. Therefore, b3 =·b6 and 

t3 • -t6 from equation 4,18 to 4.19. Of course, the use of full and

restricted models would have yielded the same result. 

Clearly, the concerns of multiple comparisons when addressed to 

the two-way layout are complex. Most questions of substance require 

the use of full and restricted models, which require the researcher to 

state comparisor.s in terms of the regression coefficients. Comparisons among 

cell means can be accomplished either through the use of full and restricted

models, or through the use of the unit vector together with the omission

of one of the groups of interest as a predictor. 



CH AP T E R  V

M U LT IPL E
COMPARISONS F OR

,P R OP ORT ION A
T

E 
T WO-WAY LAY OUTS

Many r e ade rs a r e  awa r e  of s ome 
of the comp le

x
i ti es invol ved wi th 

-way dispropo rtionate a n al ys es of va ria n c e. Seve ra l  d iffer e nt points
view have bee n  made ;  Je n nings (1 96 7 )  pro po s ed a s oluti on throu g h  the 
of full and rest r icte d  models. W il l iams (19 72) showed t hat h is u

n ­

usted main eff
ec t s  s olut ion agreed wi th Je nnings. O ve ra l l  a nd S

p
i

e

gel 

6 9) de scr ibed thr ee s oluti ons: 1) a fi tti ng c o n
s

ta nts s
o

lutio n
so describ ed by Ande r son and Ba n c roft, 1 9 5 2); 2) a h ie rar chical 
,ution (Cohe n, 1968); a n d  3 )  a ful l  r an

k 
m od el s olut io n, m o r e  re c e n

tl

y 

I 

led the "standar d" s olution fo r  Timm an d  Carl s o n  (19 7
5

) a nd appa r e n
tl

y 
:epted as s uch by Ove r al l, S p iegel a nd C o he n  ( 1975) d esp i te Ove r all 
I Spiegel's pre v iously show in g  that the ful l  rank mo del fa i led to
1ieve a n  ad ditive solut ion gi ve n  th at propo rti on ate, but u n equal c ell 
,!qu e nci e s  o cc u rred. Spe ed a nd Ho cking ( 1 9 76) de s c ri bed v ario u s  s o-

1 ti ons in terms of t he hypot h es e s  te sted. W il l ia ms (197
7

b
) 

showe
d 

t
h

at 
,i solut ion proposed b y  Jennin gs a nd a r ithm et ic ally i dentical to the 
«1djus t e d  ma in ef fects s olut ion was als o  pro pe rly a fu

ll 
ra nk mo

d
el

, I uti on. 

O f ten the r es e a rche r  who is mor e  co ncerned with gett i

ng 
!!).'t. so-

1tlon, rathe r  t ha n  wo r ry ab ot it wh a t  m i\lh t  s e e m  to b e  a co mp le x  a rg um ent 
11ong schola r s, is co n t ent to use a solut io n  a va ila bl e  t hrough t h e  

ical comput ing faci l i ty. Give n  t h e  diff ic ultie s  invol ved 
w it

h 1n
t
e r ­

ret ing a dispropo rt ion ate two-w ay a n alysis of v a rian c e, a n
d

g i ve n  t h e  
• 

o mplexities involved with m ul tiple c ompa ris o n s  in a tw
o-w ay l ay-

1it de s c ri bed in C hap te r  Fo u r, t he r e ade r  m igh t  fairly a sk, "How m u ch 

4 7



more complex are multiple comparisons for: .. th�,.d,ls�roportionater.case?"
· i: ;,• ,, ,J" < \ ::�; ·1-, f\ \.; , .�•t; 'tM;.' -� ' 

Luckily, the answer is that, for a given set of hypotheses (or compar-
isons) multiple comparisons for the disproportionate case are not too

... -

much more complex than they are for the equal cell frequency case. 

An Example 

Table 5.1 contains data for the two-way disproportionate case. 

Column 1 Column 2 Column 3 

Row 1 8 8 1 1 6 2 

6 6 1 2 

4 4 1 6 

Row 2 10 7 7 10 10 

10 5 5 9 9 

4 4 7 7 

4 4 5 5 

3 3 4 4 

The systematic nature of the data within any cell is by no means 

coincidental; the data first reported in Williams (1972) which had an 

N ■ 18 has been doubled to an N ■ 36 by recording each score twice. 
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First, several variables can be defined: 

x1 = 1 if in cell 1 (row 1, column 1), 0 otherwise;. 

x2 = 1 if in cell 2 (row 1, column 2), 0 otherwise; 

x3 = 1 if in cell 3 (row 1, column 3), 0 otherwise;

x4 = 1 if in cell 4 (row 2, column 1), O otherwise;

x
5

= 1 if in cell 5 (row 2, column 2), 0 otherwise;

x6 = 1 if in cell 6 (row 2, column 3), 0 otherwise;

X 7 = 1 1 f i n row 1 , 0 i f i n row 2 ;

x8 = 1 if in column 1, 0 otherwise; 

x9 = 1 if in column 2, 0 otherwise;

X10 = x7 • X8; and

x11 = x7 Xg,

Two different full models could be given: 

Y • bo + b1X1 + b2X2 + b3X3 + b4X4 + b5X5 + e1; (5.1)

or 

A row model could be given as 

y • bo + b7X7 + c2, ( 5. 3)

The co 1 urnn mode 1 1 s 

y • bo + baXa + bgXg + e3. (5.4)

The combi nod row and co 1 umn model 1s 

y • bo + b7X7 + baXs + bgXg + e4. (5.5)



be found as 
? 

SSRows= SST (R�_3); (5.6)

55COLUMNS
= SST (Rg_4); ( 5 • 7)

_ 2 2 SSROWS X COLUMNS - SST (R5.2 - R5_5); (5;8)

and 

55WITHIN = SS 

' '  

:, :,:, f 

Equations 5.6 to 5.9 will produce a solution that has ·been called the 

unadjusted main effects solution that is identical for each· effect to 

the solution proposed by Jennings (see Williams, 1977b). If the full-

rank model soultion preferred by Timm and Carlson (1975) is desired, 

several changes would be necessary; these changes are also described 

in Williams (1977b). 
The interest here, however, is in multiple comparisons; the whole 

issue of which analysis of variance solution should be used might be 

avoided and the comparisons of interest pursued. However, Table 5.2 

contains results from the use of equations 5.1 to 5.5. 

TABLE 5.2'

SUMMARY INFORMATION FROM THE USE OF EQUATIONS 5.1-5.5

SST ■ 264.

Full Model(s) (Both Equations 5.1 and 5.2)

R�.2 • .61212 SSFULL • 161.60.

Rows: R�.3 • .15427 SSROWS = 40.73.

Columns: R�.4 = .28355 SScoLUMNs= 74.86. 

Rows, Columns: R�.5 = .60797; SSROWS X COLUMNS = 1.lO. 

Within: SSwrTHIN = 102.40. 
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Testing for Comparisons Between Rows 

Since there are only two rows, clearly the only comparison will in­

volve row 1 and row 2. A likely col"!parison of interest is 

n1Y1 + n2Y2 + n3Y3 
= n4Y4 + n5Y5 + n5Y5 . (5.10) 

n1 + n2 + n3 n4 + n5 + n6 

In terms of the regression coefficients, and assuming a reparameterized 

full model, eliminating the constant, 

Y = b1X1 + b2X2 + b3X3 + b4X4 + b5X5 + b6X6 + e1, (5.11) 

equation 5.10 can be stated as 

nlbl + n2b2 + n3b3 = n4b4 + n5b5 + n6b6 . (5.12) 
• nl + n2 + n3 n4 + n5 + n6 

Solving equation 5.12 for b1 yields

bl= (n4b4 + n5b5 + n6b6) (n1 + n2 + n3) - n2b2 - n3bJ. (S.l3)
n 1 ( n 4 + n 5 + n6 ) � "1

Substituting this value back into equation 5.11 yields 

y ■ rn4b4 + n5b5 + n6b6 (n1 + n2 + n3) - n2b2 - n3b;i x1 +

L" n1 (n4 + n5 + n6) nT'" nl"'"j 
b2X2 + b3X3 + b4X4 + b5X5 + b6X6 + e5, 

� 
ns 

5 + -n1 

( 5.14), 

(n1 + n2 + n3) 
(n4 + ns + n6) 

Since n1 • 6, n2 • 4, n3 • 4, n4 • 2, ns • 10 and n6 • 10, five new

variables can be defined to correspond to the variables in equation 5.14: 

v1 = 1 if from cell 2, -.6667 if from cell 1, o'otherwise;

v2 = 1 if from cell 3, -.6667 if from cell 1, 0 otherwise;
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v3 = 1 if from cell 4, .2121 if from cell 1, 0 otherwise; 

v4 = 1 if from cell 5, 1.0606 if from cell 1, 0 otherwise; and 

V5 = 1 if from cell 6, 1. 0606 if from ce 11 1, 0 otherwise. 

An equation can be formed with the new variables: 

Y = b1V1 + b2V2 + b3V3 + b4V4 + b5V5 + e5, 

Any one of b1 through b5 can be set equal to zero, and a reparameteriza­

tion will be made such that the constant is reintroduced. Letting b5 = o,

The use of equation 5.15 yields R25.15 = .45785, so that 

t=F =
.61212-.45785 1 = .15427 = 9.54641, . 8788 /24 .01616 

t = 3.08973. These results are identical to the usual F test of the row 

main effect; given that there are only two rows, this was to be expected. 

(though perhaps not after all that manipulation!). 

A Different Hypothesis 

Suppose that, in equation 5.12, no concern is placed upon the varying 

cell frequencies, and a hypothesis is formed 

V1 + V2 + V3 • V4 + V5 + V6 . (5.16) 

The corresponding equation, in relation to the regression coeffients, is 

b1 + b2 + b3 • b4 + b5 + b6 or b1 • b4 + b5 + b6 - b2 - b3, 

Substituting thfs value for b1 in equation 5.11 yields 

Y • (b4 + b5 + b6 - b2 - b3)X1 + b2X2 + b3X3 + b4X4 + b5X5 + b6X6 + e6;

Y • b2 (X2 - X1) + b3 (X3 - X1) + b4 (X4 + X1) � b5 (X5 + X1) 

+ b6 ( x6 + X 1) + e6. ( 5. 17)
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After defining new variables to correspond to each of the portions 

in equation 5.17 in a manner similar to the previous solution, 

F = L�����)j30
300?0)/l = 26.12584; t = 5.11134. Curiously, this result

is identical to the row effect for using the full rank model solution 

described by Tirrm and Carlson (1975). Here is the curiosity; if a re­

striction is placed on the full model taking into cognizance the unequal 

cell frequencies the outcome is in agreement with the unadjusted main 

effects solution. However, if the difference in cell frequencies is 

disregarded, the solution is identical to the full rank model solution 

as described by Timm and Carlson . One could argue that the solution of 

Timm and-Carlson, commonly referred to as the full rank model solution, 

is actually the solution that truly leaves the data "unadjusted" for 

unequal cell frequencies. If presented with the question, "Which 

hypothesis, 5.10 or 5.16, more fairly addresses the difference between 

row 1 and row 2, given that the ce 11 frequencies are disproportionate?", 

it is rey guess that most researchers would prefer 5.10 (i.e., taking 

into account the disproportionate cell frequencies). However, if 

researchers are aware of the exact hypothesis being tested, they may 

opt for whatever solution best answers their specific research questions. 

Comparisons Among Columns 

Comparisons among columns can be accomplished in a manner similar 

to that for rows; suppose there is an interest in comparing columns 2 
' 

separately to columrs 1 and 3 . The hypothesis for comparing column 1 to 

column 2 is given by 
n1V1 + n4Y4 = n2Y2 + n5Y5 

n1 + n4 n2 + n5 
( 5. 18) 
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I n tenns of the regression coefficients, the hypothesis can be stated as 
n1b1 + n4b4 = n2b2 + n5b5 

n1 + n4 n2 + n5 

Solving for b1, 

b = (n2b2 + n5b5 ) (n1 + n4 ) - n4 b41
n l (n2 + n5} "1 

Substituting this value for b1 into equation 5.11 yields 

y = fTn2b2 + n5b5 ) (nl + n4 ) - n4 b� X1 + b2X2 + b3X3 + b4X4
L n1 (n2 + n5} iii" J 

+ b5X5 + b6X6 + e7.

After some algebraic manipulations, 
y = b2 

�+ 

nz (n1 + n4 ) 
n1 (n2 + n5) xj] + b3X3 + b4

+ b5 �5 + n5 (n1 + n4 ) 

"1 (n2 + n5) 
xi] + b6X6 + e7,

Three new·variables can be defined 

V7 • 1 1f x
2
, 8/21 1f x1 , O otherwise;

v8 • 1 1f x4, -1/3 if Xi, O otherwise; and 

Vg • 1 if x5
, 20/21 if x

1 , 0 otherwise, 

An equation can be formed with the new variables:

Y • b7V7 + baVa + b9V9 + b3X3 + b6X6 + e7, 

Q 
n4 

X4 - Jff xJ
( 5. 19 ) 

Any� of the b 1 s in the previous equation can be set equal to zero; 

letting b6 • O, 

Y • bo + b7V7 + baV8 + b9V9 + b3X3 + e7, 

This yiel
)
ds F • L•61212 - •38544)/l • 14.02584;

. 

• 38788/24 
t = 3. 74511.

' 
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In a similar manner, testing column 2 against column 3 yields 

F = (. 6l���788
ij�433)/l = 12.2128� t = 3,49469, The testing of sig­

nificance is postponed until after the next section. 

Individual Comparison of Cell Means 

Individual comparisons of cell means can be accomplished, as far 

as the computations are concerned, by using any g-1 of the variables in­

dicating cell membership (X1 through x6). The "left out group" will be 

compared to all remaining groups. The process can be continued until 

all comparisons of interest are found. One such set of comparisons, 

made with cell 6 compared to all other cells, using equation 5.1, is 

shown in Table 5.3. 



..

T ABLE 5.3 
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UT COft> ARI NG 
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S 
Variable Me

an Standard No. 
Devi
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1 0.16667 0.37796 
2 o.n111

0.31873
3 O.lllll 0.31873
4 0.05556 

0
.23231 

5 
0.

27778 0
.
454 26 

Depe nden

t 5.33333 2.7 4643 
INTERCEP

T 6.9 9999 
MULTIPLE CORRELATION 

0.7 8238 
STD. ERROR O

F 
ESTIMATE 1

.
847 52 

Corre lat ion 
X VS Y 

0. llOIO
-0 .56575-0 .  17408
0.41796 

-0.16794

MULTIPLE CORRELATION SQUARED 

0.6 12 1 2  
ONE MINUS MULTIPLE CORRELATION SQ D 

0.38 788 

R egression Std. E rror 
Coeffi cient Of Reg .  Coef.

-1.00000 0.95406 -5.99999 1.09301 -2. 99999 1.09301 2.99999 1.43108 
-2.3 99 9 9 0.8 262 4  

AN ALY S I S  
OF VA RIAN C E F

O R THE RE GRE SS
IO N

Sou rce of Va ri atio n Degrees Sum Of Mean 
Of Fre ed CIII  S qu a res S quares 

Attribu tab le To Regression 5 161.59964 32.31992 Deviat i o n Fr om R
e g res s

i on 
30 102.40036 3.4 1335 Total 
3 5  2

6
4.000

0

0

I

Computed 
T Valu e  
-1.04815-5.48942-2.74471 

2.09631 
-2.904 7 3

Bet a  

-0. 1376

2-0.6963
1-0.348150. 2537

6
-0. 39

6
9 6

F Val ue 

9. 4686 9
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The use of the "Computed t value" column allows testing V6 against 

any of the other cells of interest. Comparing V3 to V
6 

yields 

t = 2. 74471. If some other comparison were of interest, say Y2 to V5,

then either b2 or b5 can be set equal to 0 with all other regression

coefficients b1 through b6 non-zero.

Tests of Significance 

The concerns for tests of significance regarding multiple com­

parisons for two-way analysis of variance are the same whether the data 

is proportional or disproportional. From an experimental viewpoint, one 

reasonable approach is to construct � priori a small number of hypotheses 

likely to be of interest. If the number of tests is held down, then 

Dunn's test can be a most profitable approach. 

Suppose that the hypotheses of.interest are those described in 

this chapter: 

Row 1 to Row 2, t • 3.45549; 

Column 1 to Column 2, t • 4.16587; 

Column 2 to Column 3, t • 3.49469; and 

cell 3 to cell 6, t • 2,74471 (disregarding the sign). 

Using Dunn's test, m, the number of comparisons, is 4, and v, the 

degrees of freedom for the within term, is 30. With a •  .05, the critical 

t ratio is 2,66 so that all four comparisons would be significant at the 

.05 level. Had the number of comparisons been increased to 6, then the 

comparison of cell 3 to cell 6 would become nonsignificant. Had the number 

of comparison been increased to 10, then the compari,on of row 1 to row 2 

would become nonsignificant. While the table in appendix does not show 

critical values for 10< m< 20, the comparison of columns 2 to column 3 



58. 

would be nonsignificant if there were 12 .or more ,comparisons.•· Thus, it 

can be seen that there is some virtue in limiting the comparisons to 

those of direct experimental interest . 

... 



CHAPTER VI 

MULTIPLE COMPARISONS IN 

HIGHER DIMENSIONAL DESIGNS 

Clearly, N-way Designs have complexities of their own; the consi­

derations of multiple comparisons heightens these considerations. On 

the other hand, the issues regarding multiple comparisons reflect the 

same concerns that were evident with the two-way design. Should the re­

searcher employ a family error rate? Or should an error rate be used 

that emcompasses the entire experiment? The new complication is that 

as the dimension of the design increases, the number of families are 
N 2 - l. The problem of deciding upon whether to use a family error 

rate (and of course reporting the type of error rate used to the reader) 

is compounded by two competing forces; on the one hand, if an overall 

experiment error is ·used, significance becomes difficult to obtain; on 

the other hand, the use of a family error rate, by increasing the num­

ber of families, increases the likelihood of finding a significant out­

come. 

Part of the problem, and a hint at a useful solution, is that re­

searchers, particularly those who are more inexperienced, often run 

statistical tests indiscriminately without any overall schema other than 

the proverbial pragmatist's, "Let's run it through and see what we've 

got". Clearly, such an approach is inappropriate for hypothesis testing, 

though it might be useful for hypothesis generation. One useful approach

is to construct, on an� priori basis, a limited number of hypotheses . 

that bear directly on the raison d'etre for the experi�ent. If additional,

essentially untested, results are to be reported as interesting rela-
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tionships that might bear future investigation, then' sud? results should 

be labeled for what they really are: conjectural possibilities that just 

might lead to some interesting hypotheses testing on a future data set. 

An Example - A Three-Way Layout 

.Suppose a 2 x 3 x 2 design is used; Figure 6.1 shows the structure for 

this design. 

A1B1 Cl A1B2C1 A1B3C1 

Cell 1 Cell 2 Cell 3 

A2B1 Cl A2B2C1 A2B3C1 

Cell 4 Cell 5 Cell 6 

Al81C2 A1B2C2 Al83C2
Gell 7 Cell 8 Cell 9 

AzB1 C2 AzB2C2 AzB3C2

Ce 11 10 Cell 11 Ce 11 12 

Figure 6.1 Structure for a 2 x 3 x 2 Design 

Rather than focus on the usual three-way solution (but see Winer, 1971; 

and Lindquist, 1953; also, a four-factor solution is shown in a regression 

format by Williams, 1974b) interest is placed upon possible multiple com­

parisons (more correctly, contrasts). To make the problem somewhat more 

pragmatic, suppose that the criterion scores represent salaries, the 

- .



61 

A category represents males (A1) and females (A2); the B category represents 

respectively assistant professor (B1), associate professor (B2), and pro­

fessor (B3); and the C category represents a measure of locals (C1) and 

non-locals (C2) where a local is considered to be a person who has received

any of their academic degrees from an in-state institution. While many 

comparisons might conceivably be of interest, suppose the following are 

to be tested: 

1) male locals compared to female locals

Restriction: 
n1b1 + n2b2 + n3b3 _ n4b4 + n5b5 + n6b6

n1 + n2 + n3 
-

n4 + n5 + n6 ); 

2) male locals compared to male non-locals

Restriction: 
n1b1 + n2b2 + n3b3

n1 + n2 + n3 
3) female professors compared to male professors

Restriction: 
n6b6 + n12b12 

ns + n12 
• 

n3b3 + ngbg 
n3 + ng ) ;

4) female professors compared to male associate professors

Restriction: 
nsbs + n12b12 

ns + n12
• 

5) male local professors compared to non-local professors

ngbg + n12b12 
Restriction: b3 • ng + n12 ) •

If these are tho precise comparisons of interest, a most effective 

test of significance that retains a per experiment error rate is Dunn's 

(1961) test. In that only 5 comparisons are involved, Dunn's test would 

be quite sensitive to any differences that exist. Note also that data 

such as would be likely to occur at any college or university would be 
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,highly disproportionate. While this disproportionality reduces the ef- • 
1,) : 'i, 

ficiency of the tests (i.e., somewhat larger samples are necessary than if

all cell frequencies are equal) it does not invalidate the tests in any way.

In fact, the issue of disproportionality and choosing an appropriate 

solution is not particularly relevant if the interest is focused on the 

five research questions given earlier rather than focusing on the main 

effects and interactions. 

Higher Dimensional Designs 

Four-way and higher dimensional designs can of course be accom­

modated to a regression format. If the questions of a major research 

interest c�n be limited to a relative few then no major problem is en­

countered by increasing the dimensionality. If on the other hand, 

"traditional" analyses of variances are thought necessary before con­

ducting any further tests, then a considerable amount of power is lost. 

While 1t might seem argumentative to do so, it seems fair to ask 

each researcher to state as clearly as possible precisely what is intended 

in a given research application. Seldom, it would seem, would a researcher 

be interested in the specific hypotheses involved in a testing a main 

effect. If the research question can be stated and written in relationship 

to the regression coefficients such as was done for the example earlier 

in this chapter, then a more relevant data analysis can take place. Care 

must be taken to use an appropriate test of stgntftcance; some researchers 

are prone to run each test against the overall F distribution; such an 

approach ts equivalent to using a per hypothesis error rate. 
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Missing Cells 

Insofar as making multiple comparisons are concerned, missing cells 

do not present any major computational difficulties. Obviously, if a 

cell is missing, the corresponding b's can neither be included in any for­

mulation of the full model, nor in any restrictions. Consider that cells 

1 and 6 are missing for Figure 6.1. 

The full model can be stated either as 

y = b2X2 + b3X3 + b4X4 + b5X5 + b7X7 + b8X8 + b9X9 + blOXlO + bllXll
+ b12X12 + el. (6.1)

or 

Y = bo + b2X2 + b3X3 + b4X4 + b5X5 + b7X7 + baXa + b9X9 + b10X10 

+buX11+e1. (6.2)

In that either b1 or b6 (or both) are involved in restrictions 1 through 4

given earlier, only restriction 5 is unchanged. 

Restrictions 1 through 4 become: 

1'. 

Restriction: 

3'. 

Restriction: 

4'. 
Restriction: 

n2 + n3 

n2b2 + n3b3 
n2 + n3 

n4 + n5 

• n7b7 + n8b8 + n9b9
n7 + n8 + n9

b n3b3 + n9b9 ·, and 
12 • --------'--'-n 3 + n9 

b12 • n2b2 + nabs
n2 + na 

Interpretation of disproportionate cell frequency problems are sometimes 

considerably more complex, particularly with missing cells. Why are the 

cells disproportionate? Answering that question 16 much more an art than 

a science. Certainly the use of data will be helpful,' but the interpre-
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tation will undoubtedly rest on the insights (and perhaps prejudices) of 

the investigator. 



CHAPTER VII 

PROBLEMS LESS AMENABLE 

TO A DIRECT REGRESSION SOLUTION

While fixed effects designs or random effects designs yield solu­

tions directly for multiple comparisons, when the design becomes mixed 

with both fixed and random effects resulting in two or more error terms, 

solutions to multiple comparison problems will usually prove to be eva­

sive (at least to this writer). The difficulty is that isolatin9 

the correct error·term, together with predictor variables such that use­

ful hypotheses can be tested,can be either difficult or seemingly impos­

sible; In these circumstances, the more traditional computational pro­

cedures might prove to be more effective. To show the difficulty with 

the mixed design, an example is given. 

An Exan')ple 

The following problem is taken from Williams (1974a). 

A researcher may have an interest in the differential effect 

of two or more methods of instruction over time; thus, mea­

sures can be taken at specified intervals on the several in­

structional methods. From the point of view of the experi­

ment, a repeated measures design can be conceptualized as a 

treatments X subjects design repeated for each instructional 

method.* 

To make the example more specific, suppose a researcher is inte­

rested in investigating the differences among three approaches to a 

human relations experience.** 

*This design is called a Type design by Lindquist (1953).

**By human relations experience is meant the meeting of a �roup of people 
that has variously been called the T-Group (training group), the encoun­
ter group, or some similiar name. 
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The three different approaches toward the human relations -groups

selected are (1) structured sessions in which the group participates

toward concrete problem solving, (2) an unstructured group, where the

group decides upon its own goals, and (3) a group designed to allow 

the individual to focus on his personal problems with the interest being

to help solve these problems. Five groups with 7-9 individuals in 

each group are assigned to each of the three human relation group situa­

tions; i.e., there are five separate groups for each treatment situation. 

Each group is to have a two hour session once a week for four weeks. 

While there are several things that might be of interest to 

measure, the researcher is interested specifically in the amount of ag­

gression exhibited in the group setting. 

Videotapes are made of all sessions, and a group of five experts 

independently judge the amount of aggression expressed during the sessions 

on a continuum from O to 10, where O represents no aggression and 10 

represents an extreme amount of aggression. The measurements are made 

with the group as the unit of analysis. The score to be used is the mean 

of the five ratings. Results are as follows: 

TABLE 7.1 

GROUP SCORES FROM THREE HUMAN RELATION GROUP METHODS FOR FIVE SESSIONS 
(ARTIFICIAL DATA ) 

Methods 1 (Structured Groups) 

Group Session 1 Session 2 Session 3 Session 4 

1 3.2 3.4 3.2 2.8 
2 4.6 4.0 3.8 3.4 
3 5.0 3.8 5.0 3.2 
4 2.0 2.0 2.4 1.6 
5 3.6 3.2 3.4 3.0 

•
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Method 2 (Unstructured Groups) 

Group Session 1 Session 2 

6 6.2 5.8 
7 3.6 3.8 
8 4.0 6.8 
9 5.0 5.8 

10 4.8 5.0 

Method 3 (Personal Problems) 

Group Session 1 Session 2 

11 7.4 7.6 
12 6.4 6.4 
13 7.0 6.6 
14 5.8 7.4 

15 6.4 5.2 

Session 3 

6.8 
7.2 
7.8 
6.0 
6.4 

Session 3 

6.8 
5.6 
6.6 
5.0 
4.0 

Session 4 

5.0 
5.4 
6.0 
5.0 
5.8 

Session 4 

5.2 
4.0 
6.0 
4.8 
3.6 

To analyze the data in Table 7.1, it is first useful to define -sev-

eral variables: 

Y = the criterion variable, 

x1 - x15are binary variables that identify each group,

x16• 1 if the score is from a group in the structured
treatments; 0 otherwise; 

x
17

• 1 if the score is from a group in the unstructured
treatment; 0 otherwise,

x
18

■ 1 if the score 1s from a group 1n the problems treatment.

x19■ 1 1f the score is from Session l; 0 otherwise,

x20■ 1 if the score is from Session 2; 0 otherwise,

x
21

■ 1 if the score is from Session 3; 0 otherwise,

x
22

■ 1 if the score is from Session 4; 0 otherwise,

X23• X16 X19• 

X24'' Xl6 • X20• 

X25
= 

X 16 X21' 

X26
= 

X17 X19• 

X27
= 

X17 X20' and

X23
"' 

X17 X21· 
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Tables similar to those found in previous chapters could be constructed 
for the preceding information. In the interest of economy of space, it 
is omitted here. The reader is reminded that each score (rather than 
each group) is the unit of analysis, thus, there are 60 scores for the 
data in Table 7.1. When preparing the data cards for a computer analysis, 

60 data cards would be made. 

To analyze the data in Table 7.1, it is useful to consider two sepa­

rate analyses; one analysis can be a treatments X subjects design, tempo­

rarily disregarding the'three different kinds of groups; then, it is use­

ful to conceptualize the data in a two-way analysis of variance, disregard­

ing for the time being that a given group has been measured several times. 

The linear models that are useful for conceptualizing the data in 

Table 7.1 as a treatments X subjects design are as follows: 

and 

Y • b0 + b1X1 + b2X2 + ... + b14x14 + e1 (for the subjects (groups)
effect) (7.1); 

Y • bo + b19x19 + b20x21 + b21x21 + e2 (for the trend effect)
(7,2); 

(7. 3) 

When these linear models are used, the following results can be found: 

from equation 7.1, ss
5 

• 104,14; 

from equation 7,2, SSTREND ■ 8.63; and

from equation 7.3, ssfRRORl 
• 32.52; also, SST• 145.29.

While the preceding information would be sufficient for a treatments X 

subjects design, it should be recalled that in this formulation, the 

type of human relation group was disregarded. 

- .
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Actually, the treatments effect is "nested," ; .e., totally contained in the 

variation among subjects. Before pursuing this !nesting" further at this 

point, it is first useful to complete the analysis for the two-way formu­

lation. 

The following four linear models are sufficient: 

(for the treatments effect) (7.4) 

Y = b0 + b19x19 + b20x20 + b21x21 + 
e2 (for the trend effect) (7.2)

y = bo + b16Xl6 + b17X17 + bl9x19 + b20X20 + b21x21 + 
e
5 

(7.5); and

y = bo + b16Xl6 + b17X17 + b19X19 + b20X20 + b21X21 + b23x23 + ••• +

b28x28 + e6 (Full Model) (7.6) 

When these linear models are used, the following results can be found: 

from equation 7.4, SSMETH • 78.87; 

from equation 7.2, SSTREND = 8.63;

from equation 7.6, SSERROR • 39.71.

The sum of squares attributed to regression for the full model (equa­

tion 7,6) is 105.58, The sum of squares attributed to regression for

equation 7,5 is 87,50. The difference between these two values is 

equal to the interaction. Thus, SSMETH X TREND• 105,58 - 87,50 • 18.08,

A surrrnary table that would contain the foregoing information would 

appear as follows: 
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TABLE 7.2 

SUMMARY TABLE FOR THE HUMAN RELATION GROUPS DATA IN TABLE 7.1 

Source of Variation df 

Among Subjects 
Method 2 
Error (a) 12 

Total Among Subjects 14 

Within Subjects 
trend 3 
meth x trend 6 
error (b) 36 

Total Within Subjects 45 

Total 59 

**Significant at .01 level 

ss 

78.87 
25.27 

104.14 

8.63 
18.08 
14.44 
41.15 

145.29 

MS F 

39.44 18.69** 
2.11 

2.88 7.20** 
3.01 7.52** 
.40 

The interest, then, is in finding ways to isolate error (a) and 

error (b), Isolation of these two error terms is effec�ed through the 

use of equation 7.1. Because of the complexity of the solution, it is 

useful to reproduce part of the regression output relating to equation

7.1; see Table 7.3. 

- .



REGRESSION OUTPUT FOR THE SUBJECTS EFFECT 

Standard Error Computed Beta 
Variable Mean Standard Correlation Regression of Regression t value 

No. Deviation X vs Y Coefficient· Coefficient 

1 0.06667 0.25155 -0.30801 -1.64995 0.67618 -2.44011 -0.26449 
2 0.06667 0.25155 -0.17061 -0.84996 0.67618 -1.25700 -1.13625 
3 0.06667 0.25155 -0.11908 -0.54996 0.67618 -0.81334 -0.08816 
4 0.06667 0.25155 -0.50552 -2.79995 0.67618 -4.14084 -0.44883 
5 0.06667 0.25155 -0.28224 -1.49994 0.67618 -2-.21827 -0.24044 
6 0.06667 0.25155 0.17289 1.15002 0.67618 1. 70076 0.18435 
7 0.06667 0.25155 0.09730 0.67618 0.67618 0.29583 0.03207 
8 0.06667 0.25155 0.20724 1.35003 0.67618 1.99655 0.21641 
9 0.06667 0.25155 0.08702 0.65002 0.67618 0.96132 0.10420 

10 0.06667 0.25155 0.09561 0.70004 0.67618 1.03528 0.11222 
11 0.06667 0.25155 0.31030 1.95003 0.67618 2.88388 0.31259 
12 0.06667 0.25155 0.11278 -0.80003 0.67618 1.18316 0.12825 
13 0.06667 0.25155 0.27595 1. 75003 0.67618 2.58810 0.28053 
14 0.06667 0.25155 0.13855 0.95003 0.67618 1.40499 0.15229 -...J 

...... 

Dependent 
y 4.94332 1.56923 

Intercept 4.79995 

Multiple Correlation 0.84662 

St. Error of Estimate 0.95627 

Multiple Correlation Squared 0.71676 

One Minus Multiple Correlation Sqd. 0.28324 

ANALYSIS OF VARIANCE FOR THE REGRESSION 

Source of Variation Degrees Sum of Mean F Value 
of Freedom Squares Squares 

Attributable to Regression 14 104.13638 7.43831 8.13413 

Deviation from Regression 45 41.15059 0.91446 

Total 59 145.28697 

i� 

.:.�;:. 

·�/:' 
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The isolation of these error tenns should be accompanied by isplating 
, 

-�-, 

the sources of variance. That is, two separate analyses are indicated;

the analysis among subjects and the analysis within subjects. This in
turn can be accomplished by constructing two new criteria Y* and Y**

A 6 such that Y* = Y, where the Y are the predicted scores found from 

using the regression coefficients in Table 7.3; also, Y** = Y - 'Y', or 

the error tenn associated with equation 7.1. 

In particular, 

/y'- = 4.79995 - 1.64995X1 - .84996X2 - .54996X
3 + ... + .95003X14.

Several interesting things occur with using Y* and Y** (clearly, 

Y* + Y** = Y); the SST for Y* = 104.13701 (within rounding of the 

attributable to regression in Table 7.3); and, the SST for Y** = 

41.14972 (within rounding of the deviation from regression in Table 7.3).

Also, an equation can be fanned such that Y* = bo + b16x16 + b17x17 +

e7• (7.7) For equation 7,7, SSATTRIBUTABLE = 78.87 and SSDEVIATION =
25.27; this is precisely the same results respectively as the Among 

Subjects variation for Method and Error (a) given in Table 7.2. Thus,

hypotheses regarding the methods effect can be tested using Y* and 

making restrictions on Y* • b16x16+b17K17+n18x18+c7 , (and reparameterizing).

For example, suppose that we wish to test for differences between groups 

one and three (H0 : u 16 ■ \J 18).

Then Y* • b16xl6 + b17
x
17 + b

16xl8 + ea,
Y* • bl6 (Xl6 + X1al + bl7xl7 + ea.

Let v1 • 1 if a member of either group one or group three; then

Y*. bl6vl + 
bl7x17 + e8. (7.8)

- . 



73 

Equation 7.8 can be reparameterized to Y* = b0 + b17x17 
+ e8. (7.9)

The R2 associated with equation 7 .7 is .75735 and the R2 associated 

with equation 7 .9 is .128035. Then F = .75735 - .128040 = 31. 12161 ; 
{1 - . 75735)/12 

fF = t = 5.57867. 

Without using regression, the same result can be found by 

t = 3. 33 - 5, 89 
\J 2.11 (1 + 1)

20 20 

= - 5.57129. 

The latter answer has only two decimal point accuracy; had MS(a} been

taken to five decimal points, MS(a) = 2. 10583, then t = 5.57868, very

close to the earlier given answer. 

Finding Models for Within Subjects 

The second constructed criterion, Y**, can be used (with extreme 

caution) for tests of trend differences and for comparing one cell mean 

to another. 

Before testing for these effects, it is first useful to construct 

a full set of cell variables. Actually, several cell variables have al­

ready been used in the analysis: 

x
23 • x16

. x19 (structural treatment, session 1, or cell 1), 

x24 • x 16 x20 
(structured treatment, session 2, or cell 2), 

x25 = x 16 x21 (structured treatment, session 3, or cell 3),

x29 = x 16 x22 
(structured treatment, session 4, or cell 4), 

x26 = x 17 x 19 (unstructured treatment, session 1, or cell 5),

x27 = x17 x20 
(unstructured treatment, session 2, or cell 6),' 

x 28 = x 17 x21 
(unstructured treatment, session 3, or cell 7), 
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X30 = 

X17 X22 (unstructured treatment, session 4, or cell 8), 

X31 = 

Xl8 X19 (problems treatment, session 1, or cell 9),

X32 
= 

Xl8 X20 (problems treatment, session 2, or cell 10),

X33 
= 

Xl8 X21 (problems treatment, session 3, or cell 11 )' and

X34 
= 

X1s X22 (problems treatment, session 4, or cell 12).

Now, suppose there is interest in testing among the sessions for group 

differences, in particular, differences among session 1 and session 3 

group means. Session 1 data is contained in cells 1,5 and 9 (x23 , x26 

and x31), session 3 data is contained in cells 3,7 and 11 (x24 , x28 and

X33) • 

Now, a full model should be constructed that contains the cells of

interest, 

One such full model is as follows: 

Y** • bo + b1X1 + b2X2 + ••• + b14X14+ b23X23+ b24X24+ b25X25+ b26x26+ 

b27x27+ b2aX2a+ b31X31+ b32X32+ b33X33+ eg' (].lO)

Care must be taken to make sure equations 7.10 is actually a true

full model; sse8 should equal SSERROR
(b) 

(14.44). A restriction re­

flecting the hypothesis of interest can be written using the regression

coefficients: b23 + b26 + b31 ■ b25 + b28 + b33 , In term of b23 this

yields b23 • b25 + b28 + b33 - b26 - b31 . Placing this restriction on

equation 7,10 yields: 

Y** • bo + blXl
+ ,,,+ b14X14+ (b25 + b28 + b33 - b26 - b31) X23 + 

b24X24 + b25X25 + b26x26 + b27X27 + b28x28 + bz9X29 + b30X30 + 

b31x31 + b32X32 + b33X33 + e9'

Y** • bo + b1X1 + ... + b14X14+ bz4 X24 + bzs (X25 + Xz3) + bz5 (Xz5 -

X23) + bz7X27 + b28 (Xza + X23) + b29X29+ b30X30 + b31 (X31 -

X23) + b32X32 + b33 (X33 + Xz3) + elO' (7.ll)

- .
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Let v
2

= 1 if a member of x
23 

or x
21 

(cells 1 or 3), o otherwise, 

v3 = 1 if a member of x
26 (cell 5), -1 if a member of x

23 
(cell 1),

0 otherwise, 

V4 = 1 if a member of x
28 or x

23 
(cells 7 or 1), O otherwise,

V5 = 1 if a member of x
31 

(cell 9), -1 if a member of x
23 

(cell 1), 

0 otherwise and 

V6 = 1 if a member of x
31 or x

23 
(cells 10 or 1), 0 otherwise.

Then equation 7.11 becomes: 

Y** = bo +b1X1 + .•• + b
14X

14 + b
24X

24 + b
25V

2 + b
26v3 + b

27X
27 +

b
28v4 + b

29X
29 + b

30X
30 + b

31
V5 + b

32
X
32 + b

33
v6 + elO' (7-12)

• 2 2 Equation 7.10 yields �O = .64899; equation 7.12 yields �
2 

= .62874. 

Then 

F i.64889 - .62874)/1
• ( - ,64889) 736 

= 

t •ff• 1.43737. 

2.06603; 

On the other hand, this same hypothesis could be much more easily 

tested by 

V. 1 • V. 3 

t II-=-��===�.;:====�=.:;-­
� MS (b) (1 + l 

5.00 - 5.33
1 43478 

• \f. 40) { 1 + 1 ) ·- • 
fS i"S 

"·1 "·3 
The last calculation is only accurate to two decimal points. 

Testing for Cell Differences 

If there is interest in testing for differences among cells (say 

ce 11 1 and cell 2), then these tests can be fairly eas 1ly accomr1oda ted. 

In that the full model in equation 7.10 contains both x
23 

and x
24

(cells 1 and 2), a restriction can be made regarding these two cells: 

. ·, •. ,.; • ... ,. ;· ; ,i\ ;� '. 

"'•--:·-·,•.':, 
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Then 

Y** = bo + bl + xl + ••• + b14 x14 + b24 (X23 + x24) + b25 x25 + ... +

b33 X33 + ell. (7.13)

Let V7 = 1 if a member of either x23 or x24 (cells 1 and 2), o other­
wise. 

Equation 7.13 becomes: 

Y** =bo t bl xl + ••• + b14 x14 + b24v7 + b25 x25 + ... + b33 x33 + ell
(7.14) 

Equation 7.14 yields �� = .63927; previously, �� = .64889. Therefore,

F _ f .64889 - .63927)/1
- 1 - .64889)/36 

t =\fr== .99316. 

= ,98636, 

This cell mean difference could also be tested by 

t yll - y12 3.68 - 3.28 
:tMS(b) (1 +l) "' ,1(.40) (i+i) 
� nll n12 � 0 0 

.. 1.00, 

which is close to the previously given value of t• .99316. 

Practical Limitations of the Regression Approach 

One of the selling points regarding the use of multiple linear re­

gression as a general analysis technique, including solving problems 

more commonly done by the analysis of variance, is that not only is the 

process More easily conceptualized. but also thf' comout11t1nnc; I'll''"' 11-:ually. 

greatly simplified. This present chapter should serve as ample proof 

that such is not always the case. Clearly, the multiple comparisons 

performed here could more easily be accomplished by the usual analysis 

variance techniques. Perhaps this is but another way of saying that 

limiting yourself in the possible analysis techniques may be in the long 

- .
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run too limiting; the same point was made much earlier and much better in 

"Don't put all your eggs in one basket". While multiple linear regression 

is an excellent tool for both conceptualizing and calculating many tests, 

the traditional techniques can occasionally prove to be easier to use, even 

for a hard-nosed regression aficionado. 

Using Appropriate Tables 

Perhaps not enough was said regarding using proper tables to evaluate 

an experiment. In general, the total number (and type) of contrasts run 

should always be considered when choosing a multiple comparison technique 

(and �ence, choosing a table to evaluate significance). Every time a set 

of tests are run, the number (and type) of tests should be considered when 

reporting levels of significance. Those who would contend that "standard 

• practise" would allow them to use such techniques as Duncan's tests or

orthogonal comparisons (which do not usually retain an experimentwise error

rate) should remember that "standard practise" is the defense that physi­

cians use in court when the patient dies.
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TABLES 

Tables Ia, Ib, re, and Id are reproduced from C. W. Dunnett, A multiple 
comparison procedure for comparing several treatments with a con­
trol. Journal of the American Statistical Association, 1955, 50, 
1096-122, and C. W. Dunnett, New Tables for multiple comparisons 
with a control. Biometrics, 1964, 20, 482-491, with permission of 
the author. 

Tables IIa and IIb were calculated by the present writer by transforming 
the values in Harter {1960) by division by.f2," 

Tables II Ia and IIIb were calculated by the present writer by transfor­
ming values in Duncan {1955) by division by'1!. 

Tables IVa and !Vb are reproduced from 0. J. Dunn, Multiple comparisons 
among means. Journal of the American Statistical Association, 1961, 
56: 52-64 by permission of the author. 

In Tables Ia, lb, le, Id, Ila, lib, Illa, Illb, IVa and IVb, v refers to 
the degrees of freedom within {dfw).

In Tables Ila, lib, Illa, IIIb, r refers to the number of means in the 
range. 

In Tables Ia, lb, le, Id, k refers to the number of groups compared to 
the control {excluding the control). 

In Tables IVa and IVb, m refers to the total number of a priori contrasts. 

'·. ",� .• ' 
- �-



v\ 1 

5 2.0 2  
6 1.9 4
7 1. 8 9
8 1.86 
9 1.8 3

1 0  1. 8 1  
11 

1.8 0  
1 2  1.7 8  
1 3  1. 77
14 1. 7 6

1 5  1. 7 5
16 1. 7 5  
17 1. 7 4
1 8  1. 7 3
1 9  1. 7 3

2 0  1. 7 2
3 0  1.7 0  
4 0  1.6 8  
6 0  1.6 7  120 1.6 6  
"' 1.6 4  

2 

2.4 42.3 42.2 7
?..2 2  
2.1 8  
2.1 52.1 32,11 2.0 9  
2,0 8
2.07 2.06 2.0 52.0 4  
2.0 3  
2.0 3
1. 9 91.9 71. 9 5
1. 9 3  
1. 9 2

-

.

3 

2.6 8  2.5 6  2.4 82.4 2  
2.3 7  
2.3 42.3 1  2.29 2,2 7  
2.2 5  
2.2 42,2 3  2.2 2  2.2 1  
2.20
2.1 9  2,1 5  2 .1 3  2.1 02.0 8  
2.0 6  

7 9  

TABLE Ia 

PERCENTAGE OF DUNNET T'S TEST
{0 5  LEVEL)

On e-ta iled 

4 5 6 

2.8 5  2.9 6  3.0 8  2.7 1 2.8 3  2.9 2  2.6 2  2.7 3  2.8 22.5 5  2.6 6  2. 74
2.5 0  2.6 0  2.6 8  
2.4 7  2.5 6  2.6 4  2 .1 4  2.53 2.6 02.4 1 2.5 0 2.5 82.3 9  2.4 8  2.5 5  
2.3 7  2.4 6  2.5 3  
2.3 6  2,4 4  2.5 1  2.3 4 2.4 3  2.5 0  2.3 3  2,4 2  2.4 9  2.3 2  2,4 1  2.4 8
2.3 1  2.4 0  2.4 7  
2.3 0  2,3

9 2.4 62.2 5  2.3 3  2.4 0  2.2 3  2.3 1  2.3 72.2 1  2.28 2.3 52.1 8  
2. 2 6 2,3 2

2.1 6  2.2 3  2.2 9  

7 8 
9

� 
3.1 6  3.2 4  3.3 03.0 0 3.0 7  3.1 2  2.8 9  2,9 5  3.0 1
2,8 1  2.8 7  2.9 2  2.7 5  2.8 1  2.86 
2.7 0  2.7 6  2. 8 12.6 7  2.7 2  2.77 2.6 4 2.6 9  2,7 4  2.6 1  2.6 6  . 2. 7 1  2.5 9 2.6 4  2,6 9  
2.5 7  2.6 2  2,6 72.5 6  2.6 1  2,6 52 .54 2.5 9  2.6 4  2.5 3  2,5 8  2.6 22.5 2  2.5 7  2,61 

2.5 1 2.5 6  2,6 0  2.4 5  2,5 0  2.5 42.4 2  2.4 7  2.5 12.3 9  2,4 4  2.48 2.3 7  2.4 1  2.4 5  
2.3 4  2.3 8  2.4 2  
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TABLE lb 

PERCENTAGE POINTS OF DUNNETT'S TEST 
(. 01 LEVEL) 

.. ; : �.: .... ,::, ' ', •. '..-, 
_,, . 

One-tailed 

k 

\ 
1 2 3 4 5 6 7 8 9 :I 

3.37 3.90 4.21 4.43 4.60 4.73 4.85 4.94 5.03 
3.14 3.61 3.88 4.07 4.21 4.33 4.43 4.51 4.59 
3.00 3.42 3.66 3.83 3.96 4.07 4.15 4.23 4.30 ,1 
2,90 3.29 3.51 3.67 3.79 3.88 3.96 4.03 4.09 I 
2.82 3.19 3.40 3. 55 3.66 3.75 3.83 3.89 3.94 ! 

:i 

2.76 3.11 3.31 3.45 3.56 3.64 3. 71 3,78 3,83 
2. 72 3.06 3.25 3.38 3.48 3.56 3.63 3.69 3.74 
2.68 3.01 3.19 3.32 3.42 3.50 3.56 3.62 3.67 
2.65 2.97 3.15 3.27 3.37 3.44 3.51 3.56 3.61 
2.62 2.94 3 .11 3.23 3.32 3.40 3.46 3.51 3.56 

2.60 2.91 3.08 3.20 3.29 3.36 3.42 3.47 3.52 
2.58 2.88 3.05 3.17 3.26 3.33 3.39 3.44 3.48 
2.57 2.86 3,03 3.14 3.23 3,30 3.36 3.41 3.45 
2.55 2.84 3.01 3.12 3.21 3.27 3.33 3.38 3.42 
2.54 2.83 2.99 3 .10 3.18 3.25 3.31 3.36 3.40 

1: 

3,08 2 .17 3.23 3.29 3.34 3.38 
I' 

2.53 2.81 2.97 
,I 

2.46 2. 72 2.87 2.97 3.05 3.11 3.16 3.21 3.24 

2.42 2.68 2.82 2.92 2.99 3.05 3.10 3.14 3.18 
2.39 2.64 2.78 2.87 2.94 3.00 3.04 3.08 3.12 

2.36 2.60 2.73 2.82 2.89 2.94 2.99 3.03 3.06 

2.33 2.56 2.68 2. 77 2.84 2.89 2.93 2.97 3.00 



v� 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

15 
16 
17 
18 
19 

20 
30 
40 
60 

l20 
00 

2 

4.032 
3.707 
3.499 
3.356 
3.259 

3.169 
3.106 
3,055 
3,012 
2� 977 

2.947 
2.921 
2.898 
2,879 
2.861 

2.845 
2.750 
2.705 
2.660 
2,618 
2.576 

3 

4.933 
4.476 
4.185 
3.965 
3.838 

3. 726 
3.639 
3.568 
3.510 
3.461 

3,420 
3.384 
3.353 
3.326 
3,302 

3.280 
3,150 
3.088 
3.028 
2,970 
2,913 

- .

TABLE IIb 

PERCENTAGE POINTS OF THE STUDENTIZED RANGE 
REPORTED AT t VALUES (.01 LEVEL) 

4 5 6 7 8 9 10 20 

5.518 5,955 6.302 6. 591 6.837 7.051 7.241 8.456
4.973 5.343 5.638 5.882 6.909 6.271 6.433 7.453 
4.627 4.953 5.213 5.430 5.614 5.774 5.917 6.821 
4.387 4.685 4.921 5.117 5.285 5.431 5,560 6.383 
4.212 4.489 4.708 4.890 5.044 5.180 5.300 6.062 

4.079 4.339 4.545 4. 716 4.861 4.953 5.100 5.817
3.975 4.221 4.417 4.579 4. 718 4,838 4.944 5.623
3.891 4.127 4.314 4.470 4.601 4. 716 4.818 5,467
3.821 4.050 4. 229 4.378 4,474 4.616 4. 714 5.337
3.763 3.982 4.158 4.303 4.425 4.532 4.627 5.229 

3. 714 3.929 4,098 4.238 4.357 4,461 4,553 5 .136
3,671 3,881 4.046 4.183 4.299 4,400 4.489 5.057 
3.635 3.840 4,002 4.134 4.248 4,347 4.434 4.987 
3.602 3.804 3.962 4.093 4.203 4.300 4.385 4.927 
3.574 3. 772 3,927 4.055 4.164 4.258 4.342 4,873

3.548 3.743 3.896 4.022 4.129 4.221 4.304 4.825 
3,393 3.569 3,707 3.819 3. 915 3.997 4.070 4. 530
3.321 3,487 3,616 3.723 3.813 3.891 3,959 4,390 
3.249 ·3.407 3,529 3.630 3. 714 3.787 3.852 4.253
3.180 3.330 3.445 3.539 3.619 3.687 3. 747 4.120
3.113 3.255 3.364 3.452 3.526 3.591 3.647 3.992 
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TABLE Illa 

PERCENTAGE POINTS OF THE STUOENTIZED RANGE 
REPORTED AS t VALUES (.05 LEVEL) 

v� 2 3 4 5 6 7 8 9 10 20 

5 2.570 2.651 2.685 2.697 2.697 2.697 2.697 2.697 2.697 2.697 
6 2.447 2.536 2.580 2.602 2.612 2.614 2.614 2.614 2.614 2.614 
7 2.365 2.459 2.509 2.537 2.553 2.561 2.564 2.564 2.564 2.564 

8 2.306 2.403 2.457 2.490 2.510 2.522 2.528 2.531 2.531 2.531 

9 2.262 2.361 2.361 2.418 2.454 2.476 2.491 2.500 2.508 2.508 

0 2.228 2.329 2.387 2.425 ,2.450 2.469 2.478 2.486 2,490 2.493 

.1 2.201 2.302 2.363 2.402 2.429 2.448 2.461 2.470 2.476 2.482 

.2 2.179 2.280 2.343 2.383 2.411 2.432 2.446 2.456 2.462 2.474 

.3 2.160 2.263 2.326 2.367 2.396 2.418 2.434 2.445 2.453 2.468 

.4 2.145 2.247 2.311 2.354 2.384 2.406 2.423 2.435 2.444 2.464 

.5 2. 131 2.234 2.298 2.342 2.373 2.396 2.413 2.427 2.437 2.461 

,6 2.120 2.223 2.287 2.332 2.364 2.387 2.406 2.420 2.430 2.459 

.7 2.110 2.213 2.278 2.323 2,355 2.380 2.399 2.413 2.425 2.458 

!H 2.101 2,205 2.270 2.315 2.345 2.373 2.392 2,408 2.419 2.456 

19 2.093 2. 197 2.262 2.308 2.341 2.367 2,381', 2.402 2.412 2.456 

(0 2.086 2.190 2.256 2.302 2.336 2,361 2.382 2.398 2.411 2.456 

lO 2.042 2.146 2.214 2.262 2.298 2.326 2.349 2.368 2.384 2.454 

10 2.021 2.126 2.193 2.242 2.280 2.309 2.333 2.353 2,370 2.453 

;o 2.000 2 .104 2.173 2.222 2.261 2.292 2.317 2.338 2.357 2.452 

w 1.980 2.084 2 .153 2.203 2.243 2.275 2.301 2.324 2.343 2.451 

1.960 2.063 2.133 2.184 2.225 2.258 2.285 2.309 2.329 2.451 
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