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Since its introduction in 1970 by Arthur Hoerl, the efficacY‘bf'
ridge'regression has been vigqxously debated by statisticians. Notable
"are the debates in the Journal of the American Statistical Association, -

JASA, in 1980 (smith and Campbell) and in Technometrics in 1979 (Draper

and Van_ndstraﬁd). .Much fesearéh among p:oponents_of ridge regression
concentrated oh éomparisons of-v#rious ri&ge regression solutions.
Dempstex, Schatzoff, and Wetmuthl(1977)‘c0mpared 57_§arietios of ridge
reéression; Galarneau;cibbons'(1981) compared ten of the most promising

ridge algorithma. Both were simulation studies.
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Since the introduction of the Monte Carlo method in 1949 by von
Neumann and Ulam, simulation _studies have ‘b_een frequ_ently. used in sta-
tistics to solve problems otherwise difficnlt or expensive to solve.
Monte Carlo simulation -can be adap_ted to any situation for which a mooel
representing reality can "be designed‘and_ for which a mechanism to simu-
late this molc‘ieli can be effected. |

Ana'lys-is of the recent_ literature of ridge regression ‘reveals
essential agreement that ridge regression is an appropriate alter- .
'native to least souares regression when predictor variables are highly
- intercorrelated. Another theme 1is common. Many researchers from New-
house and Oman in 1971 to Galarneau-Gib-bons' in 71981 also suggest that‘
‘the orientation of the beta vector with respect to the eigenvectors cor-
‘responding to the largest and the smallest eigenvalue of' the X'X natrix
determines the relative performance of ordinary least squares estimators
~and ridge estimators.

Purpose of this Study

-.The question of the predictive. values of the orientation of beta
and/or the average absolute 1intercorrelation among independent varia- -
bles in gulding an investigator's choice of regression method 1s 'in-
teresting and important. The availability of a computer simulation
capable of producing data with given R2 and average absolute inter-
correlation made study of this question possible. -The ‘simulation was
designed for the 1979 comparison of shrinicage formuli by Newman, McNeil,

Garver, and Seymour.

Methods

Twelve populations of 1,000 cases were generated representing four “



different values of intercorrelation among predictor varieb]es (0.80,
0.50, 0.30, 0.15) and three different values of R (0.50, 0.30, 0.05).
_Froin' each” population 220 samples were 'dra‘v'mb_' with replaceuent‘. There
were 50 cases per sampl'e'."

For each sample generated Marquette and Du Fala s statistin.al
package ADEPT (1979) was used to calculate the ordinary least sgquares
solution, the principal components solution and three ridge solutions.
The ridge solutions chosen ,were the Lawless;wang so}ution, the McDonald-
Galarneau solution, and a _'Hoerl-l(ennard-Ba'ldwin’soiution. The Hoerl-
Kennard-Baldwin'solution .is imnortant_ histori,c_,ally;.'and becaus'e of its
_good:perform;ance'. in- pre\'rio_us studies. .'I'he Laﬁless-wanglsoiution is a
- Bayesian solution derived from the assumptions Y"-N(.XB,'CI.ZI.) and
B'N(O,agl’) ' with the tidge 'lparameter k = ‘oz /°§ estima:te,d by
k = pszl Z A iyi. The McDonsld-Galarneau solution is an iterat'iue so:lution
which estimates the true length of the heta Vect-or-hy Q = 3'?3 - .sz-_z 11.1
and then nicks k to minimize l'é?(k) a'_,(k_)' - Q|. This proeedure defaults
to'o'rdi‘nary least squares i{f Q is negative.. These three methods of de-
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Jtermining k were different enough in derivation to be interesting to
compare. .

The study was a 3 x 4 x 5 factorial design. There were three.
values f'or Rz, four for average ebsolute intercorrelation and five
regression -.methods . | |

The various regression solutions were ranked .on four .criteria: 7-

1. Average variance of re.gression coefficients-. |

2. Error in regression coefficients as measured by
(B-B) (B-B)-



3. Mean square error.

4, Shrinkage of R2 upon croSs—va}idation.

o For each sample, solutions were ranked from one to five with smaller

rank indicating more desireable solutlon. Ranks were then summed for
each solution on all criteria to glve an. overall measure of quality of
solution. | |

The orientation of the coefficient vector, beta, vith respect
to the eigenvector agsocilated with the largest eigenvalue of the X X
matrix was calculated for each sample. For some'populations the range ‘
“of values for the orientation was small enough to cause computational
difficulty in the computer packages used in this study. For this rea-
son, the orientation of beta was categorized and interaction between
‘regression method and the orientation. of beta was determined using
two-way analysis of variance. The decision to categorize the orien-
‘tation of beta 1s discussed further in the results section.f
Results

Since this“study was exploratory, a significance level of .G =,05
was used. When multiple comparisons were made, the correction suggested
by Newman and Fry, a=.05/n, was applied (Newman and Fry, 1972). All

tests were two-tailed.

Error in Beta

For all populations with high average absolute'intercorrelation,

- A AL .
I:q =.80, the error in.beta as measured by (B-f)'(B-8) was significantly
g.different for ordinary least squares regression and each of the ridge

solutions tested For high mnlticollinearity, the error in'beta for



‘each ridge solution was sig'nificantly different from ‘that of euery
- other ridge solution with only one exception: Lawless-Wang-‘. error in
" coefficients uas not  significantly different. from that of Hoerl-Ken-
nard-Baldwin - for the population with R2=.50 and m --.80{ -For each.
of the populations with high multicollinearity, Lawles's'-'-Wang regres-
sion produced the smallest error in coefficients while ordinary least .
squares and principal components. reéression accounting for 100 percent
of the trace produced the largest error in coefficients.
For moderate multicollinearity (0.50 and 0O .30), there was _always
a s'ign_ifican"t difference between the error in beta for ordinary. least
squares and ‘each ridge solution's error in beta. 'l'he error_ for the
com_plete principal components solution 'aliso Iwas significantly_ di_ff_erent
from that of each of the ridge solutions. Error in beta‘di‘d not differ -
significantly 'for OLS“ and complete ‘principal coinponents .soluti_ons'.
For low multicollinearity (rr.[ =.15); ordinary least 's-qua_re..s‘ re-
gression -and V_conxpl_ete_ ‘princi‘p»al _components regression produced‘r_sign-'.
ificantly different error_-of' ..‘b‘eta from- each ,other as well as from
" each ridge solution. '

For graphic representation of these results, see Figure 1.

Variance of Betas

’

For each populati‘on, for ‘any. given .method', ~the coefficients of

-e'ach independent' variable - formed a distribution-.‘ Thusf'if beta 1 is

"+ the coefficient of the first independent variable, a distribution for

the ordinary least squares beta would exist, as well as one for the.‘

Lawl_ess-Wang-beta' 1, the Iloerl—Kennard—Baldwin b_eta 1, and the McDonald- ;



~ FIGURE I
Error in Regression Coefficients as a
Function of Solution Type, R?.'and r|
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TABLE 1

Summary of Results of Cochran's Test for Variance of Betas

Population | '_'j - Cochran's G for

Parameters -~

R || 8, B, B, 8, B, B 8,
.50/.80  .3480  .2661  .2979  .2785  .2827  .2825  .2695

.30/.80 3537 .2881  .2509  .3113  .2950  .3081  .2671
.05/.80  .3300  .2850  .3134  .3038  .2982 L2842 3021
.50/.50  .3052  .2512  .2686  .2969  .2581  .2491 L2741
.30/.)50  .3221  .2587  .2689  .2981.  .2767  .2749  .2726
.05/.50  .3322  .2759  .3006 - .3049  .3196  .2753 L2841
.50/.30  .2785  .2485  .2718  .2638  .2512  .2415  ..2621
30730 .2870  .253% .2805  .2710 | 2535 .2706  .2697
.05/.30  .2983  .3099 2903 L2862 .2644  .2666 2656
:50/.15 2506  .2831 - .2873  .2738  .2571  .2728 2473}
30/.15 3308 L2753 .2904 2639 2771 L2921 L2377
.05/.15  .2748 2806 .2746  .2619  .2639  .2801  .2845

All tests significant

Critical Region: G>G 05 = .2360 .




: . FIGURE 2
Average Variance of Regression goefficiqgts as
& Function of Solytion Type, R%, and NE|
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Galarneau beta 1. Variances of these=distributions were 'compared using
Cochran’'s test, normality having been verified with a chl square test
and sample size being equal. The results appear in Table 1. Cochran's
test for each estimated beta for every Population showed that the four
variances compared were not all equal. To examine the relationship
among the varlances more closely, multiple comparisons ®=,05/n was
used for ;05 significance'. This is the correction su.ggested by Newman
and_ Fry (1972). |

For high multicollinearity (0. 80) the variance of . the ordinary
least squares beta was significantly different from that of Lawless-
Wang or Hoerl-Kennard-Baldwin beta for each- independent varlable. The
ordinary least squares beta variance was higher than that of any ridge
beta variance for each of the betas for the seven independent variables.

For all population (R = 0.50, 0.30, O. 05) with high multicolli-
nearity the Lawless-Wang estimator was always significantly different_
from that of the McDonald-Galarneau estimat__or_l and for R2 = 0.05, 1t
vas significantly different from both of the other two ridge estima-

tors. See Figure 2 for graphic representation of this infomation.

Shri__nka e Upon Crogg-

The shrinkage in R2 upon cros_s-validation was not significantly

different among the various regression solutions for eight of the
‘twelve ‘populations. including the population vith ‘Rz = 0.50 and high
average absolute intercorrelation (0.80). For the other two popula~-
tions (R2 = 0.30, and R2 - 0.05) with high mlticollinearity there

was a significant difference in shrinkage of R2 upon cross-validation



'FIGURE 3

-Shrinkage in R2 upon-Cross-Validatioh ﬁ a
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, FIGURE
Average Rank of Mean
Function of Solution
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oetween ordinsry least squares and at least some of the ridge solutioms.
For Rz = 0.3'0; the- 'or‘dinaryl‘leas_t. squares R2 shrunkt more ‘than the
ridge solntions and for R2 = 0.05, the ord_in_ary least squares Rz'shrunk
less than the other estimators. |

There is no evidence 1in ‘the results of this study indicating
that the ridge regression R2 shrunk 1ess than the ordinary least squares
' Rz for populations ‘with lhig_h nn_xlticollinearity, s situation in which
"ridge ‘regression is -eommonly used. The actualr yal'ue of the shrunken _Rz-
- may be more usefull. than the value of the shrinkage of R2 upon_ cro,ss-vali-.
dation. |

See "'l_"igure 3 for graphic. representation of 'shrinksge-. for varying

RZ and average absolute inter'eorrelation,.

Heans of Rz Before and After Cros's-Val.idation- |

Knowledge of the ."shrinksge in R2 upon ‘cross-vslidstion may be
le_ss' valusble_ than knowledge of the final value of R2 upon 'cross.-
.valida‘tion. The value of the shrunken R2 gives a iower bound on Rz.
Shrinkage in .Rz is of. less interest. For this reason, means of_R2
before and afteri 'cross'-validation were_calculated’for the ordinary
least squares solutlon and the ridge solutlons for each population.
~ Before cross-‘}al‘idation, Rz'forr the ordinary least squares solution
was greatest. The values of RZ for the ridge so'lutions were only
slightly smaller. After cross-validation values for -R2 among the
solutions were again close in value. McDonald-Galarneau ridge re-
gression nroduced the largest R2 after cross—validation for six of

the twelve populations. Ordinary least squares regression and Lawless-

12



FIGURE 5.
Quality of Solution as a Function

of Solution Type, R2, and ];T
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Wang regression produced the h-ighest Rz for threé. populations each.

MSE

As expected, the wean square error for oirdinaty least squares
regressiﬁn was significantly different from .that of the ridge solu-
tions for ‘all populations. Generally, the MSE for the ridge solutions
were siign..lficantly diffe;ent from each other. ‘For only three ‘popula-
tlons (R2=0.50, [T] =0.80; R%=0.30, [T] =0.50; R2=0.30,[ %] =0.15), was.
there no significant difference among ridge MS.EA. bf the 'ridge -sol-
utj.on,- the. Lawless~Wang solutions had the lowest MSE for six of the
twelve populations, ;McDonald-Galarneau for f_:l.ve, and the Hoerl-Kenhard— '

Baldwin solution for only one of the twelve populations. Graphic repre-

sentation of MSE for various values of R% and r 1is seen in Figure 4.

Overall So] ution Quality

If ove_;all quality 1s weasured by the sum of ranks, analyses
of varignce indica_.j_:edi a significant .F—‘-r_ati'o with a probébility of
0.00000 for all populatlioms. 'Répre?.entation 'of overall quality of
solution as a function of R2 and ;ver:.a‘;a -absolut;a Vintetéorrelation
occurs 1in Figure S.

A good s’olgt:lon w#s operationally d.efined.a-s one whose sum of
ranks was less than the mean sum of ranks. The number of good solu-
tions for each mef.hod for each pdpulation are given in Table ‘2. For

average absolute intercorrelation of 0.80. and Rz

= 0.50, 214 of 200
Lawless~Wang solutions wére considered good compared with 157 of 220
Hoerl-Kennard-Baldwin solutions and 108 McDonald-Galarneau solutions.

For all other highly multicollinear populations, results were .similar.

14



TABIE 2

NUMBER OF GOOD. SOLUTIONS

Population 1: ‘R2=.50,[r, =.80

Number of Samplesi 214

Type of Solution

Number of

- Number of Good Solutions
Ordinary Least Squareé (0oLS) 27
Principal Components (PC) 13-
Lawless and Wang Ridge (LW) 214
Hoerl, Kennard and Baldwin Ridge (HKB) 157
McDonald and Galarnean (MG) 108
2
Population 2: R":.30, [r]| =.80
- Number of Samples: 212
Type of Solution __Number of Good Solutions:
OLS 23
PC 9
LW 211
_ HKB 163
MG - 91
Population 3: R2=.05LJ;1 =.80
- Number of Samples: 216
.Type of Solution . Number of Good Solutions
OLS . 22
PC 10
LW 216
HKB 152
MG 135
9 _
Population 4: R"=.50, |r| =.50.
Number of Samples: 215 |

Good Solutions

Type of Solution

OLS
‘PC
LW
HKB
MG

33
4
81
177
184

15 -



g

. NUMBER OF GOOD .SOLUTIONS

Population 5: R2=.30,|r|-#.50

Number of Samples: 215

Type of Solution Number of Good Solutions
OLS _ : 33
pC .3
LW - 165 -
HKB S ' : B 214
MG - ’ - . : ‘ 100

Population 6: Rza 05, 1rl=,50

Number of Saﬁples: 219 .

Type- of Solution . | . .Number Oé-GQOd Solutions
oLs . - | 0
pC ) : _ - . 69
LW 7 : 217
HKB o ' : 169

MG o ' _ _ ‘ 43

Population 7: R?a;SO, frf=.30

Number of Samples: 219

Typé of Solution ' Number of Good Solutions
oLs | | 38
pC 7 : 7
LW _ 109
HKB o 163

MG . | ‘ 204

Populaﬁion.B: R2=.30, le] =.30

Numbér'of Samples: 217

A AT iAte. S & G

Type of Solution Number of Good Solutions
oLS | | 27
PC ' ' 5
LW 313
RKS : : : 206
MG , : - 157

16



TABLIE 2

'NUMBER OF GOOQD.SOLUTIONS

Population 9: R2=.05;lrl =.30

Numbér of Samples: 219

Type of Solution. -  Number of Good Sojutions

OLS | : R : 39
PC \ - | .8
LW S o - 217
HKB , : o ' | 166
MG _ _ o L 99

-PogulationIIO: _R2=;50,]rl'=.15

. Numbér of Sampiesi_'219i

-rype of Solution 5 -_ ‘ thber of Good Solutions

OLS - : R ; S 40
PC . : SR 4
HKB ' o 1216
MG | X TR S 153

Popglation 11: . 32=.30,l:17=.15

Numberfpf‘Samples:‘ 219

N Type of Solution . . B Number of Good Solutions

. OLS : - ' I 45
- PC o S 7
LW | ; : R L o 121"
HKB - o 208
MG _ o . o 65

Population 12: R>=.05, |r] =.15

Number of Samples: 219

‘Type of Solution ~ Number of Good Solutions

oLs | . o - 27
PC . ' 5 ' 8
LW | - - SR | 174
" HKB | R 217

17



with Lawless—Wang,regression.ptbducing'the largest number of good solu-
tions. For these Samg_populations, in every case, p:;ntipgl'cbwpdﬁénts
accduﬁting-for 100 péréent'of‘thé trace produéed the fewest good solu-
tions followéd by opdinarylleast squares regression.

| One must be cautious in interpreting overall quality_ of 'solu-
tion done as a suin o ranks. In .summing ranks, equal weighting 1is
imposed pni,ﬁhe criteria for good solution: variance of beta error
‘in beta, shrink&ge upoﬁ crossfvalidation, and MSE. This stacks the
dgék -agéinst the OLS solution and the ptincip;i compongnté.-éolﬁtion
accodnting for 100 peréent of the trace. Théo;y tellg us th#f ridge

should“outpetform OLS on two of the four criteria used.

Orientation of the Beta Vector

To test for interaction of the orientation of the beta vector
and method of regression solution, the orientation of beta was cate-
gorized and two-way analyses of variance were run. Categorizatidn @f

the orientation became necessary because the small tangé the orienta-

tion exhibited in some mpopulations “;fésént;&w‘serious cbﬁputatiéﬁ;im
‘difficulties using the ADEPT model éomparison and DPLINEAR. For highly
multicollinear data the interaction between the orientation of‘beta and
method was nonsignificant. Significant interaction occurred for R2=0.05,
r;] =0.30, and R2 =0.50, and r;] =0.15 only. For these levels of inter-
correlation, ridge regfession would_rarely be considered ﬁhe.method of
choice. Orientatlon pf the beta vector appears of little gsefulness
1n‘chdosing among ridge regression méthods for highlyimulticollinear

data.'

18



Conclusions

- The results of this study indicate that for high degrees of multico-
llinearity, when stability and 1nterpretab111ty of coefficients is impor-
tant, ridge regression is an attractive alternative to leést squares regre=-
ssion. Low error and small variance of coefficients make ridge regressiop
a useful device for anyone wanting to interpret beta weights for any rea-
son, a device tﬁat should prove useful to social science investigators
attempting to look at "causation" thrOugh'correlaﬁion as in path analysis.
Lawless-Wang ridge reéreséion pertormed especially well on criteria fof
stability of coefficients'in this.study.

The major advantage to  ridge regreséiqn‘ is not 1in prediction
nor in hypothesis testing but in applications for which‘the sign or
interpretability of coefficientsis important. |

Principal components using all compox;lents was equi"va]ent to the
OLS solution in'producflon of RZ"Q’ and MSE. It wa§ not equivalent
in variance or error of regression coefficlents. For the principal
compopent solution varlance of coefficieﬁts increased rapidly as com=-
ponents associated with lower eigenvalues were added. Evidence from
this experiment supports the use of a cut-off in using principal com-
ponents regréssion (Rummel,1970). More work needs to be done concern-
ing appropriate plgcement ofvsucha cut-off.

Values for RZ- befo;e cross-validation and ‘values for R2 af ter
cfoss-validation were close for ordinary least _équares and the ridge
solutions tested in this study. The value of R2 after cross-validation
seems a more appropriate way of comparing solutions than shrinkage in

R2 upon cross-validation.

19



The orientation of the eigenvector assoclated with the largest
eigenvalue of the' X*X matrix with respect to the population beta
vector does not appear to be useful in choosing among ordinary. 1east
squares Aregtession, principal Components regression accounting for -
100 .percen't of the trace, Lawless-Wang ‘ridge regression, Hoerl-Ken-
nard~Baldwin ridge regression, or McDonald-Galarneau ridge regres-
aion.l | |

It is clear from this study that the quality of a solution as.

determined by error in coefficients, variance of coefficients, MSE or

Rz after cross-validation depends upon the characteristics of the pop-
ulation. There is a strong dependence upon.- the degree of multicol-
linearity. Within a given niulticollineatity, there is a dependence
upon the R2 of the population.

| Ridge regtession has a distinct advantage over OLS when stabi—
lity and intetpretibility of coefficients-is important but not forl

purposes of prediction or hypothesis testing.

20



REFERENCES

Draper, Norman and Van Nostrand, R. Cralg Rldge regression and James
Steiln estimaton: review and comments. Technometrics, 1979, 21,
451-465, | —

‘Gibbons, Diane Galarneau A simulation study of some ridge estimators.
- Journal of the American Statistical Assoclation, 1981, 76, 131-9.

Marquette, Jesse and Du Fala, Margaret ADEPT: Advanced Date Enquiry
Package Time-~Shared, 1979. ' ‘

Newhouse, Joseph and cmmn; Samuel An Evaluation of Ridge Estimators,
Santa Monica, CA: Rand, 1971, (R-716 PR).

Newman, Isadore, and Fry J. A response to "A Note on Multiple Compafé
‘1sons” ' and a comment on shrinkage. Multiple Linear Regression
Viewpoints, 1972, 2, 36-38.

Newman, Isadore, McNell, Keith A., Garver, Thomas & Seymour, Gayle A.
A Monte Carlo evaluation of estimated parameters of five shrink-
age formuli. American Educational Research Association, 1979,
1-18. -

Rummel, Rudolph J. Applied Factor Analysis, Evanston, Illino's:
Northwestern University Press, 1970.

Smith,'Gary and Campbell, Frank A critique of some ridge regression
methods. Journal of the American Statistical Association, - 1980,

75, 74-81.

21



' MULTIPLE LINEAR REGRESSION VIEWPOINTS
VOLUME 11, NUMBER 3 SUMMER 1982

MULTIVARIATE NONPARAMETRIC
ANALYSIS OF VARIANCE THROUGH
MULTIPLE REGRESSION -

THE TWO GROUP CASE

Bradléy E. Huitema
University of Western Michigan

Abstract
The computation‘of the multivariate nonparametric analysis of wvariance
requires matrix manipulations that are not familiar to many researchers.‘ It
is shown that the multivariate test statistic for the two group case can
easily be computed with the aid of a conventionai multiple linear regression

computer program.

Presented at the annual AERA meeting March 19, 1982, New York City.

Introduction

In the randomized two group univariate analysis of variance case, situa-
tions arise where the nonparametric Mann-Whitney test is recommended in place
of the parametrié ANQOVA F or t test or the corresponding fegression analog.
The choice between these parametric and nonparametric alternatives should geh-

erally be based on the nature of the population distributions and the adequacy

of the measurement of the response variable. In the case that the population

distributions approximate normality and the response measures are known to be
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carefully obtained, the parametrié p:ocedures are generally chaseﬁ; This is
because the relative effic;encf (both asyﬁptotic and small sample) of the non-
parametrié test relative to fhé parametric test is about .95. That 1s,.if;we
c@mpute the-tatio'&f the sample sizes associated with the parametric and non-
‘parametric  tests having the_éame'pdwef and‘prbbability of Type I érrdr,,we
find that fewer subjects are required for t or E than for the Mann-Whitney.
Alternatively, when the sample size is cbnstant, the power of the parametric
test is greater. Many data'analyzers appear to discount the uéefulness of
nonparametric alternatives for this reason and:because the E{test is said to be
"~ M"robust" or insensitive to departures from distribution aésumptioné. ’It’tu:ns
.out, however, that a good case can bé made for employing nonparametric s;étis—
tics in certain situations. /

1f the population distributions are‘clearly ﬁonnormal (e.g., exponential,
recténgular, t%o-tailed exponential or-long-tgiled Cauchy) the parametric test
is reasonably‘robust tusing the typical textbook definition of robustness) but
this does not mean that the inferences concerning the population means based
on‘the sample means are equally good under all types of nonnormal disﬁfibutiohs}
’The point here is that there is a differénce between the effects of different

types of nonnormality on a test criterion.(such as F) and the effects on

inferences made about paramaters. The former has to do with the concept of

"criterion robustness' whereas the latter issue is that of "inference robustness'.
The reader is referred to Box and Tiao (1.9_73) as the basic source on this distinc-
tion. The issue here is tﬁat‘the sample arithmetic means associated with a
_conventional'parametric ANOVA may be inappropriate as estimates of the corres-
pbndingjpopulation means with.certain types of‘ndnnormality. The next point.

has to do with relative efficiency under nonnormality;.
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It was pointed out earliér that parametric t or F is generally preferable
to thé Mann-Whitney when normality is present because the relative efficiency
of the'lﬁtter is about .95. But what happens to the relative efficiency or
power when the population distributions are clearly not normal?

If the deviation from normélity is one of the long-tailed distributions,
the Mann-Whitney test is far more efficient. TFor example, the asymptotic rel-
ative efficiency of the Mann-Whitney when the populations are two-tailed ex-
ponential is 150%. If the population distributions are Cauchy the asymptotic
relative efficiency of the Mann-Whitney is « (infinity) and the efficiency of
E'orlz is zero.

The practical data analyzer should not conclude that there is no use for
nonparametric tests such as the Mananhitney just because he/she does not en-
counter extreme nonnormality. There is a second reason why one should consider
the use of nonparametrics.

It is not unnsual, especially in large studies that involve many variables,
to encounter "outliers” or scores that are extreme relative to others in the
distribution. Sometimes these extreme scores canlbe attributed to instrumen-
tation failures or clerical errors. In these situations it makes sense to
eliminate the obviously invalid scores from the analysis. But it is frequently
the case that we don't know whether an extreme observation is the result of
inva%id measurement or not. When this happens it is not clear whether the ob-

servation éhéuld be discarded or left in the sample. A reasonable strategy

in this situation is to transform the data in such a way that the extreme
score(s) has less influence in the estimation of parameters than when raw data
are employed. " The ranking transformation, which is a part of the computation

of the Mann-Whitney test, is a simple and effective way of decreasing the in-
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fluence of outliers. Since the chance of encountering an outlier increases
with the number of variables analyzed, it is'argued here that nonparametric

procedures should be given serious consideration in large exploratory studies.

Purpose of Nonparametri¢ Multivariate Analysis of Variance

When mul;iple‘dependentrvariables are employed'in a twoégroﬁp study it 'is
frequently suggested that a multivariate analysis of variance or thé mathe-
"matically equivalent Hotelling T2 be computed. These approaches afe employed
rathér than (or in additién tp) univariate tests on each dependent variable
for two reasomns. First, ;he univariate approach ignors possibly useful infor-
mation Céncerning the covariances among the various response measures. Second,
the multivariate methods control the probability of Type I error foér the whole
family of résponse measures. That is, the probability of making one or more
Type I errors in the whole collection of'depéndent variable tests is equal to
or less than.thé aipha level selected for the analysis. When studies contain-
ing multiple dependent variables are.analyzed using univériate tests the prob-
ébility of making a Type I error is gfeater than the nominal alpha associated
with each test. Hence the multivariate'approéchVinvolves ruﬁning an overall
test that simultaneously consideré all dependent variables at once.

In the case of the two-group multivariate nonparametric analysis of variance,

the null hypothesis is written as follows:

\)11 F\)lz .
V21 V22
HO .}.)...1 = '\')-2 or - = .
\)pl \)PZ |

is the location parameter associated with the ith dependen

where vy 1
va}iable and the jth population and "
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v] and v, are the vectors of the location parameters associated
populations 1 and 2.

This is the hypothesis that the two populations are identical with respect
to the p response measures, If this overall hypothesis is rejected there are
several procedures that are appropriate for the identification of the depen-

"dent vériable(s) responsible' for the overall tég:‘“’g‘éimple approach is to
run a Mann-Whitney test on each dependent variable. Issues associated with
employing tests subsequent to the overall multivariate test are beyond the
scope of the present paper.

The nonparametric multivariate techniques are virtually unused at the
present time because they have been developed recently and the basic references
(e.g., Puri and Sen, 1971) have been written primarily for mathematical statis-
ticians rather than research workers. The purpose of this paper is to describe
a simple procedure for computing the two group nonparametric multivariate
analysis of variance with the aid of the output of a conventional multiple
linear fegression-computer program.

Conventional Computation

The Puri and Seﬁ-nonparametric multivariate ANOVA procedure involves the
computation of the fest statisti; (N - 1)trBT-1

§;is the between or among group sum of products of ranks matrix and

Ifl is the inverse of the total sum of products of ranks matrix.

This test statistic* is evaluated as a chi square with p(J - 1) degrees

of freedom where p is the number of dependent variables and J is the number.of

groups.

*While Puri and Sen (1971) have shown that their test statistic thngl

is asymptatically distributed as chi square, the small sample properties are
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Regression Procedure

The-multiple regression solution requires the‘follbwing steps:-

1. Construct a data matrix that contains a dummy variable to identify sub-

jects in the two groups (column 1), all other columms contain the ranks
.~ associated with theip'dependént,variables included in';he design.
2. Regress the group mémbérship dummy variable on the ranks of the dependent
variaBle scores to 6btain the:mdltiple‘ragk correlation‘coéfficient Rg
3. ‘SQuare'Rs
4, Multiply N-1 timéﬁ Rg‘to obtéinlthe tést statistic. Tﬁaﬁ"is; (N—i)Rgfé xz.
It can be seen from é_comparison of the conventional aﬁd regression

1

approaches that the test statistics are (N-l)t;EIf, and (N-l)Ri fespectively.

It follows that,
trBT-l = Rz;
—_— s

A proof is presented in the Appendix.

not known (Puri, 1974): I have chosen to define‘the test'statistié és

(N - l)tqgl'l because (a) this statistic is ;lso asymptutically
distributed as chi square with p degrees of freedom under the null hyppﬁhesis
of identical populations and (b) this statistic reduces (exa;tly) t§ the
Kruskal-Wallis chi square.statistic in the case of one dependent variable.
Since the small sample pfopertiés of the Kruskal-Wallis staﬁistic_have been
found to differ little from the-asymptqtic results, it~would.be suprising if
the small sample properties'of the multivariaﬁe generalization suggested here
differ froﬁ the theoretical results. There will be almost‘no diffé}ence in

the results obtained using these two formulas with respectable sémple sizés.

s

28



Table 1 Example Raw and Ranked Data from a Two Group Design
' with Three Dependent Variables

Raw Scores

Group I ' Group II

i Y Bl oY, N

21 56 11

- 3. 10 12
17 17 7 27 57 10
20 51 5 35 62 6
0 38 63 1

70 53

Ranked Scores

" Group I . Group II .

71 ranks Y, ranks Y3 ranks yi ranks Y, ranks )S ranks

0 wN
S Wi
= W Wwv
~NoOvwbnm &
[o IR NN WV, I
NSOV
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Computational Example

The computation of the multivariate test statistic for the data contained

in Table. 1l is summarized below for the conventional and regression solutiouns.

Conventional Solution

8.00 16.00  2.00
B = |16.00 32.00 4.00
2.00 4.00 0.50
_ |
1 .12877 -.07241 .06746]
T = |-.07241 .06857 -.02732
.06746 -.02732 .06319
o, [-00649 .46319 .22886)
BT ~ = | .01298 .92638 45772
| 00162 .11579 .05722 and
tr BL © =  .00649 + .92638 + .05722 = .99009.

‘The test statistic is (N - l)trBTfl = (7).99009 = 6.93. Since the critical
value of chi square based on p(J - 1) = 3(1) = 3 degrees of freedom is 7.81

for alpha = .05, the overall multivariate null hypothesis is retained.

Regression Solution

Step 1 Construct the data matrix as shown below.

1) _ N ¢)) (3) (4)
Group.Membership 7 Yl : Y2 Y3
Dummy Variable Ranks Ranks Ranks

1 1 1 8
1 2 2 5
1 3 3 3
1 8 4 1
0 4 5 7
0 5 6 6
0 6 7 4
0 7 8 2

It can be seen that all subjects in the first group have been assigned

the dummy score of one and all subjects in the second group have been assigned
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the dummy score of zero.
Step 2 Regress the group membership dummy variable (column 1) on the ranks
of the dependent variable scores (columns 2, S, apo 4). The resulting
multiple correlation coefficient (actoally the multiple rank correlation
coefficient Rs) is .99503.
Step 3° | Square Rs- Rz is .99009.
Step 4 Multiply R2 bf N-1. (8-1) .99009 = 6.93 = 2. Notice that this .
is the same value obtained with the conventional. computation procedure
Since the obtained chi square does not exceed the critical value of 7. 81
the following hypothesis is retained:
— _7 - =

V11 | | V12

HO: \)21 = \)22

AY \Y
31 32
R B e .
There is insufficient data to conclude that the population distributions

are not identical. Since the overall hypothesis is not rejected there is no

justification for additional tests on the individual_dependent variables.
In'conclusion, the nonparametric multivariate analysis of variance is a
useful method for dealing with long tailed population distributions, possible

outliers, and increased probability of Type I error associated with multiple

response measures. It is easily computed with the aid of any multiple regres-

sion computer program.

Epilog

There is an alternative to the multivariate nonparametric analysis of

variance for handling the problem of increased Type I error that is simple,

effective and easily understood. This approach is described elsewhere

(Huitema, forthcoming).
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Mann-Whitney test should be considered as useFul alternatives to the parametric |
analogs: (1) when the population distributions are of certain nonnormal forms -
and (2) when the data contain unknown outliers, If responses are obtained on
multiple dependent variables both of these problems are more likely to occur"

than in the univariate case.

e s “_—.\——.‘. - —

An additional problem associated with the multivariate case is an increase
in the probability of Type I error; that is, as the number of dependent vari-
ables is increased the probability of making a Type I error increases. One
method of controlling Type I error is to employ the Duri Sen nonparametric
multivariate ‘analysis of variance It appears that the Puri-Sen method has
virtually never been used. This is so because (a) the. original papers pre—
senting this procedure were written for mathematical statisticians (and are
inscrutable for the typical research worker), (b) there are no secondary sources
that describe the procedure, and (c) there are no widely distributed computer
programs available to carry out the analysis.

The puri Sen test. statistic can easily be computed for the two-group case
by regressing a group membership dummy variable on the rank-transformed depen—

dent variables and multiplying the resulting R2 by N-1.
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INTRODUCTION TO THE STUDY

This investigation'sought'to evaluate the utility of discriminant functions and
their related statistics, in providing a practical post-hoc determinant of
criterion strength and decisioning (sic) reliability for decision-making in the
multiple alternatives environment (Wholeben, 1980a). Past experience with the
use of binary integer programming (operations research) models in the selection
of elementary school sites for closure during severe enroilment decline had
demonstrated, that discriminant functions could provide a useful tool to the
decision modeler -- not 6n1y to assist an evaluation of the model's reliability
in constructing various solution set vectors (1;e. the schools to be closed
versus those to remain open) in the form:

~

{[100111000...01

where l=open and O=close; but also to provide an accountabi]ity ffamework for
the public's understanding of the methodology utilized and the reasonableness of
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the results (solutions) according to the criterion references employed. This
current paper seeks to expand upon that 1979 investigation, and provide
additioha]~dataﬂsupportih§ the use of dischiminant'fdnctions as an effective

_ post-hOC'technique for eva]uating\not only decisioning reliability but a]so'the
relative impact wﬁich each of the épplied criterion references provided to the
construcfioh of the resu]ting decision (solution set vector formulation).

This paper will proceed to first acquaint the reader brief]y.with1the idea of
multiple alternatives modeling (MAM), and présehf a strong rationale for
evaluating and simulating potehtial alternative decisions via an easily
constructable criterion-reférenced-methodo]ogy. Secondly, the reader will be
introduced to the "tools" of the MAM evaluator, and the rudiments of -a
nomenclature which will be utilized within the body of this report. Next, the
findings of the 1979 school closure model (SCHCLO) will be summarized as an
indication of the utility of discriminant functions in assessing decisioning
model reliability for the “complete" matrix model case -- that is, a criterion
model with no empty cells due to missing or incompléte (irrelevant) data entries.
Finally, the use of discriminant functions for assessing modeling reliability
and individual criterion strength associated with each decision will be studied,
utilizing the 1981 fiscal deallocation model (ROLBAK) for evaluating budgeting
unit alternatives for deallocation during funding roll-backs; and emphasizing
the “"scant" matrix model case.

The objective of this paper remains to demonstrate the utility of discriminant
functions in assessing the relationship between those criterion references
designated as providihg the rationale under]ying‘the}decisions made; that is, to
correlate decision sets (solution vectors) with the criteria, and thus measure

~ the relationship of criterion variance in the prediction of solution vector
membership. Furthermore as an auxillary objective, the use of discriminant
functions will,é]so provide a useful 'at-hand' technique for understanding the
weighted value (or strength) for each of the criterion referenced variables
entered into. the discriminant function formulation. Finally, these results will
demonstrate the utility of discriminant functions in the assessment of decisioning

reliability and criterion strength for both the "complete" and "scant" criterion
matrix of values.
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;;CRITERION STRENGTH AND DECISIONING RELIABILITY

j}EvaIuation and all decision-making resu]ting-therewith, demand a high degree of
;ﬁaccountab%1ity, visibi]ity and responsibility., Today's complex issues require
f'equa]]y complex methodologies to assess both content and process of such issues,
?fand to provide an understandable environment within which to simulate potential
: decisions -and measure resulting effect or impact. As important moreover, is the
% secondary demand for Providing a means for post-hoc evaluating not only the

f results df the simulated decisions, but also the inf luence (singularly as wé]]

f as collectively) which the criterion references lend in making the original

; decisions. The clear need for the criterjon-referenced decision-maker therefore
§ is to satisfy the following five objectives: |

[11 to validate the sophisticated decisioning methodologies
~ which are SO necessary for addressing today's complex
problems -- yet so often ignored, discounted or feared;

{23 to study criterion effect upon the decisions made, and
the—mpact which the system receives via those decisions;
and'thereby understand differential criterion weighting and
influence -- "what" made a difference in constructing the
decisions, and the varying 1mpaét resulting;

[3) to provide a high degree of visibility, and therefore
~accountability, to the public interests served and affected
via those decisions -- generating a milieu of trust within
which the decisions, no matter how unexpected, can be
trusfed and accepted;

[4) to simulate the variable impact upon the decisions made by
introducing additional criterion influences into the model,
and thereby perform a path analysis from solution to solution
as different criteria are utilized to construct each decision
or solution -- satisfying the innate need of some individuals
who must always ask, "... but, what if ...?"; and
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{51 to Eermit.easy and quick decisioning replication within an
ever changing environment -- knowing the relationships
between past successful decisions and the criteria used to
construct those solutions, in order to undekstand the
potential of future decisions based upon the new values of
more current criterion measures.

This papef demonstrates the superlative ability of a parametrically-based,
statistical technfque to satisfy each of the five objectives stated above.
Relying upon multivariate, linear regression techniques, DISCRIMINANT FUNCTIONS,
constructed to relate criterion vectors to a singular 'solution set vector':
containing either a binary (1,0) decision representation or the composite entries
of a 'selection tally vector' (0,1,2,3,...), provide the basis upon which the
required measures of criterion strength and decisioning reliability will be
constructed.

Generally, the notion of criterion strength refers to the identification of those
measures which in effect constructed the final decision or solution to the modeled
problem; and furthermore provide a 'factor' measure of ordinal value or weight
within that same group of ‘so1ution-formatf0n‘ variable measures. Specifically,
criterion strength will address three fundamental questions existent within all
decisioning evaluation:

[1] which criterion references most clearly defend the decisions
made?

[23 to what extent are the criteria individually representative
of the decisions made?

[3] how do the most discriminating criteria within this decision
setting relate to each other in terms of importance and
influence?. |

This paper will illustrate the utility of discriminant function(s) formulation .
- for answering these questions of criterion strength, respectively, by evaluating j{
the following rudiments of discriminant analysis:
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[13 criteria included within the formation of discriminant functions
-- that is, which references were 'entered' into the composition
of the prepared functions;

[2) order-of-entry of each of the variables which discriminate the
' final solution vector; and

[33 weight (or factor strength) relationship between the standardized
canonical discriminant coefficients.

Generally, the notion of decisioning reliability refers to the degree of trust

| which is implicit to the decision model (in this case, the "multiple alternatives

- model® - MAM); implicit in the sense, that the decision-maker can accept the
results of such a criterion-referenced technology, both in terms of content (lig.,
effect of the criterion references within the model) as well as process (viz.,
effect of the model upon the criterion references). Specifically, decisioning
reliability will address two fundamental questions existent within all decisioning

evaluation:

[13 to what extent are the criteria collectively representative
of the decisions made?

[23 to what extent can the defined matrix of criterion references
re-predict the original binary (include v. exclude) solution?.

This paper will illustrate the utility of discriminant function(s) formulation
for answering these questions of decisioning reliability, respectively, by

evaluating the following charactistics of discriminant analysis:

[13 canonical correlation coefficients which offer a measure of
relationship between the 'set' of discriminating criterion
references and the ‘'set' of dummy variables which are used
to represent the solution vector; and
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[2] the frequency of mis-inclusions and/or mis-exclusions (or
over~estimations and/or under-estimations) discovered when
the classification coefficients constructed to predict a
solution with the known relationships among the
‘discriminating criteria variables, are utilized to re-
predict the original dependent variable (original solution).

DESIGN OF THE MULTIPLE ALTERNATIVES MODEL ING (MAM) FORMULATION

The complex issue of multiple alternatives decision-making is no stranger to the
educational analyst. The selection of some number of schools from a relatively
large pool of potential candidates for closure is a MAM problem. Each school
site represents varying measures of effectiveness, efficiency, satisfaction ang
expenditure for each of a number of criterion references (e.q. capacity of
building, heating requirements, building age, projected enrollment change over
future years, safety factors of neighborhood, and proximity of other schools and

However, to include one site for closure as opposed to another site means, that
"good" aspects of a ‘to-be-closed* school must be sacrificed in order to keep
the other school operational, even though the 'to-be-kept-open‘ school may have
certain unsatisfactory measures on the same criterion variables which the now
closed school exhibited as satisfactory. Such modeling of this decisioning
situation is known as interactive effects modeling (Wholeben, 1980a), and
represents the necessity of.constructing solutions sets which will invariably
include sbme form of ‘controlled® preference/trade-off mechanics as the various
alternatiVes are evaluated. The issye of complexity is also represented in the
statement of the problem: o select some number-of schools for closure in order
to promote certain defined goals of the district; and thus to determine how many
schools will be closed ggg-which ones. Obviously, such a model must in effect
be simu]teneously performing these two inter-related decisions: ‘"how many?" gﬂjl"
“which ones?" ..
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'f The determination of which program unit budgets will be decisioned for continued
;'funding (versus deallocation) is another example of the multiple alternatives

f framework, and its superior contribution to the realm of accountable and

é criterion-referenced evaluation and decision-making (Wholeben and Sullivan, 1981).
EIIn the fiscal deallocation model, criteria represent the projected expenditures
_;within each object cost code for each of the units under evaluation; and in
?addition contain perceptual measures of administrative level of expendability.
'ionce again of course, exists the dual responsibilities for determining how many
?program budgets will be discontinued, and which ones -- based upon the interactive
gnodeling effects of the various criterion weights across unit alternatives.

ﬁThe multiple alternatives model is simply a system of simultaneous linear
ifnequa]ities and equalities which collectively represents the problem to be
?so]ved. Such an algebraic linear system is portrayed in ¢Figure 13, Note how
feach linear combination represents a vector of values (viz., coefficients) which
fidentifies the total, meésureab]e'impact to a system of the alternatives being
fnodeled. Thus there exists a unique (normally) combination of coefficients for
feach of the‘critekion references used as input to the decisioning process. The
fslternatives themselves are further defined as binary variables (that is, taking
;on the value of either 0 or 1 (to be excluded in the final solution set, or to
Pe included, respectively). Vector formulation for each criterion reference,

{agixy  agax2  2343x3 ... 2jXj )

portraying i criterion references across j alternatives, will then provide a
basis for measuring total impact to the system as a whole attributable to the
Lolution set constructed. Bounds (or 1imits) to what is allowable as a total
impact to the system are expressed as vector entries within the conditional
yector (or normally named, RHS, the right-hand-side). The RHS-values are the
fonstants of the equations and inequalities modeling the system. <Figure 25
bresents a listing of the four generic types of criteria to which each model
thould address content validity; and <Figure 3) depicts these criterion entries
TS members of the modeling framework previously illustrated within Figure 1.

The remainder of the modeling process concerns the use of an additional vector
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to assist infdetermining from the potentially hundreds (or millions, in some
exercises) of possible alternatives, that one, best mix for which the best,
possiblé solution exists. This process is'called the search for optimality, and
the vector is known as the objective function (or sometimes, the cost vector).
Geometrically, the objective fudction is a n-1 dimensional figure passing through
the n-tuple space (convex) which is feasible (that is, includes all of the
constraints postulated through the use of the linear equalities and inequalities)
and which seeks a minimum point within the feasible region (if the goal is to
~minimize the impact of the objective function's values ubon the system) or a
maximum point within the feasible region (if the goal is to maximize the defined
objective function's impact to the syStem as a who]e);

Simply stated, the multiple alternatives model is a technique which seeks ‘to
construct a solution set (a vector of 1's and 0's), such that this same solution
_vector represents the solution of the simultaneous system, constrained by a series

of competing criterion measures (vectors), and based upon the optimality demands
of the objective function.
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Figure 1. Representation of the Augmented Decision Matrix Model

as the "Multiple Alternatives Model” (MAM).

(Decision Variables)

% Xy X3 %, Xg Xz Xy Xg (RHS)

a a a a a a a a b
Constraint #01 11 12 13 14  15 16 17 18 1

a a a a a a a a .1b

Constraint #02 | 21} 22| 23| 24| 25} 26} 27| 28).] 2

<
a a a a a a a a : b
Constraint 303 31 32 33 34 35 36 37 381 3
) -
a a a a a a a a .IDb

Constraint #04 41 421 43 441 451 46 47 48§ . 4

Constraint #05 | 51| s2| 53| sal ss{ sel s7] ss 5

Cost Vector Coefficients

8 8
Optimize: ;: ¢ X, st: E 3 5%; «, = ) bj x)0
=1 j=1

(If MILP, x is integer; if decisonal, x=0,1 only.)
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Figure 2. Representatioﬁ‘of a Generic-Criterion Decisioning Model for
Analyzing Multiple Competing Alternatives.

Criterion

Foci

Multiple Alternatives
A2 A3 A4 « o« o« A

n

(Effectiveness Criteria)

EFFEC-1

)
a x n sub-matrix

CRIT;
effectiveness"measures

'CRITZ EFFEC-2 across alternatives
CRIT% EFFEC-a

(Efficiency Criteria)

) b x n sub-matrix
CRITa+1 EFFIC-1
CRITV'a“'2 EFFIC-2 effectiveneés measures
. across alternatives

CRITa+b EFFIC-b

(satisfaction Criteria)

CRITa+b+1

CRITa+b¥2

.

CRITa+b+c

SATIS-1

SATIS-2

-

SATIS-C

¢ x n sub-matrix

satisfaction measures
across alternatives

(Expenditure Criteria)

CRITa+b+c+1

CRIT

a+b+c+2

CRIT

a+b+c+d

EXPEN-1

EXPEN=-2

.

EXPEN-d

d x n sub-matrix

expenditure increases
across alternatives




T ...,

Figure 3. Fiscal Allocations as a Multiple Alternative Problem,
Utilizing the Decision Matrix Framework.

Multiple Alternatives

Criteria l : - Progl Prog2 Progd . . . Progn
Positive Impact 1,&“ +11 . +12‘ +13 . . . +1n
2. +21 +22 +23 ; . e +2n Maximize
3. +31 +32 +33 ... +3n
Negative Impact ], - -11 -12 =13 ... -In
| o 2. | -21 -22 -23 ... -2n Minimize
3. =31 -32 =33 ... -3n
Specific Cpsts I. 811 $12. $13 ., . . $1ln
| 2.} sa1 $22 $23 ... $2n{ sSum ¢ total pudget
: : available
3. $31 $32 33 ... $3| T———
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TOOLS OF THE MULTIPLE ALTERNATIVES MODEL ING MAM FORMULATION

To construct discriminant functions from the relationships between the model
Jjust discussed above and the resulting solutions formulated, require the use
df linear vectors and combinations of vectors (matrix). Only those vector znd
matrix formulations most germane to this paper will be discussed below. The
reader is invited to be patient until the scheduled publication of the manuscrip
"Multiple Alternatives Analysis for Educational Evaluation and Decision-Making"
~in late summer of 1982, for a detailed illustration of all vectors and matrice
pertinent to MAM.

Solution Set Vector. In order to distinguish between alternatives included or
excluded as members of the final solution to the system modeled, a vector of
binary-decision representations is required, in the form:

fi101100000...11%

where '1! meansrthat the criterion values associated with that particular x(j)
will be computed to measure resulting system impact; and 'O' means that the
underlying criterion values will have{gg"impact upon the system,

Selection Tally Vector. To observe the effect of each criterion reference upon
construction of the system solution, a method called cyclic optimization
(whOJebén} 1980a; Wholeben and Sullivan, 1981) is used. Under thig regimen, the
model is executed once for each unique criterion being used to constrain the
model; where each unique criterion is cycled through the model as the objective
function. For example, during one execution in the case of the school closure
model, the intent may be be prepare a solution set whereby existing capacity of
the remaining schools will be maximized; in another cycle, the model will be
executed such that the schools remaining open within the district will minimize
the amount of energy expended for facility heating requirements. The selection

tally vector is basically a frequency summation vector, compiling the number of
times each alternative was chosen as part of the solution vector, across all
cyclic optimizations. Such a vector will be represented as:
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[370201...4]

showing that the first alternative was selected as solution a total of 3 times,
the second alternative a total of‘z times, and so forth. This vector is extremely
important when the MAM procedure requires a step-wise decisioning process such

as the school closure model -- evaluating a revised database after closing a
single school such that the effects of closing each individual site is summarily
incorporated into the next decision for determining additional site closures.

Discriminant Criterion Inclusion Vector. This vector simply represents another
binary entry vector of 1's and O's, signifying which particular criterion
references were utilized via discriminant functions to develop the canonical

classification ceefficients, and the standardized canonical discriminant
function coefficients.

Discriminant Criterion Entry Vector. This vector contains 1,2,...,k entries,
where k criteria Were utilized in the development of the discriminant functions,
and the 1,2,...,k entries represent their order of entry into the discriminant
formulation. Criterion variables not entered into the function(s) receive a
value of '0', by convention. |

Discriminant Weighting Summary Yector. Applying discriminant procedures to the
binary solution vectors will result in the computation of standardized canonical
discriminant function coefficients. These coefficients will reflect the utility
of enterea criterion vectors if those vectors contain standardized measures in
lieu of the normal raw scores. By dividing each of the standardized canonical
coefficients by the smallest of the standardized canonicals, the quotient will
provide a factor of importance.fok each of the criteria as relative to the other
criterion entered in the discriminant formulation. The discriminant weighting
summary vector is a linear representation of these factors (quotients), where
the minimum entry value is always '1.00' (smallest standardized coefficient
divided by itself). Non-entered criterion locations receive a value of '0.00' by
convention.

b




Other 'tools' have been‘referehced,in the proceeding section of this paper:
cfiterion constraint matrix, condition limits vector (RHS), objettive function
vector, and the cyc11c4opt1mization.fracking matrix. Other formulations are
currently under study by the author (e.g; the optimality weighting matrix) to
investigate new helationshipé‘which may'allow greater accountability and ysefy
reliability of the multiple alternatives modeling framework.
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THE “COMPLETE" MATRIX CASE: THE SCHOOL CLOSURE MODEL (SCHCLO)

A total of 32 elementary school sites were measured across 24 relatively
independent criteria, resulting from previous factor analyses of an original set
of 64 criterion references. The criteria chosen were utilized by the multiple
~alternatives model for school closures (SCHCLO; Wholeben, 1980a) to evaluate the
population of sites for some set of defined closures based upon the characteristics
of the data; and the needs of the school district involved. Because the criteria
utilized portrayed different value orientations (i.e., positive effects to be
maximized; or negative effects to be minimized), the model consisted of a total

of 18 cyclic MAXIMIZATIONS, and 6 cyclic MINIMIZATIONS -- for the total 24
optimizations required. The strategy was to operationalize the cyclic model,
evaluate the full N=32 sites, analyze the selection tally results, choose a single
site for closure, update the database to signify the closure, and then re-evaluate
the now reduced N=31 site model for an additional closure. This étep-wise closure
strategy was considered consistent with the pragmatic reality of deciding school
closures due to severe enrollment declines. '

{Figure 4> displays the results ("tracking matrix") of the N=32 cyclic optimiza-
tion; and in addition, the selection tally vector entries (right column vector).
-The asterisked (*) vector entries signify those sites considered having the most
potential for closure, due to the selection tally entries. These 4 sites were
simulated 'closed’ (i.e. included as '0' in the solution.set vector); and a

- stepwise discriminant function analysis performed to ana]yzé the relationship
between the 24-vector criterion matrix which purportedly constructed the solution
set, and the solution set thus constructed.

{Figure 5 displays the results of the ﬂjgg}discriminant analysis. The single
discriminant function constructed required a total of 8 criterion vectors to
adequately explained the variance found within the binary solution set of 4-Q's
and 2851'5. The group-correlative relationship between fhese 8 criteria and

the dummy variables formed by the solution set vector, was a canonical of .8512,
explaining 72.5 percent of the variance between the criterion and solution sets.
Based upon the re-classification coefficients formed, the discriminant function
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CRITERION SOURCE(S) FOR SCALINGC OF THE OPTIMIZATION (COST) VECTUR (1=MAXIRIZATION, 2aMINTHIZATION)
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FTigure 5.

Summary of Discriminant Function Analysis

Based Upon MIP-4A Results (N=32)

CRITERION CRITERION WILKS®
STEP  _ENTERED REMOVED © LAMBDA SIGNIFICANCE
1 ENROL .7068 .0016
2 AREAUTIL | - .5904 .0005
3 CLASSRM ' .4684 .0001
K AREAREPR _ L6126 . .0001
5 ENRMAIN .3628 .0000
6 INTEROL .3183. .0000
7 SURVIVE .2921 ' .0000
8 POTENT .2755 .0001

Eigenvalue = 2.63000 Canonical Correlation = .8512

Classification Results:

Actual Croun Cases Clese Yo Close
‘Close 4 4 (100.0%) —
No Close 28 - 28 (100.0%)

Percent of "grouped'" cases correctly classified: 100.0
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Figure 6.

Suomary of Disc:iﬂiunnt Functicn Analysis

Baged lpoa MIP-4A Sua Results (N=32)

HILKS'

52

CRITZRION CRITERICN
STEP ENTTRED REMOVED LAMm0A SISHIFICANCE
l INTEROL .5743 .0096
2 STUDOL .2864 .0044
3 AREAREPR .2320 .0008
4 - ENERWAST .1502 .0203
5 poTEMT .0972 .0001
6 MINORITY .0666 .0001
7 AREAZLEC .0457 .0001
8 SITEAGE 0310 .0001
9 THERMEEF .0208 .0201
10 ENRELEC 0142 .001
11 ENRHEAT .6075 .000
12 AREAHEAT .0036 000
13 ENRMATLY .0021 .000
14 THERMEFF .0027 .000°
15 AREACAPC .0017 .000 -
16 CLASSRY .0011 .000
By ENROL .6007 .000
18 AREAUTIL" .0005 .000
o PERCENT OF (NIQTE cavosteat
FUNCTION SICTNVALLUE CARLANCE EXPLAINED . -COR2ZLATION
1 126.994 .57 .9306
2 5.481 15.72 -9200
3 2.300 6.60 .8348
4 1.300 .30 L7745
5 .600 .72 6126



Figure 6. (continued)

Ciessificazion Tesults:

(Predicted Group ‘Membership)

ACTUAL

GROUP _ CASES FREO~) FREQ=l  FREQ=?  F3£0=3  FREQss  FREQ=S
FREQ-0 2 2 (100.0%2) - -- -— —— —
FREQ=1 9 - 9 (160.0%)  -- - - -
FREQ=2 5 - — 6 (100.03) — - —_
FREQ=3 4 - — - 4 (102.0%) ‘--- -
FREQ=4 7 - - - - 7 (160.0x) —
FREQ=5 4 - - . - - 4 (160.02)

Percent of "grouped™ cases correctly classified: 135.0
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was able to re-predict group membership for the solution vector (inclusion v,
exclusion) with 100.0 percent accuracy.

{Figure 6> illustrates the results of the discriminant analysis to evaluate the
compositional relation between the selection tally vector and the full criterion
database. For convenience, any selection frequency » 5 was entered into the
discriminant model as a frequency = 5. This was considered necessary in order
to provide some control over problems associated with singular frequency tally
entries, and a loss therefore of variance potential. To explain the variance
existent within the selection tally vector (0,1,...,5), a total of 16 criterion
vectors were entered into the final construction of 5 independent discriminant
functions. Re-prediction of the original vector entries proceeded with 199;9
accuracy.

Upon the choice of a single school site for closure (j=17, since tally entry = 7),
the database was updated to reflect a N=31 base, and the net effect of the student
transfers from the closed site. The model was re-executed, and a new tracking

matrix constructed, as displayed in ¢Figure 7). A total of 4 new sites were now

simulated as closed (with tally entries 3 4); and the discriminant model re-run.

{Figure 8) displays the discriminant results of analyzing the N=31 solution set.
A total of lg_criteria were required to explained the independent variance --
two more than the N=32 analysis. The canonical correlation existed at .8392, or
Zg;é_percgnt explained (independent) variance. Re-classification resulted in a
100.0 percent accuracy level. As before, the selection tally vector for the N=31
case was analyzed by discriminant functions; and these results are illustrated |
in ¢Figqure 9. A total of 4 functions were constructed; and a re-prediction of
87.1 percent accuracy achieved. Within the re-classification, 7 occurrences of
‘over-estimation' resulted (viz., an 'expected' tally entry greater than the
original 'observed' value); and 1 occurrence of 'under-estimation’ (viz., an
'expected' tally entry lesser than the original 'observed' value). Thus, it
would seem that reclassification errored on the non-conservative side.
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Figure 8.

Summary of Discriminant Function AnaletSb

Based Upon MIP-4B Results (N=31)

CRITERION CRITERION WILKS'

STEP _ENTERED REMOVED LAMBDA SIGNIFICANCE

1 ENROL .8883 0661

2 INTERL3 =~ .8164 .0585
3 MINORITY - .7238 1.0309
4 STUDPROX _ 6504 . .0206

5 _' - ENROL .6590 : iooés

6 AREAMAIN - - 5944 o073

7 CLASSRM . .5659 .0102

8 ENROL _ .5336 .0126
9 ENRHEAT 4957 .0132
10 ENERWAST 4330 .0081
11 THERMEFF .3387 ' .0020
12 ENRELEC .2954. .0015
Eigenvalue = 2.38541 . Canonical Correlation = .8394

Classification fesults:

Actual Gtouo‘. Cases Close Na Close
Close ‘ 4 4 (100.07) -
No Close 27 PR 27 (100.0%)

- Percent of 'grouped’ cases correctly classified: 100.0
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Figure 9.

Summary of Discriminant Fuaction Analysis

Based Upon MIP-4B-Sum Results (N=31)

CRITERION CRITERION WILKS'
STEP ENTERED REMOVED LAMBDA - SIGNIFICANCE
1 INTEROL : 6912 L0412
2 INTERL3 .5064 . .0213
3 MINORITY .3596 .0091
4 POTENT .2703 .0070
5 STUDPROX .2067 .0064
6 SITEOL _ .1517 .0047
7 AREAUTIL .1193 .0057
8 AREAMAIN : .0822 .0034
9 AREA .0635 .0044
: PERCENT OF UNIQUE CANONICAL
FUNCTION  EIGENVALUE VARIANCE EXPLAINED  CORRELATION
1 1.840 C 42.30 .8049
2 1.522 34.99 .7769
3 .680 15.63 .6363
4 .308 7.08 .4852
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Figure 9. (continued)

Classification Results:

FREQ=2

FREQ=3

FREQ=4

ACTUAL R |
GROUP ~  CASES FREO=0  FREO=l
FREQ=0 4 4 (100.02) -
FREQ=1 1 e

FREQ=2 8 -

FREQ=} & -— -
FREQ=4 & - —

10 (90.92). 1 (9.1%2)

4 (100.07)

—

Percent of "grouped" cases correctly classified:
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(THE "SCANT" MATRIX CASE: THE FISCAL DEALLOCATION MODEL (ROLBAK)

A total of 31 program budgeting (unit) alternatives were evaluated for defunding
across a total of 10 competing criterion references. In lieu of a step-wise
%pfocedure as represented in the school closure modeling framework, the model is
?further constrained to choose those programs for refunding such that the new
?dperating district budget is not less than 675,000 dollars, but not more than
fZQ0,000’dollars for the particular programs under scrutiny. To study'the-effect
5‘of the model's solution generation process, the feasibility region as defined

by the constraint matrix and the RHS-values is constructed in two distinct
~patterns: a highly restricted region in which very stringent controls are defined
- for the modeling procedure; and a relatively relaxed region in which less

" stringent controls are modeled. In addition, the ROLBAK formulation is executed .
| both for cyclic maximization of the objective functions, and for cyclic
miﬁimization of the objective functions. Thus, a total of 4 tracking matrice

' containing 10 potential solution sets (each) result.

This particular modeling application represents the "scant" matrix case, in that
‘a high proportion (48.7 percent) of criterion matrix cells contained a 'zero'
~entry, signifying no cost for that particular alternative within a specific
object-expenditure category. For the SCHCLO model, the criterion matrix was
"complete” -- all cells contained a value greater than zero.

Under the 'restricted' formulation, the 17 resulting solution sets signify only
2 distincf,soiution vectors. In contrast under the ‘relaxed' formulation, a
total of 17 distinct solution vectors result. Under both restricted and relaxed
limitations, 3 objective functions were unable to declare optimality due to the
inability to find an initial integer-feasible solution.

{Figure 10y and <Figure 11% display the solution sets resulting from optimization
within the restricted region environments. The selection tally vector is noted,

as well as the impact upon the total budget based upon the simulated cuts (i.e.,
where X=funqed). As can be easily seen, the solutions resulting from optimization
within the restricted environment present only two distinct alternatives for

later discriminant analyses.:

59



09

Effect Upon Budoci Deallocation Decisions Based Upon the variabie Flows.of a Cyclic Oujective
Function, and the Interaction of a “Maximized, Restricted” Constraint Iterative Problem, .

Objective = Maximization ~ Constraints: Restricted

TERP=16: PERT = 500)

8udget )

Alterna- 0) 02 03 04 05 06 07 08 09 - 10 SELECTION BUDGET

tives CERT CLAS BENE SUPL INST CONT TRAY CAPI PERC comp TALLY AMOUNT
0l X X X X X X X X X X 10 87.5
02 X X X X X X X X X X 10 4.5
03 X X X X X ‘ ) 34.5
04 X X X X X X X X X X 10 71.5
05 X X X X X X X X X X 10 70.5
06 : - 32.5
07 X X - X X X X X X X X 10 §1.5
08 ' : _ -- 1.5
09 X X X X X 5 43.0 |
10 - 4.0 .
1 X X X X X X X X X X 10 54.0
12 -- 1.0
13 - 5.5
14 ! - 4.0
15 X | X X X X X X X X 10 116.0
16 X X X X X 5 23.0 .
17 X X X X X X X X X X 10 107.0
18 -~ 13.0
19 : .- 2.0
20 -~ 1.0
21 ‘ - 16.0
22 ) -~ 10.5
23 X X X X X ) - 55.0
24 “r 4.5
25 . 2.5
26 -- 19.0
'3 - - 1.0
28 - 1.0
29 - 2.0
30 .- 12.0
31 - 2.5

o 10 10 1 10 1 10 10 o 1

0.F. Value: 340.7 274.5 217.9 433.9 330.0 362.1 $0.0 §34.6 496.2 680.5

Iteratfon at

Optimality: 36 69 76 115 - 228 27 . 114 51 5000+ 369
Time (secs): . 266 .298 .288 .32 .384 .264 .383' 274 4.498 .850
Rol}-Back -

Savings: 680.0 680.0 680.5 680.0 680.5 660.5 680.0 - 680.0 680.5 680.5

(= Cut) (-213.5) (-213.5) (-213.0) (-213.5) (-213.0)(-213.0) (-213.5) (-213.5) (-213.0) (-213.0)

Note: Total Initfial Budget = 893.5 ($1000°'s)

Figure 10,




Objective = Minimization

Constraints = Restricted (8xP=16; PERC=500)

Effect Upon Sudgetﬁﬁéélldéafion becisions Based Upon the Variable Forms of a Cyclic Objective
Function, and the Interaction of a "Minimized, Restricted” Constraint Interative Problem,

Budget

Alterna~ (1]} 02 03 04 05 06 07 08 09 10 SELECTION BUDGET

tives CERT CLAS BENE SUPL INST CONT TRAV CAP PERC comp TALLY AMOUNT
0l X X X X X X X 7 87.5
02 X X X X X X X 7 44.5
03 X X X X 4 34.5
04 X X X X X X X 7 71.5
05 X X X X X X X 7l 70.5
06 . - 32.5
07 X X X X X X X 7 51.5
08 - 1.5
09 X X X x X 4 43.0
10 - 4.0
11 X X X X X X X i 54.0
12 .- 1.0
13 - 5.5
14 - 4.0
15 X X X X X X X 1 116.0
16 X X X 3 23.0
17 X X ) X X X X 7 107.0
18 - 13.0
19 - 2.0
20 -~ 1.0
21 - 16.0
22 - 10.5
23 X X X 3 55.0
rZ -- 4.5
25 - 2.5
26 -~ 19.0
27 -- 1.0
28 - 1.0
29 - 2.0
30 -- 12.0
3 .- 2.5

I8 10 1 . 10 12 10 10 10 10

0.F, value: .- 234.5 197.0 366.8 314.8 313.0 - 482.6  489.0 --

Iteration at '

Optimality: -- 5000+ 686 200 85 902 - 203 53 -

Time (sec): -- 4.581 1,933 .563 .304 1.193 - .407 .256 -~

Rol})-Back

Savings: - 680.5 680.0 680.5 680.0 680.0 -- .680.5 680.0 -

(-Cut) -- (-213.0) (-213,5) (-213.0) (-213.5) (-213.5) ~-- (-213.0) (-213.5) -

Note: Total Initial Budget = 893.5 ($1000's)

Figure 11,



{Figure 12% and <Figure 13» display those solution sets resulting from the
optimizations within a relaxed environment. A total‘of_lz_distinct solution set
vectors are formed; and thus the selection tally matrix demonstrates greater
variability than existent within the restricted orientation.

Discriminant functions were computed for the relaxed modeling setting %irst,
requiring a separate discriminant execution for each of the distinct solution
vectors resulting from the MAM analysis. As noted in an earlier seétion to this
paper, criterion strength was eVa1uated utilizing the three composites vectors:

DISCRIMINANT CRITERION INCLUSION VECTOR
DISCRIMINANT CRITERION ENTRY VECTOR
DISCRIMINANT WEIGHTING SUMMARY VECTOR.

The first vector is composed of binary {1,0) entries signifying whether a specific
criterion was entered into the discriminant analysis for explaining the variance
within the solution set. The second vector contains entries of 1,2,3,... , such
that the order-of-entry for the discriminant criteria is represented. Finally,

the third vector contains a factor-weight entry for each of the 'entered' vectors,™

to measure the relative importance of each of the discriminating criterion
references. '

The notioh of decisioning reliability was evaluated utilizing.two techniques:

CANONICAL CORRELATION
RE-CLASSIFICATION ANALYSIS.

{Figure 14 contains the discriminant results for solutions accountable to
maximization within a relaxed region. . The first ten columns contain the
information from the discriminant analyses for each of the ten simulated solution
sets. The ordinal numerals represent ofder~of~entry, while the bracketed entries
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Effect Upon Budget Oeallocation Decisions Based Upon the Variable Flows of a Cyclic Objective Function,
and the Interaction of a "Maximized, Relaxed* Constraint Iterative Problem.

Objective = Maximization

Constraints:

Relaxed
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685.5

u
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1
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693.5

12
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65
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675.5
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13
600.0

5000+
6.022

675.5

(-218.0) - (-193.5)

12
700.0

as7
1.166

700.0

Note: Total Initial Budget = 893.5 ($1000's)

Figure 12.
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Effect Upon Budget Deallocation Decisions Based Upon the Variable Flows of a Cyclic Objective.
Function, and the Interaction of a “Hinimized, Relaxed” Constraint Iterative Problem.

' Objective = Minimization  Constraints: Relaxed
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Figure 13. .




Jx-xx3 contain the factor-weights computed from dividing each of the standardiied‘,
ﬁﬁnonica] discriminant coefficients by the smallest such coefficiénf for each
fﬁscriminant analysis. For example in the fifst column signifying the results
Z;f discriminating the solution computed from maximizing ‘certificated salaries’,
;ﬁcr1ter1a were required to explain available variance within the solution set.
ihe cr1ter1on ‘budgetary composites' was entered first, and represents a factor
;ﬁ 2.51 in its importance to the remaining 4 criterion discriminants. The
'ﬁriterion '‘certificated salaries' was entered secondly, and represents a factor
@f 3.17 in its relative importance for discriminating the solution set being

gnalyzed; and so forth. The selection tally vector is similarly analyzed via
_ﬁiscriminant functions.

i#or understanding the dimension of decisioning reliability, computed canonical
fcorrelation coefficients existed as follows, for maximized-relaxed solutions:

Objective Canonical Percent Variance  Relative

Function Coefficient Explained - Rank
CERT .9056 82.0 3
CLAS .8633 74.5 6
BENE .8729 76.2 4
SUPL .9077 : '82.4 2
INST .9339 87.2 1
CONT .8679 ' . 75.3 5
TRAV .8614 74.2 7
CAPI .8419 70.9 8
PERC .7870 61.9 9
cOomP .7281 53.0 10.

Thus it would seem, that a formalized objective of "maximizing" the expenditures
associated with instructional materials in determining which programs to refund
-during a period of scant resourses, produced the highest-correlation between

. the criterion matrix of 10 vectors and the proposed solution set vector

- constructed from the MAM analysis execution. Likewise, the maximization of
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Supwmary of Criterion Vector Order-of-Entry, in Discriminating the Solution Set Vector

for Each Cyclic MAXIMI2ATION within & RELAXED Region.

(Nate:

Source of Disceimiaant

Criterion Inclusion Vector; Discriminant Criterion Entry Vector} and Discriminaat

Weighting Summary Vector)

{ VALUE OF OBJECTIVE FUNCTION DURING CYCLIC-OPTIMIZATION EVALUATIONS N

4

Criterion i Selection Discriminant
Vector CERT ClAS BENE SUPL INST CONT TRAV CAPI PERC coMp Tally Vector Function #
Certificeted 2 4 - - - “- - ~~ - - -~ -
Salaries £3.173 § (1.00)
Cilassified - 2 - 4 - - -~ - ] 2 5 5
Salaries (3.08) (1.57) (2.04) ’(l.OO)
Employee .- j) 2 - - 5 - -— b o - -
Benefits [r.48) I (2.74) [1.00)
Supplies & s - - 1 -- 3 - 2 -- - - -
Materials [2.003 £3.56) £1.21) f1.46)
Instructional - - 5 - 1 -— 2 3 4 -~ 2 1
Materials £1.00) £3.13) (1.78) [1.09) (2.03)
Contractual & - 3 S ~- 2 b} -~ - - -— -—
Services €2.16]) €1.15) ] cr.00) (r1.872) 1 €2.19)
Travel -~ - - - 4 - 4 - S -- — -
Expenditures ().00) f1.17) (1.00)
Capital 3 -—- 4 -~ - 4 5 1 - - 3 3
Outlay [2.40) (1.29) f1.02) { £1.00) { (3.65}
Administrative -_ - -~ 3 3 - -~ - 2 -~ 4 Y
Perception (1.68) 1 (1.25) [2.59)
Budgetaty 1 1 1 2 2 1 1 ~~ 1 1 1 §
Composites f2.513 § €2.29) ] €2.913 f €3.46) § £3.033 § €1.21) { (2.63} £3.061 { [3.67)

Number of Number of
Mis~inclusions - 2 2 1 - - 1 2 2 2 4 Over-Estimates
Number of Number of
Mis-Exclusions - -~ - o~ - - 1 -~ 2 3 S Under~Estimates

Re-Prediction Re-Prediction
Accuracy () 100.0 93.6 93.6 96.8 100.0 100.0 93.6 87.1 83.9 1.0 Accuracy (X)

93.6

* (No integer*fansible solution possible; Optimality not achieved) °



Figure 14 portrays these results for each of the 10 solytion vectors formed by
the varying criterion focus of the objective function. The results of
fe-classification for the selection tally vector are also displayed.

3Figare 15) illustrates the similar results from applying discrimipant function
#halyses to the solution vectors formed by minimization within a relaxed setting
?;e three vectors for denoting criterion strength are easily distinguishabie

4 . : :
e computed canonical correlation Coefficients for minimized-relaxed solutions:

Objective Canonical Percent Variance Relative
Function Coefficient Explained Rank
CERT 7721 ' 59.6 6
~ CLAS - - -
BENE -7902 . 62.4 5
SUPL .8194 67.1 2
INST .7675 58.9 | 7
CONT .8000 64.0 3
TRAY .7928 62.9 4
CAPI - - -
PERC .9343 87.3 1
COMP -- . -—

bstrated, that solution St formulated by minimizing the ‘administrative
gention: entries in determining 4 solution, to be the best fit with the
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.

sﬁ-iuy of Criterion Vector Order-of-Eatry, in Dheri-initin; the Solution Set Vector

{Note:

for Each C*cl ¢ MINIMIZATION within a RELAXED Region. Source of Discriminant
Criterion Inclusion Vectorj Discrimlnant Crliterion Entry Vectori and Diacrimlnant

Neighting Sumesry Vector)

¢ VALUE OF OBJECTIVE FUNCTION DURING CYCLIC-OPTIMIZATION EVALUATIONS }

Criterion ] ‘ ‘ Selection Discriminant
Vector ceaT CLAS . BENE | SUPL INST CONT TRAV CAPL PERC CcoMP Telly Vector Function #
Certificated 2 . * -_ 3 - 3 3 - * -— * - —
Salaries £2.37) €1.41) f1.22)8 [1.013 |
Classified -— b 2 - 5 . 4 -~ * - * - -
Salaries : £2.16) £1.003 | €1.52) |
Employee - * - - .- ] 4 * . bd 2 B
Benefics £1.00) 1 [1.00) ) ]
Supplies & 5 * 5 2 - -- - b 2 * 6 4
Materials £1.00) f1.00) § £1.97) £1.37)
f{nstructional 4 * - - - - - . 4 * -— ——
Materials £1.38) f1.00)
Contractual - * -— 5 4 2 —-— * - " 3 5
Services €1.00) § £1.27) § €1.33)
Travel - » 4 -— - -— -— * - * 4 3
Expenditures f1.45)
‘Capital 3 * - - 3 - 2 * 3 * s 2
Outlay £1.99) £1.90) €1.63} £1.12)
Adnministrative - * k) 4 2 — -_ * - * -— -~
Perception [1.34) 1 €1.58) ] £2.74) ‘
Budgetary 1 * 1 1 1 1 1 * 1 * 1 1
Composites (1.68) 2.953 | £2.301 ] (2.08) { (2.283 1 £2.24} £1.07)

Number of - ' Number of
Mis-inclusions 2 * 1 1 1 1 2 * - * 3 Over-Estimates
Number of Number of
Mis~Exclusions 1 . 3 1 2 1 1 * “n * 2 Under-Estimates
Re-Prediction Re~Prediction
Accuracy (X) 90.3 - 87.1 93.6 90.3 93.6 90.3 . 100.0 * 83.9 Accuracy (2)

* (No integer-feasible solution possible; Optimality not achieved)

Figure 15.




;Nera11 criterion matrix; and the solution from minimizing 'instructional
baterials', the least 'best' fit. B |

%egarding the results of optimizing (both maximally and minimally) within the
festricted environment, <Figure 16> illustrates the discriminant function analysis
framework. Similarly, the canonical coefficients were computed as:

Solution Canonical | Percent Variance Relative
Vector .Coefficient Explained Rank

#1 .8947 | 80.0
#2 . .8628 784

Figure 15
e SR G e s e

B
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P Sumnirz of Criterion Vector Ordet—of-EntgzL_
in Discriminltins the Two nxsET;E?‘EETEETGE‘EZ? Vectors
.Reault105 rom the Cyclic MAXTMTZATION and MINIM{ZATION
vithin a RESTRICTED Region. (Note: Source of Discriminant
Criterion Inclusion Vector; Oilscriminant Criterion Entr .
Vector; and Discriminant Wetgﬂtxng §um-aty Vector)

Criterion Solution _.Solqcion
Vector Set #1 Set #2
Certificated 4 —
Salaries {1.05)

‘Classified S —
Salaries {1.00}

Employee - —
Benefics '

Supplies & 2 -_—
Materials {1.70}

- Instructional - k]

" Materials {1.00}
Contractual " - 2
Services [1.65)

. Travel el -
Expenditures :

Capital 3 -—
Qutlay [1.2%}
Administrative - —
Perception
Budgetary 1 1
Composites : 2.11 (3_241 |

Number of
Mia~inclusions | . i N
Nunbeé of
Mis<exclusions —-— 1
Re~Prediction o
Accurary (%) 96.8 96.8
Figure 16.
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SUMMARY OF FINDTNGS

The use of discriminant functions in providing a useful post-hoc evaluation
strategy for multiple alternatives decision-making has been studied within two
separate real-world settings: the closure of schools; and the deallocation of
program unit budgetary items. Two generalized issues of content and process were
the main foci: content, in as much as there is a need to relate criteria used

to the decisions made; and Erocess, in order to verify the re11ab111ty of the

- decisioning procedures based upon the criteria utilized.

The author maintains, that two related "abilities" are necessary for prudent and
trustworthy decision-making. The first ability refers to that khow]edgé which
clarifies (1) which criteria 'effected' the decisions, .and to what extent; and
(2) to what degree did this 'effect' vary across the results of the cyclical
optimizations. The second ability relates the need to study (1) the relationship
between the 'optimizing vector' (objective function) and the results of a
discriminant analysis; and (2) the relationship between the extent of feasibility
region constraint (relaxed v. restricted) and the results of a discriminant
analysis. To accomplish these ends, the multiple linear regression technique,
discriminant functions analysis, is utilized to measure the topiCS'of‘criterion
strength and decisioning reliability.

The results of these discriminant analyses illustrate the superior‘efficacy found
in relating multiple correlational strategies to discovering relationships between f
solution vectors and the criterion vectors (matrice) supporting those decisions.
Three measures. of criterion strength and two measures of decisioning reliability

are i11ustrated_for the reader -- all measures normally products of discriminant
function(s) formulation.

it is a fundamental by-product of this study though all to important not to note,
that the formation of "classification coefficients" within the discriminant
process provides an excellent way of projecting expected impact from a newly
collected set of data variables. By utilizing the linear combinations of this
new data, 'expected correlative' decisions can be cohputed which maintain the
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same variance relationship as the decisions utilized originally in the initial

discriminant analyses.

In summary, the use of discriminant functions -in addressing the issues of criterion
strength_and decisioning reliability has been illustrated to hold great promise
for the decision-maker, evaluator and_dtherwise,problem%so]ver. . Increased

accountability, visibility and responsibility are the maximized ends.
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Appendix IT

Synthetic "True”" Covariance Structure for Misspecification Category II:
The Covariance Structure used as the Input Matrix for the Simulation
of Data Sets with a Multivariate Normal Distribution.

Y Y, ‘ Y., X X

1 2 3 1 2 3 4
Y,  1.538
Y, 1.18 1.5175
Y, 2.9675 3.0439 7.9094
X, .84 .62 1.55 1.1
X, .42 .31 775 .53 .35
X, .78 .55 1.375 81 .41 1.1
X, .234 165 = - .4125 13 0 .13 .32 .19
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Solomon (1949) devised g desigﬁit

o ébnf;51"threats”to design va!fdity
S(Campbell and Stanley, 1966). s

ing the notation of Campbel] and Stan

ley,
Ythe four groups can pe diagrammed a5

An experimental‘groups that has

Jbeen pretested and Posttested; Group Two: R control grdup that has been pre-

ftested and posttested; Group Three: Ap experimenta] group that hag been post-
s Jtested only; and Group Four: A controi

Campbe1] and Stan]ey state,

o gvhich maE%s use of all sijx sets of

Pesented at AER:E 1982, MLR Special Interest Group
refereed by editorial starr
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ot

7T




Treatment

Yes ‘No

Pre- Yes | 6rl Gr2
Test '

‘No Gr3 | Gr4

In this design only the posttest scores are statistically analyzed. This

‘procedure does not allow one to control for the pretest scores in groups

1 and 2, thereby losing some power; it does however estimate the effects

of treatments that are independent of individuals having a pretest and
treatment pretest interaction. It also tests for the effects of pretesting,
independent of treatment and pfetest-treatment interaction, on posttest scores.
Finally, the appnoach estimates the effects of pretest-treatment interaction,
on posttest scores.

One of the advantages of writing specific regression models which reflect
research questions is that one is less likely to heve a statistical answef
that is unrelated to the researcher's question of interest. The following are
a variety of regressipn models which will reflect potential research questions
that can be ascertained from the Soiomon Four Group Design. It should be

remembered that there is not one correct answer.

Recently, Newman, Benz, and Ni]]iems (1980) devised a way to analyze data
that, by extension, mfght be applied to Solpmon type'designs. A unique property
of this technique is that, the statement by'Campbell and Stanley not with-
'standing, a single statistical procedure can be employed which mekeé use of
.all six sets of observations simultaneously. On the other hand, the solution(s)
may prove to be no more satisfactory than existing possibilities that split
the data into two sets. In ﬁhe end, the Solomon Four Gronp design may prove
to be one of those recalcitrant research situations that leave the would be

analysts foundered on the shoal of a simple design whose simplicity is only
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a deception.

Consider the following research situation. Five people in each group
have scores such that one experimental group has been pretested and post-
tested and one experimental group has been posttested only. Two similarly

"tested control groups are also included. Data for such a situation are

given in Table 1.

Table 1

Data for a Solomon Four Group Design

Experimental: Control: , Experimental: Control:
Group One Group Two -~ Group Three Group Four
Pretest Posttest " Pretest = Posttest Posttest. Posttest -
5 15 5 8 13 9
7 12 4 7 10 8
5 10 4 8 12 6
12 17 6 6 11 3
6 11 6 6 14 4

Several different approaches might be tried. One approach would be to
~divide the data into two sets: Groups One and TQo (thdse who weré both,pretested
and posttested) as one set, and the posttested only groups (Groups Three and
7 Four) as the second set. The latter set can be simply tested by the use of the
E: t test: |
| t = 4.24 (p<.05). _
The former data set (Groups One and Two) can be conceived either as a
i; repeated measures design or as a problem that can be approached through the
55 analysis of covariance (or related techniques'such as residual gain analysis).

To approach the problem first as an analysis of covariance, the following

§ variables can be defined:
Y = the criterion, or posttest score;

X1 = the pretest score;
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1]

2' 1 if the score is from the experimental group, 0 if the score is from

the control group;

>
[

5 = 1 if the score is from the control group, 0 if.the score is from

the control grdup.

. Then either of'tWo fdll'modeis'can'be USed:

Y = b, X, *byX,*b X sve, | (1)
: or
Y = bytb X +boX,te, . | (2)

Equation 2 utilizes the unit-vectof in the process Qf'genérating agconstant

2

whereas equation 1 -does not. Either model will yield the same R® value.

The restricted model (with equation'z as the full model) is of the form:

Y = b0+b1X1+e2. (3)

2= .79379, RS = 42334, F = (.79379 - .42334)/1 = 12.58, p<.05.

1-.79379}77

~For this data set R

Using a.Repeated Measures Approach - -

If the problem is visualized as a repeated:measures design wherein the pretest
~is the first measure and the posttest is the second measure, then the design -is
1ike‘the:Type-I-design'shown in Linquist (1953) and:can .be achieved through a

régression approach (williams, 1974). For a regression formulation, see Tab]e 2.
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Table 2 . |
Design Matrix for a Repeated Measures Problem

P P Pyp g "6 P2 Pg Py P 1% X x
1 0 0 0 0 0 0 0 0 0 1 0 1 0 1
0 1 0 0 0 0 0 0 0 0 1 0 1 0 1
0 0 1 0 0 0 0 0 0 0 1 0 1 0 1
0 0 0 1 0 0 0 0 0 0 1 0 1 0 1
0 0 0 0 1 0 0 0 0 0 1 0 1 0 1
1 0 0 0 0 0 0 0 0 0 1 0 0 1 0
0 1 0 0 0 0 0 0 0 0 1 0 0 1 0
0 0 1 0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 1 0 0 0 0O o0 0 1 0 0 1 0
4 0 0 0 1 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 1 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 1 0 1 1 0 0
0 0 0 0 0 1 0 0O o0 0 0 1 0 1 0
0 0 0 0 0 0 1 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 1 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 1 0 0 1 0 1 0
0 0 0 -0 0 0 0 0 0 1 0 1 0 1 0
Y = the criterion test score;

P1 thru P10 are binary coded Person vectors (1 if the Person, 0 otherwise);

>
1]

1 1 if the score comes from a person in the ekperimenta] group, 0

otherwise;

><
|

0 = 1 if score comes from a person in the contro] group, 0 otherwise;

>
|

3= 1 if the score occurs with a pretest situation, 0 otherwise;

X4 = 1 if the score occurs with a posttest situation, 0 otherwise; and

Xe = Xl.X3.

Several models can be used to generate an analysis. The yse of the following

§'s instructive:

= b +b P +b2P2+...+b9P9+e3; (4)

Y = bytb Py
(or alternatively, v = b1p1+b2p2+,.;+b10P10+83)
Y= bytb X teys (%)
Y = b0+b3x3+e5; (6)
Y = b +b.X.+b X +e

070 X b X ecs (7)



Y = b0+b1X1+b3X3+b5X5+e7; : - (8)
and )
Y = b+b, P+ (
bo*b P *boPo*. L tbPotb X otb) Kteq.  (9)
For the preceding, Ri = .54297; ' ' o 5
- Rg = .31250; |
2 _ 4 .
Rg = -31250;
RS = .62500;
Rg = .70312 and Ry = .93359.

What might have occured if a model of the fo]iowinq form were used?

= b b, | , ‘
¥ = bytb Py ¥byPot. . 4bgPy ¥h) oK +b X gtby X ey

It would not sensibly yie]d-R‘ = .54297 + .70312 = 1.24609. Such a model would

fail because the effect for expefimenta]-conthol is "nested" in the subject

(or person) effect. To test for the experimental-control effect,

F = Rg/l = .31250/1 = 10.85, .
5 .54297-.31250)7(10-2) |
(RG-RE)/(P-1-1) ,
p<.05. _
To test for the test-retest effeét,
o2 | |
F = RE/1 |
(1-R2)/(N-P-1-1)
- .31250 = 37.65, p<.0l.
0664178 | ’ ;
The interaction is tested by _
F = (Rg-Rg)/l = (.70312-.62500)/1 = 9.41, p<.05.
> -06641/8

(1-R9)/(N-P-1-1)
Note that the interaction effect can be conceptualized as actually being
additional evidence for the experimenté] effect. The higher increases in

the experimental group will show up in part as interaction for a repeated

measures design.
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The usual summary table for the repeated measures design can be constructed.

%he summary table is shown in Tab]e 3.

Table 3
Summary Table for Repeated Measures Design ‘
df SS - MS - F

fubjects 9 139.00 - |
gxperimental-Control 1 80.00 80.00 10.85
Brror (a) 8 - 59.00 7.375 :
fiithin Subjects 10 117.00 |
gest-retest 1 80.00 _ 80.00 37.65
interaction 1 20.00 20.00 - 9.41
rror (b) 8 _17.00 2.125
fotal | 19 256.00

Using A11 Six Groups Simultaneously

As the Solomon design is approached, several conceptual issues ensue. Is

this to be seen as a six group design with attendant solutions? If the

researcher opts for a six group design, person vector information néeds to

be excluded. Indeed, this was also true in the previous section. Af no

‘time were the four groups and person vectors used simultaneously; if it

were, the R2 was theoretically to be 1.24609, obviously an impossibility.

If a ;ix group design is to be used, what dimensions would be appfopriate?

This could be considered to be a one-way lay-out, a two-way lay-out, or a

three-way lay-out (but with two missing cells) only the one-way and three-way

layouts are discussed here. First hypotheses with a one-way lay-out as addressed.
Consider the following variables: |

Y = the criterion score;

i

: X1 1 if the score is a pretest score from a member of the experimental

group, 0 otherwise;

><
il

o = 1 if the score is a posttest score from a member of the experimental

group that has been pretested, 0 otherwise;
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><
1}

3 1 if the score is a pretest score from a member of the control group,

‘0 otherwise;

>
"

4 1 if the score is a posttest score from a member of the control group

that was pretested, 0 otherwise;

>
[[]

g = 1 if the score is from a member of the experimental group that was not
pretested, 0 otherwise; and

Xg = 1 if the score is from a member of the control group that was not pre-

tested, 0 otherwise.
For the six group situation, the full model is:
Y.= b1X1+b2X2+b3x3+b4x4+b5X5+b6X6+e9. (10)
At least two different sets of restrictions might make sense in addressing

174
hypothesis ?é—?}=?h-73, as the hypothesis that the gains in the twice tested

‘the Solomon design. One such set would be bz-b.=b -b3, which addresses the

experimental and control groups are equal; also, the second restriction is

bs=bg as the once tested experimental groups have equal means: Vé=76.

The first'restfictibn can be rewritten as b2=b -b3+b1: ‘Placing these

two restrictions on thé Full Model:

Y = b1X1+(b4—b3+b1)X2+b3X3+b4X4+b5X5+b5X6+e10 (11)
Y = bl(x1+x2)+b3(x3-x2)+b4(x4+x2)+b5(x5+x6)+e10. (12)

Letting 01 = X1+X2;
: D2 = X3-X2;
03.= X4+X2; and
.04 = X5+X6, the restricted model is:
Y = b101+b302+b403+b504+e10- (13)
Here, RS, = .71183; RS, = .42882.
. (R%o'R%3)72 - .28301/2 = 11.79, p<.0l.

2

{1-.71183}/24
(I_RIO)/(N-G)
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Th1er,test tests s1mg]taneous1y Yom¥1=Ya-Y3 and Y=g hlacing both sets

of restrictions allows the rejection of the null hypotheses. If these restric-
tions afe equivalent to hybotheses the researcher had in mind, then fhere‘is,no
further problem. Translatiﬁg the meaning of these two hypotheses into English
may leave the researcher somewhat uneasy; however, one attempt at a translation |
into English is: It is not simultaneously true fhat there is no differences
in the means of the non—pretestéd group and that there 15 no differencés in
the gains of the pre-tested groups.
One approach would be to test each of these hypotheses separately and uéihg
Dunn's (1961) test fqr multiple comparisens. Imposing the first restriction separately

(b2-b1=b4-b3) yields Y = b1X1+(b4~b3+b1)X2+b3X3+b4X4+b XctbeXote s

| 556”6
Y= by (X X, +bg(X3=Xy ) #ba (X # Xy )¥beX¥bgXcte o (14)
Then using D,, D, and D, as prev1ou§]y defined, Y = blleb302+b403+bsxs+b6X6+e11. (15)
2 -
R15 .66038 and
_ (02 o2 . -
F= (RpoRis)/1 = 71183-.66038 = .05145 . = 4.9,

(1-R§0)/(N-6) (1-.71183)/24 = (1-.71183)/24

t = /F = 2.07. Since two contrasts are planned, a value of 2.39 is-necessary
for significance of the .05 1eveT,‘hence the hypothesisfﬂéﬁ/g=/ﬂ‘ 3> corres-
ponding to Vé-_1=VA-Vé cannot be rejected. The imposition of the second

restriction (b5=b6) yields:

Y = by X tboXytbaXatb, X *boXgtbeXote s
Y = by X ¥b, XotbaXa+b X +be (Xg*Xg ) ey (16)
Using D4, ‘ |
Y = b1X1+b2X2+b3X3+b4x4+b5Dg+e12. an
2 2 |
R, = .48028 and F = (R;,-R75)/1 - : :
17 10°*17 71183-.48028 _ Lo - 19.28,

(I'Rio)/(N's) (1-.71183)/24  T(1-.71883)/24
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\ t.= J? 4 39 t>3 09 from Dunn's table, SO that p<.0l. Note also that from
| the numerator of these two tests that .05145 + .23155 = .28300, within rounding ‘
error of the numerator when both restr1ct1ons were applied; this 1s because
these contrasts are 1ndependent From these calculations, it can be seen that
the greatest port1on of the reJect1on of the hypotheses tested by the restric-
 tions 1n equat1on 13 1s due to the d1fferences in the groups that were posttested
.on]y rather than due to d1fferent1a1 1ncreases
| A second set of restr1ct]ons (actua]]y, a s1ng]e restr1ct1on) is given as
( ) (b 4 3) b5 b6‘ This restr1ct1on tests the hypothesis related to
( ) ( 4 3) Y6 YS’ that is, the d1fference between the mean of the gain.
'scores is equa] to the d1fference in posttest measures of the non- pretested
group. The restr1ct1on can be stated as b2 b5 b6+b +b4 b3 Impos1ng this
.restrict1on yields: |

Y

1%1*(bg-bg*b) +by-b3)X;+b, 4*bgXg*bgXgte 55 (18)
¥ = by (XpPXp) b3 (X3-Kp )4y (Xg+Xp ) #b5 (X5 +X, ) ¥bg (Xg =X ) e 5(19)

b, X,+(be-b, +b +b -b )x +b x3+b4x +b, X+b X +e

5 "2 “6 "6

rewritten as Y = b1D1+b302+b403+b505+b606+e13 (20)
2 \ | |

Using Dl,-Dz, 03-and~defining D5 = X.*X, and D '=_X.?X2, equation 19'can be

“R5,=.70326.

20 " g | | o
Then F = (.71183-.70326)/1 = .01857 = 1.55,
o %T?T7TT§§77§Z T Q-oesyya

which is non-significant. Thus, while we have"previously showed that the

differences between the posttested groups is significant (p<.0l) and the

| differences in gains in the pretested groups are non-significant (p>.05),
there are no significant differences'between the gain of the mean scores
and_the_posttested only_groups differences. This is not to say the outcomes :
for the Solomon design are uninterpretable; it does say that the inter-

pretations'are-triCky.

86



Viewina the Solomon as a Three-Way Design

It is possible to view the Solomon design as a 2x2x2 design with two
missing cells. The missing cells are planned, as was the case in missing
“cell design described by Williams and Wali (1979). In diagramatic form,

the three dimensional case can be seen as:

Pretested Non-Pretested
Pre Post Pre Post
. Group Group ' Group
Experimental 1 2 X 5
Group Group , Group
Control 3 a X 6

To test for the experimental-control main effect (A effect), the fol]owing
restriction can be imposed:

b *by*bg=bytbytbg
which yields

Yy = bz(xz—xl)+b3(X3+X1)+b4(X4+X1)+b5(X5—X1)+b6(X6+X1)fe14. (21)
Defining 07 = X2~X1;
Dg = Xy*Xy5
Dy = X 4*Xy3
D10 = XS-Xl; and
011 7 %%y
Y = byDy+b3Dg+b,Do*bsD, (+beDy tey,.  (22)
RS, = -29159; |
F = (.71183-.29159)/1 = ,42024 = 35.00, p<.0l.

-.71183)/24 . .28817/24 _
To test the effect of pretesting (the B effect), several rival hypotheses
might be used to serve as the main effect.
One such hypotheéis is b1+b2+b3+b4=b5+b6. This hypothesis does nqt
test the more appropriate hypothesis of interest, since the pretested scores

are being compared to the scores which have been posttested on]y.' More inter-
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esting is b2+b4=b5+b6 or b2= 5+b6-b4.

Then,

Y = biX1+b3X3+b4(X4-X2)+b5(X5+X2)+b6(X6+X2)+e15. (23)
Defining 012 = X

K47X53
D13 = X *Xys
Dig = Xy,

Y= b1X1+b3x3+b4°12*b5°13+b6°14*e15' (24)

RS = .
R24 .69897;

F = (.71183-.69897)/1 = 01286 = 1.07, p>.05.
I-.71183)/24 (1-.71183)774

The outcome of this test would suggest that the effect of Pretesting per se s

~minimal for this data set.

To test for pre-post differences.(the C mdin effedt), the restriction
b1+b3=b2+b4 or b1=b2.+b4'-b3 can be imposed. Then
Y

Y

(b2+b4-b3)X1+b2X2+b3x3+b4x4+b5X5+b6X6+e16,or :
bz(x2+xl)+b3(¥3”x1)fb4(x4+xl)+bsxs+bexs+916. (25)
Letting 015 = X3-X1, equation 25 can be rewritten

Y = b201+b3015+b409+b5X5+b6X6+e16. ~ (26)

2 _ :
R26-.50600,

F=(.71183-.50600)/1 = .20583 = 17.14, p<.01, .
1-.71183)/24 (1-.71183)723 . C

indicating a pre-test increase in scores.

Interactions in the Three-Way Design

First of all, the two'missing cells will cause the non-existence of
two interactions. The three way interaction will not exist, since it is
impossib]e to have non-pretested groups whb were pretested. For the same

~reason, the BC interaction will fai]'fo exist. To test for the AR intef-

action, that is, the interaction betweenrthe'experimenta]-contro]-condition

88



(A) and the effect of pretesting (B), the restriction on the full model would be:

b2-b5 = b4-b6 or b2 = b4-b6+b5.

Then Y =7b1X1+(b4-b6+b5)X2+b3X3+b4X4+b5X5+b6X6+e17, or

Y= by X tbgKatb (Xg#Xy J+bg (X +Ko )4be(Xg-Xo)ve 7 7 (57)

Using previously defined transformations, Y = bIX1+b3X3+b4D3+ble3+b606+e17_ (28)
) .

R17 = .71183; R§7 is identical to the R2 for the full model. This is circum-

stantially so because 72-?5=74-76=13-12=7-6; Thus, the AB interaction is

equal to zero.

- To test the AC interaction, that is, the experimental-control condition (A)
with pre-post differences (C), the restriction b2—b1'=b4~b3 would be imposed on
the full model. This in fact was already done in equation 15, yie]ding.R§5=.66038,
F=4.29, p>.05. The results from the three-way analysis can be placed into |

a summary table; see Table 4.

Table 4

Summary Table for a Three-Way Solution to the Solomon Design

2

: Effect Restriction R df SS MS F
Full Model
A (experimental-control) b1+b2+b5éb3+b4+b6 .29159 1 163.33 163.33 ‘ 35.00
i = . . 5.00 1.07
B (pretesting) by*b,=bctbe 69897 | 1 5.00 |
. C (pre-post differences) b1+b3=b2+b4 .50600 1 80.00 80.00 17.14
§ ' -b_=b, - .7 1 0 0 0
E AB b2 b5 b4 b6 1183
- AC | by=b=b,-b, 66038 1  20.00  20.00  4.29
S . .
E Deviation from Full Model - .28817 24 112.00 4.67

;

Finding the sum of squares in Table 4 is facilitated by knowing SST = 388.67.
Also, the C effect and the AC effect ére identical to the same effects as

- shown 1in Tab]é 3.
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| TEACHING APPLIED RESEARCHERS
’ TO CREATE THEIR OWN
STATISTICAL MODELS

Joe H. Ward, Jr.
Brooks Air Force Base, Texas

Earl Jennings
The University of Texas at Austin

The purpose of the following remarks is to give you something of the
flavor of a novel approach to the teaching of stati#tical model building
ahd manipulation. Historically, it evolved out of an applied environment
-in thch manj of the clgss;qé%upgdels appeared.to be ingdqug;glgxsqt }east
dgficient in one or more respects. Sfudents in applied areas who have been
exéaééd-té the approach Egspond enthusiagtically'to it, and, in general,
_.the more "trad?tional" work ggey have had, the greater.their gnthusiasm. The
f.response of teachers has been mixed. Many of the critics make remarks similar
' to those criticisms that are directed at the “new math." It is certainly
: accﬁrate to state that students of this approach get very little practice in

' arithmetic for even the most elementary models. 1In fact, the primary text

[6] is almost totally devoid of computing formulae.

With respect to mathematical and statistical foundations, we rely very

s ey

heavily on the theory of the classical fixed-x linear model, and the text

P

bears some superficial resemblance to a typical text on linear models. However,

a great deal of the material covered in a typical linear models text will be

Presented at AERA 1982, MLR Special Interest Group
Not refereed by editorial staff
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found in ours only indirectly, if at all. Conversely, the concepts we identlfy

and the skills we try to develop%are only indirectly inferablewfromﬂthe tygical

text.
In general, our approach has the“folloming;characteristics: &:
1. A technical vocabulary of minimal length. , : Q
2. Very few speCial symbols and computational formulae. In those Ja

l the models of one-way analySis of variance, a test for non-linearity,

argument.

‘similar to the skill requlred to translate elementary algebra “word

1------.-.-.......l%.

e

i

Places where a new special symbol or formula would ordinarily

be introduced, we make every effort to identify the concept as a %
spec1al case of a more general concept and the formula as a spec1al ﬁ
case of a more general formula. ‘The-cumulative effect of this is, E

we believe, a hierarchical structuring of the content that enhances f

o IR -
TR e e g —

.learning. See Appendix A for an example of the way we summarize

st s —

and 51mple regress1on analys1s, and Appendix B for a summary ‘of a

tWoéfactor problem. Students are assumed to have access to a
camputer, so Very'little arithmetic is required.

--‘-u.w:/.._‘ o

An emphas1s on the 1dea that a model 1s a way of fomalizing_an

Practice in translating natural language 1nto models w1th unambiguous]

sz PRSI

A g .

speCified properties. The kind of skill required to do this is

BRI DERINS

problems" into algebraic.equations.
Extensive practice in the algebraic manipulation of models. This

skill is frequently necessary to create an assumed model with specifi

Y D

properties and almost alWays required to produce a restricted model

that can be used in tests of hypotheses about the parameters of the
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assumed model. Althoueh the amount of algebra required is burdensome

A B e

for some models, the level of skill required is minimal.
Some of the features of the approach can best be understood by an
ample. Suppose we were interested in evaluating the differential effects

two different methods of teaching reading in the second grade. Students

ile rahdemly assigned to the two conditions. A measure of reading achievement
;S obtained before instruction begins, and another measure is obtained at the
%nd of instruction. Because‘girls tend to read befter at this age than boys,
3e can probably increase the precision of our estimations and the power of our
%ests by considering sex in the model. Moreover, there is a possibility that
%ex ﬁight interact with teaching method, initial performance, or both.
Ultimately, we are going to argue that if we can reject the hypotheses

E(1, voy, x) = E (2, boy, x)

E@, girl, x) =E(2, girl, x)
¥;e are in a position to conclude thet the methods are not equally effective.
§E§Eegwiﬁﬂppese, the hypothesis is that the expected posttest performance for
a Method 1 boy with initial performance x is the same as the expected posttest
Performance for a Method 2 boy with the same initial performance, X. A similar
;ﬁﬁtatement is made for girls, and x takes on all possible values of initial
perfofmance. Suppose the pogential.repge OfMX,iS,ZO'tO‘BO- Wereeegﬂe model
fhat will _produce 2 (methods) X 2 (sexes) X 61 (values of x) = 244 estimates
gf’§§peggeg’values. If we are not willing to make any simplifying assumptions
,abput'the relationships among the expected values, we need e model with 244
%paramete;s, which we refer to as.the mupge;;y_exclusive categorical‘model.

O

fFortunately, in this problem, it seems reasonable to assume that the expected

_dlfference Jn posttest perfonnance per unlt dlfference in initial performance
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E—e

is constant (sometimes called the linearity assumption), although perhaps a

ReS—

different constant for each of the four groups. If this assumption is true,

then the 244 expected values are expressible as a function of only eight

_parameters. In the text, we discuss ways of investigating the tenability of

V.

this aésumption. Although there are an infinite number of ways of parameterizinj
— . . N . J R 3

a model to estimate the eight parameters, one with intuitive appeal is

Y = alB_(rl) + a8 4 a6l 4 4,62 4

(1) (2

(X « B ) + (X« B (1)

)) + c3(X = G ) +

{2) (M)

e (x * ¢y v+ E
where

is a column vector of dimension.n containing the observed posttest

i (KA

Lre

scores.

(1)

,Emw is a column vector of dimension n containing a one if the correspond-
ing Value in Y was observed on a boy in &g&hgd i; zero otherwise.
(i =1,2)

G(i) is defined for gifls similar to B(i) for boys.

X is a column vector of dimension n containing pretest scores arranged

in the same order as Y.

(1)

The a's-and c¢'s are unknown scalars, and E is an unknown column
‘vector. A least squares solution to Model 1 might produce values

that could be represented as in Figure 1.

The a's are the intercepts and the c's the slopes of the four separate

straight lines. They are also estimates of the eight parameters which are

assumed to yield the expected wvalues. We could proceed to investigate our
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Figure 1. Possiblé results for Model 1.

ultimate hypothesis using Model 1 as an assumed model. Howeverg such a test

. based on the F distribution would involve four degrees of freedom in the
. numerator and would not produce an unqualified recommendation with respeét

- to method.

This gingwggwpxﬁp;gmwis frequently”approachedmin'stAndafd 99399@; by

DTN o i

a factorial analysis of covariance in which the assumed model is a subspace of

P Lt

Model 1 incorporating the assumption that each c is an estimate of the same
parameter. This assumption is frequently referred to as the gggpggpgipyméf_

regression assumption. If this assumptioh is true, then the 244 expected

ST Sy

values are expressible in terms of only five parameters. A model to estimate
these parameters is

v = a8 4 2,8 (2)

(1)

2
+ aSG_ 4 a“G( ) + ¢X _+ E

A least squares solution to Model 2 might be represented as in Figure 2.
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Figure 2. Possible results for Model 2.
In Model 2, the a's are the interdepts of the four lines in Figure 2,

and c is the common slope. The test for "treatment effect“ involves a comparison

- of what.are called the'"adjusted meahs,"mhamely

(alff cx) *+ (ay + ox) (a2.+ cx) + (a, + cx)

2 | )

which simplifies to a +a;=a, +a, .

A suffiCiehtly large non-zero difference leads to a relatively large F,

a rejectlon of the hypothe51s,'and the conclu51on that the methods differ. Such

L,

a conclusxon seems defen51ble but we are Stlll not in a position to make an

_unqualified recommendation with respect te method. In Figure 2, a, +a, is

3
greater than a2'+ a; , yet the available data seem to suggest that Method 1
is better for girls and Method 2 is better for boys.

A number of'possibilities exist to reduce this ambiguity. The standard

covariance sex by method interaction test is relevant information, but it does

not directly address the issue. - We. could conduct pair-wise investigations

96



(a; = a, and a; = a,) and suffer the prqp;sggﬂpf_gnriﬁcreased eXberiggntwisé B
’ Tygg I;grrorbrate or adopt some post- hoc test and sﬁffer thé cénseéﬁénr loss .
of power. | |
An iggsrnasrye is to consider an_iiEPTe? modellthat ayq}ds the émbléulty,

,altoggther. For example, if we are w1l;1ng to assume the follqw1ng relar;opfi
sﬂips among the ekpectedrralues | o

E (1, boys, x) “Ec2, boys, x) =

Eq, girls, r) E(2 girls, x)

and

E‘l, boys, x,) - E (2, boys, X,) =
E (1, boys, x,) - E 2, bpoys, x,)
and | |
Ea, girls, x)) -E(2, girls, x)) =
E(l, girls, xz) -E(Z, girls, xz)
where

X, X, X, = 20, 21, . . . 80 X, # X

b
the 244 expected values are expressible as a function of only five parameters
as in Model 2, but because we are making,differeht assumptions, the mddel we

" - create will have different properties than Model 2. The skills réquired-to
create a model that incorporates the desired assumptions are identical to‘thel
skills required to test therassuﬁptioné. Involved is a simple substitution -
for the expected valpes,abpve, their estimates in symbolic form from Model i,
and an algebraic simplificatioh rhat results in.three implied restrictigns.
Substituting the.symbolic estiﬁates from Model 1 for the expected values

above,

a, +cXx-a, -c,x=a, +G,x~-a - CxX ' (1)
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al + clxl - az - szl = al

a, + caxl “a, - c“xl = a
Equation (2) can be simplified to ‘

(ci - <_f2)(x.1 - xz) =

Since:x1 2 X,, C; must equal C,, and they can be given a common name.

c, = €, = b, a common value

Similarly,.Equation (3) can be simplified to

(€3 = c4) (%, =x,) = @
implying
| | c, = é“ =.g; a common value
: Substituting (4)rahd
31+ bx -a; - bx =a, +gx
" “which can be written '

| al.through‘a“ can be

1
]
o7
+
o N}

o
o
.

(5) into (1), we achieve

- a, - gx

renémed so that they satisfy (6) as follows:

(2)

(3)

(4)

(5)

(6)

(7)

- In effect, we have renamed the éight'parametet'eétimates in Model 1 in terms

of only five names: d,, d4,,

If the new names~are.substituted in Model 1, wé;get

vy = d;B(I) + (d1.+ as)é(z)

b(X = B(l)) + b(X = B(z)) +g

g(X = G‘z)} +g(®
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Expanding and simpliinng yields

v dl(B(l) * B(?)) + dz(G(l) + 6ty 4 da(B(z) +cl?y o

'b(x + ) 4oy s B(z)) +gx *» 6™ 4 x . c{?y 4+ g®

ih least squares solution to Model 3 might appear as in Figure 3.

| | ]

80

Figure 3. Possible results for Model 3.

The essential property of Model 3 for our purpose is that the expected
difference between any pair of persons having the same sex and initial performance,

differing only in the method of instruction, is estimated by the same constant,

namely d, . When the properties of a model are not immediately obvious by

inspection, we encourage the practice of verifying that the model-has the

claimed properties. This involves writing the symbolic expressions that

estimate the expected values and verifying that the symbolic expressions are

related as the expected values are assumed to be, as-shown in Table 1.
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