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DECOMPOSING THE COEFFICIENT OF
DETERMINATION
IN MULTIPLE REGRESSION

LEE M. WOLFLE

In multiple regression, the coefficient of determination (or R-
square) has a very useful interpretation. The statistic Is the ratio of
the variation. that is explained by the regression equation to the total
variation of the dependent variable. For example, a coefficient of
determination equal to .45 indicates that the Independent variables can
explain 45 percent of the variation In the dependent variable.

It follows Immediately that a person’s next Instinct Is to want to
allocate among the several Independent variables the explained variation
In the dependent variable. For example, many people would like to say
that If the regression of a dependent variable on three Independent
variables explalns 45 percent of the variance, that (say) 25 percent was
due to the first Independent variable, 15 percent to the second, and 9
percent to the third. While this Interpretation Is tempting, It shouls! be
avoided. The reason for avoiding It Is that there Is no unique way of
decomposing the explained variance, and If there is no unique way of
doing so, then there Is no meaningful way of doing so. »

For example, consider the regression of one dependent variable,
Y, on two independent variables:

Y =a*bX *+cZ*u,



‘where Y is the dependent variable, X and Z are independent variables,

"a" is the intercept, "b" and "c" are partial regression _coeffié_ierits, and
"u" is the disturbance or error term. From this regression, one would
obtain the coefficient of determination, R2y.xz, which is merely a

convenlent‘hotation for R-square of Y regressed on X and Z. By the

‘method of part correlations, it may be shown that:

R2y.xz = R2y.x * R2y(z.x)
where R2y.x‘_is thé sql_Jared zero-order correlation of Y and X, and
R2y('z.>'<)‘ Is the squared part correlation of Y with Z resi_duallzed for X.
(This equation is analogous to formula 5.10 in Kerlinger and Pedhazur,
1973.) |
But it is also true that:
R2y.xz = R2y.z * R2y(x.z),

and in general R2y.x does not equal R2y(x.z). If these two quantities

are not eqt{al, by which quantity therefore does one measure the unique
contribution of .X to the explained variation in Y? Because tﬁoro are two
answers, two different answers, there |Is no unique solution,

These quantities may appear mysterious in symbollc. form, but they
are familiar quantities, which appear in the SPSS regression output.
They appear in the summary table in a column of numbers entitled, "R-
Square Change.”" People often want to lnto.rprot these quantities as
measuring the amount of variance explained by each lndepéndent
variable. Thi; temptation should be avoided.

'Suppose, for example, that one re'gréuos educational attainment on

two independent variables, father's education and father's occupational



status. Suppose the coefficient of determination for this equation is
equal to .31. If father's education was added to the regression as the
first independent variable, then one would learn from the SPSS summary
table that the R-Square Change for father's education was .27 and for
father's occupation was .04, |If, however, father's occupation were to
have been listed first, then one would learn that the R-Square Change
for father's occupation was .23 and for father's education was .08.
Question: Does fathgr's education explain 27 percent of variation in son's
education, or does it explain 8 percent? The answer is, "'Yes, it does."
That is, without a unique way to decompose the explained variance,
there is no unique answer to the question.

'Let us try another approach. It is well known (e.g., Kerlinger
and Pedhazur, 1973, formula 4.17) that the coefficient of determination
may be decomposed into the sum of the products of the zero-order
correlations and their associated beta-weights. One may, therefore, be
tempted to interpret the product of say Ryx times Byx.z (where Ryx Iis
the zero-order correlation of Y and X, and Byx.z is the beta-weight of
Y regressed on X controlling for Z) as the amount of variance in Y
explained by X. The problem with this approach, however, is that the
zero-order correlation and the beta-weight are not constrained to have
the same sign. In such cases, one would have to interpret tho product
as being a negative component to the explained variance, which is a very
troublesome concept.

For ‘example, consider the regression of son's'occupational ‘status'

on his educational attainment, his father's edycation, and his father's



-+ occupational status. ' The correlations of son's occupation with these
three independent variables are in one sample, respectively, .47, .38,.
and .73. The corresponding beta-weights are, respectively, .21, -.11,
and .69.. The coefficient of determination may be decomposed:

(.21)(.47) + (-.11)(.38) * (.69)(.73) or

.10 - .04 + .50.

R2 = .56

R2 = .56
It is with no relish ‘whatsoever that one should interpret the amount of
variance explained by father's education as being minus 4 percent. That
is equivalent to saying that the addition of father's education to the
regression equation takes away four percent of the variance in son's
occupational status. Not only does that interpretation not make any
sense In a substantive way, It is mathematically irﬁpossible.

Finally, consider the decomposition:

R2y.xz = B2y.x * B2y.z * 2(By.x)(By.z)(sz);
in which B2y.x Is the square of the beta-weight of Y regressed on X
controlling for Z (and analogously for B2y.z), By.x is the beta-weight |
of Y regressed on X, and Rxz |s the zero-order correlation between X
and Z. Thls decomposition seemingly contains a portion (the squared
beta-weight) that can be uniquely attributed to the independent variable,
but the decomposition also contains an explicit term (or more than one
term If there are more than two Independent variables) represohtlng the
contribution to the explained varlance In Y that Is shared by both
iIndependent variables. What this decomposition Indicates Is that the

. explained variance In Y cannot be decomposed Into unique separate

components due to each Independent variable (unless Rxz = 0, a very

rare occurrence).



If the coefficient of determination cannot be uniquely partitioned
into amounts of variance explained by each independent variable, how
then does one measure the contribution of each independent variable to
the dependent variable? The solution would appear to be to use either:

(1) the metric partial regression coefficients; or

(2) the standardized partial regression coefficients,

or beta-weights.

Notice that neither of these are interpretable as components of explained
variance. Metric partial regression coefficients are to bé interpreted as
the amount Y changes for a one-unit increase in one independent
variable while the other independent variables are “held constant.
Standardized partial regréession coefficients are interpretable as the
number of standard deviations Y changes for a one standard deviation
increase In one independent .variable while the other independerii
varlables are held constant.

The standardized regression coefficients have the advantage of
being standardized. That |Is, the size of the metric regression
coefficients depend upon the metric In which the Independent varlables
have been measured. |If one of the Independent varlables Is income, for
example, the metric regression coefficients will be different If Income Is
measured In Increments of thousand dollars versus Increments of single
dollars., In any event, these coefflclents will be different from those of
another Independent varlable measured In, say, years of schooling.
Standardized coefficients get arou_nd this problem by meas_uring all the

'variéblés lh standard .deviation units. Thus, the standardized

[}



Eoefficients' are comparable among independent variables. A beta-weight
of .S_for one independeht variable means that Y changes twice as much
as it does when another variable, which has a beta-weight of .25,
change;.

Seemingly, therefore, the standardized regression coefficient is
better than the metric coefficlent. But waitl The . standardized
coefficient hqs to be standardized . in terms of something, and that
"somet’hlng" turns out to be a quantity which is not invariant across
either samples or populations. | am referring to the ratio of the
standard deviations of the independent to the dependent variables., That
is,

BETA = B (Sx/Sy),

where BETA is a beta-weight and B is the corresponding metric
regression coefficient, Iif, for example, one is interested in comparing
the effects of one independent variable on a dependent variable, and
wants to compare the size of this effect across two populations (e.g.,
freshman versus sophomores, men versus women, blacks versus whites,
etc.) then the beta-weights can change as a function of a change in the
ratio of standat;d deviations; even while the structural coefficients, the
métric coefficients, remain constant across populations.,

Therefore, Iin reporting regression results one should always
report both the standardized and the metric coefficients. The former are
useful in comparing the relative effects of independent variables within a
sample or pobulatlon, while the latter are useful for combaring the

relative effects of independent variables across samples or populations.



In any event, the amount of variance explained by each independent
variable is not a quantity that can be uniquely estimated; the use of
such estimates is to be discouraged.

(Kerlinger and Pedhazur, 1973, pp.. 297-305, discuss a method
called "Commonality Analysis," which can sometimes be used to estimate
amounts of variance .explaihed by each independent variable. In
essence, the approach measures the portion of explained variance for a
single independent variable as that portion unexplained by all of the
other independeht variables, The method res‘ults in méa;ures of unique
contributions and common contributions. In most real-life cases, the
common portions far outweigh the unique portions. Another problem is
the proliferation of higher-order commonalities., With five independent
variables, commonality analysis produces five unique components, and 26
common components. |In my vi'ew, metric and standardized regression
coefficients are to be preferred in reporting the results of regression

analyses.)
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CAUSAL MODELS WITH UNMEASURED
VARIABLES |
AN INTRODUCTION TO LISREL

LEE M. WOLFLE

ABSTRACT

Recent methodological advances (Joreskog and Sorbom, 1978) ndw
allow the estimation of causal modefs which incorporate structural
relationships among latent variables, and confirmatory factor pro-
cedures to estimate latent variables and the measurement properties
of their manifest indicators. The examination of structural effects
amonq theoretical variables not directly measurable offers great
promise for developing and testing theory in educational research.

This paper presents an introduction to such models.

(This paner won the outstanding award at the 1981 annual meetinqg of the Ameri-
can Educational Research Association Division N, The naper was nresented

at the MULTIPLE LIMEAR REGRESSION SPECIAL INTEREST GROUP MEETING and, according
to policy, {s being nublished without review.)
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CAUSAL MODELS WITH UNMEASURED VARIABLES:
AN INTRODUCTION TO LISREL]

Whenever one uses ordinary least squares (OLS) regression, one 1s
making an implicit assumption about measurement error. As Blalock
(1964, p. 49) noted, one assumes thaf "there may be errors of
measurement with respect to the dependent variable Y, but that all of
the independent variables have been measured without error." Such an

‘assumption 1s obviously unrealistic for most social data. Until

. e e s AT

awnasTn i

recently, one had'Ehree thernative methods for estimating such
regression models. By far fhe most common was to naively assume that

the variables were measured without error, and wistfully hope the
resulting estimates were robust, A second alternative was to correct
correlatiqﬁcoefficients for attenuation, and use the corrected estimates
as inputs to the regression analysis. The procedure, however, required
a priori knowledge of the reliability coefficients for the variables;
furthermore, one had to assume the reliabilities were invariant from one
application to another. These restrictions have severely 1imited the use
of regression analyses based on correlations corrected for attenuation.
Yet a third alternative was to measure implied coefficients between latent
variables for which one had multiple manifest indicators. Siegel and
Hodge (1968), for example, explicated several such models in their paper
directed to sociologists; furthermdre. they noted that;corkelations
corrected for attenuation were merely special cases of their multiple

indicator models. (One should note that the sociologists' preoccupation
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with path analysis and causal models as approaches to measurement error
were anticipated by Sewell Wright nearly sixty years ago. For a summary
and appreciation of Wright's seminal work in structural modeling, see
Goldberger [1972].)

The problem with the third alternative, as noted by Hauser and
Goldberger (1971) and Long (1976), is 1ts caﬁual approach toward statis-
tical estimation and hypothesis testfng. The problem results from
overidentified models, which yield multiple estimates of the associations
among latent variables. In response, some authors have chosen to ignore
one or more of the 1dent1fy1ng'equations (e}g., Blalock, 1970; Land, 1970);
others have averaged the estimates from the several equations'(e.g.,
Hauser, 1970). A better alternative would be to obtain estimates of the
. overidentified parameters by maximum 11kelihood estimation (MLE). These
procedures grew out of the work of Lgy]gy (1943), but the immense compu-
tational load required for their iterative estimation prevented their
application in practice. Thus, the application of more adequate statistical
procedures languished until Jﬁreskog (]966. 1967, 1969) discovered an
efficient MLE computational p}ocedure. soon to be followed by a computer

program for confirmatory factor analysis (Jdreskog, Gruvaeus, and van

Thillo, 1970). The resulting variances and covariances of the latent
factors could be used to estimate the parameters of a structural model
assumed to exist among the factors, and Jdreskog and S8rbom (1978) have
provided a program which incorporates maximum 11kelihood estimation
procedures for both the confirmatory factor analysis measurement model,
and the 1inear structural model among the factors. This program is called

LISREL, an acronym for 1inear structural relationships, and possesses the
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potential for revolutionizing the way social scientists test hypothesized
relationships among theoretical, unmeasured latent varfables. Yet I
hqé}é}iggmggggjgn both users of LIQREL, and those who would uncritically
accept LISREL ﬁoihtions; strong models, which yield useful information,
résult from researchers who know their subject matter, and who postulate
disprovable hypotheses (Platt, 1964), As Cooley (1978) reminded us,
sometimes a simple contingency tab]e'analysis provides better causal
estimates than more complex estimation procedures, when the researcher
using fhe contingency tabie uses the right variables, and théreby controls
for alternative explanations for observed associations. LISREL is,
therefore, like most estimation procedures, an aid to thinking about one's
subject matter, .It is not a substifute._,Readers (and editors!) should
not be Tulled into the belief that LISREL solutions are ipso facto good
research. Duncan (1975) drew the useful distinction between the easy part
of causal modeling (the estimation of causal parameters, and their algebraic
manipulation) and the hard part (knowing one's subject matter, and having
a stylish appreciation of alternative explanations). Solving the easy
problems should not mislead anyone to believe that the hard problems have
| been resolved. This paper will become difficult enough both symbolically
and algebraically, but does not even approach the complexity involved in
doing good research,

The purpose of this paper is to provide a nggpngematical introduc-
tion to LISREL. Those interested in the basic papers that develop the
mathematics of LISREL may read JBreskog and Sarbom‘(1979). .fhosé inter-

ested 1n reading well-founded applications of LISREL (or earlier versions

of the program) may read Mason, et al. (1976) and Mare and Mason (1980),
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who analyzed the errors involved in children's reports of parental
characteristics; Bielby, et al. (1977), who analyzed a LISREL model of
status attainment and compared the resulting estimates with OLS estimates;
and Werts, et al. (1977), who develop a simplex model of academic
achievement over time. For those interested in alternative introductions

to the analysis of covariance structures, see Burt (1973) or Long (1976).

SPECIFICATION OF A LISREL MODEL

44444

diagramf One such model is shown in Figure 1, In Figure 1, variables

enclosed inellipsesare latent, unobserved variables; variables enclosed
~in rggggngl;;T;}e—a;ﬁifest, observed variables; the unenclosed variables
represent errors of measurement and residual errors of prediction. A
qu:ygxugttqw_rgprgsents,a hypotﬁesized causa) effect; the arrow points
toward the affected variable. A curved, double-headed arrow. represents

a correlation to which no causal interpretation is attached. Dashed 11nes.
represent associations added to the model in subsequent analyses; these
will be explained below.,

Before proceeding to discuss the model in Figure 1, let me explain
why the discussion {s couched 1in matrjx”notation represented by Greek
letters. These merely follow the tradition established by Joreskog; thus,
learning the notation once pays off when reading any of the basic papers
on confirmatory factor analysis. Moreover, setting up the LISREL
| computer'program 1nv61ves specifyihg the type and s1ze‘of'sevéral matrices,

and involves specifying whether the elements withjn these matrices are

fixed at prespecified values, or are free parameters to be estimated by
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Figure 1. LISREL Model of the Development and Stability of Attitudes Toward
Work and Family; White High School Graduates, 1972 (N=751).
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the program. The program‘s notation for these matrices is representative
of their Greek names; for example, tha§£ (lambda x) matrix, which relates
factors to manifest variables, is referredkia as Lx 1n thg‘LISREL program.
Thus, a little effort 1nvested 1n 1earn1ng the notation system will aid
in reading the LISREL 11terature and in using the LISREL program.

There are eight matrices in the LISREL model, and a listing of
them will help to‘andeastaad the disaussion to follow. One basic distinc-
tion to keep in mind is between exgggﬂggs‘yariables whose causes are
unanalyzed in the model, and and;;gngys Yariaplas, whose causes are
included in the model. Another distinction is made between those matrices
that define the measurement portion of the model, and those matrices that
define the structural portion of the model. The measurement model is
defined by two regression matrices, and two variance-covariance matrices
among errors of measurement:

1) fy (1ambda-y, oE LY) is a p by m regression matrix, which
relates the m endogenous factors to each of the p
endogenous manifest variables;

2) Ay (1ambda-x, or LX) is a q by n regression matrix, which
relates the n exogenous factors to each of the q exogenous
manifest variables;

3) 0, (theta-epsilon, or TE) 1s a symmetrical p by p
variance-covarianae matrix among the errors of measurement
for the p endogenous manifest variables; when one assumes

these errors of measurement are uncorrelated, 0, may be

specified to be a diagonal matrix pf order p;
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4) 9& (theta-delta, or TD) 1s a symmetrical q by q variance-
covariance matrix among the errors of measurement for the
exogenous manifest variables; when one assumes these
errors are uncorrelated, 0, may be specified to be a
diagonal matrix of order q.

The structural model is defined by two additional regression matrices,
and two variance-covariance matrices, one among the exogenous factors,
one among the residual errors of prediction:

5) r (gamma, or GA) is an m by n regression matrix. which
relates the n exogenous factors to the m endogenous
factors; _

6) 8 (beta, 6r BE) i1s an m by m matrix which contains ones
on the diagonal, and on the off-diagonal contains negative
regression coefficients which relate the m endogenous
factors to each other;

7) g_(phi, or PH) is an n by n symmetrical variance-covariance
matrix among the n exogenous factors; and

8) v (psi, or PS) 1s an m by m symmetrical variance-covariance
matrix among the m residual errors of prediction for the
m endogenous factors.

In addition, n, (eta) denotes the 1 = 1, . .m endogenous factors, each

of which has a ¢4 (zeta) residual error of prediction; £ (x1 or ksi)
denotes the J = 1. ..n exogenous factors. Note that the Cj exogenous
-factors may be standardized by inputting correlations and specifying
the.diagonal of g to be ones. The LISREL model does not, however, permit

a priori specification of the variance-covariance matrix among the n,
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endogenous factors. This is not a shortcoming of the LISREL model, but
is inherent to the model's mathematical logic. Thus, LISREL estimates

are unstandardized even when analyzing a correlation matrix; standardized

solutions are available in LISREL by adjusting the‘unstandardized
estimates by estimated standard deviations for the & and n factors.
The exact specification of these solutions is given 1n‘J6reskog and

Sorbom (1978, p. 60).
THE STRUCTURAL MODEL

With these matrices in mind, we may again consider the model
depicted in Figure 1, and then express the relationships in matrix terms.
Figure 1 represents a longitudinal model of the development and stability
of attitudes toward work and family. Respondents in the National
Longitudinal Study of the High School Class of 1972 (see Levinsohn, et
al., 1978) were asked "How important 1s each of the following to you in
your 1ife?"

A. Being successful in my 1ine of work,

B. Finding the right person to marry and having a happy

family,

C. Having lots of money,

E. Being able to find steady work,

H. Living close to parents and relatives,

I. Getting away from this area of the country.'
Items A, C, and E wefe used as 1ndices of atfitudes tdward work; while
items B, H, and (the additive inverse of ) I were used as indices of

attitudes toward the family. (Items omitted from this 1ist dealt with
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measures of community orientation.) The respondents were asked to indicate |
Qhether these statements were either not important, somewhat important,
or veky important. The items were thus scaled or rescaled such that
higher numbers reflected more.importance; but 1tem I was scaled to its
additive inverse. There is 1ittle reason to be concerned about the
ordinal measurement of the manifest indicators; they are assumed to be
imperfect indicators of underlying interval-level scales. It is granted
without question that the ordinal measures are not exactly isomorphic
with the underlying latent variable, assumed to be normally distributed,
and therefore efficiency is lost to the extent that there is a lack of
correspondence. This may be thought of as a form of measurement error,
and in no way suggests that interval-level statistics are inappropriately
applied to these data (see Borgatta and Bohrnstedt, 1980). 2

These attitudes were measured twice (in this application in 1973
and 1974), and the model specifies at time 1 that latent attitudes about
work'and.family are caused by the respondent's ability, sex, and the
socioeconomic status of their family of origin. At time 2, work and
family attitudes are specified to be caused by the previous expression
of these attitudes. Thus, socioeconomic status, sex, and ability are
assumed to cause work and family attitudes at time 2 only to the extent
that these exogenous variables affect the development of the same
attitudes at time 1. Furthermore, no causal nexus is assumed to exist
between work and family attitudes at either time 1 or time 2. The causal
model_among the latent variables {s therefore hierarchical, but not fully
recursive; 1n another context Wolfle (1980a) has called such models

block-recursive.
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The specification of this causal model is arguable. For example,
how realistic is the postulation that the exogenous variables have no
direct influence on work and family attitudes at time 2? In this case,
the postulation is easily testable. One may simply respecify the model
with the appropriate pathslinc1uded, and determine if the parameter
estimates are equal to values within appropriate ranges expected by
chance if the parameters were in fact zero. In another instance, why
specify that work at time 2 depends upon family attitudes at time 1,
and Conversély that family at time 2 depends upon work at time 17
Why not instead specify that work and family at time 2 are reciprocal
causes of each other? 1In this case, there is no statistical test to
fall back upon. To permit both sets of effects creates an underiden-
tified model, which has no unique solution. Thus, one must choose between
models on the basis of one's knowledge about the subject matter, or the
analytic purpose of the model (see Wolfle, 1980a, pp. 203-204). To the
extent that the reader finds these choices implausible, thus will the
results be implausible (regardless of the method of estimation)., In my
view, the advantage of path diagrams and analyses of structural models is
that their presentation requires a degree of explicitness which allows
readers to decide for themselves how plausible or implausible are the
models.

In essence, all we have considered so far in this discussion of the
structural model are the two matrices of regression effects, gamma and
beta. There are two further matrices to consider, phi and psi. Phi is
the symmetrical variance-covariance matrix among the three exogenous

factors; this matrix will have five unknown parameters to be estimated -~
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three covariances, and the variances of the socioeconomic and ability
factors. Here, sex is shown to be a manifest variable, hence its variance
is known a priori. Psi is the variance-covariance matrix among the four
'ci (1 = 1...4). -In an initial estimation, this matrix is assumed to

be a diagonal matrix, implying that none of the residual terms are
correlated. Later applications will relax this assumption.

These relationships may be expressed algebraically:

M = Y1181 * vi1262 * v1363 + L)

n2 Y2151 + v2282 t v23E3 * %
ng = Bany t+ B3anz t+ g,
Ny = Byny * Byana + &y

Rearranging the equations so that all of the eta variables are to the
left of the equality, allows the expression of this set of equations in

matrix notation:
An =TE +¢

where n' = (n), nas n3e Ny)y &' = (81s T20 T3y &y), and €' = (&), &2, &3).

L

B is a 4 x4 matrix such that:

(1.0 0 o 0]
0 1.0 0 0
B [ ]
~ 841 =Bj32 1.0 0
|
_ L"Blol - =By2 0 : LOJ .

I fs a 4 x 3 matrix such that:
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Y11 Y12 Y13

Y21 Y22 Y23
0 0 0

0 0 0

- -’

Furthermore, let ¥ = diag( w,, ¥z, ¥3, ¥,), and:

011
f = 921 022
g31 032 033 s

in which 9y denotes the variance of EJ’ and o (J # k) denotes the

covariance between'é;J and £k13

Estimation of the free parameters of these matrices in LISREL requires
that the user specify for each element in each matrix whether the element
is free (a value to be estimated by the program), or fixed. If the
latter, the user has to specify the fixed value. For example, the
diagonal of g 1s to be fixed at unity, but other elements of 8 and some
in rare to be fixed at zero. Furthermore, o, 1s to be fixed equal to

the variance of the manifest variable, sex.
THE MEASUREMENT MODEL

In the structural portion of the model, the vectors n and ¢ are not
observed, but y' = (y] - .y]z) and x' = (xi .. .xg) are observed, such

that: Y

/

RS
u
[ 4
g
P |
-+
rm
-
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a;d

X=NE TS
1n which € and f are vectors of errors of measurement in y and Xs
respectively. These errors of measurement represent both specific and
random components of variation (Alwin and Jackson, 1979). The vectors
€ and f are assumed to be uncorrelated with n, 5, and Cs but may have
elements internal to each which are correlated to other élements of the
same vector, (LISREL does not permit elements 1h € to be correlated with
elements in f, but this is easily overcome by specifying all of the
variables tp be endogenous.) The matrices fy (12x4) and A (8x3)
are regression matrices.

In this analysis, socioeconomic status of the respondent's family
of origin 1s indexed by father's occupational status, father's educational
attainment, and mother's educational attainment. These manifest indicators
were taken from the NLS data file, V2468, V1627, and V1628, respectively
(see Levinsohn, et al,, 1978); these measures were composite variables of
the father's Duncan (1961) socioeconomic index, and father's and mother's
education, This model specifies that these thrée variables have a common
cause, assumed to be familial socioeconomic status, The model is not
deterministic, however, and assumes that the underlying factor does not
completely determine the observed variation in the three manifest '
variables; this specification is represented by the three 61 (1 =1, 2, 3).
These error terms have been loosely called errors of measuremént, but 1n
fact contain both random and specific errors of prediction from the

underlying factor.
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Alwin and Jackson (1979) have discussed the several measurement

- models that are applicablé to such models. There is therefore no need to
go into such a discussion in detdil. A brief review, however, will |
sensitize us to éssumpt1ons being made about the models of measurement.

Consider the three equations from socioeconomic status:

Xp = A6y + e tou
Xy = 2218 + ex + uy
X3 = Az31&) + eg +tu; ,

in which the X; are the three manifest variables specified above; Ail are
regression coefficients; £, is a latent factor of socioeconomic status;
e, are random components of error; and u; are components of error specific
to éach manifest variable. In practice, the e, and u; are inseparable;

all one is able to estimate are the 61 = ey + uy .

A metric for £; 1s imposed by setting A;; = 1.0; as a result the
Ail have arbitrary levels, but regardless of which one of the xi] are
specified to be unity, the ratio of the A to each other will be
constant. If the equations above are squared, and expectations taken,

one obtains:

2 2 2 2
g mgs 4 gL + ¢
X1 & e uy

o? 'AEWE‘ + g2 + g2

X2 e; U2

2 wi2,0? + 02 4+ o2
Jg g [+) o] .
“X3 al £ €3 uj

This §s called a common-factor measures model; for each manifest variable
]

there exists a component of error that is due to random error, and a
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component specific to each manifest Qariable. LISREL assumes as the most
general ca se the common-factor modei, which 1s hot a elweelenl +ra€.sCore
model. Th erefore, if one wants to interpret the coBFFiCinte ih te'ms oF
classical true-score theory, one has to make restrictiwa acemintighs
about the nature of the error term. >J6re§kog (1971) wed #Ha Cdninion-
factor mod el to classical true-score theory by defining tha ¢Gnaeferic
measures m odel. ~In such a model, each of the mani feot variabh1iad s X%

is assumed to have a separate true score, &yy» whith aka a2kfarkly
correlated with each other, with the fmplication that & Pahddh barih12?

£ys exists such that all of the €14 are linearly related ta it:

PR TR
By making the further assumption that the errors across measures are
entirely random (1.e., u; * 0), and because x; = &1y + ay» 1+ 11 on'S
that: '
1f these three equations are squared, and expectations taken, one obtains:

2 2 2
g =g + 0
X1 g1 e

sz 21761 °e2

2 w32 g2 + g2
g o) .
X3 A31%, 7 %,

Alwin andJackson (1979) suggest that it {s difficult to imagine a latent
factor scpure that all variation between 1ts mand Fest fhdienrnrs 15 4Uh
to the fitor alone, The congeneric measures model ie thue ah 1dhal t°

be soughiafter (Bohrnstedt and Borgatta, 1900). As Wa Will Sae Helok s
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the model being discussed in this paper exhibits some congeneric
constructs, but others definitely fall short of the ideal,
If one 1s willing to make a further restriction in the measurement

model, namely that-A;; = Xp; = A3, the model becomes:

2 = a2 2
a =g 4+ g
X €1 e

Q
N
[

<
N

+

Q
[

Q
[N
L]

Q
~N

+

Q
N

which is called a tau-equivalent measures model. The LISREL program
allows users to specify, in addition to fixed and free parameters, para-
meters that are equivalent. Thus, the tau-equivalent model may be
estimated by specifying Ay; = A,; = A3;, on the assumption that uy = 0,

=0 for all { ¢ J.
J

Finally, by specifying not only that uy = 0, and that Xy, = Ay; = A3,

which implies that s
i

but 1n addition that ogl = céz = 023 » one obtains the parallel measures

mode]:

2 2 2
0 = g +0
Xy &1 e

2 2 2
o s g + 0
X2 &1 e

2 2 2
o] =g + g .
X1 £1 e

This 1is the most restrictive, least seldom seen in application, of the
measurement models. | |

0f these models, this analysis assumes that_father's occupational

status, father's education, and mother's education are congeneric measures
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of socioeconomic status. This assumption implies that uy (1 =1,2,3)=0;
that is, the only error of prediction is random, A test of this assump- -
tion 15 possible to the extent that the overidentifying restrictions in the
measurement model may be relaxed by permitting covariance parameters

among measurement error terms to be free parameters in the model.

A second exogenous variable, sex, is included, not as a latent
factor, but as a single manifest variable. This variable is a composite
measure of sex (V1626) taken from the NLS data.file (Levinsohn,»ef al.,
1978). It is 1ncorporated.1nto the LISREL model by specifying:

Xg = &2
that is, A,,=1.0, and &, = 0.

Several ability subtests were administered to the NLS respondentg
during their senior year of high school. Four of these, reading (V618),
letter groups (V619), vocabulary (V614), and math (V620), are assumed
to be congeneric measures of a latent ability factor,

The measures of the endogenous latent factors, work and family, have
been described above, Here we adopt a common-factor measures model,
because it seems'unlikely that the uy = 0, since errors of measurement
of a particular attitude at time 1 are likely to be correlated with
the corresponding errors at time 2,

The measurement portion of the model is defined by 20 equations,
relating each of the 20 manifest variables to its respective latent factor.
These have been omitted here; the measurement model is more easily
represented in matrix notation, For the exogenous variables, the

appropriate equation is:
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tx
i
=
¥
o+
On

wXao ~
in which x' = (x4 .. .5 Xg)s €' = (&1, €25 £3)s 8" = (61,00, &g),
and
1.0 o 0
A2i 0 0
A3l 0 0
0 1.0 0
T 0 0 1.0
0 0 A3
0 0 A73
L0 0 Ag3 .

. Furthermore, let 04 be the symmetrical variance-covariance matrix among
the . (1 =1,..8)., Initially, this matrix fs assumed to be diagonal
(a1l off-diagonal elements are fixed at zero) with the further specifica-

tion that o =0,

Suy

For the endogenous varfables, the measurement model is defined by:

y = An+

tnwhich y' s {yys0aun y

*tm™

a): n' = (ﬂ[n Nze N3» m,). CAN (Cl! v sy 512)3
‘ " ~

and
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1.0 0 0 0 —l

\gy O 0 0

A5y O 0 0

0 1.0 0 0

0 s, O 0

0 a2 O 0
s
4 0 0 1.0 0

0 0 g3 O

0 0 a3 O

0 0 0 1.0

0 0 0 s

o 0 0 Mz |

Furthermore, let 98 be the symmetrical variance-covariance matrix among
the € (1 =1.,..12)., Initially, this matrix 1is assumed to be diagonal.
This completes the definition of the initial LISREL model. Below
we will consider certain alterations of the model, some to be made on
practical grounds, some to be made on the basis of more theoretically

oriented concerns.
IOENTIFICATION OF THE MODEL

Before the model {s estimated, thé identification problem must be
examined. In the first case, an equation such as: |

X = AE +38

cannot be directly estimated, since everything on the right side of the
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- equation is unobserved. Thus, the covariance structure of the observed
variables is analyzed in terms of the postulated causal structure. If
the equation above is multiplied by x', and expectations taken, one

obtains the variance-covariance matrix of x:

T = B = EL(LE 4 )(AE + 6)']

= +
Ay @A, + 6

In a more complicated way, the variance-covariance matrix of Ys and the
covariance matrix, Exy’ may be derived (see, for example, Lbng, 1976).
Analysis of the model in terms of covariance structures does not,
however, resolve the identification prqb]em. The model will be under-
identified unless certain constraints are made. Specifically, there must
be no more free parameters than there are elements in the lower triangle
of the observed variance-covariance matrix, 16c1ud1ng the diagonal.
If there are t free parameters in the model, then:
ts(p+alp+ra+).,
In this model, p = 12 and q = 8; thus t must be less than or equal to 210.
As specified above for the structural portion of the model, there are 4
free parameters in §. 6 1n E. 5 in f. and 4 in ?. In the measurement
portion of the model, there are 8 free parameters in A , 5 in Qx'

~y

12 {n 0:’ and 7 in © Thus, t = 51, which 1s clearly less than 210.

5
Unfortunately, this condition is necessary, but not sufficient, for
identification.

In addition, each and every equation in the model must be identified.
In the measurement error portion of the model, this may be accomplished by

setting one element in each column of the two A matrices to some fixed
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valué, usually 1.0.4 This becomes the reference indicator, and serves to
provide a metric for the underlying factor. One may alternatively fix
the variance of the underlying factor; this is commonly set to unity when
analyzing standardized-solution models. Notice, however, fhat this 1s
possible only for the exogenous factors in the ¢ matrix. The variances
of the n factors may not be fixed. Thus, reference indicators must.be
specified for the‘endogenous factors even when analyzing ‘a corre]ationr

- matrix. In each column of fx and fy there must also be one fewer zeros
than there are n and m factors respectively. Examination of Qx and Qy
reveals that there is a 1.0 in every column, and at least 2 zeros in each
column of fx and 3 zeros in each column of ﬁy‘ Satisfaction of these rules
1s st111 only a necessary condition for identification.

The structural portion of the model must also be internally
identified. This means that excess degrees of freedom in the measurement
model may not be used to identify an underidentified structural model.

In this case there are (%)(m + n)(m + n + 1) = 28 variances and covariances
in the structural model, and 19 free parameters; thus the structural

model satisfies the counting rule for identification. Unfortunately,

it 1s often difficult to determine if every parameter i1s estimable, and
there exists no general set of rules that applies to every model. Rules
have been developed for certain types of models (see references in Joreskog
and S8rbom, 1978, p. 10), but the solutions are often tedious.

Users of LISREL should beraware that the program does provide
solutions for underidentified models. Underidentification simply means

that there 1s no unique solution to the model; the LISREL program simply

stops when 1t finds one of the solutions. Use different starting values,
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and one would obtain another solution. This foible of LISREL has caught
at least one author unawares, who published his substantive interpretation
of an underidentified model. Fortunately, LISREL does provide a check

for identification, The iterative subprogram that calculates the
standard errors of the e§t1mates begins by calculating the information

matrix for all the independent unknown parameters.

[f this matrix is positive definite it is almost cértain that
the model is identified. On the other hand, if the information
matrix is singular, the model is not identified and the
following message will be printed

THE n-TH FREE PARAMETER MAY NOT BE IDENTIFIED .
This is a strong indication that the n-th free parameter in the
pattern vector is not identified. The n-th parameter is usually
the last parameter in a group of parameters connected in an

indeterminacy (Jdoreskog and S6rbom, 1978, p. 11).

As a result, it is recommended that one always request on the program's
output parameter card that the standard errors be calculated and
printed. Publishing these standard errors is in good taste, and

should also be encouraged.
ESTIMATION AND TESTING

The independent parameters in the model are estimated by the method
of maximum likelihood estimation as described by Gruvaeus and Joreskog
1]
(1970). This method assumes the distribution of (y', x') {is multivariate

normal; the loss of efficiency by violations of this assumption has not
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yet been established. The estimation problem 1s essentially that of
fitting the variance-covariance matrix imposed by the model to the sample
variance-covariance matrix. A fitting function (see J6reskog and S&rbom,
1978, p. 13) is minimized by using first and secqnd order derivatives,
-and converges rapidly from most arbitrary starting points. If there

are several local minima of the fitting function, however, there is

no guarantee that the method will converge to the absolute minimum,

Users are well advised to reestimate models with different starting
values in case the program has converged to a local minimum of the
fitting funcation.

When the maximum 1ikelihood estimates of the parameters have been
obtained, a X2~measure (as distinguished from X2, which 1s the sampling
distribution to which X2 1s compargd) of overall goodness-of-fit of the
model is calculated. This statistic may be regarded as a test of the
specific model against the most general alternative that the estimated
variance-covariance matrix 1s any positive definite matrix. The 1ikeli-

hood ratio X2

statistic 1s (N/2) Fo » where Fy 1s the minimum value of
the fitting function, and N {s the sample size. In large samples this
statistic is disfributed as X2 with degrees of freedom:
df = (k)(p+a)p+q+1)-t ,

where t 1s the number of independent parameters. This test tells 1f the
model fits or does not fit, but 1f the latter cannot tell where the
model does not fit. |

- The'likeliﬁood ratio G statistic 1s sensitive to even small

deviations from perfect fit. Particularly when the sample size is large,
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1t 1s common to find large, or even very large, values qf x2 relative to
the degrees of freedom. When the sample size 1s large, one common rule
of thumb 1s to adopt as appropriate a model in which X2/df 1s less than 5.

Another alternative 1s to fit a more restrictive model against a
less restrictive model, and to compare the resulting two X2 measures.
The difference between the two 11kelihood ratio X2 measures {s distributed
approximately as x2 with degrees of-freedom equal to the difference in the
number of 1ndependent parameters in the two models. If there is a large
drop 1in x2 from one model to the other relative to the difference in
degrees of freedom, then the changes made in the second model represent
a real improvement in fit. These procedures will be 1llustrated below;
Bentler and Bonett (1980) have investigated significance testing in
models such as these.

Sometimes changes 1n models can be suggested’on the basis of logic.
For example, the model under consideration in this paper postulates no
direct effects from the three exogenous factors to work and family
attitudes at time 2. If the initial model does not fit, perhaps 1t
would be wise to relax this restrictive assumption, and see 1f the new
model produces a real improvement in the fit. In the measurement portion
of this model, the initial model as specified assumes that the errors of
measurement for work and family attitudes are uncorrelated from time 1
to time 2. However, 1t 1s often the case that such errors of measurement
are correlated. Accordingly, a new mode} may be estimated with these
cdvar1ances included as free parameters. The difference in X2 measures

would tell us whether the errors of measuremeht were in fact correlated.
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Aé other times, changes in the model may be suggested by an inspec-
tion of the first-order derivatives of the fitting function with respect
to the fixed parameters. This table i1s available in LISREL, and it is a
good practice to request its printing. Sodrbom (1975) has published a
useful example descfibing how the procedure works in practice. O0One may
want to relax thé restriction in the model which is least probably zero.
The table of first-order derivatives suggests which fixed parameter if
set free will give the largest decrease in the fitting function. If
doing so does not violate the logic of the causal structure, one should
find the fixed parameter whose absolute value of its first-order derivative
1s the greatest. A new model is then fitted with the restriction removed,
and the‘x2 measures from the two models compared to see if the less
restrictive model provides a significant improvement 1in fit., In any
event, 1t 1s wise to keep in mind JGreskog's advice, "Ultimately the
criteria for goodness of the model depends on the usefulness of i1t and

the results 1t produces (J¥reskog, 1969, p. 201)."
THE DATA

Data for the model depicted in Figure 1 were obtained from the
National Longitudinal Study of the High School'CIass of 1972 (Levinsohn,
et al., 1978). The NLS was designed to provide data on the development
of the educational, vocational, and personal aspects of the lives of
adolescents as they make:the transition from high school to the adult
world. The population analyzed here includes only those white respond-
ents who completed the study's ability tests in their senior year of

high school. There were 12,844 such respondents. From this group,
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a random subsample was se]écted, and correlations calculated for all
those with 1istwise present data. The analysis to be described below
Was thergfara based on 751 white respondents. The correlations and

Standard daviations for the 20 variables are shown in the appendix.5
FITTING THE MODEL

Becauses LISREL i; an iter§t1ve program, 1t must be provided with
Starting valyes far all of the elements in every matrix not defined to
be'efthéfﬁqn identity matrix or a zero matrix. The default value
agsymed by the pragram is zero, so only those starting values for
non-zerp fixed parameters, and free parameters need be specified.

These starting values may be chosen arbitrarily, but must in the first
{teration produce an estimated variance-covariance matrix which is
Positive dafinite. If this does not hold, the program terminates
abnormally,

Selecting appropriate starting values 1s not always easy. Because
the eorrolation coefficiants of one variable with two other variables
restrict the range of the correlation coefficient of the second and
thiry variables, 1t is possible to generate estimated correlations or
Covarianeos in the first iteration which are {internally inconsistent,
Indeed, with the model at hand several different sets of starting
values were required before the program would run, It fs a good idea
to create simple summated factors of the variables in the analysis, and
use OLS regression to estimate appropriate starting values of LISREL.
Not only does this help avoid the problem of.prOQucing a nonpositive

matrix, but it reduces the computer time of LISREL by providing it
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starting values more 11kely to be close to those in the final solution.
(By the way, a mistake I f1nd_myse1f repeating 1s to forget that
elements in g are reversed in sign.)

We will now turn to the presentation of results for the model
described abbve. Sumnary goodness-of-fit statistics will be presented
for a number of specifications. ‘When a model 1s found deemed to be
best, 1ts parameter estimates will be discussed in substantive terms.

The summary measures of goodness-of—fit‘are shown in Table 1.
Model A of Table 1 assumes errors of measurement are entirely random,
and imposes a causal structure among the latent factors as shown in

2 \alue for this model is 715.29 with

Figure 1. The likelihood ratio X
159 degrees of freedom. At first blush, this value suggests the model
does not fit the data very well, but there 1s more wrong with this

model than a mere lack of fit. An examination of the LISREL estimates
(not shown here) reveals that'the residual variance for family at time

2 is a negative'number. This occurrence, all too frequent, 1s known as
the Heywood Case (aprocryphaj]y after the Rev. Christopher Heywood, who
kept comihg upAwith a negative number of angels who could stand on the
head of a pin). Variance estimates zero or greater are logically
permissable; negative values are not. It 1s entirely possible, however,
as 1n this case, for maximum 1ikelihood estimates to converge at a value
less than zero, The standard fix for the Heywood Case 1s to constrain
the offending variance to zero, or a small positive number, In this -
instance, y,, was set to zero, and the model reestimated. Substantively,

this means that family attitude at time 2 is assumed to be perfectly

- predicted by some l1inear combination of family and work attitudes at
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Goodness-of-Fit Statistics for Models of Development and
Stability of Attitudes toward Work and Family

Mode] X2 . d.f. Prob. &X®  d.f. Prob.
A. Random errors 715.29 159 0.0
B. Random errors; y,, =0 744.81 160 0.0
C. Random errors; y,, =0;

v, free 733.97 159 0.0 10.84 1 .001
D. Random errors; ¥y, =0; _

Y21, Y33 free 731.02 158 0.0 2.95 ] .086
E. Random errors; w,, =0; .

Y21 Yy3, T free 728.00 152 0.0 5.97 7 .543
F. Covariance between work

and family errors time

1 and time 2; ¥y =0;

vy free 333.85 153 0.0 400,12 6 0.0
G. Model F, with 0531 free 321.57 152 0.0 12.28 1 .001
H. Model G, with 0.__76 free 315.13 151 0.0 6.44 1 011
[. Model H, with 0cl free .313.04 150 0.0 2.09 ] .148

h 1
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time 1.. The new result 1s shown 1n Model B of Table 1. By setting gy, = 0,
one degree of freedom has been gained, and the 1ikelihood ratio X2 1s
744,81 with 160 degrees of freedom. A1l of the LISREL estimates in the
new model are logically permissable, but the X2 value suggests a poorly
fitting model. How should the model be changed to see 1f a betfer
fitting model 1s possible? One reasonable strategy, suggested by Kenny
(1979, p. 161), 1s to fit a just-identified structural model. Any lack
of fit of the hode] to the correlations could therefore be attributed to
specification errors in the measurement model. This was done.in stages.
An examination of the first-order derivatives among the structural
matrices produced by Model B suggested that the cov3r1at10n between

6 In

51 and g3 (1.e., ¢21) was the value most 11kely not to be zero.
substantive terms, this indicates that the three exogenous factors have
not exﬂ]ained all of the covariation between family attitudes and work
attitudes at time 1; 1t 1s 11ke1y that the multiple partial correlation
between WORK73 and FAMILY?73 is nonzefo. Permitting this parameter to be
freely estimated in a new model, Model C, provides a significant improve-

2

ment 1n the fit of the model; the X~ value 1s 733.97 with 159 degrees of

2 measures for Models B and C 1s

freedom. The difference between the X
10.84, which 1s distributed as x? with one degree of freeaom; the value
1s significant.

An examination of the table of first-order derivatives from Model C
revealed that, among the fixed structural coefficients, yj; was the new
value most 11kely not to be zero. This 1s the direct effect of ability
on work at time 2, Model D was estimated with this value set free, but

the improvement of fit between Model C and Model D was not significant.
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Model E was estimated (as suggested by Kenny, 1979) with the structural
portion of the model completely identified. These results reveal two
items of interest. First, the X2 value of 728.00 suggests a severe

lack of fit, but because the structural model is completely identified
‘(save for ¢y, = 0) we now know that the lack of fit must be in the
measurement portion of the model. Second, comparing the X2 measures of
Model E with Model C reveals that the seven additional parameters set
free in Model E do not yield a significant 1mpkovement in fit. That is,
the seven additionaf parameters differ from zero only as a matter of
chance. Thus, our initial postulation that the background factors do
not directly influence work and family attitudes at time 2 is confirmed.
Furthermore, the covariance between work and family attitudes at time 2
is almost completely explained by the previous expression of these
attitudes. The only change we have made in the structural portion of the
model is to allow the residuals of work and family at time 1 to covary;
this merely represents the inability of the three exogenous factors to
completely explain their covariation.

Model C represents the best fitting of the structural models, but it
must be admitted that it does not fit very well. The model assumes that
errors of measurement are random, but the model's lack of'fit suggests
that the assumption is not tenable. The model contains the same variables
measured at two different times. It is well known that when the same
measuring instrument is used at two or more occasions, there is a
tendency for the errors in each variable to covary over time because of

memory or other re-test effects. Accordinély, Model F was estimated with

the errors for each of the three work manifest variables allowed to covary
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H

with the eduiva]ent errors for the questions repeated at time 2; the
equivalent parameters were also set free for family attitudes. Compar-
i{son of the fit of this model will be made to that of Model C, since
Model C was the accepted structural model. The difference in X2 measures
was 400.12 with 6 degrees of freedom. This is a major improvement in
fit, and suggests that we were well aqvised to consider the possibility
of correlated efrors over time,

It 1s sti11 possible, of course, for there to be other sources of
covarfation amoﬁg the errors of measurement. For example, respondents
who express a desire forbeing successful in work may systematically
overidentify that response with the desire to have money. Thus, the
errors of measurement for these two questioﬁs will covary to the extent
that the underlying factor is unable to explain the covariation between
the manifest indicators. The choice of example was prophetic. An
examination of the first-order‘derivat1ves of the fixed parameters in
Model F revea]ed 6c31 was the value most 1ikely not to be zero; this is
the covariation between the questions at time 1 about being successful
in work and being able to find steady work. Model G was estimated with

2 measures between Model

this new parameter set free. The difference in X
F and Model G was 12,28 with one degree of freedom-- a sidnificant
improvement. in fit. |

The process continued. The first-order derivatives for Model G
‘were examined with the result that 0g76_was_discovered to be the value
most 1ikely not to be zero., This is the covariation between the errors
for the question about moving away from one's family, asked at time 1,

and the question about being successful in one's work, asked at time 2.
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One can see how this may be plausibly explained; resbondents who
systematically overstated or understated their desire to move away at one
time may be those who overstate or understate their desire for success
at another time. If I had been unable to construct a plausible explan-
ation, I would not have estimated Model H, which allowed this parameter
to be free. This decision obviously went beyond the statistical
information available (see Blalock, 1972, p. 448), and reflects my belief
that no model may be said to fit, which produces un1ntefpretable results.
Model H, when compared to Model G, suggests a significant improve-
ment in fit. An examination of the first-order derivatives from Model H
revealed e)el’1 was the value most 1ikely not to be zero. Moqel I was
therefore estimated with this parameter set free, but the improvement of
fit over that of Model H was not significant. Thus, Model H is accepted
as the best fitting modél tq explain both the structural and measurement

properties of a model of the development and stability of attitudes

toward work and family.
EMPIRICAL RESULTS

This section presents the results from the measurement and structural
analysis of Model H. The measurement properties will bé discussed first.
These results are shown in Table 2, and mirror the LISREL solutions
reproduced in the appendix, which also contains the LISREL program set
up used to generate the parameter estimates. Table 2 contains the
parameter est1mate§ for the true score variances, error variances, and

the slopes of the manifest variables as regressed on the latent factors.
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Table 2. Model H Measurement Parameter Estimates

Latent Manifest True Score Error
Factor Variable** Variance Variance Slope Reliability
Work 73 V685 .018 170 1.00% .096
V687 : .286 1.458 18
V689 .244 '2.546 .323
Family 73 V686 .019 .160 1.00* .106
V692 .355 1.477 .105
V693 .329 .679 .026
Work 74 V1573 .037 .164.. 1.00* .184
V1575 .308 1.446 .201
V1577 .143 2.285 575
Family 74 V1574 .035 161 1.00* 79
V1580 .368 1.228 125
V1581 .382 2N .007
5°§12§32“°m1° V2468 204.782 340.066  1.00% .376
V1627 172 .083 .891
V1628 .662 .041 .342
Ab111ty V618 59,244 27.346 1.00* .684
V619 44,007 +,705 401
V614 42.170 .891 527
V620 37.382 .897 .560

* Fixed parameter.

** Variable labels from Levensohn, et al. (1978).
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The last column shows the estimated reliability coefficients. These may
be estimated by:

2 292

A“J(ojlo'i)
(Wolfle, 1980b), where Afj 1s the estimated slope of the i-th manifest
variable regressed on the j-th latent factor, o§ is the estimated variance

of the j-th latent factor, and cf is the sample variance of the i-th

manifest variable; or they may be ‘estimated by:

2)

()\fJ 03)/.( A%j o§ + o3

(J6reskog, 1971), where A$J and o2 are as previously defined, and 02 1is

J i
the estimated error variance (from either the ee or 6, matrix) of the

§
i-th manifest indicator. These two expressions are algebraically equiva-
lent, and 1n either case measure an indicator's reliability as the propor-
tion of 1ts expected variance due to the variance of %ts corresponding
latent factor, or true score.

The estimated reliability coefficients for work and family attitudes
are very low, We have already seen that the measurement errors contained
unique components that were correlated from one administration of the
survey to the next. We now see that there are also rather large random
errors associated with these variables, There is, of course, some
variance explained among the manifest indicators by the latent true
scores, and to that extent there do seem to be underlying factors which
measure one's general attitudes toward work and family. Insofar as
“measuring these constructs is concerned, however, these manifest variablés

do not do a very adequate job. Most of the yariance in the manifest indi-

cators is explained by errors of measurement, both unique and random.
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Amoag the exogenous factors, we have already confirmed that
father's occupation and education, and mother's education, are congeneric
measures of socioeconomic status; that is, we found evidence to suggest
their errors of measurement were probably just random. The same may also
be said of the four indicators of ability. Examining the estimated
reliabi11ty coefficients, one sees that father's education is by far the
most reliable indicator of socioecondmic status; this result supports
a similar analysis reported by Wolfle and Robertshaw (1981). Among the
indicators of ability, the reading and math subtests are more reliable
than the letter-group and vocabulary subtests; this result also 1s
reflected in other analyses incorporating these variables (Wolfle and
Lichtman, 1981; Wolfle and Robertshaw, 1981).

We turn now to the discussion of the structural portion of Model H.
These results are shown in Table 3. When the development of attitudes
toward work are considered, i1t may be seen that the effect of socio-
economic status is not significant. The variable, sex, was coded 1 = male
and 2 = female; therefore the negative coefficient indicates that women

consider work values less important than do men, ceteris paribus. The

effect of abi1ity 1s negative; that 1s, the greater one's score on the
abi11ty factor, the less importance 1s attached to work values. Attitudes
toward family values are also negatively influenced by ability and socio-
economic status. Women, however, place more importance on family values
than_dq men. These exogenous variables explain about one-fourth of the
variance in work and famiiy attitudes, but do not:contribute to-the
further measurement of these variables once previous measures of the same

attitudes have been controlled for. Both work attitudes and family attitudes



Table 3. Model H Structural Parameter Estimates
Independent Factors
Dependent Proportion
Factors Socioeconomic Explained
Status Sex Ability Work 73 Family 73 Variance
Standardized Coefficients
Work 73 -.052 -.350 ° -.276
Family 73 -.249 .241 -.255
Work 74 --- --- --- .780 046
Family 74 - - - --- --- .053 - .978
Unstandardized Coefficients*
Work 73 -.000 -.094 -.005 22
(.001) (.020) (,001) .
Family 73 -.002 .066 -.005 26
(.001) (.022) (.001) *
Work 74 --- --- --- 1.124 .065 65
(.213) (.105) .
Family 74 --- --- --- .074 1.329
(.159) (.255) 1.00

* Standard errors shown in parentheses.

Sy
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e relatively stable variables (that is, the latent factors, not their

M2 ifest indicators); the correlation between the worK fdCiwea aniglimn Ko

this analysis is .799, and the correlation between Tamily fauiwie YV

time'is .999 -~ a very stable construct, indeed.

CONCLUSION

Previous introductory discussions of L ISREL (e.g., Joreskog, 1974;
Long: 1976 : Joreskog and Sérbom, 1978) have produced a Humb&r wr uo,mg13§
cover’lng a range of possible applicatfons, but none Have yOws 4us0 #ln

deve1opment and estimation of a single model t0 the ext€ns wBpHE e
here: The lengthy specification of a single model ‘may have a=€wsn
tedious to some; I hope jt proves useful to others.

I would 1ike to close with some ref1¢931qns on tne utility of
LISREL. Ker]inger (1977) has said that we are in the midst 6f & PayGrd-
t1on in research th1nk1ng, and cited LiSREL by way of exdmpie. 5 2l
latﬁr Cooley (1478 reminded us that knowing one's subjeCe wapsah Je
very much more important than using any particular set of we SN iy ey 1
t°o1s. Using LISREL 1s an ald to thinking about and analyaiNy ewnis
COmplex causal models, but 1ike many new analytic techniquus virig +hn
r1sk of being faddishly adopted to implausible app11CGﬁ46Hé. S 4na
LI%REL presymes, .one, has. multiple 1nd1cators of undewwying v-ulab1,+ ypich

Are °f Fhrprek1%‘1 'ntere°t- " This means that one krows befdhmiahi dhith

1a1ces accurately measure variables of theoretical 1hterenss ww +hnt xhh

ha! obtained alternative measures of underlying tratts. Thia indy Man
Conductine panel surveys as reported in this paper, or uoiny witsrnd+iva
Maans of collecting data at one point in time (e.g., Mailod guCetimnriaives?

tatenhone surveys, and personal interviews). In any event, ¢he x911ar+idn
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of such data 1s likely to be expensive. In other words, like Leontief's
input-output charts of the economy, LISREL may not simply be used in
place of OLS regression or exploratory factor analysis, but requires
changes in the data collection process, and the way researchers think
about their analyses. Such changes will not come easily or cheaply, and
we are likely to see impTausible qnd incorrect ana]yses'using LISREL
along the way. Yet in thé Icng-run,'I share Kerlinger's (1977)
optimism, LISREL provides a synthesis of analytic procedures formerly
considered disjointly, and in applicable situations will allow the
analysis of theoretical models not previously estimable. The accumula-

tion of knowledge of educational relationships will benefit‘according1y.
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FOOTNOTES

L This is a revised version of a paper originally presented at the
annual meetings of the American Educational Research Association, Los
Angeles, 1981. I would like to thank Alan Acock, Jeffrey Danes, and
anonymous referees for their comments on an earlier draft of this paper.
I am also indebted to Dianne Robertshaw and Barbara Patteson, who will
be found between the lines. |

2 the. however, that these models assume-a linear relationship

between the ordinal indicators and the (assumed to be) 1nterva]1y
scaled latent variable. Little is known about how robust this
assumption of linearity is.

3 Normally, one could designate the elements of ¢ as ¢;,, etc.,

but since variances are usually designated by lower-case sigma, I have
done so here.

4 Which parameter is set to unity will affect the absolute values

of the other free parameters for the same latent variable, but not their
relative magnitudes. For éXamp]e. if Ay = 1.0 in a two-variable model,
and A, was found to be .8 upon estimation, then if X, were set equal to
unity, A; would be found equal to 1.25. Thus, Xx;/Xx; = X\{/X; regardless
of which parameter was set equal to unity.

5 The appendix has not been published with the body of this

manuscript, but may be obtained upon request by writing to the author:
Lee M. Wolfle/ College of Education/ University City Office Building/
Virginia Tech /Blacksburg, Virginia 24061 ,

6 Joreskog has recently discovered that the magnitude of the
first-order derivatives depend on the magnitude of the data and the
parameter values. As a result, the first-order derivatives are not
standardized, and are not strictly speaking comparable. Unfortunately,
there now exists no readily available altegnative to the first-order
derivatives. However, when the next version of LISREL is released,
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the program will provide a matrix of the ratio between the squared first-
order derivative and the second-order derivative, which provides the
best index of the fixed parameter which when relaxed will maximally
improve the fit. In any event, relaxing parameters should be done only
when it makes substantive sense to do so. See Karl G. Joreskog,

nBasic issues in the application of LISREL," DATA, 1981, 1 (June): 1-6.

7 This is not strictly true, since one may specify each latent
variable to be perfectly measured by a single manifest variable. But
such models are just special cases of the general LISREL model, which
unlike other methods is unique in its ability to estimate both measure-
ment error parameters and structural parameters simultaneously.
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TIME TO SECURE EMPLOYMENT
ANALYZED BY =
SETWISE REGRESSION ANALYSIS

JOLE A. WILLIAMS
JOHN D..WILLIAMS

Abstract - Graduates of Trinity (Texas) University were surveyed regarding
the length of time necessary for them to secure thelr first post-baccalaureate

Ay 3

employment. Five different sets of predictor variables wereyuséd: bio-
graphical variables (age and sex); ethnic background and socio-economic
status; academic major and percepticn of major and Trinity University;
employment seeking behaviors (salary, number of resumes, number of inter-
views, and number of offers) and geographic and size of employer preferences.
The employment seeking behaviors set was clearly the most important set of
predictors. Those who tock Jonger to find employment generally worked

harder, sending out more resumes, having more interviews, but receiving
Tower salaries. | '

During World War II and for many years thereafter, the need was not
great for placement assistance for graduating college students. However,
with the onset of economic recession in the late 1960's and early 1970's,
desirable employment was more difficult to obtain. Another change occurred
affecting the number of available jobs usually filled by the previously
small number of college graduates. With the availability of many forms of
3f1nan¢1a1 aid, the economic and socfologic level of the members of the student
bodies changed considerably. People who fonmer]y could not have afforded to
attend coliege were now enrolled, were graduating and entering the already

shrinking job market (Wolfbein, 1970).

55
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: ,'InLaddition,-the discontihdance of the draft also had an affect on the

'Jfﬁumber;bf-stddents‘seeking employment after obtainihg a baccalaureate degree.

| With the state of the national economy'and the abundance of college
graduates, employers became more selective. Therefore, recruiters of college

graduates were faced with the task of finding the best qualified job applicants

from a labor pool that was a]mo;t unlimited from their viewpoint;

A:few favored career'fje]ds were stil] experiencing immediate employ-
ment but they were the exceptions. Some majors, particularly in the liberal
larts, bUt also 1ncluding fields such as biology and pSycho1ogy,‘are ekperiQ :
encing difficulty in obtaining emp1oyment in their oWn field, and after some
failures in obtaining suitable employment in their chosen career'f1e1&, opt'
for unrelated employment. ' : '

The purpose of this study was to determine if there is a significant
relationship between length of time it takes college graduates to obtain
employment and job related variables. The group survéyed in this study was
the Trinity (Texas) University graduates who had received bachelor's degrees
in December 1978, May 1979, and August 1979. A questionnaire was senf to

each of the Trinity University graduates; 370 useable questionnaires were

returned (65 percent).

The Criterion: Time to Secure Employment
The questionnaire required the respondent to choose a predetermined
category in regard to length of time to secure employment. In turn the time

variable was transformed into a continuous variable as follows:
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Value " Time to Secure Employment

0 | Employed before graduation

1 1 week after graduation

3 2-4 weeks affer graduation

6 | 5-7 weeks after graduation

10 | 8-11 weeks after graduation
20 3-6 months after graduation
39 . 6-12 mgnths.after graduatfon_
52 : Over one year after graduation

Not included in analysis Attendihg graduate school

65 UnempToyed |

Several points should be made about the coﬁstructed criterion. For
values up to Y = 39, the criterion represents Qeeks after gréduat?on that
employment was secured. Those who secured employment over a year after
graduation should cause little distortion, since the maximum time since
graduation would have been less than 14 months. Graduate s;udents were
excluded from the analysis for the simple reason that no acceptable value
could be applied uniformly across persons and programs, Some people may
go on to graduate school because they see 1ittle likelihood of securing
employment util1zing the skills they learned as an undergraduate. At the
other extreme, some students may be quite confident that suftable employment
awalts them; they can afford the luxury of acquiring additional skills so
that they may become even more marketable. One might suspect that most
students who went on to graduate school may have had motives somewhere between
these two extremes.

While 54 of the 367 graduates (14.71%) attended graduate school, such
attendance was not uniform across disciplines. Among smaller departments

{less than 15 graduates), half or more attended graduate school from the
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following: environmental studies, art history, economics, social sciences,
French, apd chemistry. Among larger departments, 52.94% of political science
majors, 33.33% qf psychology majors and 27.27% of biology majors attended

graduate school. At the other end of the spectrum, no graduates in either
sociology or elementary education attended graduate school, while 3.03% of

graduates in engineering related majors, 10.53% of business majors and 11.11%
of business administration majors attended graduate school immedfate]y upon
their receiving their bachelor degreeé.

Inclusion of‘those unemployed in the analysis was done fof reasons of
best exploiting the data. It was felt that including them in the analysis
with the higheSt possible vaiue fdr the criterion (Y = 65) was better than
excluding them in finding relationships among the data. To take an example
of a particular department, seven of the fifteen graduates in psychology -
were employed h6;1ater than four weeks after graduation; one person was |
employed after one year;‘fiverwent on to graduate school and two were unem-
ployed. If there laét seven graduates had been left out of the analysis,
it would appear that all but one graduate was hired {mmediately upon gra-
duation. Nhi]e’the value 65 does not represent 65 weeks, 1t does assign a

reasonable number to be used in a regression analysis.

Predictor Variables Used in the Analysis
The following varfables were used in the analysis:
Blographical Variables o
Xl " age;
Xy = sex; 1 {1f male, 0 {f female;
- Ethinic Background and Socio-Economic Status (SES)
)(:3 = White = 1, O otherwise;
X
X

4" Black = 1, O otherwise;

5 ° American-Indian, 0 otherwise;

(The zero éoded variable for x3, X4 and X5 is Mexican-American)

X. = SES;

€
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Academic Major

>
I

7 = major, 1 if engineering related, 0 otherwise

><
H

value of major;

><
1]

9= value of Trinity degree;
Employment Seeking Behaviors
x10 = salary;

X
X

11 = Number of resume's;

12 = number of interviews;

X13 = number of job offers;

Geographic and Size of Employer Preference

X14 = geographic perferénce. 1 = yes, 0 = no; qnd

X15 = size of employer preference, 1 = yes, 0 = no.

Before an analysis was. completed, the 54 graduates who attended graduate
school full time were eliminated; also, any graduate who was missing data on
any of the predictor variables was not included. A setwise regression
(Williams and Lindem, 1971, a, b) was used to analyze the data. Results are

shown in Table 1.
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Table 1

‘Setwise Regression Analysis Using all Five Sets of

Variables and Time to Secure Employment

(N = 269)
Step Set Eliminated r R for Set Eliminated R
1 None .408474
2 Biographical Variables .- . = ,06984 - .407463
| X1 age -.042 | |
Xp3 age -,056
3 Ethnic Background :
~ and SES | .03254 .405212
 X3; White -, 002
Xq; 8lack -.009
Xgs American-Indian 030
Xgs SES -.001
4 Geographic and Size
Preference .03572 .395942
X145 Geographic Pre-
ference .036
X154 Size of Employer
Preference 014
5 Academic Major | .17079b .386112
Xy Major -.112
Xa3 Vaiue of major ,135b
Xqs Value af Trinity
degree .115b
6 Employment Seeking
Behaviors 386112
‘X103 Salary -,212
X114 Number of resumés ,2559
Xi2 Number of
intervigws .2482 .
X135 Number of job
ap < ,01

bp <

.05
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First, if the zero-order cqrre]ations are inspected, age and sex show
no significant relationship, suggesting that at least these forms of discrimi-
nation don't occur in regard to 1ength of time to obtain emp]oymgnt. However,
discrimination may exist even in regérd to time; while it is not réported in
Table 1, sex correlates .28 with 1n1t1§1 salary; even in the presence of the
remaining variables, the partial relationship of sex to salary remains signifi-
cant, and favors men. It might well be that women graduates "settle" on a
1e§s attractive employment sitdation'in approximately the same time frame
that men acquire somewhat more attractice (in terms of salary at least)
employment. _

thinicity seems to be unrelated to length of time to secure employment;
geographic and size of employer preferences also appear to be only slightly
related to length of time to secure employment.

The academic major variables are significant as a set; engineering
related majors are becoming employed sooner. On the other hand, those
who see their majors or their degree from Trinity as being valuable take
longer to become employed.

The most important set is the emp]oymgnt seeking behaviors set. The
interpretation of that set is not particularly encouraging to those who
are having difficulty finding employment. Those who take longer to find
employment tend to send more resumes, have more interviews, and then get
a smaller salary, But then, who said life was fair?

Although they are not show here, other predictor variables were thought
relevant and used in an initial analysis. Such variables, discarded because
they showed 1ittle relationship to the time criterion included: relatedness
of major to field of employment, grade point average, marital status, perceived

number of jobs available in the major, and'necessity of seeking employment.
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