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CHAPTER |

INTRODUCTION

Several explications of multiple comparisons are available for the
usual one-way analysis of variance (ANOVA) situation; Miller's (1966) text
might be the most definitive. Most standard texts on statistical analysis
typically present one or more methods for the one-way ANOVA situation. . A
presentation of multiple comparisons in a regression framework was made by
Williams (1976) wherein most of the more common multiple comparison pro-
cedures were considered.

For researéh situations more complex than the simple one-way ANOVA,
most texts are silent. This silencebis understandable; the issues, equa-
tions and other considerations become much more complex. Further, if the
uncertainties of two or more issues are compounded, the morass of detail
can be more than most authors wish to attempt a resolution for general
readership. Winer (1971) presents some detail for more complex research
situations that might shed 11ght on the reluctance of traditional re-
searchers to address the issue. The computations are often sufficient to
ward off all but the most hardy. Perhaps the lack of writing regarding
multiple comparisons in more complex situations than one-way ANOVA should
serve as a warning, but "fools rush in where angels fear to tread"; 15ck1ng
wings, we'll rush right in.

Background of the Reader

L]

At this point, it is necessary to give some indication of the expec-

tancies regarding readers of this monograph. Some prior exposure to multiple




comparisons would be necessary, though no specific exposure is mandated.

Hopefully, the reader is familiar with at least some of these tests:

Dunnett's (1955) test for comparing one group to all other groups; Tukey':

(1953) tests; Scheffe's (1959) test; Dunn's (1960) test; orthogonal com-
parisons; the Newman-Keuls test (Newman, 1939; Keuls, 1952); and Duncan's
(1955) multiple range test. A1l of the foregoing tests are shown in a
regression format. by Williams (1976). For those whose exposure to
multiple comparisons is minimal, articles by Ryan (1959, 1962) and Sparks
(1963) would be useful.

In that the technique employed in this monograph is multiple linear
regression, prior exposure to the use of this technique is helpful. Use-
ful sources on multiple linear regression would include any of the fol-
lowing: Bottenberg ana Ward (1963); Kelly, Beggs and McNeil (1969);
Mendenhall (1976); Searle (1971); Ward and Jennings (1973); Williams (197
Kerlinger and Pedhazur (1974); McNeil, Kelly and McNeil (1975); and Cohen

;, and Cohen (1975), among many others.
Error Rates for Multiple Comparisons

In that several different kinds of error rates are used by various
authors, it 1s useful to remind the reader of the more common error rate

Five of these are defined as

Per comparison = No. of comparisons incorrectly called significant.
total number of comparisons

Per experiment = No. of comparisons incorrectly called significant,
total number of experiments

No. of experiments containing erroneous statements
of significance
total number of experiments

Experimentwise




- No. of comparisons incorrectlv called sianificant,
Per family total number fo statements in the family ’ (1.4)

= No. of experiments containing erroneous statements
of significance
total number of statements in the family

Familywise
Y . (1.5)

Additional detail on error rates and concerns of a priori and a poste-

riori tests can be found in Williams (1976, 2-5).
The Use of Binary Coding and Dunnett's Test

In that the technique employed in this monograph-is to utilize Dunnett's
test with binary coding, a complete example is shown. Because repeated use
of the test is employed, it should be recognized fhat the test is, except
when Dunnett's test is being specifically employed, only a quasi-Dunnett's
test. That is, Dunnett's test is used as a simple method to arrive at a
solution. The test (actually, the table used to judge significance) remains

a Judgement left to the researcher.

Dunnett's Test for Comparisons of Several Treatment Groups

with a Control

Dunnett (1955, 1964) devised a test that would allow the comparisons
of several treatment groups with a control group and still retain an ex-
perimentwise error rate. This test could also be used whenever an experi-
menter wished to test a group which might be called the "experimental group"

against several existing (but different) groups.

™

For example, a business educator may have, devised a new approach to

teaching beginning typewriting. The business educator may find that in-

stead of finding one typical approach to teaching typewriting there may be




severai;methods being used. Rather than lumping all of the existing meth
9b§§!£ogether and calling them a control group, it would seem more logical
t6 test the new approach against each existing group separately, but in a
single experiment. Dunnett's test is appropriate for this situation. So

"that the various tests can be compared to one another, a single data set

is used several times in this monograph. That data set 1is

TABLE 1.1
DATA FOR DUNNETT'S TEST

Control Group

Group One Group Two Group Three Group Four
9 8 13 15
8 7 10 12
6 8 12 10
3 6 11 ) 17
4 6 14 ‘ 11

Y, = 6.0, V, = 7.0, T3 = 12.0, V, = 13.0.

Suppose the interest 1s in comparing the Control Group to Groups Two, Thr
and Four,

Viewing the problem from a regression viewpoint, i1t 1s helpful to d«
fine four binary predictors:

X1 = 1 1f the score 1s from a member of the control group

(Group One); and 0 otherwise,
X2 =] 1f.the score 1s from a member of Group Two; and O otherwise,
X3 = 1 1f the score 1s from a member of Group Thrée; and 0 otherwisc

X4 * 1 1f the score Is from a member of Group Four; and 0 otherwise.
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A linear model can be written for this situation:

where

o
n

0 the Y-intercept,

by = the regression coefficient for Group Two,
b3 = the regression coefficient for Group Three,
bg = the regression coefficient for Group Four and

ey = the error involved in prediction.

It can be noticed that the control group has seemingly been left out.

However, if equation 1.6 is solved for the expected value for a member of
the control group,

by *+ bp(0) + b3(0) + bg(0),

"

E(Y)
E(Y)

The expectancy for a member of the control group is by definition 71. Thus,

2 by.
a least squares solution for by is Y1, the mean of the control group.
For a member in Group Two, the expected value is
E(Y) @ by + bp(1) + b3(0) + by(0),
E(Y) ¥ by + by,
E(Y) Yl + by (1.7)

A least squares solution for the expectancy of a given member of

[ >4

D>

Group Two is the mean of Group Two. Thus
Vé ) Vl + by, from equation 1.7, or
Yo =¥y = by (1.8)

Likewise

b3=V3-V1 and b4=V4-Yl




qdéfion 1.6 can be rewritten

Y =V + (Yo -V)X + W3 - 71))(3 + (_Y-4 - 71))(4 + ey. (1.9)

‘Equation 1.9 lists precisely the comparisons of interest for comparin¢
several treatments with a control. Since equation 1.6 (and, therefore,
equation 1.9) is the same model as has been given for a one-way analysis
of variance (Williams, 1971, 1974a), this approach also yields results
identical to the analysis of variance situation. Thus, using equation 1.6,
it can be seen that these two useful results can be obtained simultaneously
the usual analysis of variance as one part of the output, and Dunnett's
test as the other part.

The information necessary for a regression solution, with equation 1.t

as the linear model, can be conveniently placed in tabular form (see Table

TABLE 1.2

REGRESSION FORMULATION FOR COMPARING SEVERAL
TREATMENTS WITH A CONTROL

-
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For the data in Table 1.2, a general purpose multiple regression
program was used. Table 1.3 contains the printout from that analysis.
The criterion variable is given as Y; variable 1 refers to the Con-
trol Group, variable 2 to Group Two, variable 3 to Group Three and
variable 4 to Group Four. Because variable 1 refers to the Control
Group, no information appears in the printout using that variable num-
ber. The table of residuals has not been included herein.

Table 1.3 contains the previously mentioned items. It can be re-
called that Y, = 6.0, Y_=7.0, Y_=12.0, Y = 13.0. The intercept

1 2 3 4

is 6.0 (within rounding error) and is 7&. Also, b2 =1= Vé -'Yl, and
is in keeping with equation.1.9. Similar statements could be made

concerning b, and b4; The computed -t values in Table 1.3 are identi-

3
cally the same values as would result from the use of Dunnett's test.
It is only necessary to compare each of these values to Dunnett's

table for the test of significance. From Table Id, a computed t

value of 3.39 is needed for significance at the .01 level on a two-
tailed test. Thus, both Groups Three and Four are significantly higher
than the Control Group. It thus can be seen that the computed t

values, which are tests of the partial regression weights, should be

evaluated in this instance not by the traditional t table, but by use

of Dunnett's tables.




TABLE 1.3
OUTPUT OF MULTIPLE REGRESSION PROGRAM
Variable Standard Correlation Regression Standard Error  Computed - Beta
No. Deviation XvsY Coefficient of Regression t Value e
Coefficient

0.25000 0.44426 -0.40109 1.00000 1.36014 0.73522 0.12033

2
3 0.25000, 0.44426 0.40109 6.00000 1.36014 4.41130 0.72197
4 0.25000 0.44426 0.56153 7.00000 1.36014 5.14652 0.84230

Dependent
Y 9.50000 3.69210

Intercept 6.00C00
Multiple Correlation 0.84515

St. Error of Estimate 2.15058

Analysis of Variance for the Regression
Source of Variation Degrees of Freedom Sum of Squares Mean Squares F Value
Attributable to Regression 3 185.00027 | 61.66675 13.33340
Deviation from Regression 16 73.99973 4.62498
Total 259.00000
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Organization of this Monograph

The remaining portions of the monograph address multiple comparison
concerns not usually addressed by most available sources. An additional

objective is to reduce computations to a minimum. While computer programs

could easily be written for each specific situation, all that is neccessary
is a general usage multiple linear regression program. The print-out

shown in Table 1.3 would yield sufficient information for completing any

of the situations described in this monograph.

Chapter Two addresses multiple comparisons in the analysis of
covariance. The method described is much easier to accomplish than
the process described by Winer, Chapter Three considers the treatments
X subjects design (repeated measures). Chapters Four and Five consider

the two-way ANOVA fér the equal cell case and the disproportional case,

respectively., The N-way ANOVA is considered in Chapter Six. Finally,
Chapter Seven considers situations that do not lend themselves to a

simple solution as described here.




CHAPTER I

MULTIPLE COMPARISONS IN
THE ANALYSIS OF COVARIANCE

In the analysis of covariance, each separate comparison will have
Tts own standard error of estimate even if equal N occur in each cell.
The equation for the standard error of estimate for a comparison in the

analysis of covariance is given by Winer (1971, p. 772),

. _ - —
Yiadj~Yiadj =\J Ms, 1 1 i- 3
i J W o + — + ” (2.1)

where

o
o
-

n

the adjusted mean for group i;
Vbadj = the adjusted mean for group J;
MS' = the error term in the analysis of covariance;
n, = respectively cell frequencies for the 1th and Jth groups;
7}. 23 = respectively the means on the covariate for the ith and
Jth groups; and
Exx - SSw for the covariate,
While researchers may feel jJustifiably 111 at ease in attempting to
use equation 2.1, the use of regression can eliminate the tedious calcu-

lations. Further, more than one covariate can easily be accommodated.

An Example

Table 2.1 is taken from Williams (1974a, p. 104 and p. 109). In
Table 2.1, X1 is a binary variable for membership in group 1, X2 is a

binary variable for membership in group 2 and X3 is similarly a binary

10




"posttest score.” Only the pretest is considered as a covariate in this

section; both the pretest and intelligence are considered as covariates

in the section under multiple covarijates.

35
27
32
29
27
38
25
36
35
31

O O O O O o o o o o

Data for the Analysis of Covariance

X1

X2

o O o

O O O o o

TABLE 2.1

w

O O O O O O O O o o 3

X4
12
17
13
10

8
29
12
17
22
15
17
22
10

8

v:ahd‘xs represents a measure of intelligence; the Y value pepresents a

Xs
120
98
102
106
94
123
96
108
115
128
90
110
94
95
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Under the assumption of a single regression line on the covariate
(the pretest, X4) an analysis of covariance can be accomplished with two
linear models:

Y

b + byXy + byXy * byX, + ey, (2.2)

and

Y bO + b4X4 te, . (2.3)
In that a large part of the print-out regarding equation 2.2 is useful, the

print-out is reproduced in Table 2.2,




TABLE 2.2
Print-Qut for Equation 2.2

VARIABLE MEAN STAND. CORRELATION REG. STD. ERROR
DEV. XVsy COEF. OF REG. COEF.

15.00000 5.85539 0.68903 0.76000 0.22783

0.33333 0-48795 0.03983 5.52000 2.73396

2 0.33333 0.48795 0.39328 3.20000 2.92653

DEPENDENT

Y 29.66666 6.12566
INTERCEPT 15.36000
MULTIPLE CORRELATION 0.78714
STD. ERROR OF ESTIMATE 4.26230

MULTIPLE CORRELATION SQUARED 0.61959
ONE MINUS MULTIPLE CORRELATION SQD. 0.38041
Analysis of Variance for the Regression

SQURCE OF VARIATION df SS MS

COMPUTED
T VALUE

3.33582.

2.01905
1.09345

F

ATTRIBUTABLE TO REGRESSION 3 325.49292 108.49763 5.97215

DEVIATION FROM REGRESSION 199.83984 18.16725
TOTAL 525.33276




The usual analysis of covariance can be completed by using

. (RE - R3)/(g - 1) (.61959 - .47476)/2 _ 2 09
(1 - R3)/dfwy (1 - .61959)/11 o

which for df = 2, 11, p > .05,

In equation 2, the X3 variable has been omitted. Thus bj=Y,adj-Vsadj
and b2=Véadj-V§adJ. To find the adjusted means, the following equations

can be used:
Vjadj = by + byX, = 15.36 + .76(15) = 26.76;
Vyadj = by + Véadj = 5,52 + 26.76 = 32.28; and

Véadj =b, + Véadj 3.20 + 26.76 = 29.96.
The adjusted values agree with those originally given by Williams (1974a,
p. 106), though the method shown here 1s simplified somewhat.

More importantly, the standard error of the regression coefficients
corresponding to X; and Xo are respectively equal to the standard errors
from equation 2.1 for comparing Y&adj to Vzadj and Vladj to Véadj. Thus,
the computed t values given in Table 2.2 are directly usable in whichever
multiple comparison procedure the researcher prefers. Were there interest
in comparing Vladj to Véadj. a model of the form

Y = by ¥ byX| + baky t bgXs * e (2.4)

could be used, with focus on the computed t value for the X1 variable.

Complex Comparisons

Complex comparisors, or contrasts, can be completed in a regression ana-

1ysis for the analysis of covariance as well . Suppose a contrast of the

form
¥y T3adj - %Vladj - %Véadj (2.5)

is contemplated. First, equation 2.2 is reparametized as




_ Y = byXp + bpXy + baXy 4 byX, +oeg. (2.6)
Then a restriction corresponding to ¥, by = b, + kb, is placed on
equaiion 2.6:

Y

bjXy = bpXy + (dby+ Jby) X3 + byX, + ey .
Or,

<
[}

by(Xy#aXg) + by(Xy+ 3X3) + byX, + es. (2.7)

Two new variables can be constructed such that V1= 1 if a member

of group 1, % if a member of group 3, 0 if a member of group 2; and

-
n
—
ande

f a member of group 2, % 1f a member of group 3, 0 1f a member
group 1., Then equation 2.7 can be rewritten as
Y o= byVy + byVy + byXy +eg . (2.8)
Equation 2.8 (and also equation 2.6) could be processed using a program
such as Ward and Jennings' (1973) DATRAN or McNeil et al.'s (1975) LINEA
However, equation 2.8 can also be reparametized back into a form us
a unit vector as was done earlier, fhis can be accomplished by setting
elther by or b, equal to zero. Setting b, = 0 ylelds
Y = bg+ bV +bgXg +e3. (2.9)
: Then RZ = 50151

R§ - RS ) '
T”"S”’l"'"(r?u;w%r‘ - A

t = 1,85, p> .05,

b Concerns of Homogenefty Regression

To this point, the assumption of a single regression line for the

covariate has been made., A test can be made of this assumption; three

new variables are defined such that

. g = X)" Xy




X7 XI'X4; and
X8 = X3.X4'
Then a model can be written as
Y = bo + blxl + b2X2 + b6X6 + b7X7 + b8X8 + e4 . (2.10)
q% = ,71825. To test this for significance,
(R - R&)/(g-1)
(1 -R4)/N-29) °

F =

o (71825 - .61959)/2
{1 - .71825)/9

1.58; p> .05.

Had the F value been significant, some researchers would prefer to
abandon the analysis given earlier; interpretations become in-
creasingly difficult. It would be .inappropriate to attempt to
use the computed t values for testing b1 and bé in equation 2.10, The
"adjusted means" would occur where separate regression lines are used
for each group on the covariate. Since the covariance process is occur-
ring separately for each group, differences in the adjusted means would
not test any meaningful hypotheses regarding group differences on the

criterion score, Table 2.3 should help show why this 1s so.




TABLE 2.3
Regression Output With Separate Regression Lines for Each Group on the Covariate

VARIABLE MEAN STAND. CORRELATION REG. STD. ERROR COMPUTED -
DEV. XVsyY COEF. OF REG. COEF. T,VALUE:

4.00000 6.12955 0.03995 0.02173 0.59792 0.03625:
6.33333 9.93311 0.50556 0.64045 0.30396 2.10702‘
4.66667 7.46101 -0.16514 1.19841 0.36127 3.31721
0.33333 0.48795 0.03983 20.51697 9.14573 2.24344

0.33333 0.48795 0.39828 11.60924 8.09397 1.43434

DEPENDENT
Y 29.66666
INTERCEPT 9.22224
MULTIPLE CORRELATION 0.84750
STD. ERROR OF ESTIMATE 4.05527

MULTIPLE CORRELATION SQUARED 0.71826
ONE MINUS MULTIPLE CORRELATION SQD 0.28174
Analysis of Yariance for the Regression
SOURCE OF VARIATION daf ss MS F
ATTRIBUTABLE TO REGRESSION 5 377.32568 75.46513 4.58886
DEVIATION FROM REGRESSION 148.00757 16.44528
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Does the information given in Table 2.3 suggest that VEadj - Véadj
= 20.51697? The answer 1s a qualified "no". Only under the condition that
each group has its separate regression on the covariate, and 1ts separate
mean on the covariate would b1 = 7&adj - Vsadj. However, that condition
is very different than most users of the analysis of covariance would
wish to use.

It 1s clearly quite different from asking, "If the groups were
equal (gn the covariate) at the beginning of the experiment, how do they
compare at the end?" Even if all groups are "adjusted" by using a co-
variate mean of 7@ = 15, the difference in the regression coefficients
preclude interpreting bl as "a treatment difference after covariate
adjustment between groups 1 and 3". The analysis of covariance 1s usually
enlisted to test treatment differences in groups whose members were unable
to be randomly assigned to a treatment group, so that a statistical control is
used. While a test of significance on b1 can be legitimately done, it
does not address questions usually asked by researchers using the analysis

of covariance.

If the expected values are found for each group at Xq = 15, then a
more useful result can be found:

E (Yy X4+ 15) 2 bg + by + bg (15) .

9.22224 + 20.51697 + .02173 (15) = 30.06516.

Likewise, E (Y, X4= 15) = by + by = by (15) 7,
9.22224 + 11.60924 + .64045 (15) 2 30.43823
and
E (Y3, Xg= 15) 2 by + bg (15) 2 9.22224 + 1.19841 (15)

27.19839.




n
‘ e ana1ysi:'6f covariance (locking homogeneity
of regression), 1t is the difference between E (V,, X,= 15)  30.06516
and £ (Y, ¥;= 15) 2 27.19839 or 30.06516 - 27.19839 % 2.86677 that is
liek]y £o be of interest rather than thinking bl represents the difference
betwéén Y; adj and Y3 adj.

. .The specific hypothesis tested in the analysis of covariance is

E(VpX=X) =E (Y, X=X)=. .. =E(Yg X=X).

Testing this type of hypothesis 'is shown in a series of steps in the
preface of Ward and Jennings (1973, p. xvii-xviii) test, Introduction

to Linear Models. The interested reader is referred to that introduc-

tion; in the preface, testing this type of hypothesis is outlined in
steps 3 to step 11.

Multiple Covariates

‘Extensions to more than one covariate can easily be accommodated
both for the analysis of covariance and for multiple comparisons. The
intelligence score, XS' could be used together with the pretest as co-
variates. Assuming single regression 1ines for all three groups on the
two covariates, the model can be given as

Y = bg + byXy + byX, + byXy + beXs + eg. (2.11)
The use of the computed t values for by and b2 allow a test regarding
differences among the adjusted means for comparing groups 1 and 2 with
group 3 respectively; ty = 1.95059 and t, = .38191. To test the differ-
ences between the adjusted means of group 1 to group 2, a model such as

V.= by + byXy + by + byXy + boXg + e (2.12)
can be used.

Here, tq = 1.33421; also, t3 =-, 38191, reaffirming the t value

for the difference between the adjusted means of groups 2 and 3. The
sign 1s changed because the direction of the comparison has changed;

for b, in equation 11, t, addresses Yoadj - V3adj, for b3 in equation 12,
t; addresses 7§adj - Véadj.




CHAPTER 1l

MULTIPLE COMPARISONS FOR
TREATMENTS X SUBJECTS DESIGNS

To consider multiple comparisons for treatments X subjects designs
(or repeated measure designs) an examp]e taken from Chapter 7 of Williams

(1974a, p. 56) is used. See Table 3.1,

THREE TREATMENT METHODS OF PAIRED-ASSOCIATE LEARNING

WITH EDUCABLE MENTALLY RETARDED SUBJECTS

Treatment Two

Subject Treatment One Treatment Three
1 18 27 15
2 17 24 14
3 14 13 12
4 5 8 6
5 11 14 10
6 9 12 8
7 14 16 15
8 12 17 9
9 22 21 16

10 10 18 15

The information 1n Table 3.1 can be placed in a tabular form suitable

for use in a regression format; see Table 3.2.
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TABLE 3.2

of Design Matrix for Treatments X Subjects Designs
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The values in Table 3.2 are defined as follows:

Y = the criterion score;

Xp= 1 1F the
X* 1 1f the
X3= 1 1f the
X,= 1 1f the
Xg= 1 1f the

score corresponds to Treatment 1, O otherwise;
score corresponds to Treatment 2, 0 otherwise;
score corresponds to Treatment 3, O otherwise;
score 1s obtained from Subject 1, 0 otherwise;

score is obtained from Subject 2, O otherwise;

1 %12 X3

—=—_ 0000000000000 00O0O0O0DOO0O0O0O0OO0O0O0OOO

X

14

60
60
60
55
55
55
39
39
39
19
19
19
35
35
35
29
29
29
45
45
45
38
38
38
59
59
59
63
43
43




= 1 if the score is obtained from Subject 3, 0 otherwise;

X. =1 4f the score 1s obtained from Subject 4, 0 otherwise;
Xg =1 if the score is obtained from Subject 5, O otherwise;
X10 = 1 1f the score i1s obtained from Subject 7, 0O otherwise;

otherwise;

0
Y
0

Xq = 1 1f the score is obtained from Subject 6, O otherwise;
0
X117 = 1 if the score is obtained from Subject 8, 0
0

X12 = 1 if the score is obtained from Subject 9, 0 otherwise;
X13 = 1 if the score is obtained from Subject 10, O otherwise; and

X. = the sum of the criterion scores for each subject separately.

The analysis in Williams (1974a) proceeds as follows: three linear
models are defined, one for the treatments effect, one for the subjects
effect and one for the combined treatments and subjects effects. These
models are glven as

Y= t)cl + blxl + bzXz + e:llg (3.1)

Y = by + byXg * by + bgkg + byXy + bekg + bg¥g + bygkip + bypkyy ¥
b12x12 + ey, (3.2)

and

Y = b0 + blx1 + b2X2 + b4X4 + b5x5 + b6x6 + b7X7 + bBXg + ngg +

bigkio * b1p¥yy + byoKpp * ege (3:3)
The associated Re values and sums of sares (SS) for equations 1-3
n
are Ri = 17843 SS, = 136.27; Ri = .6823; S5, = 521.20; RS = .8607;
585 = 657.47; §5¢ = 763.86. A complete summary table s shown in Table 3.3.
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TABLE 3.3

e

SUMMARY TABLE FOR THE TREATMENTS X SUBJECTS DESIGN

Source of Variation df SS MS F
Treatments 2 136.27 68.13 11.52
Subjects 9 521.20

Error 18 106.39 5.91

Total 29 763.86

An alternative analysis using X14, the sum of criterion scores
for each subject, would use the following equations (Williams, 1977a):

VEbytbiX bX +e, (3.1)

0 171 22
Y = by + b14X14 + ey (3.4) and

Y = byt b1X1 + b2X2 + b14X14 + ey (3.5)

The results, in terms of sums of sqares and R2 values, 1s identical to

2 2 ‘ 2 2
h d ’ h - - . = d ™ .
that already given, wit R4 R2 ’ SS4 552 R5 R3 an 555 SS3

However, care must be taken with the degrees of freedom. Equation 3.4

uses only one predictor; thus, the "apparent" degrees of freedom {is

one. It must be remembered that the actual df = N - 1,

The analysis to this point has been focused on constructing the
usual ANOVA summary table rather than being concerned with- the possible
comparisons of means. Suppose there {is interest in testing hypotheses
regarding the means: yu L m 2 R .y 3 and My = Wy Testing
these hypotheses can be accomplished with two different formulations
of the full model, equation 3.3 and

= b, + + + + + + + + +
Y=0b b, X b.X b, X b_X b_X b X7 b8x8 ngg

0 * 1%y F Pafy By * Dghs * Bgke * Dy
bioX10 * by1Xp1 ¥ byp¥yp + €3+(3.3a)

Part of the printout from the use of equation 3.3 {s shown in Table 3.4.
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OUTPUT OF FULL MODEL FOR TREATMENTS X SUBJECTS DESIGN

Variable Mean Standard Correlation Regression Std. Error Computed Beta
No. Deviation XVYSY Coefficient Of Reg. Coef. T Value
1 0.33333 0.47946 -0.12145 1.19998 1.08732 1.10362 0.11210
2 0.33333 0.47946 0.41105 4.99997 1.08732 4.59846 0.46710
4 0.10000 0.30513 0.39195 5.66663 1.98515 2.85451 0.33690
5 0.10000 0.30513 0.28185 4.00001 1.98515 2.01496 0.23781
6 0.10000 0.30513 -0.07046 -1.33331 1.98515 -0.67164 ~0.07927
7 0.10000 0.30513 -0.51085 = -7.99992" 1.98515 -4.12987 -0.47562
8 0.10000 0.30513 -0.15854 -2.66665 . 1.98515 -1.34329 -0.15854
9 0.10000 0.30513 -0.29066 -4.66664 1.98515 ~2.35077 -0.27745
10 0.10000 0.30513 0.06166 0.66668 - 1.98515 0.33583 0.03964
11 0.10000 0.30513 -0.09248 -1.66665 1.98515 -0.83956 -0.09909
12 0.10000 0.30513 0.36993 5.33332 1.98515 2.68661 0.31708
Dependent
Y 14.06667 5.13226
n
INTERCEPT 12.26667 -
MULTIPLE CORRELATION 0.92774
STD. ERROR OF E§TIMATE 2.43131
MULTIPLE CORRELATION SQUARED 0.86070
ONE MINUS MULTIPLE CORRELATION SQD. 0.13930

ANALYSIS OF VARIANCE FOR THE REGRESSION

Source of Variation Degrees Sum Of Mean F Value
Of Freedom Squares Squares

Attributable To Regression 11 657.46021 59.76910 10.11102

Deviation From Regression 18 106.40308 5.91128

Total 29 763.86328




From Table 3.4, it can be seen that t1 = 1.10362 and t, = 4.59846;
these t valges are respectively the tests regarding comparing Vi to 75
and Vé to 73, taking into account that the subjects serve as their own
controls. A similar printout could be generated using a model corre-
sponding to equation 3.3a. Values from this printout show ty = -3.49484
ty = -4;59847; fhese t values correspond to comparing 7& to Yé and
73 to Vé. Also, the corresponding means are V& = 13.20, Vé = 17.00
and 75 = 12.00. Because the comparisons are being done on an a
posteriori basis, and because all possible simp]e comparisons are

being evaluated, Tukey's (H.S.D.) test is an appropriate multiple

comparison procedure to evaluate the differences in means. Tables

IT1a and Ilb utilize the computed t values directly for the Studentized
range statistic; for o = .01, t = 3,326 and for o = .05, t = 2,553,
Two t values are significant; comparing Vl to Vé (t = 3.49484, dis-
regarding the sign) and comparing Vé to Vs (t = 4.59846), both exceed
3.326 (p <.01). To complete these comparisons using Tukey's test,

v = dfw = 18 and r = 3,

Using the Shortcut Method
The solution Just given in the last section presumed that each
subiect (except one) 1s separately coded using a binary coding scheme.
Clearly, 1f the number of subjects is at all large, the coding procedure
described in Williams (1977a)and using equations 3.1, 3.4, and
3.5 might be preferrable. However, one difficulty with using this

shortcut procedure is that the standard error of the regression

coefficients for X1 and X, are too small due to the degrees of freedom,
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as generated by the computer program, not being accurate for deviation

from regression. These t values could be adjusted by multip]ying_py an

appropriate constant. The appropriate constant is: ¢ = Msw3.5_ (3.6)
\ MSw3 3

where MSw is the mean square within (or deviation from regression)
3.5
for equation 3.5 and MSw3 3 is the mean square within for equation 3.3.

The MS is 4.09225 and MS is 5.91125. Thus, ¢ = .83203. The
W3.5 w3.3

values generated by equation 3.5 for tl and t2 (comparing 7& to 75 and
Vé to 75) are t1 = 1.32641 and tz = 5.52678. Multiplying t1 and t2

by c yields corrected t, = 1.10361 and corrected t2 = 4,59845, within
rounding error of the values found earlier. Of course, MSw3 3 would

not be available were the researcher using the shortcut method.

However, MS =.SSW3.5 (3.7) where N is the total number of scores,
¥3.3 N-5-q 1
S 1s the number of subjects and g is the number of groups. The denom-

inator 1n equation 3.7 can also be found as (S-1)(g-1).




CHAPTER IV

MULTIPLE COMPARISONS
IN TWO-WAY LAYOUTS

Before considering specific questions in a multiple compérison frame-
work given two-way designs, 1t is useful to consider several unique con-
cerns of such analyses. First, some rectification neéds to be done
regarding decisions on whether to employ élfgmiiiyapproach, or tofuse the
experiment with all of its dimensions as the'un1t for deciding upon the
number of comparisons. That 1s,yare results for'fows to be interpreted
without cons1der1n§ the results for columns and/or interactions? Similar
questions could be posed for columns and interactions as well. On the
one hand, statistical tradition would be on the side of using familywise
error rates where the row comparisons, column comparisons and comparisons
involving interactions would be interpreted with their own error rates.
On the other hand, if the row, column and interaction effects are tested
independently at, say, the .05 level, then the overall error rate is
1- (1-.05)3. The logic of multiple comparisons would suggest that all
comparisons in the experiment be taken into account in reporting proba-
bilities.

In the long run, the researcher has to take the responsibility of
deciding whether to" use a family approach or to use an approach that uses
the e*per1ment as the unit for comparisons. Whatever decision is made,
comnunication should be made to readers so that they understand the
ground rules used by the researcher. Having at {eas; brought up sone of

the unique concerns of a two-way layout, we can now turn our attention to




an actual problem.

An Example for A Two-Way Layout
£

The following example is taken from Williams (1974a)

Suppose a researcher wishes to measure the effects of three
different approaches to teaching arithmetic combined with
four different methods of assigning homework. Suppose there
are 24 students available, so the students are randomly
assigned to one of the 12 (3x4) treatment combinations.

When the experiment is concluded, a standardized arithmetic
test consisting of 20 items with the items in a multiple
choice format is administered. The three different methods
of teaching arithmetic are 1) teaching arithmetic with the
problems very similar to the final test; 2) teaching arith-
metic with half the problems similar to the final test, and
the other half dissimilar to the final test; and 3) teaching
arithmetic with the problems dissimilar to the final test.
The four different methods of homework are 1) problems in a
multiple-choice format; 2) homework is of a project nature;
3) problems from the book in which the student supplies his
own answer, and 4) no homework. The data for this experiment
are in Table 4.1,

TABLE 4.1

DATA FOR METHOD OF TEACHING X TYPE OF HOMEWORK
Method of Teaching

Type of Homework Very Similar Half Similar, Dissimilar

Material to Half Dissimilar Material

Final Material to Final to Final
Multiple Choice 18 . 10 12
Items 10 6 10
Project 5 2 9
3 2 3
Student Supplies 7 6 4
Own Answer 3 2 2
No 2 7 10
Homework 0 5 6
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When proportionality is present, several alternative approaches will
yleld the same end products in the summary table. A simple to use approach
1s to successively analyze the data into three different one-way layouts.
One layout would consider each treatment combination as a separate group.
Thus, there would be (4)(3) = 12 groups. An analysis of variance could be
generated by the following model (Model 1):

Y = bo + b1X1 + b2X2 + b3X3 + b4X4 + b5X5 + b6X5 + b7X7 + b8x8 +

bgXg + bgX1g * byyXqy *eqs (4.1)

<
u

the criterion variable,

b0 = the Y-intercept (in this model, b0 will equal the mean of

Group Twelve),

>
—
]

1 1f a score is from a member of Group 1; O otherwise,
X2 - X12 = 1 if a score is from a member of the group corresponding
to the subscript number; 0 otherwise,

b1 - b11 = the regression coefficients for X1 - X,., and

e = the error in prediction with this model, N
A second model (Model 2) would include only information regarding the rows,
disregarding the particular column:
Y -.b0 + byaXy3t bygXyy *+ bysXig + €ps (4.2)
where
by = the Y-intercept for this model (in this Model, by will
equal the mean of the fourth row, no homeyork),

X13 = 1 if the score is from a member in row 1 (Multiple

Choice Items); 0 otherwise;




1 if the score is from avmember in row 2 (Project);
0 otherwise;
L if the score is from a member in row 3 (Student
Supplies Own Answer); 0 otherwise;
to b15 = the regression coefficients corresponding to
X3 to X;¢ and
& = the error in prediction for this model
A third model (Model 3) would include only information regarding the
columns, disregarding the particular row:
Y= By * byzkyy + Bygig * €3 (4.3)
where

bg = the Y-intercept for this model (in this case, b0 will equal

the mean of the third column, Dissimilar Material to the Final),

X17 = 1 1f the score is from a member in column 1 (Very Similar
Material to the Final),
Xig * 1 1f the score is from a member in column 2 (Half Similar,
Half Dissimilar Material to the Final),
b7 b18 = are regression coefficients for X17. X18’ and
e * the error in prediction for this model.
A fourth model (Model 4), while not necessary when the data is proportionél;
is useful in understanding the process:
Y ubg + byglyg ¥ bighyg * bigkyg * bypKyy * bighig * &g (4:4)
where

bo = the Y-intercept for this model.

X13 to X;g = as defined in Models 2 and 3 (excluding X16)
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b13 to b18 = are regression coefficients for X,, to X,, for

13 18

this model (excluding b16)’ and
ey = the error in prediction with this model.
Note that X12, xlﬁ and x19’ corresponding respectively to the score is from

X 1 if the score is from a member of ‘the 12th cell; 0 otherwise,

12
Xlﬁ =1 if the score is from a member of row 4; 0 otherwise and
X19 = 1 if the score is from a member of column 3; 0 otherwise

are not used in the formulation of the analysis; in that they may be useful

for multiple comparisons, they should be included. A1l of the information

regarding a regression solution is given in Table 4.2,




TABLE 4.2

REGRESSION FORMULATION OF THE TWO-WAY ANALYSIS OF VARIANCE
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Jjsing the four models (Models 1-4), the portion of the summary table for

‘egression can be useddirectly. The portions of interest, taken directly

‘rom the printout, are reported in Table 4.3.

TABLE 4.3

VALUES FOUND FROM THE REGRESSION ANALYSES

df ss RZ )

dodel 1

Attributable to Regression 11 - 312 .77228

Deviation from Regression 12 92 .22772

Total Sum of Squares 23 404
todel 2 (Rows)

Attributable to Regression 3 204 .50495
1odel 3 (Columns)

Attributable to Regression 2 16 .03960
Jodel 4 (Rows & Columns)

Attributable to Regression 5 220 .54455

The data from Table 4.3 can be put into a summary table. There are four
sources of variation of interest in a two-way analysis of variance: rows,
:0lumns, interaction (among rows and columns) and the within group varia-
tion. The sum of squares for rows can be found directly from Model 2 as ‘“ﬁ‘
the value for attributable to regression and 1s 204, The sum of squares

for columns can be found directly from Model 3 as the value for attributable
to regression and 1s 16. The sum of squares within is equal to the devia-
tion from regression for Model 1 and is 92. The interaction can be found

as the differehce in sum ofvsquares between the attributable to regression

for Model 1 and the attributable to regression for Model 4: 312 - 220 = 92.

Also, the degrees of freedom are necessary for each source of variation.
The degrees of freedom for rows is the number of rows minus one (r - 1);

the degrees of freedom for columns is the number of columns minus one (c - 1);




* the degrees of freedom for interaction is the pkoduct ofithe degrees of
freedom for rows and columns [Zr - (¢ - ii} 3 the total degrees of
freedom are the total number of subjects minus one (N - 1).

A1V of the information for the data in Table 4.3 can be put into
summary table. See Table 4.4.

TABLE 4.4

Summary Table For Data For Method
0f Teaching X Type of Homework

Source of Variation df SS MS
Rows 204.00 68.00

Columns 16.00 8.00

3
2

Interaction 6 92.00 15.33
2

“Within 92.00 7.67

Total 3 404.00

i

Traditionally, each F value is interpreted as'essent1a11y a sepaeree
experiment; the wording used 1s independent. For this model, the row z
column effects are independent, as well as both effects being independg
of interaction, This is not the same as saying the F values are inde-
pendent; the F values are correlated due to sharing a common denominator
The numerator sums of squares are independent. The probabiiity of a
Type I error for the experiment fs not a, but 1 - (1 - a)3. For those
who prefer to use a family approach and interpret rows separately from .
columns, etc., they might repeat the error rate as a for g_gixgﬂ_gffggi
but not for the experiment. In any event, the data reported here are
unequivocal in their interpretation. Clearly there is a significant

row effect, and no other.




An Alternative Formulation for Model 1

The 1inear model given for Model 1 was a model that ignored row and
column information, and viewed the problem as one that contained twelve

groups. An alternative formulation (Model 1a) is:

+ b, X b,nX

15515 * bygXyy b

Y= by +bygXyg+bygkyy + b 1818 * P2o%20 *

b21X21 * bagXap + byg¥ag + bygkpy + bygXys * €y, (4.5)
where
b0 = the Y-intercept (and equal to the mean of group 12),

X13 to X;g = as defined previously,

(X;27X19)s

Xpg = the product of X13 times X 13 %17

X

17
%217 *13 " Xige
Xo2 = X4 " X170
%23 = X1 " X180
Xo4 = Xi5 " X170
X5 = %15 * X1g0

b13 to b25 = are regression coefficients corresponding to

X13 to X25 (excluding X1 and x19) and

e = the error in prediction with this model.

Both Model 1 and Model la can be referred to as full models. It can be seen

that X13 to X15 impart row information, X17 to X18 impart column information,
and Xyg to X25 report the product of row and column information. Thus, inter-
action is the difference between the full model and the model that does not
include the product of row and column information.

Also, reflection on Xy to X,g would show that X;o = X, Xp1 = X,

Xo2 = Xg» Xp3 = %54 Xp4 = X7 and Xp5 = Xgi thus, X3, X, Xgu Xg» X7 and Xg
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See Table 4.5.

can represent X20 to X25.

Multiple Comparisons for, Rows

Most\gften, solutions to the two-way ANOVA design follow some form

similar to equation 4.5 (Model la) where the row, column and interaction

effects are shown in the same model. The'first mode (Model 1, equation

4,1) is more useful as a full model if any multiple comparisons are contem-.

plated. Before proceeding, an intermediate model, a reparameterization of,
Model 1 can be given as 1&
Y = byXy ¥ byXy + baXg + byuXy + bpXg + bgXe + byX; + bgXg + bgXg +

The difference between Models 1 and 1b is that Model 1 contains a unit vector

but not b,.X,5, whereas Model 1b contains by, X,, but not a unit vector.
12712 12712

Model 1b serves as a good conceptual starting point that, depending upon .

the program available, may have to be reparameterized.

Suppose there 1s an interest in comparing row one to row four. A

comparison of interest might be:

nyTytnaVatngls n1oV10tmM1711*0 12712
nytngng ULMUETMUT)

In that each n; = 2, equation 4.7 reduces to

(4.7)

In terms of the regression coefficients, the comparison can be stated
as b1+b2+b3 = b10+h11+b12.> (4.8)

Transforming equation 4.8 by 1solating bl’

bl = blp + bll + b12 - b2 - b3- (4.9)




REGRESSION OUTPUT FOR FULL MODEL WITH ROW, COLUMN AND INTERACTION EFFECTS

Variable Mean Standard Correlation Regression Standard Error Computed Beta
No. Deviation XvsyY Coefficient of Regression t Value
Coefficient
13 0.25000 n.44233 0.70360 2.99993 2.76885 1.08346 0.31661
14 0.25000 0.44233 -0.28144 -1.99999 2.76884 -0.72232 -0.21108
15 0.25000 0.44233 -0.28144 -5.00002 2.76884 -1.80582 -0.52770
17 0.33333 0.48154 -0.00000 -7.00007 2.76885 -2.52815 -0.80429
18 0.33333 0.48154 -0.17235 -1.99997 2.76884 -0.72231 -0.22979
1 0.08333 0.28233 0.58791 10.00017 3.91578 2.55381 0.67365
2 0.08333 0.28233 0.14698 -0.99997 3.91576 -0.25537 -0.06736
4 0.08333 0.28233 -0.14698 5.00005 3.91576 1.27690 0.33682
5 0.08333 0.28233 -0.29395 -2.00003 3.91574 -0.51077 -0.13473
7 0.08333 0.28233 -0.07349 9.00010 3.91576 2.29843 0.60629
8 0.08333 0.28233 -0.14698 2.99938 3.92574 0.76613 0.20209 w
~J
Dependent
Y 6.0000C 4.19108
Intercept 8.00000
Multiple Correlation 0.87879
Std. Eryror of Estimate 2.76886
Multiple Correlation Squared 0.77228

One Minus Multiple Correlation Sqd 0.22772
ANALYSIS OF VARIANCE FOR THE REGRESSION

Source of Variation Begrees of Freedom Sum of Squares Mean Squares F Value
Attributable fo Regression 11 311.99951 28.36359 3.69965
Deviation from Regression 12 91.99878 7.66656

23 403.99829

Total
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Equatlon 4.9 is a restriction on Model 1b (equatlon 4.6); the right hand
side of equation 4.9 can be substituted for b in Model 1b:
= (bygth p*big=bp-ba)Xy + byXy + baXg + byXy + b + beke +
byky + bg¥a * bokg + bigKig* b11X1y + biaKip + s
v fb;(y X,\ +h 3(X - X, ) + byXy + bgXe + bgXg + byXy + bgXg +
bo¥a + b1(Xjg+X1) + b1p(X11+X)) + bya(Xpp* X1) + e5.  (4.10)

Five new variables can be defined:

AV

Vl = 1 if from cell 2, -1 if from cell 1, 0 otherwise;
V2 =1 1if from cell 3, -1 if from cell 1, 0 otherwise;
V3 = 1.if from cell 10 or cell 1, 0 otherwise;

<
u

4 1 if from cell 11 or cell 1, O otherwise; and

<<
]

g = 1 1f from cell 12 or cell 1, 0 otherwise.
Equation 4.10 can be tran§formed to
Y o= byV) # baVy + byXy + bgXg + beXs + by + boXg + bgXg +
bigVa + b11Vg * byaVs + es. (4.11)
Equation 4,11 can be usedldirectly by programs that do not require a unit
vector. If the available programs require the use of the unit vector (théﬁi
s, a constant term is included) then any one of the variables could be
excluded (say Vg )by setting one of the regression coefficients equal to
zero. If b12 = 0, then equation 4.11 is reparameterized to be
Y = bg + bpVy + b3Vp * byky + bgXg + beXg + byXy * bekg * bokg *
bjo¥s * byyVa * es. (4.12)
Using equatfon 4.12, the following result was obtained: w

2 o
R12 .50496.
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Now, the following equation is necessary:

(RE - RR) / k

" Ré) 7 df, (4.13)

where

Rg = the R? value for the full model,

Rg = the R value for the restricted model,

k = the number of restrictions, and

dfw= the degrees of freedom for the within term in the full model,
For the comparison of row 1 to row 4,

2 2

RF = ,77228, k = 1, R, = .50496 and dfw = 12,

R

Then
= _(.77228 - .50496) /1 _ .
F = — T iV . 14,08682;

JF =t =3.75324. This t value could be compared to an appropriate
table of critical values for multiple comparison procedures. This brings
us back to the original point made in this chapter; the unique concerns of

two-way ANOVA's as 1t relates to multiple comparisons need to be addressed.

Choosing An Appropriate Multiple
Comparison Procedure for Two-Way ANOVA's

Ideally, a researcher will have chosen a priori comparisons (or con-
trasts). Perhaps the most 1ikely a priori procedure to be of use 1s
punn's (1961) test. If a limited number of comparisons are chosen on
a reasonable basis, then the two-way ANOVA design can be handled without
any new complications. _

The more difficult situation arises if a posteriori contrasts are en-

visioned. For example, the t value found in the previous section might be
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&5

tested by Scheffe's test; the t value could be directly compared to

S = J(Erfffn where k is fhe‘number of éroﬁbs (12) and F is the tab]edyﬁ

F value for k-1 and N-k degrees of freedom; S =\fIi?§T7§7_at the .05
level; S = 5.47. This outcome may seem bewildering; what §g§@§ to be‘a'
Tikely significqnt outcome, testing row 1, with a mean of 11, against row
5, with a mean of 5, fails to achieve significance. Clearly, some other
strategy needs to be used for the two-way situation.

Reference can be made back to the idea of & family of comparisons;-
there are three likely kinds of families; the family of cemparisons for
rows, the family of comparisons for columns, and the family of comparisofs
for interactions. By apportioning the error rate to different portionsf;f
the experiment, the total experiment can remain as the basis for interng-
tations. \For example, the researcher might report the overall error rafé

as .05, apportioning .02 to each ¢f the main effects and .01 to the inter-

actions. Thenthe critical values would be

a) for rows, S, = J(r-l) .OZFP-I.dfw ;

b) for columns, S. = J(C-I).OZFC‘I.dfw TTand

c) for interactions Sy=\(k-1) .OIFk-l,dfw .
These values are respectively S. = 3.86; S, = 3.38; and 5, = 6.81. Evéﬂa
using the first critical value, the previously found t value (t = 3.75324)
fails to achieve significance. Had a slightly different allocation beéﬁﬁ?
made (say .025 for both row and columns), eliminating cemparisons of ceiif
means, then S, = 3.66 and S. = 3.19. In that case, the previously found
t value would be significant. If row 2 and row 3 are compared to row 1 ‘5'

in a manner similar to that described here for comparing row 1 to row 4,

d Rt
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. then in both cases, t = 4.37883, both showing significance by the earlier
critical value of 3.86.

Multiple Comparisons for Columns
Testing for differences among columns can proceéd in a manner similar
to that shown for rows, columns 2 and 3 could be compared. The corresponding
comparison (or contrast) is:

np¥p + nsVs + ngVg + np1V1q = n3¥3 + ngVg + ngVg + nyo¥y,
ng + ng +ng*np N3 *+ng *ng+np

- (4.14)

Since all of the n's are equal, equation 4.14 réduces to

Vp+Vg + Vg + ¥y = V34 ¥+ Vg + ¥y,
In terms of the regression coefficients, the comparison can be stated
as i

b2+b5+b8+b11=b3+b6+b9+b12'
If b2 is isolated,

bz o b3 + b6 + bg + blz 'bs - b8 - bll. (4-15)
Equation 4,15 is a restriction on the full model (equation 4.6) corresponding
to the null hypothesis in equation 4.14, comparing columns 2 and 3.

Substituting equation 4.15 for b, in equation 4.6 yields

bgXg + bgkg + byky + bgkg + bgXg + bigXg * bypXyy* Brokya * €6
- +

bg(Xg#Kp) + bigkig + byy(XyyKy) + b1p(Kpg#p)* e (4:16)




Seven new variables can be defined . . . ¢i
Vg =11f cell 3 or cell 2,0 otherwfse;
V; =11f cell 5, -1 if cell 2, 0 otherwise;
Vg =11f cell 6 or cel1 2, 0 otherwisei
Vg =11fcell 8, -1 if cell 2, 0 otherwise;
Vip = 1 if c;Hl 9 or cell 2, 0 otherwise; T
Vi1 = 1 1f cell 11, -1 if cell 2, O otherwise; and ' fﬁf
Vip = 1 1f cell 12 or cell 2, 0 otherwise. | |

Equation 4.16 can be transformed to

b11Vi1 * P12Y12 * 6

12 = (0 yields ' ﬂ?:

Y = bg + bjXy + b3Vg + bgXg + bgVz + bgVg + byXy+ bgVg + bgVyg + - '11

Reparameterizing by setting b

®10%10 * 11V11 * % (4.17)

Using equation 4.17 as the restricted model and equation 4.6 as the full

model yields

(77228 - .73267)/1_ = 2,08730.
(1 - .77228)/12

[

t »{F = 1,44475, This t value is of course non-significant. Other

column comparisons could be achieved in a similar manner.

Comparisons of Cell Means _
Comparisons regarding cell means can be fairly simply conceived by
viewing the analysis as a one-wat lavout; comparisons can be achieved into

different approaches (but which yield identical t values). The more




'iimportant issue is:

i decided on prior to

q

L of Dunn's test?

%

Are the number of comparisons of experimental
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interest,

the analysis, sufficiently small to justify the use

1f so, then a much more powerful test can be performed.

¢ 1deally, the number of cell comparisons can be integrated into the row and

£ column comparisons so that the interpretation can be made in an unambiguous

i;manner. However, the error rate can be partitioned into three distinct

fﬁunits and a separate portion for comparisons among cell means can be used.

*'If any comparison (including complex contrasts) is envisioned, the use of

{ full and restricted models can be followed as outlined for both rows and

f columns earlier in this chapter.

For example, suppose there is interest

¥ oin comparing Vl to 712. The restriction to accomplish this comparison is

3 b1 = b12 when using Model 1b (Equation 4.6) as the full model. Then

* boXg + bygXyg * bygXyy ¥ DpXyp * g

Yomb, Ky

+
X +x12) b2X

2

+ b X, + bX, *+ b

8'8

Vo= boVys

979

+ bZXZ

10
+ b3X

. where

Then

*boXg *+ by Xyg + O

Vi3 = 1if cell 1or cell 12, 0 otherwise (

2 _ o2
(RE - Re) /1

4
(1- RE) / df,

Y = b12X1 + b2X2 + b3X3 + b4X4 + bsxs + b6x6 + b7X7 + b8x8

+b X +b X +bX +bX +bX

33 T 04%y ¥ P T Bg¥e T 074
i * by * &g
3+ DX, ¥ Bekg + bk + bXo + bXo
i te
Y13

(.77228 - .68317) )1

(1-.77228) / 12

happens to equal VS)'
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F = 4.69576; therefore t =\F & 2.16607.

In the specific case wherein two cell means are being compared, a
4 e . -
simplified process will yield the same 't value; if either b1 orb

TRE
set equal to zero and if a unit vector is available (as is true of most

general purpose multiple linear regression computer programs), then the

remaining b value is tested by the computed t value as a test of the partia]*

regression coefficient. As an example, b12 = 0, so that a model identical'?:

to equation 4.6 is employed. See Table 4.6.
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Variable Mean Standard Correlation Regression Standard Efror Computed Beta
No. Deviation X vs Y Coefficient of Regression t Value
Coefficient

0.08333 0.28233 0.58791 6.00002 2.76889 2.16693 0.40419

1

2 0.08333 0.28233 0.14698 0.00001 2.76889 0.00000 0.00000

3 0.08333 0.28233 0.36744 3.00002 2.76889 1.08347 0.20209

4 0.08333 0.28233 -0.14698 -4.00000 2.76889 -1.44462 -0.26946

5 0.08333 0.28233 -0.29395 -5.99999 2.76888 -2.16693 -0.40418

6 0.08333 0.28233 0.00000 -1.99998 2.76888 -0.72231 -0.13473

7 0.08333 0.28233 -0.07349 -2.99998 2.76888 -1.08346 -0.20209

8 0.08333 0.28233 -0.14698 -3.99998 2.76888 -1.44462 -0.26946

9 0.08333 0.28233 -0.22047 -4.99999 2.76888 -1.80578 -0.33682

10 0.08333 0.28233 -0.36744 -6.99999 2.76888 -2.52810 -0.47155

11 0.08333 0.28233 0.00000 -1.99998 2.76888 -0.72231 -0.13473

>

Dependent o o

Y 6.00000 4.19108

Intercept 7.99999
Multiple Cecrrelation 0.87879

Std. Error of Estimate 2.76886
Multiple Correlation Squared 0.77228

One Minus Multiple Correlation Sqd 0.22772

ANALYSIS OF VARIANCE FOR THE REGRESSION

Source of Variation Degrees of Freedom Sum of Squares Mean squares F Value
Attributable to Regression 11 : 311.99927 28.36356 3.69963
Deviation From Regression 12 91.99902 7.66658

Total 23 403.99829




As can be seen from Table 4 6 the comput dt va]ue‘for Xl
(variable 1) 1s 2.16693, w1th1n round1ng error of the va]ue found
earlier through the use of™the full and restricted models; this
computed t value can be directlyvcompared to ‘the appropriaté table,
depending upon the multiple comparison test used. The remaining
t values are available in case there were interest in testing any of
cells 2 through 11 to cell 12, .

Suppose there was an interest in testing Vé‘to 76. ‘Th1s
could be accomplished by either of the following models:

Y

bg * by Xy + byKp + b3y + byXy + beXo + boXy + boXo +

bgXg + bypXyg + byyXyy ¥ byoXip * € (4.18) or
= b0 + blx1 + b2X2 + b4x4 + bsx5 + b6X6+ b7x7 + ng8 +

—<
i

b10%10 * P1i¥y * Pr¥ t o1 (4.19)

In equation 4.18, bgXc has been omitted, and hence, by = Yg and

by = Vé - Yb; the test of the regression coefficient (the computed t
value) 1s the test of significance for the difference between Y3 and
Yb. Equation 4.19 simply reverses the roles of variables 3 and 6
respectively for equations 4,18 and 4.19. Therefore, b3 ="bg and

ty = -tg from equation 4,18 to 4.19. Of course, the use of full and
restricted models would have yielded the same result.

Clearly, the concerns of multiple comparisons when addressed to

the two-way layout are complex. Most questions of substance require

the use of full and restricted models, which reduiré the researcher to

state comparisors in terms of the regression coefficients. Comparisens among
cell means can be accomplished either through the use of full and restricted
models, or through the use of the unit vector together with the omission

of one of the groups of interest as a predictor.




CHAPTER Vv

MULTIPLE COMPARISONS FOR
'PROPORTIONATE TWO-WAY LAYOUTS

Many readers are aware of some of the complexities involved with

-way disproportionate analyses of variance. Several different points

view have been made; Jennings (1967) proposed a solution through the

of full and restricted models. Williams (1972) showed that his un-

usted main effects solution agreed with Jennings. Overall and Spiegel

69) described three solutions: 1) a fitting constants solution

so described by Anderson and Bancroft, 1952); 2) a hierarchical
‘ution (Cohen, 1968); and 3) a full rank model solution, more recently
led the "standard" solution for Timm and Carlson (1975) and apparently
‘epted as such by Overall, Spiegel and Cohen (1975) despite Overall

I Spiegel's previously showing that the ful? rank mode] failed to

nieve an additive solution given that proportionate, but unequal cell
<quencies occurred. Speed and Hocking (1976) described various so-
itions 1n terms of the hypotheses tested. Williams (1977b) showed that
¢ solution proposed by Jennings and arithmetically identical to the
adjusted main effects solution was also properly a full rank model
lution,

Often the researcher who 1s more concerned with getting any so-
ttlon, rathar than worry about what might seem to be a complex argument
ong Schotars, 1s content to use a solution available through the
ycai Comiputing facility. Given the difficulties involved with inter-
reting a disproportionate two-way analysis of variance, and given the
ompiexities involved with multiple comparisons in a t&o-wgy lay-

ut described in Chapter Four, the reader might fairly ask, "How much
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Luckily, the answer is that for a g1ven set of hypotheses (or compar-

isons) multiple comparisons Ior the disproportionate case are not too

much more complex than they are for the equal cell frequency case.
An Example - C

Table 5.1 contains data for the two-way disproportionate case.

’ Column 1 Column 2 Column 3
Row 1 '8 8 1 1 6 2
6 6 1 2 g
4 4 1 6
e
Row 2 10 7 7 10 10
10 5 5 9 9
4 4 77
4 4 5 5’
3 3 4 4‘

The systematic nature of the data within any cell is by no means

coincidental; the data first reported in Williams (1972) which had an

N = 18 has been doubled to an N = 36 by recording each score twice.
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First, several variables can be defined:

X; =11ifincell 1 (row 1, column
X, = 11if in cell 2 (row 1, column
X3 =1 1f in cel1 3 (row 1, column
Xg =11f in cell 4 (row 2, column
Xg = 11f in cell 5 (row 2, column
X¢ = 11if in cel1 6 (row 2, column
X; =11if inrow 1, 0 if in row 2;
Xg =1 1if in column 1, 0 otherwise;
X9 =1 if in column 2, 0 otherwise;

Xlo = X7 *© Xgs and

1),
2),
3),
1),
2),
3),

0
0
0
0
0
0

Two different full models could be given:

otherwise; -
otherwise;
otherwise;
otherwise;
otherwise;

otherwise;

Y= b0 + b1X1 + b?_Xz + b3X3 + bgXgq t+ bgXg + eq3 (5.1)

or

Y = by + byX; + bgXg + bgXg + bygXjp + bypXy) + ey, (5.2)

A row model could be given as

Y = by + byXy + ez. (5.3)

The column model 1s

Y = bo + b8x8 + b9X9 + e3- (5.4)
The combined row and column model 1s

Y = by + byX; + bgXg + bgXg + eq. (5

.5)




If there is interest in reproducingétQ¢Jsgg{ they could -

be found as
2 .
SSpows™ 557 (Rs.3)s  (5.6)
- 2 .
SScoLumns = S5t (Rg 45 (5.7)

SSaous 1 coums © 551 (Re.2 < R g)i (5.8)
and

SSurhy =SS (1 - RE ). (5.9)
Equations 5.6 to 5.9 will produce a solution that has been called the
unadjusted main effects solution that 1s identical for each effect to
the solution proposed by Jennings (see Williams, 1977b).‘ If the full-
rank model soultion preferred by Timm and Carlson (1975) is desired,
several changes would be necessary; these changes are also described
in Williams (1977b),

The interest here, however, is in multiple comparisons; the whole
issue of which analysis of variance solution should be used might be

avoided and the comparisons of interest pursued. However, Table 5.2

contains results from the use of equations 5.1 to 5.5.

TABLE 5.2
SUMMARY INFORMATION FROM THE USE OF EQUATIONS 5.1-5.5

SST = 264.

Full Model(s) (Both Equations 5.1 and 5.2)

2 16
R5.p = 61212 SS; | = 161.60.

Rows: R 5 = .15427 SSpoys = 40.73.

Columns: RC , = .28355 SSgoLumns= 74-86.
Rows, Columns: R%_s = ,60797; SSROWS X COLUMNS = 1.10.

Within: SSyrtuin = 102.40. : -
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Testing for Comparisons Between Rows

Since there are only two rows, clearly the only comparison will in-

volve row 1 and row 2. A likely comparison of interest 1is

nlvi * npVp + "375_ = ngV¥q + ns¥s + ng¥g . (5.10)
nptngtng ng + ng + ng

In terms'of the regression coefficients, and asSuming a reparameterized
full model, eliminating the constant,

Y = bjX) + baXz + b3X3 + bgXg * bsXs + bgXg + ey, (5.11)
equation 5.10 can be stated as

nlbl + n2b2 + n3b3 = n4b4 + n5b5 + n6b6

- < (5.12)
ny ¥ n, ¥ng

ng * ng + ng
Solving equation 5.12 for b1 yields

by = (n4bg * ngbs + ngbg) (ny + np + n3) - nabz - n3b3 (5,13
" (ng + ng +ne) Ny n

Substituting this value back into equation 5.11 yields

Y = r‘h4b4 + ngbg + ngbg (ny + np + n3) - nabp - n3b;1 Xy +
n (g ¥M5 ¥1g)  np "y |

b2X2 + b3X3 + b4X4 + bsXs + bGXG + 85.
After some algebraic unravelling, the previous equation ytelds

n n
Y= by (Xp - 75 X) + by (X3~ 72 ;)
b x+£‘.‘l("1+"2*“3)x n_s(n1+n2+n3)
4 1™ 7 AT TAF+ ns * ng) 1 ny (ng +ng + ng)

ng (ny *+nz2+n3)
+ b [Eé *R e M| tes (514

+b5 X5+

ng * N5 * Ng
Since ny = 6, np = 4, n3 = 4, ng = 2, ng = 10 and ng = 10, five new

variables can be defined to correspond to the variables in equation 5.14:
Vi = 1 4f from cell 2, -.6667 if from cell 1, 0'otherwise;
V2 =11f from cell 3, -.6667 if from cell 1, 0 otherwise;

Xy
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Vi =1 1f from cell 4, .2121 if from cell 1, 0 otherwise;
Vg = 1 if from cell 5, 1.0606 1f from cell 1, 0 otherwise; and
Vg = 1 if from cell 6, 1.0606 if from cell'l, 0 otherwise.

An equation can be formed with the new variables: ' : R
Y = blvl + szz + b3V3 + b4V4 + b5V5 + eg.
Any one of by through bg can be set equal to zero, and a reparameterizé-

tion will be made such that the constant is reintroduced. Letting bg = 0;

bas

N

Y = by + bjVy + bpVp + b3V3 + bgVg + e5. (5.15)

The use of equation 5.15 yields R2 .45785, so that
5.15

61212-.45785)/1 .. /.15827 . g 5464 i
ts/ F =\/ .38788)/24 \[ Oe1e | roe64ls

t = 3.08973. These results are 1dént1ca1 to the usual F test of the row

main effect; given that there are only two rows, this was to be expected -«

(though perhaps not after all that manipulation!).

A Different Hypothesis

Sty

Suppose that, in equation 5.12, no concern is placed upon the vgry1hg

cell frequencies, and a hypothesis is formed

Yl + Yza +7Y3 " Y4 + Vg +V6 . (5.16)

The corresponding equation, in relation to the regression coeffients, is
by + bp + b3 w bg + bs + bg or by = by + bg + bg - by - b3.
Substituting this value for b1 in equation 5.11 yields
Y = (bg + bg + bg = b - b3)X1 + b2X2 + b3X3 + baXq + bsXs + beke * eg;
Y = by (Xp = X1) *+ b3 (X3 = X1) + bg (Xg + X1) ¥ bs (X5 + X1)
+ bg (Xg + X1) + eg. (5.17)
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After defining new variables to correspond to each of the portions

in equation 5.17 in a manner similar to the previous solution,

_ (.61212 - .30070)/1 _ . b=
f = (38788730 26.12584; t = 5.11134, Curiously, this result

is identical to the row effect for using the full rank model solution
described by Timm and Carlson (1975). Here is the curiosity; 1f a re-
striction is placed on the full model taking into cognizance the unequal
cell frequencies the outcome is in agreement with the unadjusted main
effects solution. However, if the difference in cell frequencies 1is
disregarded, the solution is identical to the full rank model solution
as described by Timm and Carlson. One could argue that the solution of
Timm and Carlson, commonly referred to as the full rank model solution,
is actually the solution that truly leaves the data "unadjusted" for
unequal cell frequencies. If presented with the question, "Which
hypothesis, 5.10 or 5.16, more fairly addresses the difference betweep
row 1 and row 2, given that the cell frequencies are disproportionate?",
it 1s my guess that most researchers would prefer 5.10 (i.e., taking
into account the disproportionate cell frequencies). However, if
researchers are aware of the exact hypothesis being tested, they may

opt for whatever solution best answers their specific research questions.

Comparisons Among Columns
Comparisons among columns can be accomplished in a manner similar
to that for rows; suppose there is an interest in comparjng columns 2‘
separately to colums 1 and 3. The hypothesis for comparing column 1 to

column 2 is given by .

n¥1 + ngVq = np¥2 + nsVs . (5.18)
n + ng n2 + ng
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In terms of the regression coefficients, the hypothesis can be stated as

n]b] + ngbg = nzbz + n5b5

n + ng ny + ng
Solving for by,
by = (Mab2 * Nsbs) (ng * ng) _ ng
" (nz +'ng) np
Substituting this value for b; into equation 5.11 yields

v = | {n2b2 * nsbs) (my * mg) mg by | Xy 4 byXy + bykg + by¥y
np nz*ng)

+ bsXs + bGXG + ey,

After some algebraic manipulations,

(n1+n4
Eﬂ CRCRET x] + baXs + by E( "1 a

+ bg E+2§("1+"4 x] + bgXg + ey, (5.19) - ¢
SR B B

Three new variables can be defined

Vg = 11f Xp, 8/21 1f X;, O otherwise;

Vg = 1 1f X4 -1/3 1f Xy, O otherwise; and

Vg = 1 1f Xg, 20/21 1f X;, O otherwise.
An equation can be formed with the new variables:

Y = byVy + bgVg + bgVg + b3X3 + beXs + e7.
Any one of the b's in the previous equation can be set equal to zero;
letting bg = 0,

Y = by + byV; + bgVg + bgVg + b3X3 + ey.

This y1e1d7F - ‘L__mm_lLv-ﬁlm i agod)/L o 14.02584; t = 3.74511.
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In a similar manner, testing column 2 agqinst column 3 yields

_ (.61212 - .45433)/1 . . )
F -38788/30 12.21285 t = 3.49469. The testing of sig

nificance is postponed until after the next section.

Individual Comparison of Cell Means
Individual comparisons of cell means can be accomplished, as far
as the computations are concerned, by using any g-1 of the variables in-
dicating cell membership (Xl through Xg). The "left out group" will be
compared to all remaining groups. The process can be contfnUed until
all comparisons of interest are found. One such set of comparisons,
made with cell 6 compared to all other cells, using equation 5.1, is

shown in Table 5.3.




Ne—"
i Mean Standard Correlation Regression  Std. Error
var;iit:]e Deviation XVsSy Coefficient Of Reg. Coef.
1 0.16667 0.37796 0.11010 -1.00000 0.95406
2 0-11111 0.31873 -0.56575 -5.99999 1.09301
3 0.11111 0.31873 -0.17408 -2.99999 1.09301
4 0.05556 0.23231 0.41796 2.89999 1.43108
5 0.27778 0.45426 -0.16794 -2.39999 0.82624
Dependent
¥ 5.33333 2.74643
INTERCEPT 6.99999
MULTIPLE CORRELATION 0.78238
STD. ERROR OF ESTIMATE 1.84752
MULTIPLE GORRELATION SQUARED 0.61212

ONE MINUS MULTIPLE CO

Source of Variation

0f Freedom Squares Squares
Attributable To Regression 5 . 161.59964 32.31992
Deviation From Regression 30 102.40036 3.41335

Total

RRE1

(ALl Y

TABLE 5.3
REGRESSION QUTPUT COMPARING CELL 6 TO ALL OTHER CELLS

ATION SQD  0.38788

ANALYSIS OF VARIANCE FOR THE REGRESSION
Degrees Sum Of Mean

35 264.00000

Computed
T Value

-1.04815
-5.48942
-2.74471

2.09631
-2.90473

Beta

-0.13762
-0.69631
-0.34815
0.2537
-0.39656
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The use of the "Computed t value" column allows testing 76 against
any of the other cells of interest. Comparing Y5 to Vg yields
t = 2.74471. If some other comparison were of interest, say Y, to 75,

then either by or bg can be set equal to O with all other regression

coefficients by through bg non-zero.

Tests of Significance

The conéerns for tests of significance regarding multiple com-
parisons for two-way analysis of variance are the same whether the data
is proportional or disproportional. Ffom an experimental viewpoint, one
reasonable approach is to construct a priori a small number of hypotheses
1ikely to be of interest. If the number of tests is held down, then
Dunn's test can be a most profitable approach.

Suppose that the hypotheses of interest are those described in
this chapter:

Row 1 to Row 2, t = 3.45549;

Column 1 to Column 2, t = 4,16587;

Column 2 to Column 3, t = 3.49469; and

cell 3 to cell 6, t = 2.74471 (disregarding the sign).

Using Dunn's test, m, the number of comparisons, is 4, and v, the
dggrees of freedom for the within term, is 30. With a = .05, the critical
t ratio is 2.66 so that all four comparisons would be significant at the
.05 level. Had the number of comparisons been increased to 6, then the
comparison of cell 3 to cell 6 would become nonsignificant. Had the number
of comparison been increased to 10, then the comparison of row 1 to row 2

would become nonsignificant. While the table in appendix does not show

critical values for 10<m< 20, the comparison of columns 2 to column 3




those of direct experimental interest.
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CHAPTER VI

MULTIPLE COMPARISONS IN
HIGHER DIMENSIONAL DESIGNS

Clearly, N-way Designs have complexities of their own; the consi-
derations of multiple comparisons heightens these considerations. On g

the other hand, the issues regarding multiple comparisons reflect the I

same concerns that were evident with the two-way design. Should the re-

searcher employ a family error rate? Or should an error rate be used 3*
that emcompasses the entire experiment? The new complication is that
as the dimension of the design increases, the number of families are
ZN - 1. The problem of deciding upon whether to use a family error
rate (and of course reporting the type of error rate used to the reader) [’
is compounded by two competing forces; on the one hand, if an overall . 4
experiment error is ‘used, significance becomes difficult to obtain; on |

the other hand, the use of a family error rate, by increasing the num- 0

ber of families, increases the 1ikelihood of finding a significant out- ,i
come,

Part of the problem, and a hint at a useful solution, is that re-
searchers, particularly those who are more inexperienced, often run :

statistical tests indiscriminately without any overall schema other than

the proverbial pragmatist's, "Let's run 1t through and see what we've

got". Clearly, such an approach is inappropriate for hypothesis testing,

though it might be useful for hypothesis generation. One useful approach Q

1s to construct, on an a priori basis, a 1imited number of hypotheses

that bear directly on the raison d'etre for the experiment. If additional,

essentially untested, results are to be reported as interesting rela-




tionships that might beaf‘fUEQ%é“1nVé;t¥§éfion; then s

d 'W‘,f;; §
uch‘;esults should
be labeled for what they really are: conjectural possibilities that just

might lead to some interesting hypotheses testing on'a futuré daté set.

An Example - A Three-Way Layout

Suppose a 2 x 3 x 2 design 1s used; Figure 6.1 shows the structure for
this design.

¢
By B2 By
\ ALB{C, ALB,C, ALB3Cy
1 Cell 1 Cell 2 Cell 3
A A2B1Cy AzBoCy AzB3Cy
2 Cell 4 Cell 5 Cell 6
G2
By B, 83
\ AL, AB,C, ABAC,
1 Cell 7 Cell 8 Cell 9
AB,C, AB,C, AB4C,
A
2 Cell 10 cell 1l Cell 12

Figure 6.1 Structure for a 2 x 3 x 2 Design

Rather than focus on the usual three-way solution (but see Winer, 1971;
and Lindquist, 1953; also, a four-factor. solution is shown -in a regression
format by Williams, 1974b) interest is placed upon possible multiple com-
parisons (more correctly, contrasts). To make the problem somewhat more

pragmatic, suppose that the criterion scores represent salaries, the
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A category represents males (A;) and females (Ap); the B category represents
respectively assistant professor (B1), associate professor (By), and pro-
fessor (B3); and the C category represents a measure of locals (C;) and
non-locals (Cz) where a local is considered to be a person who has received
any of their academic degrees from an in-state institution. While many
comparisons might conceivably be of interest, suppose the fol]owfng are
to be tested:

1) male locals compared to female locals

niby + ngpby + n3bj - ngbg *+ ngbs + ngbg
Ny + ng + n3 ng ¥ ns + ng )i

Restriction:

2) male locals compared to male non-locals

Niby * ngbp + ngby  ngby *+ ngbg * ngbg
np*ngtng 7 nptingtng ’

Restriction:

3) female professors compared to male professors

n6b6 + n12b12 n3b3 + ngbg .
ng+np < ngtng U

Restriction:

4) female professors compared to male associate professors

ngb * nigby2  nabp + ngbg
g ¥ njg | N ¥ng M

Restriction: and

5) male local professors compared to non-local professors
ngbg + njby2
Restriction: b3 ® “ng +nj, )
If these are the precise comparisons of interest, a most effective
test of significance that retains a per experiment error rate is Dunn's
(1961) test. In that only 5 comparisons are involved, Dunn's test would

L]
be quite sensitive to any differences that exist. Note also that data

such as would be 1ikely to occur at any college or university would be
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highly disproportionate. While this disproportionality reduces the&eféi‘;

ficiency of the tests (i.e., somewhat larger samples are necessary thanwjf
all cell frequencies are equal) 1t does not invalidate the testsk}n.ény:way.
In fact, the issue of disproportionality and choosing an appropriate ki
solution 1is not particularly relevant if the interest is focused on the
five research questions given earlier rather than focusing on the main

effects and interactions.

Higher Dimensional Designs

Four-way and higher dimensional designs can of course be accom-
modated to a regression format. If the questions of a major research
1nteré§t can be 1imited to a relative few then no major problem is en-
countered by increasing the dimensionality. If on the other hand,
“traditional" analyses of variances are thoﬁght necessary before con-
ducting any further tests, then a considerable amount of power is lost.

While 1t might seem argumentative to do so, 1t seems fair to ask a
each researcher to state as clearly as possible precisely what is 1n£ended
in a given research application. Seldom, it would seem, would a resegrcher
be interested 1n the specific hypotheses involved in a testing a main
effect, If the reseafch question can be stated and written in relationship
to the regression coefficients such as was done for the example earlier
in this chapter, then a more relevant data analysis can take place. Care
must be taken to use an appropriate test of significance; some researchers

are prone to run each test aga1nsf the overall F distribution; such an

approach 1s equivalent to using a per hypothesis error rate.
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Missing Cells

Insofar as making mu1t1p1e-comparisons are concerned, missing cells
do not present any major computational difficulties. Obviously, if a
cell is missing, the corresponding b's can neither be included in any for-
mulation of the full model, nor in any restrictions. Consider that cells
1 and 6 are missing for Figure 6.1.

The full model can be stated either as

Y = b2X2 + b3X3 + b,X, + bXc + bX, + b X, +b,X,+ Db

474 575 777 88 979 10
+ bllez + el. (6.1)

X b

10t P1*y

or
Y = by + bpXp + b3X3 + bg¥s + bgXg + byXy + bgkg + bg¥g + bypXyg
+ b11X11+ ey (6.2)
‘In that either by or bg (or both) are involved in restrictions 1 through 4

given earlier, only restriction 5 is unchanged,

Restrictinns 1 through 4 become:

1, Noby + naby = ngby + negbe
Restriction: hp ¥ 3 e 7 e '
Restr?ciion: ngbz * n3b3 T7p7 * ngbg * Ngbg .

nz + ng Ny +ng+ng
3'. - n3b3 + ngbg . and
Restriction: P12 !
3 9
4', noby, + ngb
. b 2" 272 8 8_.
Restriction: 1 —“2 T g

Interpretation of disproportionate cell frequency problems are sometimes
considerably more complex, particularly with missing cells. Why are the
cells disproportionate? Answering that question i€ much more an art than

a science. Certainly the use of data will be helpful, but the interpre-




tation will undoubtedly rest on the insights (and perhaps prejudices) of

the investigator.




CHAPTER VH . il ER

PROBLEMS LESS AMENABLE
TO A DIRECT REGRESSION SOLUTION

While fixed effects designs or random effects designs yield solu-
tions directly for multipie comparisons, when the design becomes mixed
with both fixed and random effects resulting in two or more error terms,
solutions to multiple comparison problems will usually prove to be eva-
sive (at least to this writer). The difficulty is that1so]at1n§ | - |
the correct error-term, together with predictor variables such‘that use- @ﬁ

ful hypotheses can be tested, can be either difficult or seeming]y impos-

sible. 1In these circumstances, the more traditional computational pro- H
cedures might prove to be more effective. To show the difficulty with sl
the mixed design, an example 1s given.

An Example

The following problem 1s taken from Williams (1974a).
A researcher may have an interest in the differential effect ' ﬁ
of two or more methods of instruction over time; thus, mea- 1
sures can be taken at specified intervals on the several in- i
structional methods, From the point of view of the experi- 4

ment, a repeated measures design can be conceptualized as a i

treatments X subjects design repeated for each instructional : ,ﬁ;
method.* . EVF
il

To make the example more specific, suppose a researcher is inte- ‘&

rested in investigating the differences among three approaches to a S

human relations experience.** ‘

*This design 1s called a Type I design by L1ndqu1§t (1953).

**By human relations experience is meant the meeting of a ?roup of people ‘
that has variously been called the T-Group (training group), the encoun- ‘
ter group, or some similiar name. %
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The three dif

to help solve these problems.

of the five ratings.

NHWN —

v

ferent approaches toward the human

gression exhibited in the group setting.

represents an extreme amount of aggression.
with the group as the unit of analysis.
Results are as follows:

TABLE 7.1

(Structured Groups)

Session 2

3.4

selected are (1) structured sessions in which the grohp participates
group decides upon its own goals, and (3) a group designed to allow

Five groups with 7-9 individuals in

Each group is to have a two hour session once a week for four weeks.

While there are several things that might be of interest to

on a continuum from O to 10, where O represents no aggression and 10

Session 3

3.2

ré]afions»groups
toward concrete problem solving, (2) an unstructured group, where the
the 1hd1v1dua1 to focus on his personal problems with the interest being
each group are assigned to each of the three human relation group situa-
tions; i.e., there are five.segaraFe_groups for each treatment situation,
measure, the researcher is interested specifically in the amount of ag-

Videotapes are made of all sessions, and a group of five experts

independently Judge the amount of aggression expressed during the sessions

The measurements are made

The score to be used is the mean

GROUP SCORES FROM THREE HUMAN RELATION GROUP METHODS FOR FIVE SESSIONS
(ARTIFICIAL DATA )

Session 4

2.8

W =W W
oo &
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Method 2 (Unstructured Groups)
Group Session 1 Session 2 Session 3 Session 4
6 6.2 , 5.8 6.8 5.0
7 3.6 3.8 7.2 5.4
8 4.0 6.8 7.8 6.0
9 5.0 5.8 6.0 5.0
10 4.8 5.0 6.4 5.8
Method 3 (Personal Problems)
Group Session 1 Session 2 Session 3 Session 4
11 7.4 7.6 6.8 5.2
12 6.4 6.4 5.6 4.0
13 7.0 6.6 6.6 6.0
14 5.8 7.4 5.0 4.8
15 6.4 5.2 4.0 3.6

To analyze the data in Table 7.1, it 1s first useful to define sev-
eral variables:

Y = the criterion variable,

Xl - Xlsare binary variables that identify each group,

XIG' 1 if the score is from a group in the structured
treatments; 0 otherwise;

X17- 1 if the score is from a group in the unstructured
treatment; 0 otherwise, '

x18' 1 1f the score 1s from a group in the problems treatment.
X19' 1 1f the score is from Session 1; 0 otherwise,

Xog® 1 if the score 1s from Session 2; 0 otherwise,

X21- 1 if the score is from Session 3; 0 otherwise,

X22- 1 if the score is from Session 4; 0 otherwise,

¥23" Y16 + *19°

X16 * *20°

16 * o1

26~ *17 - %197
. X20, and

. X

21’
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Tables similar to those found in previous chapters could be constructed
for the preceding information. In the interest of economy of space, it
is omitted here. The reader is reminded that each score (rather than
each group) is the unit of analysis, thus, there are 60 scores for the
data in Table 7.1. When preparing the data cards for a computer analysis,
60 data cards would be made.

To analyze the data in Table 7.1, it is useful to consider two sepa-
rate analyses; one analysis can be a treatments X subjects design, tempo-
rarily disregarding the:three different kinds of groups; then, it is use-
ful to conceptualize the data in a two-way analysis of variance, disregard-
ing for the time being that a given group has been measured several times.

The 1inear models that are useful for conceptualizing the data in
Table 7.1 as a treatments X subjects design are as follows:

Y =b, +byXqy +byX, +e.ut byaXq, + e, (for the subjects (groups)
0 11 272 14714 1 effect) (7'1)'

Y = by + bygX,n + bonX,, + byiX,q + e, (for the trend effect)
0 * Pigkyg * D20y * bar¥ar * € he
and
Y - bo + b1X1 + b2X2 L 4 b14XI4 + blgxlg + b20x20 +
ba1¥ar * €3 (7.3)

When these linear models are used, the following results can be found:
from equation 7.1, SSS = 104.14;

from equation 7.2, SS = 8,.63; and

TREND
from equation 7.3, SSFRROR = 32.52; also, SST = 145,29,

While the preceding information would be sufficient for a treatments X
subjects design, it should be recalled that in this formulation, the

type of human relation group was disregarded.
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Actually, the treatments effect is "nested," j.e., totally contained in the
variation among subjects. Before pursuing this “nesting" further at this
point, it is first useful to complete the analysis for the two-way formu-
lation.

The following four 1inear models are sufficient:

Y= byt b16X16 +bygXyg + e (for the treatments effect) (7.4)

+b +b,. X e, (for the trend effect) (7.2)

= bg * bigXig * bagXag * byyXyy te,

= Bg * b1g¥16 * P17%17 * P1gXig ¥ Dag¥ag * by Xy * &g (7.5)5 and

V.= by + bygXyg + DyyXy7 * DigXig * pgXpg * PprXpy * DpgXpy *eeet
528X28 + eg (Full Model) (7.6)

-
!

+

When these 1inear models are used, the fo]iowing results can be found:
from equation 7.4, SSygry = 78.87;

from equation 7.2, SSTREND = 8.63;

from equation 7.6, SSERROR = 39,71,

The sum of squares attributed to regression for the full model (equa-
tion 7.6) is 105.58. The sum of squares attributed to regression for
equation 7.5 is 87,50, The difference between these two values 1is

equal to the interaction. Thus, SSMETH X TREND " 105,58 - 87,50 = 18.08.
A summary table that would contain the foregoing information would

appear as follows:




SUMMARY TABLE FOR THE HUMAN RELATION GROUPS DATA INﬁTABLE 7.1

Source of Variation df
Among Subjects

Method 2

Error (a) 12
Total Among Subjects 14
Within Subject

trend ' 3

meth x trend 6

error: (b) 36
Total Within Subjects 45
Total 59

**Significant at .01 level

TABLE 7.2

SS

78.87
25.27
104.14

8.63
18.08
14.44
41.15

145.29

MS

39.44
2.11

2.88
3.01
.40

F

18.69**

7.20%*
7.52%*

Thé interest, then, 1s in finding ways to isolate error (a) and

error (b). Isolation of these two error terms is effected through the

use of equation 7.1. Because of the complexity of the solution, it is

useful to reproduce part of the regression output relating to equation

7.1; see Table 7.3.




REGRESSION OUTPUT FOR THE SUBJECTS EFFECT

Standard Error Computed

Variable Mean Standard Correlation Regression of Regression t value
No. Deviation XvsY Coefficient - Coefficient
1 0.06667 0.25155 -0.30801 -1.64995 0.67618 -2.44011
2 0.06667 0.25155 -0.17061 -0.84996 0.67618 -1.25700
3 0.06667 0.25155 -0.11908 -0.54996 0.67618 -0.81334
4 0.06667 0.25155 -0.50552 -2.79995 0.67618 -4.14084
5 0.06667 0.25155 -0.28224 -1.49994 0.67618 -2.21827
6 0.06667 0.25155 0.17289 1.15002 0.67618 1.70076
7 0.06667 0.25155 0.09730 0.67618 0.67618 0.29583
8 0.06667 0.25155 0.20724 1.35003 0.67618 1.99655
9 0.06667 0.25155 0.08702 0.65002 0.67618 0.96132
10 0.06667 0.25155 0.09561 0.70004 0.67618 1.03528
11 0.06667 0.25155 0.31030 1.95003 0.67618 2.88388
12 0.06667 0.25155 0.11278 -0.80003 0.67618 1.18316
13 0.06667 0.25155 0.27595 1.75003 0.67618 2.58810
14 0.06667 0.25155 0.13855 0.95003 0.67618 1.40499
Dependent
Y 4.94332 1.56923
Intercept 4.79995

Multiple Correlation 0.84662
St. Error of Estimate 0.95627
Multiple Correlation Squared 0.71676
One Minus Multiple Correlation Sqd. 0.28324

ANALYSIS OF VARIANCE FOR THE REGRESSION

Source of Variation Degrees Sum of Mean
of Freedom Squares Squares
Attributable to Regression 14 104.13638 7.43831
Deviation from Regression 45 41.15059 ©0.91446

Total 59 . 145.28697

F Value

8.13413

Beta

-0.26449
-1.13625
-0.08816
-0.44883
-0.24044
0.18435
0.03207
0.21641
0.10420
0.11222
0.31259
0.12825
0.28053
0.15229
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The 1solation of these error terms should be accompanied by isolating
the sources of variance. That is, two sepérate ana1yses‘are){ﬁd1cateég
the analysis among subjects and the analysis within subjects. This in
turn can be accomplished by constructing two new criteria Y* and Yy**

/\
such that Y* =Y, where the‘<> are the predicted scores found from

using the regression coefficients in Table 7.3; also, Y** =Y - <> , or

the error term associated with equation 7.1.
In particular,

AN = 4,79995 - 1.64995X, - .84996X2 - .54996X_  +...+ .95003X14.

1 3
Several interesting things occur with using Y* and Y** (clearly,

Y* + Y¥* = Y); the SST for Y* = 104.13701 (within rounding of the
attributable to regression in Table 7.3); and, the SST for Y** =
41,14972 (within rounding of the deviation from regression in Table 7.3).
Also, an equation canbe formed such that Y* = by + b16x16 +b X _+

17717

(7. on 7.7, = 78.87 and S$ .
7+ (7.7) For equation 7.7, SS, .00 ranle 87 and 3SocyiaTIoN

25.27; this 1s precisely the same results respectively as the Among

e

Subjects variation for Method and Error (a) given in Table 7.2. Thus,
hypotheses regarding the methods effect can be tested using Y* and

making restrictions on Y* = b16X16+b17x17+b18x18+e7 » (and reparameterizing).
For example, suppose that we wish to test for differences between groups

one and three (H0 TRP -1'18)'
Then Y* = b X16 +b X _+b X +e,

16 17 17 16 18 8
Y= big (Kig + Xyg) + by X, + ey,
Let Vl = 1 {f a member of either group one or group three; then

Y* = blﬁvl + b17X17 + eg: (7.8)
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Equation 7.8 can be reparameterized to Y* = b + b17X17 eg (7.9)
The RZ associated with equation 7.7 is .75735 and the R2 associated
with equation 7.9 is .128035. Then F = ,75735 - .128040 = 31.12161;
. (1 - .75735)/12
\F = t = 5.57867.

Without using regression, the same result can be found by

Y YB ,
\JMS (1 +1 )
nl n3
-_5.89
\l 2 l + l) = - §5,57129.
20 20

The 1atter answer has only two decimal point accuracy; had MS(a) been
taken to five decimal points, MS(a) = 2.10583, then t = 5.57868, very

close to the earlier given answer.
Finding Models for Within Subjects

The second constructed criterion, Y**, can be used (with extreme
caution) for tests of trend differences and for comparing one cell mean
to another.

Before testing for these effects, it is first useful to construct
a full set of cell variables. Actually, several cell variables have al-
ready been used in the analysis: |

X

23 " X16 . X19 (structural treatment, session 1, or cell 1),

X25 = X16 . X21 (structured treatment, session 3, or cell 3),

1)

)
X24 = X16 . X20 (structured treatment, session.2, or cell 2),

)

)

Kog = Xyg + X9y (structured treatment, session 4, or cell 4),

X26 = X17 . X19 (unstructured treatment, session 1, or cell 5)2

X27 = X17 . x20 (unstructured treatment, session 2, or cell 6),

= X . d ) ’ s
X28 17 le (unstructured treatment, session 3, or cell 7)
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X309 = X17 « X2 (unstructured treatment, session 4, or cell 8);‘

X31 = X18 . X19 (problems treatment, session 1, or cell 9),

X320 = Xig - X20 (problems treatment, session 2, or cell 10),

X33 = X18 « Xp1 (problems treatment, session 3, or cell 11) and

X34 = X18 « Xo2 (problems treatment, session 4, or cell 12).
Now, suppose there 1s interest in testing among the sessions for group
differences, in particular, differences among session 1 and session 3
group means. Session 1 data is contained in cells 1,5 and 9 (X23 » X6
and X31), session 3 data is contained in cells 3,7 and 11 (X24 » Xpg and

X33).
Now, a full model should be constructed that contains the cells of

interest.
One such full model 1s as follows:
Yax = by + byX) + oKy +ouut bygkyat bysXost bygXopt bygXagt Dogkpet

byg¥art Dogkagt DaXart DygXast ByzXas* g (7:10)

Care must be taken to make sure equations 7.10 is actually a true
full model; SSe8 should equal SSERROR X (14.44). A restriction re-

flecting the hypothesis of interest can be written using the regression

coefficients: b23 + b26 + b31 = b25 + b28 + b33 . In term of b23 this

yields b23 - b25 + b28 + b33 - b26 - b31 . Placing this restriction on

equation 7,10 yields:

X +

b3y X3

Ya% m b+ DXy Het bygKyt (byg + byg * byg = byg - 31!

+ +
byg¥as * bos¥as * DagXas * Par¥e7 * Pag¥es * Pao¥2g b3o¥30
byyXgy + bygXap * DagXay * &g

frn x by +byXy oot bigKigt Bogkeg + b5 (Xos * Xe3) + bas (26 -

0
Ka3) + byr¥ay * bog (Xog * ¥aa) + bag¥ag* Paokao * Pl (X31 -

X23) + b32X32 + b33 (X33 + X23) +e- (7.11)
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1 if a member of X23 or X21 (cells 1 or 3), 0 otherwise,

2
V3 =1 1f a member of X26 (cell 5), -1 if a member of X23 (cell 1),
0 otherwise,
V4 =1 if a member of Xpg OF Xos (cells 7 or 1), 0 otherwise,
V5 =1 if a member of X31 (cell 9), -1 if a member of X,3 (cell 1),

0 otherwise and
V. =1 1if a member of X31 or X23 (cells 10 or 1), 0 othefwise.
Then equation 7.11 becomes:

Yr* = b0 +blx1 +,..+ b14x14 + b24x24 + b25V2 + b26v3 + b27x27 +
]

+ b,aX,n + bonXon + b V. + b32x32 + b33v6 *+ e (7.12)

bagVs * bagXag * P3pX39 * D3V

Equation 7.10 yields ﬁ%- = .64899; equation 7.12 ylelds RS = .62874.
Then

Fer ,§4§89 ~02874)/1 5 06603;

t =\F = 1.43737.

On the other hand, this same hypothesis could be much more easily

tested by

"1y 5.00 - 5.33
.\[:40) (I.’x 1 ) "1.43478.
B 15

tw
N (o) T+ L)
Ny n.3
The last calculation is only accurate to two decimal points.

Testing for Cell Differences

If there is interest in testing for differences among cells (say
cell 1 and cell 2), then these tests can be fairly easily accommodated.
In that the full model in equation 7.10 contaihs both X3 and X24

(cells 1 and 2), a restriction can be made regarding these two cells:

b23=b

24°
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Then

+b,, (X

14 * Py X

*k =
Y b0 + b1 + X1 +o..t b14 X b

23 Xag) * bpg Xog oot
b33 X33 teg. (7.13)
Let V7 =1 1f a member of efther X23 or X24 (cells 1 and 2), 0 other-
wise.

Equation 7.13 becomes:

*k =
e A N L TE TR T AR b, X

gV7 ¥ Bog Xpg *eret byg Kgg b
(7.14)

Equation 7.14 yields %i = .63927; previously, q% = ,64889., Therefore,

F =4§.6f8?9 - .63327)[1__ = .98636,

t =\F = .99316.
This cell mean difference could also be tested by
Y. -
t = 11 Y12 - 3.68 - 3.28 = 1.00
\JMS(b) (L +1) \I(.40) (1+1) i
Ny N 5 5

which 1s close to the previously given value of t = ,99316.
Practical Limitations of the Regression Approach

One of the selling points regarding the use of multiple 1inear re-
gression as a general analysis technique, including solving problems
more commonly done by the analysis of variance, is that not only 1s the

process more easily conceptualized. but also the comoutations are nsually.,

greatly simplified. This present chapter should serve as ample proof
that such is not always the case. Clearly, the multiple comparisons
performed here could more easily be accomplished by the usual analysis
variance techniques. Perhaps this is but another way of saying that

1imiting yourself in the possible analysis techniques may be 1n the long
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run too 1imiting; the same point was made much earlier and much better in
"Don't put all your eggs in one basket". While multiple 1inear regression
is an excellent tool for both conceptualizing and calculating many tests,
the traditional techniques can occasionally prove to be easier to use, even

for a hard-nosed regression aficionado.
Using Appropriate Tables

Perhaps not enough was said regarding using proper tables to evaluate
an experiment. In general, the total number (and type) of contrasts run
should always be considered when choosing a multiple comparison technique
(and hence, choosing a table to evaluate significance). Every time a set
of tests are run, the number (and type) of tests should be considered when
reporting levels of significance. Those who would contend that "standard
" practise" would allow them to use such techniques as Duncan's tests or
orthogonal comparisons (which do not usually retain an experimentwise error

rate) should remember that "standard practise" is the defense that physi-

cians use in court when the patient dies.
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TABLES

Tables Ia, Ib, Tc, and Id are reproduced from C. W. Dunnett, A multiple
comparison procedure for comparing several treatments with a con-
trol. Journal of the American Statistical Association, 1955, 50,
1096-122, and C. W. Dunnett, New Tables for multiple comparisons
:;th atﬁontrol. Biometrics, 1964, 20, 482-491, with permission of

e author.

Tables IIa and IIb were calculated by the present writer by transforming
the values in Harter (1960) by division by{2Z.

Tables Illa and IIIb were calculated by the present writer by transfor-
ming values in Duncan (1955) by division byyZ.

Tables IVa and IVb are reproduced from O. J. Dunn, Multiple comparisons
among means. Journal of the American Statistical Association, 1961,

56: 52-64 by permission of the author.

In Tables la, Ib, Ic, Id, Ila, Ilb, IIla, IIlb, IVa and IVb, v refers to
the degrees of freedom within (dfw).

In Tables Ila, IIb, Illa, IIIb, r refers to the number of means in the
range.

In Tables la, Ib, Ic, Id, k refers to the number of groups compared to
the control (excluding the control).

In Tables IVa and IVb, m refers to the total number of a priori contrasts.
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TABLE Ib

PERCENTAGE POINTS OF DUNNETT'S TEST
(.01 LEVEL) '

tailed

One-
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TABLE IIb

PERCENTAGE POINTS OF THE STUDENTIZED RANGE
REPORTED AT t VALUES (.01 LEVEL)

4.032 4,933 5,518 5,955 6.302 6.591 6.837 7.051 7.241 8.456
3.707 4,476 4,973 5,343 5,638 5.882 6.909 6.271 6.433 7.453
3.499 4.185 4,627 4,953 5.213 5.430 5.614 5,774 5.917 6.821
3.356 3.9685 4,387 4.685 4,921 5,117 5.285 5,431 5,560 6.383
3.259 3.838 4,212 4.489 4,708 4,890 5.044 5.180 5.300 6.062

3.169 3.726 4.079 4,339 4.545 4,716 4.861 4,953 5,100 5.817
3.106 3.639 3.975 4.221 4.417 4,579 4,718 4,838 4.944 5,623
3.055 3.568 3.891 4.127 4.314 4.470 4.601 4,716 4,818 5,467
3,012 3,510 3.821 4,050 4.229 4.378 4,474 4.616 4,714 5,337
2,977 3.461 3.763 3.982 4,158 4,303 4.425 4.532 4.627 5,229

2,947 3,420 3.714 3.929 4,098 4,238 4,357 4,461 4,553 5,136
2,921 3,384 3,671 3.881 4,046 4.183 4,299 4,400 4.489 5.057
2,898 3.353 3.635 3.840 4,002 4,134 4,248 4,347 4,434 4,987
2,879 3.326 3.602 3.804 3.962 4.093 4.203 4.300 4.385 4,927
2,861 3,302 3,574 3.772 3.927 4.055 4,164 4,258 4,342 4,873

2,845 3.280 3.548 3.743 3.896 4.022 4.129 4.221 4,304 4,825
2.750 3,150 3,393 3.569 3.707 3.819 3.915 3.997 4.070 4,530
2.705 3.088 3,321 3.487 3.616 3.723 3.813 3.891 3.959 4,390
2.660 3.028 3.249 3.407 3,529 3.630 3,714 3,787 3.852 4,253
2.618 2,970 3,180 3,330 3.445 3,539 3.619 3.687 3.747 4.120
2.576 2,913 3.113 3.255 3.364 3.452 3.526 3.591 3.647 3.992
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TABLE IIIa

PERCENTAGE POINTS OF THE STUDENTIZED RANGE
REPORTED AS t VALUES (.05 LEVEL)

r
v\\ 2 3 4 5 6 7 8 9 10 20
5 2.570 2.651 2.685 2,697 2.697 2.697 2.697 2.697 2.697 2.697
6 2.447 2.536 2.580 2.602 2.612 2.614 2.614 2.614 2.614 2,614
7 2.365 2.459 2.509 2.537 2.553 2.561 2.564 2.564 2.564 2.564
8 2.306 2.403 2.457 2.490 2.510 2.522 2.528 2.531 2.531 2.531
9 2.262 2.361 2.361 2.418 2.454 2.476 2.491 2.500 2.508 2.508
0 2.228 2,329 2.387 2.425 .2.450 2.469 2.478 2.486 2.490 2.493 ,
1 2.201 2.302 2.363 2.402 2.429 2.448 2.461 2.470 2.476 2.482 Ly
2 2.179 2.280 2.343 2.383 2.411 2.432 2.446 2.456 2.462 2.474
3 2.160 2.263 2.326 2.367 2.396 2.418 2.434 2.445 2.453 2.468
4 2.145 2.247 2.311 2.354 2.384 2.406 2.423 2.435 2.444 2.464
5 2.131 2.234 2.298 2.342 2.373 2.396 2.413 2.427 2.437 2.46l
6 2.120 2.223 2.287 2.332 2.364 2.387 2.406 2.420 2.430 2.459
7 2.110 2.213 2.278 2.323 2,355 2.380 2.399 2.413 2.425 2.458
8 2.101 2.205 2.270 2.315 2.345 2.373 2,392 2,408 2.419 2.456
9 2.093 2.197 2.262 2.308 2.341 2.367 2,386 2.402 2.412 2.456
‘0 2,086 2.190 2.256 302 2.336 2.361 2.382 2.398 2.411 2.456

262 2,298 2.326 2.349 2.368 2.384  2.454
.242 2,280 2.309 2.333 2.353 2,370 2.453
222 2,261 2.292 2,317 2.338 2,357 2.452
.203  2.243 2,275 2.301 2.324 2.343  2.451
184 2.225 2,258 2.285 2.309 2.329 . 2.451

0 2.042 2.146 2.214
2.021 2.126 2.193
2.000 2.104 2.173
0 1,980 2.084 2.153
¢ 1.960 2.063 2.133

o
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