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MULTIPLE LINEAR REGRESSION VIEWPOINTS 
VOLUME 11, NUMBER 3 SUMMER 1982 

ON USING THE A VERA GE· 

INTERCORRELA TIO.N AMONG;
• 1· 

PREDICTOR VARIABLES AND 

EIGENVALUE ORIENT A TION TO 

SOLUTION OHOOSE A REGRESSION 

Beverly Mugrage 
The University or Akron 

Jesse Marquette 
The University or Akron 

Isadore Newman 
The University or Akron 

Since its introduction in 1970 by Arthur Hoerl, the efficacy of 

ridge regression has been vigorously debated by statisticians. Notable 

• are the debates in the Journal of the 1imerican Statistical Association,

JASA, in 1980 (Smith and Campbell) and in Technometrics in 1979 (Draper

and Van Nostrand}. Huch research among proponents of ridge regression

concentrated on c01t1parisons of various ridge regression solutions.

DempstE!r, Schatzoff, and Wermuth (1977} compared 57 varietios of ridge

regression, Galarneau-Gibbons (1981) canpared ten of the most promising

ridge algorithma. Both were silllulation studies.

Presented at AERA 1982, MLR Special Interest Group

Not rerereed by editorial starr
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Since the introduction of the Monte Carlo . method in 1949 by von 

Neumann and Ulam, simulation studies have been frequently used in sta­

tistics to solve problelllS otherwise difficult or expensive to solve. 

Monte Carlo simulation can be adapted to any situation for which a model 

representing reality can ·be designed and for which a mechanism to simu­

late this model can be ef fected. 

Analysis of the recent literature of ridge regression reveals 

essential agreement that ridge regression is an appropriate alter­

native to least squares regression when predictor variables are highly 

intercorrelated. Another theme is common. Many researchers from New­

house and Oman in 1971 to Galarneau-Gibboos in 1981 also suggest that 

the orientation of the beta vector ·with respect to the eigenvectors cor­

responding to the largest and the smallest eigenvalue of' the X' X matrix 

determines the relative performance of ordinary least squares estimator11 

and ridge estimators. 

Purpose of this Study 

c_ The question of the predictive values of the· orientation of beta 

and/or the average absolute intercorrelation among independent varia'"­

bles in guiding an investigator's choice of regression method is in­

teresting and i�portant. The availability of a computer simulation 

capable of producing data with given R and average absolute inter-

correlation made study of this question possible. The simulation was 

designed for the 1979 comparison of shrinkage formuli by Newman, McNeil, 

Garver, and Seymour. 

Methods 

Twelve populations of 1,000 cases were generated representing four 
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different values of intercorrelation among predictor variables (0.80, 

0.50, 0.30, 0.15) and three different values of R2 (0.50, 0.30, 0.05). 

From each population 220 samples were drawn with replacement. There 

were 50 cases per sample. 

For each sample generated, Marquette and Du Fala' s statistical 

package ADEPT (1979) was used to calculate the ordi.nary least squares 

solution, the principal components solution and three ridge solutions. 

The ridge solutions chosen were the Lawless-Wang so}ution, the McDonald­

Galarneau solution, and a Hoerl-Kennard-Baldwin solution. The Hoerl­

Kennard-Baldwin solution is important historically and because of its 

good performance in previous studies. The Lawless-Wang solution is a 

Bayesian solution derived from the assumptions 

2 2 with the ddge parameter k ,. a /a B

and 

estimated by 

The McDonald-Galarneau solution is an iterative solution 

wh;.!.ch estimates the true length of the beta vector by Q • 3•a - s2 L ).i-l

and then picks k to minimize 'i '(k) a :.(k) - Q j. This procedure defaults 

to ordinary least squares i_f Q is negative. These three methods of de­

termining k were different enough in derivation to be interesting to 

compare. 

The study was a 3 x 4 x 5 factorial design. There were three . 
2 values for R , four for average absolute intercorrelation and five 

regression methods. 

The various regression solutions were ranked on four criteria: 

1. Average variance of regression coefficients.

2. Error in regression coefficients as measured by 
(B-B)' (13-�).
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3. 

4. 

Mean square error. 
2 Shrinkage of R upon cross-validation. 

For each sample, solutions were ranked from one to five with smaller
rank indicating more desireable solut:lon. Ranks were then summed for 
each solution on all cri;teria to give an overall measure of quality of 
solution. 

The orientation of the coefficient vector, beta, with respect 
to the eigenvector associated with the largest eigenvalue of the X'X 
matrix was calculated for .each �ample. For some· populations the range 
of values· for the orientation was small enough _to cause computational
difficulty in the comput_er packages us,ed in this study. For this rea-
son, the orientation of beta was categorized and interaction between 
regression method and the orientation of beta was determined using
two-way analysis of variance. The decision to ca_tegorize the orien­
tation of beta is discussed further in the results section. 
Results 

Since this stu dy was exploratory, a significance level of .a•.05 
was used. When multiple comparisons were made, the correction suggested 
by Newman and Fry, a•.05/n, was applied (Newman and Fry, 1972). All
tests were two-tailed. 

Error in Beta 

For all populations with high average absolute intercorrelation, • ,. " rrJ •.80, the error in beta as measured by (13-13)' (a-fl) was significantly 
different for ordinary least squares regression and each of the ridge
solutions tested. For high mul ticol linearity, the error in beta f(ir 
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each' ridge solution was significantly different from that of every 

other ridge solution with only one exception: Lawless-Wang error in 

coefficients was not significantly different from that of Hoerl-Ken­

nard-Baldwin for the population with R2 ... 50 and r;i •.80. For each

of the populations with high multicollinearity, Lawless-Wang regres­

sion produced the smallest error in coefficients while ordinary least. 

squares and principal components regression accounting for 100 percent 

of the trace produced the largest error in coefficients. 

For moderate multicollinearity (0.50 and O . 30) • ther:e was always 

a significant difference between the error in beta for ordinary least 

squares and each ridge solution's error in beta. The error for the 

complete principal components solution also was significaotly different 

frQIII that of each of the ridge solutions. Error in beta did not differ 

significantly for OLS and complete principal components solutions. 

For low multicollinearity ( rr1 •.15), ordinary least squares re­

gression and complete principal components regression produced sign­

iffcantly different error of beta from each other as well as from 

e.ach ridge solution. 

For graphic representation of these results. see Figure 1. 

Variance of Betas 

For each population, for any given method, the coefficients of 

each independent variable formed a distribution. Thus if beta 1 ls 

the coefficient of the first independent variable, a distribution for 

the ordinary least squares beta would exist, as well as one for the 

Lawless-Wang beta 1, the Hoerl-Kennard-Baldwin beta 1, and the McDonald-

5 



f7l 
+> 
� 
Ql 
..... 
() 

.60 

� .50 
� 
Ql 
0 

C,J 

� 

� .4 
f7l 
f7l 
Ql 
H 
bO 
Ql 

P:: .3 
� 
..... 

H 
0 
H 
H 

r-:1 • • 2 

.1 

FIGURE I 
Error in Regression Coefficients as a 

2 
-

Function of Solution Type, R , an_d lrl

w 

1 2 3 4 • 5 6 .7 

.50 .30 .05 .50 .30 .05 .50 

.BO .BO .BO .50 .50 .50 .. 30

Key 
O=OLS Solution 
P.=PC Solution 
W=LW Solution 
H=HKB Solution 

. C.=MG Solution 

8 9 10 11 12 

.JO .05 .50 .JO .05 

.JO .30 .15 .15 .15 



TABLE 1 

Summary of,Results of Cochran's Test ·for Variance of Betas 

Population Cochran's G for 
Parameters 

R
2 
l!rl 131 132 133 134 a

s 136 87 

.50/.80 .3480 .2661 .2979 .2785 .2827 .2825 .2695 i 

.30/.80 .3537 .2881 .2509 .3113 .2950 .3081 .. 2671 

.05/ .80 .3300 .2850 .3134 .3038 .2982 .2842 ,3021 I 

.50/ .50 .3052 .2512 , 2686 .2969 .2581 .2491 .2741 

.30/.'5o .3221 .2587 .2689 .2981 .2767 .2749 .27:::6 

.05/ .50 .3322 .2759 . 3006 .3049 .3196 .2753 .2841 

.50/.30 .2785 .2485 .2718 .2638 .2512 .2415 .2621 

.30/ .30 .2870 .2534 .2805 .2710 .2535 .2706 .2697 

.�5/.30 .2983 .3099 .2903 .2862 .2644 .2666 • .2656

�50/.15 ,2506 .2831 .2873 .2738 .2571 .2728 .2473 

.30/.15 .3308 .2753 .2904 .2639 .2771 .2921 .2377 

.05/.15 .2748 .2806 .2746 .2619 .2639 .2801 .2845 
. .

All tests significant 

Critical Region: G>G = 
.05 .2360 
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Galarneau beta 1. Variances of these distributions were compared using 
Cochran's test, normality having been verified with a chi square test 
and sample size being equal. The results appear in Table 1. Cochran's

.test for each estimated beta for every population showed that the four
variances compared were not all equal. To examine the relationship
among the variances more closely, multiple comparisons a •.05/n was
used for .05 significance. This is the correction suggested by Newman
and Fry (1972). 

For high multicol linearity (0.80) the variance of the ordinary
least squares beta was significantly different fr om that of Lawless-
Wang or H"oerl -Kennard-'Baldwin beta for each independent variable. The 

ordinary least squares beta variance was higher than that of any ridge 

beta variance for each of the betas for the seven independent variables.
2 For all population (R • 0.50, 0.30, 0.05) with high muJticolli-

nearity the Lawless-Wang estimator was always significantly different 
from �ha:t of __ tlte_ McDonald���larneau estimator and for a

2 • 0�05, it 
was significantly different from both of the other two ridge !!Stima­
tors. See Figure 2 for gr aphic representation of this information.

Shrinkage Upon Cross-Validation 
2 The shrinkage in R upon cross-validation was not significantly

different among the various regression solutions for eight of the
2 twelve populations including the population with R • 0.50 and high

average absolute intercorrelation (0.80). For the other two popula-
2 2 tions (R • 0.30, and R • 0.05) with high llllllticollinearity there 

2 was a significant difference in shrinkage of R upon cross-validation
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between ordinary least squares and at least some of the ridge solutions. 

For R2 • 0.30, the ordinary least squares R2 shrunk nt0re than the

ridge solutions and for R2 • 0.�5, - the ordinary least squares R.2 shrunk 

less than the other estimators. 

There - is no evidence in the results of this study indicating 

that the ridge regression R2 shrunk less than the ordinary least squares

a
2 for populations with high tUUlticol linearity, a situation in which 

ridge regression is commonly used. 2 The actual value of the shrunken R 

may be more useful than the value of the shrinkage of R2 upon cross-vali­

dation. 

See Figure 3 for graphic representation of shrinkage for varying 

a
2 and average absolute intercorrelation. 

2 Means of R Before and After Cross-Validation

2 Knowledge of the shrinkage in R upon cross-validation may be 

less valuable than knowledge of the final value of a
2 upon cross-

2 validation. The value of the shrun�n R gives

• 2 Shrinkage in R is of less interest. For this 

a lower bound on a
2. 

reason, means of R2 

before and after ·cross-validation were calculated for the ordinary 

least squares solution and the ridge solutions for each population. 

2 _Before cross-val'ida tion, R for the ordinary least squares solution

was greatest. The values of a
2 for the ridge solutions were only 

slightly smaller. After cross-validation values for R2 among the 

solutions were again close in value. McDonald-Galarneau ridge re­

gression produced the largest R2 after cross:-validation for six of 

the twelve populations. Ordinary least squares regression and Lawless-
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Wang regression produced the highest R2 for· three populations each.

MSE 

As expected, the mean square error for ordinary least squares 

regression was significantly different from that of the rid ge solu­

tions for all populations. General ly, the MSE for the rid ge solutions 

were significantly different from each other. For only three popula-

2 □ . 2 � 2 � tions (R -0.50, 1r1 -0.80, R •0.30, 1 r 1 -0.50; R -0.30, 1 r1 -0.15), was.

there no significant difference aioong rid ge MS�. Of the rid ge sol­

ution, the Lawless-Wang solutions had the lowest MSE for six of the 

twelve populations, McDonald-Galarneau for five, and the Hoerl-Kennard­

Baldwin solution for only one of the twelve populations. Graphic repre-

2 sentation of MSE for various values of R and r is seen in Figure 4.

Overall Solution Quality 

If overall quality is measured by the sum of ranks, analyses 

of variance indicated' a significant F-ratio with a probability of 

0.00000 for all populations. Representation of overall quality of 

solution as a function of a
2 and average absolute intercorrelation 

occurs in Figure 5. 

A good sol�tion was operationally defined as one whose sum of 

ranks was less than the mean sum of ranks. The number of good solu­

tions for each method for each population are given in Table 2. For 

2 average absolute intercorrelation of 0.80 and R • 0.50, 2 14 of 200 

Lawless-Wang solutions were considered good compared w1 th 157 of 2 20 

Hoerl-Kennard-Baldwin solutions and 108 McDonald -Galarneau solutions. 

For all other highly multicollinear populations, results were .similar. 
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NUMBER OF GO O D,SOLt.rrIONS i. 

Population 1: 2 
!rl =.80R =.50, 

l Number of Samples: 214 'i 

T;x:ee of Solution Number of Good Solutions 
'J.: 
:!j.' 

Ordinary Least Squares (OLS) 27 
''I r

• 

Principal Components (PC) 13 
1,

. 

Lawless and Wang Ridge (LW) 214 .. , 
Hoerl, Kennard and Baldwin Ridge (HKB) 157 ,{ 

McDonald and Galarnea11 (MG) 108 i' 

/t 

Population 2: 2 R : .30, lrl =.80

Number of Samples: 212 

T;x:£e of Solution Number of Good Solutions 

OLS 23 
PC 
LW 211 

HKB 163 
MG 91 

Population 3: 2 R ::.05, Ir! =.80

Number of Samples: 216 

.Type of Solution Number of Good Solutions 

OLS 22 
PC 10 
LW 216 
HKB 152 
MG 135 

PoeuJation 4: 2 R =.50, lrl =.50

Number of Samples: 215 

T;nie of Solution Number of Good Solutions 

OLS 33 
PC 4 
LW 81 
UKB 177 

MG 184 
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NUMBER OF GOOD SOLUTIONS 

Population 5: R2=.30,lrl m.50 

Number of Samples: 2 15 

OLS 
pc 
LW 
HKB 
MG 

Type of Solution 

Population 6: R2= .OS, !rl =.50 

Number of Samples: 2 19 

OLS 
pc 
LW 
HKB 
MG 

Type of Solution 

Population 7: i-;50, Jr! =.30 

Uumbe r of Samples: 2 19 

OLS 
PC 
LW 
HKB 
MG 

Type of Solution 

Population 8: 1/=.JO, Ir! .:..30 

Nt1111ber ot Samples: 217 

OI,S 
re 
LW 
HKB 
MG 

·rype of Soi ut ion

16 

Number of Good Solutions 

33 
-3
165
214
100

Number of Good Solutions 

Number of 

Numher of 

0 
69 

217 
169 
43 

Good 

38 

7 

109 
163 
204 

Solutions 

Good Soluttons 

27 

5 
H3 
2013 

_____ li} ··---- ··-

4 

I 
1 
Ii 

� 
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Nt 

OL 
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TABLE 2 

NUMBER OF GOOD SOLUTIONS 

Population 9: R2=.05� Ir! •.30 

Number of Samples: 219 

OLS 
PC 
LW 
HKB 
MG 

Type of Solution 

Population 10: R2=.50, Ir! •.15 

Number of Sampl es: 219 

OLS 

PC 

LW 

HKB 
M 

Type of Solution 

Population 11: R2•.30, Ir! -.15 

Number.of Samples:. 219 

OLS 
PC 
LW 
HKB 
MG 

Type of Solution 

Population 12: R2•.05, lrl •�15 

Number of Samples: 219 

OLS 
PC 
LW 
HKB 
MG 

Type of Solution 

17 

Number of Good Solutions 

39 
8 

217 
166 

Nbmber of Good Solutions 

40 

4 

115 

216 

Number of Good Solutions 

45 
7 

121 
208 
65 

Number of Good Solutions 

27 
8 

174 
217 
tOl 



with Lawless-Wang regression producing the largest number of good solu­

tions. For these same populations, in every case, principal components 

accounting for 100 percent of the trace produced the fewest good solu­

tions followed by ordinary least squares regression. 

One must be cautious in interpreting overall quality of solu­

tion done as a sum of ranks. In summing ranks, equal weighting is 

imposed on .the criteria for good solution: variance of beta error 

in beta, shrinkage upon cross-validation, 'and MSE. This stacks the 

deck against the OLS solution and the principal components solution 

accounting for 100 percent of the trace. Theory tel ls us that ridge 

should·outperform OLS on two of the four criteria used. 

Orientation of the Beta Vector 

To test for interaction of the orientation of the beta vector 

and method of regression solution, the orientation of beta was cate­

gorized and two-way analyses of variance were run. Categorization of 

the orientation became necessary because the smal 1 range the orienta­

tion exhibited in some populations presented serious computational 

difficulties using the ADEPT model comparison and DPLINEAR. For highly 

multicollinear data the interaction between the orientation of beta and 

2 method was nonsignificant. Significant interaction occurred for R =0.05,

- 2 r:, Ir! •0.30, and R �0.50, and 1r1 •0.15 only. For these levels of inter-

correlation, ridge regression would rarely be considered the method of 

choice. Orientation of the beta vector appears of little usefulness 

in choosing among ridge regression methods for highly mul ticollinear 

data. 

18 
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Conclusions 

The results of this study indicate that for high degrees of multico­

llinearity, when stability and interpretability of coefficients is impor­

tant, ridge regression is an attractive alternative to least squares regre-· 

ssion. Low error and small variance of coefficients make ridge regression 

a useful device for anyone wanting to interpret beta weights for any rea­

son, a device that should prove useful to social science investigators 

attempting to look at "causation" through correlation as in path analysis . 

Lawless-Wang ridge regression performed especially well on criteria for 

stability of coefficients in this study. 

The major advantage to ridge regression is � in prediction 

nor in hypothesis testing but in applications for which the sign or 

interpretability of coefficients is important. 

Principal components using all components was equivalent to the 

2 A OLS solution in production of R , Y, and MSE. It was not equivalent 

in variance· or error of regression coefficients. For the principal 

component solution variance of coefficients increa·sed rapidly as com­

ponents associated with lower eigenvalues were added. Evidence from 

this experiment supports the use of a cut-off in using principal com­

ponents regression (Rummel, 1970). More work needs to be done concern­

ing appropriate pl�cement of such a cut-off. 

Values for R2 before cross-validation and values for R2 after

cross-validation were close for ordinary least squares and the ridge 

solutions tested in this study. The value of R2 after cross-validation

seems a more appropriate way of comparing solutions than shrinkage in 

2 R upon cross-validation. 
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The orientation of the eigenvector associated with the largest 
eigenvalue of the X lX matrix with respect to the population beta 
vector does not appear to be useful in choosing among ordinary least 
squares regression, principal components regression accounting for 
100 percent of the trace, Lawless-Wang ridge regression, Hoerl-Ken-
nard-Baldwin ridge regression, or McDonald-Galarneau ridge regres-
sion. 

It is clear from this study that the quality of a solution as 
determined by error in coefficients, variance of coefficients; MSE or 2 
R after cross-validation depends upon the characteristics of the pop-
ulation. There is a strong dependence upon- the degree of multico-1-
linearity. Within a given multicollinearity, there is a dependence 
upon the R

2 
of the population. 

Ridge regression has a distinct advantage over OLS -when stabi-
lity and interpretibility of coefficients is important but not for
purposes �f prediction or hypothesis testing. 

20 
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MULTIVARIATE NONPARAMETRIC 

ANALYSIS OF VARIANCE THROUGH 

MULTIPLE REGRESSION 

THE TWO GROUP CASE 

Bradley E. Huitema 
University of Western Michigan 

Abstract 

-

The computation of the multivariate nonparametric analysis of variance 

requires matrix manipulations that are not familiar to many researchers. It 

is shown that the multivariate test statistic for the two group case can 

easily be computed with the aid of a conventional multiple linear regression 

computer program. 

Presented at the annual AERA meeting March 19, 1982, New York City. 

Introduction 

In the randomized two group univariate analysis of variance case, situa­

tions arise where the nonparametric Mann-Whitney test is recommended in place 

of the parametric ANOVA I or! test or the corresponding regression analog. 

The choice between these parametric and nonparametric alternatives should gen­

erally be based on the nature of the population distributions and the adequacy 

of the measurement of the response variable. In the case that the population 

distributions approximate normality and the response measures are known to be
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carefully obtained, the parametric procedures are generally chosen. This is 

because the relative efficiency (both asymptotic and small sample) of the non­

parametric test relative to the parametric test is about ,95. That is, if we 

compute the ratio of the sample sizes associated with the parametric and non­

'parametric tests having the same power and probability of Type I error, we 

find that fewer subjects are required for! or J!. than for the Mann-Whitney. 

Alternatively, when the sample size is constant, the power of the parametric 

test is greater. Many data analyzers appear to discount the usefulness of 

nonparametric alternatives for this reason and because the F test is said to be 

'"robust" or insensitive to departures from distribution assumptions. It turns 

out, however, that a good case can be made for employing nonparametric statis­

tics in certain situations. 

l£ the population distributions are clearly nonnormal (e.g., exponential, 

rectangular, two-tailed exponential or long-tailed Cauchy) the parametric test 

is reasonably robust (using the typical textbook definition of robustness) but 

this does not mean that the inferences concerning the population means based 

on the sample means are equally �ood under all types of nonnormal distributions. 

The point here is that there is a difference between the effects of different 

types·of nonnormality on a test criterion (such as£_} and the effects on 

inferences made about paramaters. The former has to do with the concept of 

"criterion robustness" whereas the latter issue is that of "inference robustness". 

The reader is referred to Box and Tiao (1973) as the basic source on this distinc­

tion. The issue here is that the sa-mple arithmetic means _associated with a 

conventional parametric ANOVA may be inappropriate as estimates of the corres­

ponding population means with certain types of nonnormality. The next point 

has to do with relative efficiency under nonnormality. 
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It was pointed out earlier that parametric .E_ or! is generally preferable 

to the Mann-Whitney when normality is present because the relative efficiency 

of the latter is about .95. But what happens to the relative efficiency or 

power when the population distributions are clearly not normal? 

If the deviation from normality is one of the long-tailed distributions, 

the Mann-Whitney test is far more efficient. For example, the asymptotic rel­

ative efficiency of the Mann-Whitney when the populations are two-tailed ex­

ponential is 150%. If the population distributions are Cauchy the asymptotic 

relative efficiency o·f the Mann-Whitney is oo (infinity) and the efficiency of 

t or F is zero. 

The practical data analyzer should not conclude that there is no use for 

nonparametric tests such as the Mann-Hhitney just because he/she does not en­

counter extreme nonnormality. There is a second reason why one should consider 

the use of nonparametrics. 

It is not unusual, especially in large studies that involve many variables, 

to encounter "outliers" or scores that are extreme relative to others in the 

distribution. Sometimes these extreme scores can be attributed to instrumen­

tation failures or clerical errors. In these situations it makes sense to 

eliminate the obviously invalid scores from the analysis. But it is frequently 

the case that we don't know whether an extreme observation is the result of 

invalid measurement or not. When this happens it is not clear whether the ob-

servation should be discarded or left in the sample. A reasonable strategy 

in this situation is to transform the data in such a way that the extreme 

score(s) has less influence in the estimation of parameters than when raw data 

are employed. The ranking transformation, which is a part of the computation 

of the Mann-Whitney test, is a simple and effective·way of decreasing the in-
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fluence of outliers. Since the chance of encountering an outlier increases 

with the number of variables analyzed, it is argued here that nonparametric 

procedures should be given serious consideration in large exploratory studies. 

Purpose of Nonparametric Multivariate Analysis of Variance 

When multiple dependent variables are employed in a two�group study it is 

frequently suggested that a multivariate analysis of variance or the mathe­

matically equivalent Hotelling T2 be computed. These approaches are employed 

rather than (or in addition to) univariate tests on each dependent variable 

for two reasons. First, the univariate approach ignors possibly useful infor­

mation concerning the covariances among the various response measures. Second, 

the multivariate methods control the probability of Type I error for the whole 

family of response measures. That is, the probability of making one or more 

Type I errors in the whole collection of dependent variable tests is equal to 

or less than the alpha level selected for the analysis. When studies contain­

ing multiple dependent variables are analyzed using univariate tests the prob­

ability of making a Type I error is greater than the nominal alpha associated 

with each test. Hence the multivariate approach involves running an overall 

test that simultaneously considers all dependent variables at once. 

In the case of the two-group multivariate nonparametric analysis of variance, 

the null hypothesis is written as follows: 

where vii is the location parameter associated with the ith dependent 

vatiable and the jth population and·
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�and� are the vectors of the location parameters associated 
populations 1 and 2. 

This is the hypothesis that the two populations are identical with respect 

to the p response measures. If this overall hypothesis is rejected there are 

several procedures that are appropriate for the identification of the depen-
4(HlrifC.l.ti>I•#• 

dent variable(s) responsible for the overall test\ A simple approach is to 

run a Mann-Whitney test on each dependent variable. Issues associated with 

employing tests subsequent to the overall multivariate test are beyond the 

scope of the present paper. 

The nonparametric multivariate techniques are virtually unused at the 

present time because they have been developed recently and the basic references 

(e.g., Puri and Sen, 1971) have been written primarily for mathematical statis­

ticians rather than research workers. The purpose of this paper is to describe 

a simple procedure for computing the two group nonparametric multivariate 

analysis of variance with the aid of the output of a conventional multiple 

linear regression computer program. 

Conventional Computation 

The Puri and Sen nonparametric multivariate ANOVA procedure involves the 

computation of the test statistic (N - l)trBT-1 

1 is the between or among group sum of products of ranks matrix and 

T-1 is the inverse of the total sum of products of ranks matrix.

Thls test statistic* is evaluated as a chi square with p(J - 1) degrees

of freedom where p is the number of dependent variables and J is the number of 

groups. 

*While Puri and Sen (1971) have shown that their test statistic NtrBT-l

is asymptotically distributed as chi squ�re, the small sample properties are
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Regression Procedure 

The multiple regression solution requires the following steps: 

1. Construct a data matrix that contains a dummy variable to identify sub­

jects in the two groups (column 1), all other columns contain the ranks

ass.ociated wit.h the p dependent variables included in the design.

2. Regress the group membership dummy variable on the ranks of the dependent

variaole scores to obtain the multiple rank correlation coefficient Rs

3. Square Rg

4. Multiply N-1 times R; to obtain.the test statistic. That is,

It can be seen from a comparison of the conventional and regression

approaches that the test statistics are (N-l)trBT-l and (N-l)R2 respectively.s 

It follows that, 

-1 2 
trBT • R .s 

A proof is presented in the Appendix. 

not known (Puri, 1974). I have chosen to define the test statistic as 

(N - l)trBT-l because (a) this statistic is also asymptutically 

distributed as chi square with p degrees of freedom under the null hypothesis 

of identical populations and (b) this statistic reduces (exactly) to the 

Kruskal-Wallis chi square statistic in the case of one dependent variable. 

Since the small sample properties of the Kruskal-Wallis statistic have been 

found to differ little from the asymptotic results, it· would be suprising if 

the small sample properties of the multivariate generalization suggested here 

differ from the theoretical results. There will be almost no difference in 

the results obtained using these two formulas with respectable sample sizes. 
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Example Raw and Ranked Data from a Two Group Design 
with Three Dependent Variables 

Raw Scores 

Group I Group II 

Y1 Y2 Y3 Y1 Y2 >'3 

3 10 12 21 56 11 
17 17 7 27 57 10 
20 51 5 35 62 6 
70 53 0 38 63 1 

Ranked Scores 

Group I Group II 

Y2 ranks Y3 ranks Y1 ranks y2 ranks Y3 ranks 

1 8 4 5 7 
2 5 5 6 6 
3 3 6 7 4 

4 1 7 8 2 
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Computational Example 

- The computation of the multivariate test statistic for the data contained

in Table l is summarized below for the conventional and regression solutions. 

Conventional Solution 

B = 

-1T = 

BT-l =

-1tr n = 

t
8.oo
6.00
2.00

t
.12877 
. 07241 
.06746 

[
00649 
01298 
00162 

.00649 + 

16.00 2.00
U 32.00 4.00 

4.00 0.50 

-.07241 .0674
� .06857 -.02732 

-.02732 .06319 

.46319 .2288
u.92638 .45772 

.11579 .05722 and 

. 92638 + . 05722 = .99009. 

-1 The test statistic is (N - 1) trBT = (7). 99009 = 6. 93. Since the critical 

value of chi square based on p(J - l) = 3(1) • 3 degrees of freedom is 7.81 

for alpha= .05, the overall multivariate null hypothesis is retained. 

Regression Solution 

Step 1 Construct the data matrix as shown below. 

(1) (2) (3) (4)

Group Membership yl y2 y3 

Dumm:r: Variable Ranks Ranks Ranks 

1 1 1 8 
l 2 2 5 

3 3 3 
1 8 4 l 
0 4 5 7 
0 5 6 6 
0 6 7 4 

7 8 2 

It can be seen that all subjects in the first group have been assigned 

the dummy score of one and all subjects in the second group have been assigned 
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the dunnny score of zero. 

Step 2 Regress the group membership dummy variable (column 1) on the ranks

Step 3 

Step 4 

of the dependent variable scores (columns 2, 3, and 4). The resulting
multiple correlation coefficient (actually the multiple rank correlation
coefficient R )  is .99503.

s 

Square R
s

. 

2 
Multiply R

s 

R
2 

is .99009. s 

by N-1. (8-1) .99009 = 6.93 = x2
. Notice that this

is the same value obtained with the conventional computation procedure.
Since the obtained chi square does not exceed the critical value of 7.81

the following hypothesis is retained:

"o' [::j-[:::J 
lv,l v32 

There is insufficient data to conclude that the population distributions 

are not identical. Since the overall hypothesis is not rejected there is no 

justification for additional tests on the individual dependent variables. 

In conclusion, the nonparametric multivariate analysis of variance is a 

useful method for dealing with long tailed population distributions, possible 

outliers, and increased probability of Type I error associated with multiple 

response measures. It is easily computed with the aid of any multiple regres­

sion computer program. 

There is an alternative to the multivariate nonparametric analysis of 

variance for handling the problem of increased Type I error that is simple, 

effective and easily understood. This approach is described elsewhere 

(Huitema, forthcoming). 
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S!JMMAR.y 

There are two situations in which nonparametric procedures such as the
Mann-Whitney test should be considered as useful alternatives to the parametric
analogs: (1) when the population distributions are of certain nonnormal forms
and (2) when the data contain unknown outliers. If responses are obtained on
multiple dependent variables both of these problems are more likely to occur
than in the univariate case.

- �--------------·· 
An additional problem associated with the multivariate case is an increase

in the probability of Type I error; that is, as the number, of dependent vari-
ables is increased the probability of making a Type I error increases. One
method of controlling Type I error is to employ the Puri-Sen nonparametric
multivariate analysis of variance. It appears that the Puri-Sen method has
virtually never been used. This is so because (a) the original papers pre-
senting this procedure were written for mathematical statisticians (and are
inscrutable for the typical research worker), (b) there are no secondary sources
that describe the procedure, and (c) there are no widely distributed computer
programs available to carry out the analysis.

The Puri-Sen test statistic can easily be computed for the two-group case
by regressing a group membership dummy variable on the rank-transformed depen­
dent variables and multiplying the resulting R2 by N-1.
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HOC OPERATIONS 

RESEARCH DETERMINANT OF 

CRITERION STRENGTH AND BINARY 

DECISIONING RELIABILITY 

Dr. Brent E. Wholeben 
University of Texas at El Paso

University of Washington 

Portions of this study were performed pursuant to a grant from the 

National Institute of Education, and the Northwest Regional 

Educationa 1 Laboratory. Views presented are those of the author; 

and no endorsement from either granting institution should be inferred. 

INTRODUCTION TO THE STUDY 

This investigation sought to evaluate the utility of discriminant functions and 

their related statistics, in providing a practical post-hoc determinant of 

criterion strength and decisioning (sic) reliability for decision-making in the 

multiple alternatives environment (Wholeben, 1980a). Past experience with the 

use of binary integer programming (operations research) models in the selection 

of elementary school sites for closure during severe enrollment decline had 

demonstrated, that discriminant functions could provide a useful tool to the 

decision modeler -- not only to assist an evaluation of the model's reliability 

in constructing various solution set vectors (i.e. the schools to be closed 

versus those to remain open) in the form: 

[ 1 0 0 1 1 1 0 0 0 ... 0 J 

where l=open and O=close; but also to provide an accountability framework for 

the public's understanding of the methodology utilized and the reasonableness of 

Presented at AERA 1982, MLR Special Interest Group
Not refereed by editorial staff 

35 



the results (solutions) according to the criterion references employed. This 
current paper seeks to expand upon that 1979 investigation, and provide 
additional data supporting the use of discriminant functions as an effective 
post-hoc technique for evaluating ,not only decisioning reliability but also the 
relative impact which each of the applied criterion references provided to the 
construction of the resulting decision (solution set vector formulation). 

This paper wi 11 proceed to first acquaint the reader briefly with the idea of 
multiple alternatives modeling (MAM), and present a strong rationale for 
evaluating and simulating potential alternative decisions via an easily 
constructable criterion-referenced methodology. Secondly, the reader will be 
introduced to the "tools" of the MAM evaluator, and the rudiments of a 
nomenclature which will be utilized within the body of this report. Next, the 
findings of the 1979 school closure model (SCHCLO) will be summarized as an 
indication of the utility of discriminant functions in assessing decisioning 
model reliability for the "complete" matrix model case -- that is, a criterion 
model with!!£ empty cells due to missing or incomplete (irrelevant) data entries. 
Finally, the use of discriminant functions for assessing modeling reliab�lity 
and individual criterion strength associated with each decision will be studied, 
utilizing the 1981 fiscal deallocation model (ROLBAK) for evaluating budgeting 
unit alternatives for deallocation during funding roll-backs; and emphasizing 
the "scant" matrix model case. 

The objective of this paper remains to demonstrate the utility of discriminant 
functions in assessing the relationship between those criterion references 
designated as providing the rationale underlying the, decisions made; that is, to 
correlate decision sets (solution vectors) with the criteria, and thus measure 
the relationship of criterion variance in the prediction of solution vector 
membership. Furthermore as an auxillary objective, the use of discriminant 
functions will also provide a useful 'at-hand' technique for understanding the 
weighted value (or strength) for each of the criterion referenced variables 
entered into the discriminant function formulation. Finally, these results will 
demonstrate the utility of discriminant functions in the assessment of decisioning 
rel iabi 1 ity and criterion strength for both the "complete" and "scant" criterion 
matrix of values. 
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,CRITERION STRENGTH fil!Q_ DECISIONING RELIABILITY

,Evaluation and all decision-making resulting therewith, demand a high degree ofaccountability, visibility and responsibility. Today's complex issues require equally complex methodologies to assess both content and process of such issues,and to provide an understandable environment within which to simulate potential decisions and measure resulting effect or impact. As important moreover, is thesecondary demand for providing a means for post-hoc evaluating not only the results of the simulated decisions, but also the influence (singularly as wellas collectively) which the criterion references lend in making the original decisions. The clear need for the criterion-referenced decision-maker thereforeis to satisfy the following five objectives:

[lJ to validate the sophisticated decisioning methodologieswhich are so necessary for addressing today's complex
problems -- yet so often ignored, discounted or feared;

[2] to studx criterion effect upon the decisions made, and
the impact which the system receives via those decisions;
and thereby understand differential criterion weighting andinfluence -- "what" made a difference in constructing the
decisions, and the varying impact resulting;

[3] to provide a high degree of visibility, and therefore
accountability, to the public interests served and affected
via those decisions -- generating a milieu of trust withinwhich the decisions, no matter how unexpected, can be
trusted and accepted;

[4] to simulate the variable impact upon the decisions made by
introducing additional criterion influences into the model,
and thereby perform a path analysis from solution to solution
as different criteria are utilized to construct each decision
or solution -- satisfying the innate need of some individuals
who must always ask, " ... but, what if ... ?"; and
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(5J .· to permit easy and quick decisioning repl�cation within an
ever changing environment -- knowing the relationships 
between past successful decisions and the criteria used to 
construct those solutions, in order to understand the 
potential of future decisions based upon the new values of 
more current criterion measures. 

This paper demonstrates the superlative ability of a parametrically-based, 
statistical technique to satisfy each of the five objectives stated above. 
Relying upon multivariate, linear regression techniques, DISCR.IMINANT FUNCTIONS, 
constructed to relate criterion vectors to a singular 'solution set vector' 
containing either a binary (1,0) decision representation or the composite entries 
of a 'selection tally vector' (0,1,2,3, ... ), provide the basis upon which the 
required measures of criterion strength and decisioning reliability will be 
constructed. 

Generally, the notion of criterion strength refers to the identification of those 
measures which. in effect constructed the final decision or solution to the modeled 
problem; and furthermore provide a 'factor' measure of ordinal value or weight 
within that same group of 'solution-formation' variable measures. Specifically, 
criterion strength will address three fundamental questions existent within all 
decisioning evaluation: 

[l] which criterion references most clearl_y defend the decisions
made?

[2J to what extent are the criteria individually representative 
of the decisions made? 

[3] how do the most discriminating criteria within this decision
setting relate to each other in terms of importance and

influence?.

This paper will illustrate the utility of discriminant function(s) formulation 

for answering these questions of criterion strength, respectively, by evaluating 

the following rudiments of discriminant analysis: 
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[l] criteria included within the formation of discriminant functions

that is, which references were 'entered' into the composition

of the prepared functions;

[2] order-of-entry of each of the variables which discriminate the

final solution vector; and

[3J weight (or factor strength) relationship between the standardized 

canonical discriminant coefficients. 

Generally, the notion of decisioning reliability refers to the degree of trust 

which is implicit to the decision model (in this case, the "multiple alternatives 

model" - MAM); implicit in the sense, that the decision-maker can accept the 

results of such a criterion-referenced technology, both in terms of content (viz., 

effect of the criterion references within the model) as well as process (viz., 

effect of the model upon the criterion references). Specifically, decisioning 

reliability will address� fundamental questions existent within all decisioning 

evaluation: 

[l] to what extent are the criteria collectively representative

of the decisions made?

[2] to what extent can the defined matrix of criterion references

re-predict the original binary (include v. exclude) solution?.

This paper will illustrate the utility of discriminant function(s) formulation 

for answering these questions of decisioning reliability, respectively, by 

evaluating the following charactistics of discriminant analysis: 

[l] canonical correlation coefficients which offer a measure of

relationship between the 'set' of discriminating criterion

.tion references and the 'set' of dummy variables which are used

uating to represent the solution vector; and
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[2] the frequency of mis-inclusions and/or mis-exclusions (or over-estimations and/or under-estimations) discovered whenthe classification coefficients constructed to predict asolution with the known relationships among the discriminating criteria variables, are utilized to re­predict the original dependent variable (original solution).

� QE. I!:[ MULTIPLE ALTERNATIVES MODELING (MAM) FORMULATION
The complex issue of multiple alternatives decision-making is no stranger to theeducational analyst. The selection of some number of schools from a relativelylarge pool of potential candidates for closure is a MAM problem. Each school site represents varying measures of effectiveness, efficiency, satisfaction andexpenditure for each of a number of criterion references (e.g. capacity of building, heating requirements, building age, projected enrollment change over future years, safety factors of neighborhood, and proximity of other schools andtheir ability to absorb transferees in the event of the first school's closure).Some of these measures will be adjudged satisfactory (or nonsatisfactory) to varying degrees, and will be comparable with other schools across the district.However, to include one site for closure as opposed to another site means, that"good" aspects of a 'to-be-closed' school must be sacrificed in order to keep the other school operational, even though the 'to-be-kept-open' school may havecertain unsatisfactory measures on the same criterion variables which the nowclosed school exhibited as satisfactory. Such modeling of this decisioningsituation is known as interactive effects modeling (Wholeben, 1980a), and represents the necessity of constructing solutions sets which will invariably include some form of 'controlled' preference/trade-off mechanics as the variousalternatives are evaluated. The issue of complexity is also represented in the statement of the problem: to select some number of sc·hools for closure in orderto promote certain defined goals of the district; and thus to determine how manyschools will be closed� which ones. Obviously, such a model must in effect be simultaneously performing these two inter-related decisions: "how many?" and"which ones?" .. 
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The determination of which program unit budgets will be decisioned for continued 
funding (versus deallocation) is another example of the multiple alternatives 

• framework, and its superior contribution to the realm of accountable and
criterion-referenced evaluation and decision-making (Wholeben and Sullivan, 1981).
In the fiscal deallocation model, criteria represent the projecterl expenditures

. within each object cost code for each of the units under evaluation; and in 
• addition contain perceptual measures of administrative level of expendability.
Once again of course, exists the dual responsibilities for determining how many
program budgets will be discontinued, and which ones -- based upon the interactive
modeling effects of the various criterion weights across unit alternatives.

The multiple alternatives model is simply a system of simultaneous linear 
inequalities and equalities which collectively represents the problem to be 
solved. Such an algebraic linear system is portrayed in <Figure 1>. Note how 
each linear combination represents a vector of values (viz., coefficients) which 
identifies the total, measureable impact to a system of the alternatives being 
modeled. Thus there exists a unique (normally) combination of coefficients for 
each of the criterion references used as inout to the decisioning process. The 
alternatives themselves are further defined as binary variables (that is, taking 
on the value of either O or 1 (to be excluded in the final solution set, or to 
be included, respectively). Vector formulation for each criterion reference, 

portraying j_ criterion references across l alternatives, will then provide a 
basis for measuring total impact to the system as a whole attributable to the 
solution set constructed. Bounds (or limits) to what is allowable as a total 
impact to the system are expressed as vector entries within the conditional 
vector (or normally named, RHS, the right-hand-side). The RHS-values are the 
constants of the equations and inequalities modeling the system. {Figure 2> 
presents� listing of the four generic types of criteria to which each model 
should address content validity; and <Figure 3) depicts these criterion entries 
as members of the modeling framework previously illustrated within Figure 1. 

The remainder of the modeling process concerns the use of an additional vector 
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to assist in determining from the potentially hundreds (or millions, in some 

exercises) of possible alternatives, that£!)!, best mix for which the best, 

possible solution exists. This prricess is called the search for optimality, and 

the vector is known as the objective function (or sometimes, the cost vector). 

Geometrically, the objective function is a n-1 dimensional figure passing through 
the n-tuple space (convex) which is feasible (that is, includes all of the 

constraints postulated through the use of the linear equalities and inequalities) 

and which seeks a minimum point within the feasible region (if the goal is to 

minimize the impact of the objective function's values uoon the system) or a 

maximum point within the feasible region (if the goal is to maximize the defined 
objective function's impact to the system as a whole). 

Simply stated, the multiple alternatives model is a technique which seeks ,to 

construct a solution set (a vector of l's and O's), such that this same solution 

vector represents the solution of the simultaneous system, constrained by a series 

of competing criterion measures (vectors), and based upon the optimality demands 

of the objective function. 
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Figure 1. Representation of the Augmented Decision Matrix Model 
as the "Multiple Alternatives Model" (MAM). 
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Figure 2. Representation of a Generic-Criterion D.ecisioning Model for 
Analyzing Multiple C0111peting Alternatives. 

Criterion Foci 

(Effectiveness Criteria) 

CRIT1

CRIT 

(Efficiency Criteria) 

CRITa+l

CRITa+2

EFFEC-1 

EFFEC-2 

EFFEC-a 

EFFIC-1 

EFFIC-2 

EFFIC-b 

(Satisfaction Criteria) 

CRITa+b+l SATIS-1 

SATIS-2 

CRITa+b+c SATIS-C 

(Expenditure Criteria) 

CRIT a+b+c+ 1

CRITa+b+c+2

CllIT a+b+c+d

EXPEN-1 

EXPEN-2 

EXPEN-d 
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l for Figure 3. Fiscal Allocations as a Multiple Alternative Problem,Utilizing the Decision Matrix Framework.

Multiple Alternatives 

Criteria Progl Prog2 Prog3 Progn 
Positive Impact 1. +11 +12 +13 +ln

I 2. +21 +22 +23 +2n Maximize-

3. +31 +32 +33 +3n

Negative Impact 1. -11 -12 -13 -
l

n

I2. -21 -22 -23 -2n Minimize 
3. -31 -32 -33 -3n

Specific Costs 1. $11 $12. $13 $In 
2. $21 $22 $23 $2n Sum< total budget 

available 3. $31 $32 $33 $3n 



TOOLS OF THE MULTIPLE ALTERNATIVES MODELING MAM FORMULATION 

To construct discriminant functions from the relationships between the model 
just discussed above and the resulting solutions formulated, require the use 
of linear vectors and combinations of vectors (matrix). Only those vector and 
matrix fonnulations most germane to this paper wil 1 be discussed below. The "i};; 
reader is invited to be patient until. the scheduled publication of the manuscri�t 
"Multiple Alternatives Analysis for Educational Evaluation and Decision-Making" i 
in late summer of 1982, for a detailed illustration of all vectors and matrice 
pertinent to MAM. 

Solution Set Vector. In order to distinguish between alternatives included or 
excluded as members of the final solution to the system modeled, a vector of 
binary-decision representations is required, in the form: 

[ 1 0 1 1 0 0 0 0 0 ... 1] 

where 'l' means that the criterion values associated with that particular x{j) 
will be computed to measure resulting system impact; and '0' means that the 
underlying criterion values will have� impact upon the system. 

Selection Tally Vector. To observe the effect of each criterion reference upon 
construction of the system solution, a method called cyclic optimization 
(Wholeben

] 
1980a; Wholeben and Sullivan, 1981) is used. Under this. regimen, the 

model is executed once for each unique criterion being used to constrain the 
model, where each unique criterion is cycled through the model as the objective 
function. For example, during one execution in the case of the school closure 
model, the intent may be be preoare a solution set whereby existing capacity of 
the remaining schools will be maximized; in another cycle, the model will be 
executed such that the schools remaining open within the district will minimize 
the amount of energy expended for facility heating requirements. The selection 
tally vector is basically a frequency summation vector, compiling the number of 
times each alternative was chosen as part of the solution vector, across all 
cyclic optimizations. Such a vector will be represented as: 
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showing that the first alternative was selected as solution a total of l times, 
the second alternative a total of?.. times, and so forth. This vector is extremely 
important when the MAM procedure requires a step-wise decisioning process such 
as the school closure model -- evaluating a revised database after closing a 
single school such that the effects of closing each individual site is summarily 
incorporated into the next decision for determining additional site closures. 

Discriminant Criterion Inclusion Vector. This vector simply represents another 

binary entry vector of l's and O's, signifying which particular criterion 
references were utilized vfa discriminant functions to develop the canonical 
classification c0efficients, and the standardized canonical discriminant 
function coefficients. 

Discriminant Criterion Entry Vector. This vector contains 1,2, ... ,k entries, 
where! criteria were utilized in the development of the discriminant functions, 

and the 1,2, ... ,k entries represent their order of entry into the discriminant 

formulation. Criterion variables not entered into the function(s) receivP. a 

value of '0', by convention. 

Discriminant Weighting Summary�- Applying discriminant procedures to the· 
binary solution vectors will result in the computation of standardized canonical 

discriminant function coefficients. These coefficients will reflect the utility 
' 

of entered criterion vectors if those vectors contain standardized measures in 

lieu of the normal raw scores. By dividing each of the standardized canonical 
coefficients by the smallest of the standardized canonicals, the quotient will 
provide a factor of importance for each of the criteria as relative to the other 
criterion entered in the discriminant formulation. The discriminant weighting 

sulllllary vector is a linear representation of these factors (quotients}, where 

the minimum entry value is always '1.00' (smallest standardized coefficient 
divided by itself). Non-entered criterion locations receive a value of '0.00' b_y 
convention. 



Other 'tools' have been referenced in the proceeding section of this paper: 

criterion constraint matrix, condition limits vector (RHS), objective function 

vector, and the cyclic optimization tracking matrix. Other formulations are 

currently under study by the author (e.g. the optimality weighting matrix) to 

investigate new relationships which may allow greater accountability and 

reliability of the multiple alternatives modeling framework. 
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I!:[ "COMPLETE" MATRIX CASE: THE SCHOOL CLOSURE MODEL (SCHCLO) 

A total of 32 elementary school sites were measured across 24 relatively 
independent criteria, resulting from previous factor analyses of an original set 

of 64 criterion references. The criteria chosen were utilized by the multiple 

alternatives model for school closures (SCHCLO; Wholeben, 1980a) to evaluate the 

population of sites for some set of defined closures based upon the characteristics 

of the data; and the needs of the school district involved. Because the criteria 

utilized portrayed different value orientations (i.e., positive effects to be 

maximized; or negative effects to be minimized), the model consisted of a total 

of 18 cyclic MAXIMIZATIONS, and§. cyclic MINIMIZATIONS -- for the total 24 

optimizations required. The strategy was to operationalize the cyclic model, 

evaluate the full N=32 sites, analyze the selection tally results, choose a single 

site for closure, update the database to signify the closure, and then re-evaluate 

the now reduced N=l!, site model for an additional closure. This step-wise closure 

strategy was considered consistent with the pragmatic reality of deciding school 

closures due to severe enrollment declines. 

<Figure 4> displays the results ("tracking matrix") of the N=32 cyclic optimiza­

tion; and in addition, the selection tally vector entries (right column vector). 

The asterisked (*) vector entries signify those sites considered having the most 

potential for closure, due to the selection tally entries. These 4 sites were 

simulated 'closed' (i.e. included as '0' in the solution set vector); and a 

stepwise discriminant function analysis performed to analyze the relationship 

between the 24-vector criterion matrix which purportedly constructed the solution 

set, and the solution set thus constructed. 

{Figure 5> displays the results of the N=32 discriminant analysis. The single 

discriminant function constructed required a total of.§_ criterion vectors to 

adequately explained the variance found within the binary solution set of 4-Q's 

and 28-l's. The group-correlative relationship between these.§. criteria and 

the dummy variables formed by the solution set vector, was a canonical of .8512, 

explaining 72.5 percent of the variance between the criterion and solution sets. 

Based upon the re-classification coefficients formed, the discriminant function 
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Figure 5. 

Summary of Discriminant Function Analysis 

Based Upon MIP-4A Results (N=32) 

CRITERION CRITERION t..'ILKS' 

STEP ENTERED REMOVED � S!G�IFIC,\.�CE 

1 ENROL .7068 .0014 

2 AREAUTIL .5904 .0005 

3 CLASSR!-1 .4684 .0001 

4 AREAREPR -4124 .0001 

5 ENfilLUN .3628 .0000 

6 INTEROl -3183 .0000 

7 SURVIVE ,2921 .0000 

8 POTE�T .2755 .0001 

Eigenvalue • 2. 63000 Canonical Correlation • . 8512 

Classification Results: 

Actual Crouo 

Close 

No Close 

� 

4 

28 

� 

4 (100.07.) 

28 (100.o;,;) 

Percent of 11groupe<l,. cases correctly classified: 100�0 
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Figure 6.

Suamary of Dhct'iuinan:c Funct:1cu A.nal.ysis 

Ba•cd lipoa. �IP-4A Sum. Re.tulcs CN•ll> 

CB.IT ZR.le:< ClttTE:RlCN �!US' 

.mr. E�'T!:U:D �El-10\'EO � sr.c.::1:rcA::c� 

INTEROl .5745 .0096 

Sn:DOL .J864 .0044 

ARE.\JlEPR �2320 .,0008 

4 E.'/Ell\/AST .1502 .0003 

POTEl-lT .0972 .0001 

1m:0R.Irr .0666 .0001 

AJU:A.::u:c .0457 .0001 

8 SITIACE .0310 .0001 

9 TI'.EP..MEFF .02oa .oao1 

10 ENR..'U:C .0142 .001 

11 ENLUll:.\t .Q075 .000 

12 .uu:.uiur .OOJ6 .00(1 

13 Effill'.\IY .0021 .coo 

14 Tl!El\.'tE!T .0027 .coo 

15 ME.A.CJ.PC .0017 .ooo 

16 CLASSR.'1 .0011 .coo 

17 f!IR.OL .0007 .ooo 

18 AIIUUTIL .coos .coo 

P'ERCENT or {�itQCt C.\!lOStC.U 

lm!l2!! !ICEX\".\t!?? \"ll!AXCE EX?!_\!!{FD CO?-�.:::!.AT!Qj 

,24.99� 71.57 .9306 

S.481 l!S. 72 .noo 

2.JOO 6.60 .SJ�S 

4 l.300 4. 30 . 7745 

.600 1.1:! .6124 



Figure 6. (continued) 

c:..issific:H:fon ?.esults: 

ACTCAL 

Qill 

FllQ•O 

FR£Q-l 

FREQ-2 6 

(Predicted Crouj) �lei:.bership} 

IMQ.:2 �O.=!, I.�� P..EO•l 

(100.0:) 

9 c100.o:> 

6 (100.0�) 

4 (10,.0�) 

F�EQ•4 

(100.0t) 

Percent of "groupt:d'• cases correccly c.l,'l�•Uied: lC'O.O 
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was able to re-predict group membership for the solution vector (inclusion v. 

exclusion) with 100.0 percent accuracy. 

(Figure 6> illustrates the results of the discriminant analysis to evaluate the 

compositional relation between the selection tally vector and the full criterion 
database. For convenience, any selection frequency l 2 was entered into the 

discriminant model as a frequency=§_. This was considered necessary in order 

to provide some control over problems associated with singular frequency tally 

entries, and a loss therefore of variance potential. To explain the variance 

existent within the selection tally vector (0,1, ... ,5), a total of _!i criterion 
vectors were entered into the final construction of§_ independent discriminant 

functions. Re-prediction of the original vector entries proceeded with� 
accuracy. 

Upon the choice of a single school site for closure (j=Q, since tally entry= 2), 

the database was updated to reflect a N=l!. base, and the net effect of the studen1 

transfers from the closed site. The model was re-executed, and a new tracking 

matrix constructed, as displayed in <Figure 7>. A total of i new sites were now 

simulated as closed (with tally entries 14); and the discriminant model re-run. 

(Figure 8> displays the discriminant results of analyzing the N=l!. solution set. 

A total of 10 criteria were required to explained the independent variance --

two more than the N=32 analysis. The canonical correlation existed at �. or 
70.5 perc�nt explained (independent) variance. Re-classification resulted in a 

100.0 percent accuracy level. As before, the selection tally vector for the N=l!_ 

case was analyzed by discriminant functions; and these results are illustrated 

in <Figure 9}. A total of i functions were constructed; and a re-prediction of 
§2.:.l percent accuracy achieved. Within the re-classification, 2 occurrences of 

'over-estimation' resulted (viz., an 'exoected' tally entry greater than the 

original 'observed' value); and .l occurrence of 'under-estimation' (viz., an 

'expected' tally entry lesser than the original 'observed' value). Thus, it 

would seem that reclassification errored on the non-conservative side. 
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Figure 8. 

Summary of Discriminant Function Analysis 

Based l/po·n MIP-48 Results (N•31) 

CRITERION CRITERION I/ILKS' 

gg_ ENTERED REMOVED � SIGNIFICANCE 

ENROL .8883 .0661 

2 INTER13 .8164 .0585 

3 MINORITY . 7238 
; 

.0309 

4 STIIOPROX .6504 .0206 

5 ENROL .6590 ,0095 

6 AREAMAIN .5944 :0073 

7 Cl.ASS�! .5659 .0102 

8 ENROL .5336 .0126 

9 ENRHEAT .4957 .0132 

10 ENERWAST .4330 .0081 

11 THERMEFF .3387 ,0020 

12 ENRELEC .2954 .0015 

Eigenvalue • 2. 38541 canonical Correlation • . 8394 

Cl.Jss if ic.:it ion Results: 

Actual Grouo 

Close 4 (100.0%) 

No Close 

4 

27 27 (l00.07.) 

Percent of ugrouped" C.lS�s correctly cla.ssifit:!d: lOO.O 

56 
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Figure 9. 

Summary of Discriminant Function Analysis 

Based Upon MIP-4B-Sum Results (N•Jl) 

CRITERION CRITERION WILKS' 
ENTERED REMOVED LAMBDA SIGNIFICANCE 

INTEROl .6n2 .0412 

INTERlJ .5064 .021) 

MINORITY .3596 .0091 

POTENT .2703 .0070 

STUDPROX .2067 .D064 

SITEOL . 1517 .0047 

AREAUTIL .1193 .0057 

AREAMAIN .0822 .0034 

AREA .0635 .0044 

PERCENT OF UNIQUE CANONICAL 
EIGENVALUE VARIANCE EXPLAINED CORRELATIOll 

1.84D 42.30 .8049 

1.522 34.99 . 7769 

.680 15. 63 .6363 

.308 7 .08 .4852 
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Figure 9. (continued) 

Cl.issification Results: 

ACTC.\L 

£!!ill � FREO•l � � 

FREQ•O 4 4 (100.0%) 

FREQ•l 11 10 (90.9%) l (9.1%) 

FREQ•2 8 l (12. 5%) 5 (62.5J:) 1 (12. 5%) 

FREQ•l 4 4 (100.07.) 

FREQ•4 4 

Percent of "grouped" cases cor't'ectly classified: 87 .10 
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THE "SCANT" MATRIX CASE: THE FISCAL DEALLOCATION� (ROLBAK) 

A total of B. program budgeting (unit) alternatives were evaluated for defunding 
across a total of 10 competing criterion references. In lieu of a step-wise 

;, procedure as represented in the school closure modeling framework, the model is 
•• further constrained to choose those programs for refunding such that the new
, operating district budget is not less than 675,000 dollars, but not more than
700,000 dollars for the particular programs under scrutiny. To study the effect 
of the model's solution generation process, the feasibility region as defined 
by the constraint matrix and the RHS-values is constructed io two distinct 
patterns: a highly restricted region in which very stringent controls are defined 
for the modeling procedure; and a relatively relaxed region in which less 
stringent controls are modeled. In addition, the ROLBAK formulation is executed 
both for cyclic maximization of the objective functions, and for cyclic 
minimization of the objective functions. Thus, a total of i tracking matrice 
containing 10 potential solution sets (each) result. 

This particular modeling application represents the "scant" matrix case, in that 
a high proportion {48.7 percent) of criterion matrix cells contained a "zero' 
entry, signifying no cost for that particular alternative within a specific 
object-expenditure category. For the SCHCLO model, the criterion matrix was 
"complete" -- all cells contained a value greater than zero. 

Under the, 'restricted' formulation, the 17 resulting solution sets signify only 
2 distinct solution vectors. In contrast under the 'relaxed' formulation, a 
total of 17 distinct solution vectors result. Under both restricted and relaxed 
limitations, 1 objective functions were unable to declare optimality due to the 
inability to find an initial integer-feasible solution. 

<Figure 10> and <Figure 11> display the solution sets resulting from optimization 
within the restricted region environments. The selection tally vector is noted, 
as well as the impact upon the total budget based upon the simulated cuts .{i.e., 

where X=funded). As can be easily seen, the solutions resulting from optimization 

within the restricted environment present only two distinct alternatives for 

later discriminant analyses. 
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[Hect Upon Oud•1et De•llocatlon Decisions Based U1mn the Variable Flows.of a Cyclic Oujectlve 
Function, and the Interaction of a •Maximized, Restricted• Constraint Iterative Problem. 

Objective • Maximization Constraints: Restricted 
1£"X-P=lli;l'£�tlof 

iiu<igef 
Alterna- 01 02 0] 04 05 06 07 08 09 10 SELE CTI OIi BUDGET 
tlves CERT CLAS BENE SUPL INST CONT TRAY CAPI PERC COMP TALLY AMOUNT 

01 X X X X X X X X X X 10 87,5 
02 X X .X X X X X X X X 10 44.5 
0] X X X X X 5 34.5 
04 X X X X X X X X X X 10 71.5 
05 X X X X X X X X X X 10 70.5 
06 32,5 
07 X X X X X X X X X X 10 51.5 
OB 1.5 
09 X X X X X 5 4],0 
10 4.0 
11 X X X X X X X X X X 10 54.0 
12 LO 
ll 5.5 
14 4.0 
15 X X X X X X X X X X 10 116,0 
16 X X X X X 5 2].0 
17 X X X X X X X X X X 10 107.0 
18 l].0 
19 2.0 
20 ).0 
21 16.0 
22 10.5 
23 X X X X X 5 • 55.0 
24 4.5 
25 2.5 
26 19,0 
27 1.0 
28 1.0 
29 2.0 
30 12.0 
31 2,5 

1Q lQ 1Q 1Q 1Q lQ 1Q lQ lQ 1Q 

O.F. Value: 340.7 274.5 217 .9 433.9 330,0 362.1 50.0 534.6 496.2 680.5 

Iteration at 
Optima 1 ity: 36 69 76 115 228 27 114 SI 5000+ 369 

Time (secs): .266 .298 .28B .325 .384 .264 .]83 .274 4.498 .850 

Rol 1-Back 
Savings: 680.0 680.0 680.5 680.0 680.5 680.5 680.0 680.0 680.5 680.5 

(· Cut) (-213.5) (-213.5) (-213.0) (-213.5) (-213.0)(-213.0) (-213.5) (-213.5) (-213.0) (-213.0) 

8"ud9et 
A lterna-
tlves 

01 

02 
03 

Note: Total lnlthl Budget • � (SlOOO's) 

Figure 10. 
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>·tffect Upon Budget Oeallocat1on Oec!sll
ons1B•�•\Upt1�ted" Constraint lnteratwe Problem. 

Function, and the Interaction of a H n111 ze • es r 

01 02 
CERT CLAS 

X 

X 

Objective = Minimization Constraints • Restricted (8xP=16; PERC=SOO) 

03 04 05 06 07 
CONT TRAY BENE SUPL INST 

X X X X 

X X X X 

X X X 

X 
X X X 

~ V 

08 09 
CAP! PERC 

X X 

X X 
X 

X X 

X X 

10 
COMP 

SELECTION BUDGET 
TALLY AMOUNT 

7 87 .5 
7 44.5 
4 34.S 
7 71.5 
7 70.5 

32.5 



Note: Total lntthl Budget • fil!l (SIOO0's) 

Figure 10. 

Effect Upon Budget Deallocation Decfsion$ eased Upon the Variable forms of a Cyclic Objective 
Functfon, and the fnteractfon of a "Minimized, Restricted" Constraint lnterative Problem. 

Objective = Minimization Constraints • Restricted (8xP=l6; PERC=500) 

uctget 
A lterna- 01 02 03 04 05 06 07 08 09 10 SELE CTI Off BUDGET 
tives CERT CLAS BENE SUPL INST CONT TRAV CAP! PERC COMP TALLY AMOUNT 

01 X X X X X X X 7 87 ,5 
02 X X X X X X X 7 44 .5 
03 X X X X 4 34 .5 
04 X X X X X X X 7 71.5 
05 X X X X X X X 7 70.5 
06 32.5 
07 X X X X X X X 7 51.5 
08 1.5 
09 X X X X X 4 43.0 
10 4,0 
II X X X X X X X 7 54.0 
12 1.0 
13 5.5 
14 4.0 
15 X X X X X X X 7 ll6.0 
16 X X X 3 23.0 

O'\ 
17 X X X X X X X 7 107.0 
18 13.0 I-' 19 2.0 
20 1.0 
21 16.0 
22 I0.5 
23 X X X 3 55,0 
24 4.5 
25 2.5 
26 19.0 
27 1.0 
28 1.0 
29 2.0 
JO 12.0 
JI 2.5 

.!Q .!Q .!Q !Q .!Q .!Q !Q !Q .!Q .!Q 

O.F, Value: 234.5 197,0 366.8 314,8 3I3.0 482.6 489.0 

Iteration at 
Optimality: 5000+ 686 200 85 902 203 SJ 

Time (sec): 4 .581 .933 .563 ,304 1.193 .407 .256 

Ro l l-8ack 
Savings: 680.5 680.0 680.5 680.0 680.0 680.5 680.0 

(-Cut) (·2I3.0) (-213,5) (·213.0) (.213.5) (-213.5) (-213.0) (-213.5) 

Note: Total lntttal Budget • � (SIOOO's) 

Figure 11. 



(Figure 12) and <Figure 13) display those solution sets resulting from the 

optimizations within a relaxed environment� A total of 17 distinct solution set 

vectors are formed; and thus the selection tally matrix demonstrates greater 

variability than existent within the restricted orientation. 

Discriminant functions were computed for the relaxed modeling setting first, 

requiring a separate discriminant execution for each of the distinct solution 

vectors resulting from the MAM analysis. As noted in an earlier section to this 

paper, criterion strength was evaluated utilizing the three composites vectors: 

DISCRIMINANT CRITERION INCLUSION VECTOR 

DISCRIMINANT CRITERION ENTRY VECTOR 

DISCRIMINANT WEIGHTING SUMMARY VECTOR. 

The first vector is composed of binary (1,0) entries signifying whether a specific 

criterion was entered into the discriminant analysis for explaining the variance 

within the solution set. The second vector contains entries of 1,2,3, ... , such 

that the order-of-entry for the discriminant criteria is represented. Finally, 

the third vector contains a factor-weight entry for each of the 'entered' vectors.­

to measure the relative importance of each of the discriminating criterion 

references. 

The notion of decisioning reliability was evaluated utilizing ,two techniques: 

CANONICAL CORRELATION 

RE-CLASSIFICATION ANALYSIS. 

(Figure 14> contains the discriminant results for solutions accountable to 

maximization within a relaxed region. The first ten columns contain the 

information from the discriminant analyses for each of the ten simulated solution 

sets. The ordinal numerals represent order-of-entry, while the bracketed entries 

62 

c 

'Z ��
�
.. 
u "
-;;: 
0 

�
i 
u 

'S] 
.. ,, 
"Q 

��
..

.!.!

��
.... 
.... 
>-

.... 

5� 
C '-
Ou 
Q. .. 
:, C 

Q 
'CU � . 
.. ,..
=:: 
�..'! 

Q" 

-;;; a: 
v-o·
"" 

ON =·e 
2-; 
.... ��
2 .. 
.. �
.. Q 

0 
C 

t.2 "'" 
'Cu ,, .. 
"'l;; 
cu 
QC 
a.-
:, 
.. 

UZ, 

..... 
.. �,..
�c .., .. 

,_.... � � 
§li"'� 

��
.... -"
l:l 

s 

"'
0 

ii 

"'
C 

.. 
.. 

�
Q 
u 

C 

.2 
.. 
.. 

:§ 
K 
.. 
2: 

.. 
> 

u 
..-� ""
0 



PJ C: �- CT 
n> �- ;;. 0. � -

- � ..... .. ..... (Q ci VI 
0 ..... ::l PJ r+ <1) . w r+ :::r <1) r+ '° 0 3 � PJ er 0 VI .. 

<1) "'I w :::r <1) 
0 0 -t,• "'I ..... 

<1) r+ r+ "'I <1) . <1) "'I ::) �- <1) ,:: c+ ,... ro ::r- <1) < ..... 
<1) a. <1) 

�- �- a. .,,
<1) ,:: "1 PJ r+ :::r 

.Q 0 - < Ill r+ VI c+ � <1) a. r+ ::l Ill 
0 r+ 

VI 0 C: ::l. r+ 0 �- r+ ro 0 

ro < PJ w "1 "' 
0 0 w "1 ::l ro 0 <D ..... �- -0 ..... VI "'I c+ ::l 

0 ..... "' PJ <D "' r+ ,:: r+ '< C: ::l 0 "' ::r-
<D 

J. �-
.. �-

·O w 0 0 �- c+ 
"1 ::r <D � 

,,,,,,�.,c.g: :'

Hfect Upon Budget Oeallocatfon Decisions Based Upon the Variable Flows of a Cycllc Objective function, 
and the .Interaction of a •Maximized, Relaxed• Constraint Iterative Problem. 

Objective• Maxl.,lution Constraints, Relaxed 
{ExP•lo; i'ERt • iOOJ 

udget 
A lterna- 01 02 03 04 OS 06 07 08 09 10 SELECTION BUDGET 
t ives CERT CLAS srnE SUPL INST CONT TRAY CAP! PERC COMP TALLY AMOU!iT 

01 X X X X X X X X X X 10 87 .5 
02 X X X X X X X 7 44.S 
03 X X X X X s 34.5 
04 X X X X X X X X X X 10 71.5 
OS X X X X X X X X B 70,5 
06 X X X X X X 6 32.5 
07 X X X X X X X X X 9 51.5 
08 1.5 
09 X X X X X X X X X X 10 43.0 
10 X 1 4.0 
11 X X X X X X 6 54.0 
12 1.0 
13 X X 2 5.5 
14 X 1 4.0 
15 X X X X X X X X X X 10 116.0 
16 X X X X 4 23.0 

0\ 17 X X X X X X X X X X 10 107 .o w 18 X X 2 13.0 
19 X 1 2.0 
20 1.0 
21 X X 2 16.0 
22 X 1 10.5 
23 X X X X X X 6 55.0 
24 4.5 
25 2.5 
26 X X X X 4 19.0 
27 X 1 1.0 
28 X X 2 LO 
29 X 1 2,0 
30 X 1 12.0 
31 2.5 

g g 11 ll 11 g g g ll g 

O.F. Value 485.4 425.5 316. l 615.9 476.6 477 .7 100.0 659.04 600.0 700.0 

Starting at 
Optima I ity: 20 60 202 16 43 52 163 65 5000+ 457 

Time (sec): .246 .359 .416 .227 .297 .337 .589 .310 6.022 1.166 

Ro 11-Back 
Savings: 685.5 685.5 699,5 693,0 684.5 684.5 693.5 675.5 675.5 700.0 

(·208.0) (-208.0) (-194.0) (·l00.5) (-209.0) (-209 .. 0) (•200.0) (-218.0) (-218.0) (-193.5) 

Note: Total Initial Budget • � (SlOOO's) 

! 

Figure 12.
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[x.xx] contain the factor-weights computed from div-iding each of the standardized -
:anonical discriminant coefficients by the smallest such coefficient for each 
_iscriminant analysis. For example in the first column signifying the results 
:f discriminating the solution computed from maximizing 'certificated salaries', 
! criteria were required to explain available variance within the solution set.

, 

1

he criterion • budgetary composites' was entered first,· and represents a factor
of 2.51 in its importance to the remaining i criterion discriminants. The
criterion 'certificated salaries' was entered secondly, and represents a factor
f 3.17 in its relative importance for discriminating the solution set being
nalyzed; and so forth. The selection tally vector is similarly analyzed via

discriminant functions.

For understanding the dimension of decisioning reliability, computerl canonical 
correlation coefficients existed as follows, for maximized-relaxed solutions: 

Objective Canonical Percent Variance Relative 
Function Coefficient Exelained Rank 

CERT .9056 82.0 3 
CLAS .8633 74.5 6 
BENE .8729 76.2 4 
SUPL .9077 82.4 2 
INST .9339 87.2 1 
CONT .8679 75.3 5 
TRAV .8614 74.2 7 
CAPI .8419 70.9 8 
PERC .7870 61.9 9 
COMP .7281 53.0 10. 

Thus it would seem, that a formalized objective of "maximizing" the expenditures 
associated with instructional materials in determining which programs to refund 
during a period of scant resourses, produced the highest correlation between 
the criterion matrix of 10 vectors and the propos.ed solution set vector 
constructed from the MAM analysis execution. Likewise, the maximization of 
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!•budgetary composites• produced the lowest correlation, explaining only fil,!)
l,ercent of independent ,ariance within the MAM solution •ector. 
The second 'phase• of measuring decisioning reliability exists in the accuracy 
of re-predicting solution set -Sership based upon the classification function
oefficients generated via the discriminant analysis. The bottom portion of 
fgure 14 portrays these results for each of the .!Q solution vectors fonned by
he varying criterion focus of the objective function. The results of
e-classification for the selection tally vector are also displayed. 
Figure 15> illustrates the similar results from applying discriminant function 
,a1yses to the solution ••ctors frirmed by minimi,ation within a relaxed setting
e three vectors for denoting criterion strength are easily distinguishable 

rom the J. successful (columns) OPtimi,atfons. The re-classification r>ortion of
·asuring decisioning reliability is also shown. 
.e computed canonical correlation coefficients for minimized-relaxed solutions:Objective Canonical Percent Variance Relative Function Coefficient Explained Rank 

CERT 
.n21 

59.6 
6 CLAS 

9ENE 
.7902 

62.4 
5 SUPL 

.8194 
67.1 

2 
INST 

.7675 
58.9 

7 CONT 
.8000 

64.0 
3 TRAV 

.7928 
62.9 

4 CAP! 
PERC 

.9343 
87.3 

1 COMP 

nstrated, that solution set formulated by minimizing the 'administrative
eption• entries in determining a solution, to be the best fit with the
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I 

verall criterion matrix; and the solution from minimizing 'instructional 

aterials', the least 'best' fit. 

egarding the results of optimizing (both maximally and minimally) within the 

estricted environment, <Figure 16> illustrates the discriminant function analysis 

framework. Similarly, the canonical coefficients were computed as: 

Solution Canonical Percent Variance Relative 

Vector Coefficient Explained Rank 

#1 .8947 80.0 1 

#2 .8628 74.4 2 
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• • Sufflfll«ry of Criterion Vectot' Order-of-Ent!!.,__ in Dhcrimi.natin the Two Dist1nct Solut1on Set Vectors Resulti('I rom the C cltc·•MAXIMIZATION .and HtN[HCZATlON w1th1n • RESTRICTED Reg1on. Note: Source of Ducnmin.ant Criterion lnclu•1on Vector; oiscn•1nant Crttenon Entr Vector; an Ducr1a1nant We1 t.tn Summar Vector 

Critet"ion Solution Solution Vector Se< #! Se< #2 

Certificated 
Salaries (1.05] 

Classified 5 
Sdat'ies (1.00] 

E111ployee 
Benefits 

Supplies & 2 H•t•rials (1.10] 

Instructional 3 Kateriall 
(1.00] 

Contr11ctual 
2 Services 

[l.65] 

Travel 
f:xpendi Cure, 

Capital 3 Outlay (1.25] 

A.d1111inistutive 
Perception 

tludgetary I 
Compo,ites fl.111 (3. 24] 

N,..ber of I INia-incluaions 

Number of 
Hie-exclusions 

Re-Predict ion 
Accurary (%) 96.8 96.8 

Figure 16. 
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SUMMARY OF FINDINGS 

The use of discriminant functions in providing a useful post-hoc evaluation 
strategy for multiple alternatives decision-making has been studied within two 
separate real-world settings: the closure of schools; and the deallocation of 
program unit budgetary items. Two generalized issues of·content and process were 
the main foci: content, in as much as there is a need to relate criteria used 
to the decisions made; and process, in order to verify the reliability of the 
decisioning procedures based upon the criteria utilized. 

The author maintains, that two related "abilities" are necessary for prudent and 
trustworthy decision-making. The first ability refers to that knowledge which 
clarifies (1) which criteria 'effected' the decisions, and to what extent; and 
(2) to what degree did this 'effect' vary across the results of the cyclical
optimizations. The second ability relates the need to study (1) the relationship
between the 'optimizing vector' (objective function) and the results of a
discriminant analysis; and (2) the relationship between the extent of feasibility
region constraint (relaxed v. restricted) and the results of a discriminant
analysis. To accomplish these ends, the multiple linear regression technique,
discriminant functions analysis, is utilized to measure the topics of criterion
strength and decisioning reliability.

The results of these discriminant analyses illustrate the superior efficacy found 
in relati�g multiple correlational strategies to discovering relationships between 
solution vectors and the criterion vectors (matrice) supporting those decisions. 
Three measures- of criterion strength and two measures of decisioning reliability 
are illustrated for the reader -- all measures normally products of discriminant 
function(s) formulation. 

It is a fundamental by-product of this study though all to important not to note, 
that the formation of "classification coefficients" within the discriminant 
process provides an excellent way of projecting expected impact from a newly 
collected set of data variables. By utilizing the linear combinations of this 
new data, 'expected correlative• decisions can· be computed which maintain the 
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same variance relationship as the decisions utilized originally in the initial 

discriminant analyses. 

In summary, the use of discriminant-functions in addressing the issues of criterionstrength and decisioning reliability has been illustrated to hold great promisefor the decision-maker, eva'luator and otherwise problem-solver. Increased
accountability, visibility and responsibility are the maximized ends.
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Appendix I 

Synthetic "True" Covariance Structure for Misspecification Categories
SynthE 
The Cc I and III: The Covariance Structure used as the Input Matrix for the 
of Dat Simulation of Data Sets whith a Multivariate Normal Distribution.

yl Yz Y3 Xl X2 X3 X4
yl 1.338 

y2 .781 1.1175 yl 
Y3 1.9525 2.,54375 6.453975 

Yz
Xl .84 .62 1.55 1.1 

Y3 
Xz .42 .31 . 775 .5 .35 

Xl
XzX3 .78 .55 1.375 .8 .4 1.1 
x3 X4 ,234 .165 .4125 ,.24 .12 .3 .19 X4 



Appendix II 

Synthetic "True" Covariance Structure for Misspecification .Category II: 
The Covariance Structure used as the Input Matrix for the Simulation 
of Data Sets with a Multivariate Normal Distribution. 

yl y2 Y3 Xl X2 X3 X4

yl 1.538 

y2 1.18 1.5175 

Y3 2.9675 3.0439 7.9094 

Xl .84 .62 1.55 1.1 

x2
.42 .31 . 775 .53 .35 

X3 .78 .55 1.375 .81 .41 1.1 

X4 .234 .165 .4125 .13 .13 .32 .19 
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USING LINEAR MODELS TO SIMULTANEOUSLY ANALYZE A SOLOMON r:ouA 8ROuP r>i:atGN
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be•o Pr••••t•d aad po•tte•t•d; Gro,• T..,, A •ootrol group that has be•• •re­
te•ted aad po•t•••t•d; Gro,. Th,..., A, •xP•Hmeotal group tha• ha• be•, •o•t­
te•t•d o,ly; a,d Gro,p Fo,r, A •o,trol gro,p •hat ha• be•• •o•tte•••d o,ly.

Campb•ll aod Staol•y sta••• "Th• .. is ,o •fog,lar •tatistical •roc•dor•
_., kh mak\es "'• of a 11 six ••ts of ob•mat, o,s s1 m, ltao•o,s I y. " ( •. 24) Th• So 1 _, Fo,, Gro,. Desi'" , Wh i1 • very ., •• 1 • •on•·•'"' 11 y, ... be
••ry misl•adiog d•P••diog "•oa th• statisti•al aoalysis. Campbell aad have a preferred approach, in whfch they set up a 2x2 fac�

AERA 19 2, MLR Special Interest Groupby editorial staff 
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Pre­
Test 

Treatment 

Yes 

Yes Grl 

No Gr3 

No 

Gr2 

Gr4 

In this design only the posttest scores are statistically analyzed. This 
procedure does not allow one to control for the pretest scores in groups 

1 and 2, thereby losing some power; it does however estimate the effects 

of treatments that are independent of individuals having a pretest and 

treatment pretest interaction. It also tests for the effects of pretesting, 

independent of treatment and pretest-treatment interaction, on posttest scores. 

Finally, the approach estimates the effects of pretest-treatment interaction, 

on posttest scores. 

One of the advantages of writing specific regression models which reflect 

research questions is that one is less likely to have a statistical answer 

that is unrelated to the researcher's question of interest. The following are 

a variety of regression models which will reflect potential research questions 

that can be ascertained from the Solomon Four Group Design. It should be 

remembered that there is not one correct answer. 

Recently, Newman, Benz, and Williams (1980) devised a way to analyze data 

that, by extension, might be applied to Solomon type designs. A unique property 

of this technique is that, the statement by Campbell and Stanley not with­

standing, a single statistical procedure can be employed which makes use of 

all six sets of observations simultaneously. On the other hand, the solution(s) 

may prove to be no more satisfactory than existing possibilities that split 

the data into two sets. In the end, the Solomon Four Group design may prove 

to be one of those recalcitrant, research situations that leave the would be 

analysts foundered on the shoal of a simple design whose simplicity is only 
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a deception. 

Consider the following research situation. Five people in each group 

have scores such that one experimental group has been pretested and post­

tested and one experimental group has been posttested only. Two similarly 

tested control groups are also included. Data for such a situation are 

given in Table 1. 

Table 1 

Data for a Solomon Four Group Design 

Experimenta 1: Control: Experimenta 1: Control: 
Group One Group Two Group Three Group Four 

Pretest Postt�st • Pretest Posttest Posttest Posttest 

5 15 5 8 13 9 
7 12 4 7 10 8 
5 10 4 8 12 6 

12 17 6 6 11 3 
6 11 6 6 14 4 

Several different approaches might be tried. One approach would be to 

divide the data into two sets: Groups One and two {those who were both pretested

and posttested) as one set, and the posttested only groups {Groups Three and

Four) as the second set. The latter set can be simply tested by the us·e of the

t test: 

t = 4.24 (p<.05). 

The former data set {Groups One and Two) can be conceived either as a 

repeated measures design or as a problem that can be approached through the 

analysis of covariance (or related techniques such as residual gain analysis). 

To approach the problem first as an analysis of covariance, the following 

variables can be defined: 

Y = the criterion, or posttest score; 

x1 = the pretest score;
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x2 = 1 if the score is from the experimental group, O if the score is from 

the control group; 

x3 = 1 if the score is from the control group, O if the score is from

the control group. 

Then either of two full models can be used: 

Y = b1X1+b2X2
+b3X3+e1, (1) 

or 
Y = bo+b1X1+b2X2+el. (2) 

Equation 2 utilizes the unit vector in the process of generating a constant 

whereas equation 1 -does not. Either model will yield the same R2 value.

The restricted model (with equation 2 as the full model) is of the form: 

(3) 

For this data set Ri = .79379, R� = .42334, F = .79379 - .42334 1 = 12.58, p<.05. 
1 - .79379 /7 

Using a Repeated Measures Approach 

If the problem is visualized as a repeated measures design wherein the pretest 

is the first measure and the posttest is the second measure, then the design is 

like the Type I design shown in Lindquist (1953} and can be achieved through -a 

regression approach (Williams, 1974). For a regression formulation, see Table 2. 

De 

pl p2 
1 0 
0 1 

0 0 
0 0 

t 0 0 

1 0 
0 1 

0 0 
,_ 0 0 
t: 0 0 
5. 0 0 
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from 

Table 2
Desiqn Matrix for a Reoeated Measures Problem

Pl p2 p3 p4 PS p6 p7 p8 pg plO Xl x2 X3 x4 X55 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 7 0 1 0 0 0 0 0 0 0 0 I 0 1 0 1 5 0 0 1 0 0 0 0 0 0 0 1 0 I 0 1 
2 0 0 0 1 0 0 0 0 0 0 I 0 1 0 I6 0 0 0 0 I 0 0 0 0 0 I 0 1 0 1 
5 I 0 0 0 0 0 0 0 0 0 I 0 0 1 02 0 1 0 0 0 0 0 0 0 0 1 o · 0 1 0 :O 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 ·7 0 0 0 1 0 0 0 0 . 0 0 1 0 0 1 01 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 

ant ·5 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 4 0 0 0 0 0 0 1 0 0 0 0 1 1 0 04 0 0 0 0 0 0 0 1 0 0 0 I I 0 0 6 0 0 0 0 0 0 0 0 1 0 0 I I 0 0 
form: 6 0 0 0 0 0 0 0 0 0 1 0 1 I 0 0 8 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 

7 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 
8 0 0 0 0 0 0 0 1 0 0 0 I 0 1 0 '..58, p<.05. 6 0 0 0 0 0 0 0 0 I 0 0 1 0 1 06 0 0 0 0 0 0 0 0 0 1 0 I 0 1 0 Here, y = the criterion test score;

pl thru P10 are binary coded person vectors (1 if the person, 0 otherwise);,e Pretest Xl = 1 if the score comes from a person in the experimental group, Oign is otherwise; 
igh a X = 1 if score comes from a person in the control group, 0 otherwise; 

2 
·able 2.

X = 1 if the score occurs with a pretest situation, 0 otherwise; 
3 

X = 1 if the score occurs with a posttest situation, O otherwise; and
4 

xs = x1.X3.

Several models can be used to generate an analysis. The use of the following
is instructive: 

y = bo+b1P1+b2P2+ ... +b9P9+e3; (4) (or alternatively, Y = b1P1
+b2P2+ ... +b10PIO+e3} y 

= bo+b1Xte4; (5) 
y

= bO+b3X3+e5; (6) 
y

= bo+b1Xl
+bi3+e6; (7)



(8) 

and 

y = bo+b1P1+b2P2
+ ••• +b9P9

+b10X3
+b11X5

+e8. (9) 
2 For the preceding, R4 = .54297;

• R� = . 31250;

R� = .31250;
2 R7 = .62500;
2 2 

R8 = .70312 and R9 = .93359.

What might have occured if a model of the followinq fonn were used? 

y = bo+blPl+b2P2+ ••• +b9P9+b10X1
+b11X3+b12X5+e9.

It would not sensibly yield R
2 

= .54297 + . 70312 = 1.24609. Such a model would 
fail because the effect for experimenta 1-control is "nested" in the subject 

(or person) effect. 

F = R�/1 

(Ri-R�)/( P-1-1) 

p<.05. 

To test for the experimental-control effect, 

= .31250�1 = 10.85, 
(.5429 -.31250)/(10-2} 

To test for the test-retest effect, 

F = R�/1 
2 (l-R9)/(N-P-l-1)

.31250 = 37.65, p<.01. 

.06641/8 

The interaction is tested by 

F = (R2-R2)/18 7 
2 (1-R9) / ( M-P-1-1)

(.70312-.62500)/1 = 9.41, p<.05. 
.06641/8 

Note that the interaction effect can be conceptualized as actually being 

�dditional evidence for the experimental effect. The higher increases in 

the experimental group will show up in part as interaction for a repeated 

measures design. 
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The usual summary table for the repeated measures design can be constructed. 

he summary table is shown in Table 3. 

Table 3 

Summary Table for Repeated Measures Design 

df ss MS F 

ubjects 9 139.00 
xperimental-Control 1 80.00 80.00 10.85 
rror (a) 8 59.00 7.375 

ithin Subjects 10 117 .00 
test-retest 1 80.00 80.00 37.65 
interaction 1 20.00 20.00 9.41 
rror (b) 8 17.00 2.125 

Total 19 256.00 

Using All Six Groups Simultaneously 

As the Solomon design is approached, several conceptual issues ensue. ls 

this to be seen as a six group design with attendant solutions? If the 

researcher opts for a six group design, person vector infonnation needs to 

be excluded. Indeed, this was also true in the previous section. At no 

time were the four groups and person vectors used simultaneously; if it 

were, the R
2 

was theoretically to be 1.24609, obviously an impossibility. 

If a six group design is to be used, what dimensions would be appropriate? 

This could be considered to be a one-way lay-out, a two-way lay-out, or a 

three-way lay-out (but with two missing cells) only the one-way and three-way 

layouts are discussed here. First hypotheses with a one-way lay-out as addressed. 

Consider the following variables: 

Y = the criterion score; 

x
1 

= 1 if the score is a pretest score from a member of the experimental 

group, 0 otherwise; 

x2 
1 if the score is a posttest score from a member of the experimental 

group that has been pretested, 0 otherwise; 
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x
3 

= 1 if the score is a pretest score from a member of the control group, 

0 otherwise; 

x4 = 1 if the score is a posttest score from a member of the control group 

that was pretested. 0 otherwise; 

x5 .= 1 if the score is from a member of the experimental group that was not

pretested, O otherwise; and 

x6 1 if the score is from a member of the control group that was not pre-

tested, O otherwise. 

For the six group situation, the full model is: 

Y = b1X1+b2X2+b3X3+b4X4+b5x5+b6X6+e9. (10)

At least two different sets of restrictions might make sense in addressing 

the Solomon design. One such set would be b2-b1
=b4-b3, which addresses the

hypothesis YiY/Y4-V3, as the hypothesis that the gains in the twice tested

experimental and control groups are equal; also, the second restriction is 

bs=b6 �s the once tested experimental groups have �qual means: V
5

=V
6

•

The first restriction can be rewritten as b2
=b4-b3+b1: Placing these

two restrictions on the Full Model: 

Y = b1x1
+(b4-b3

+b1)x2
+b3X3+b4X4

+b5X5+b5X6
+e10 (11)

Y = b1(x1+x2)+b3(x3-x2)+b4(X4+X2)+b5(X5
+x6)+e10. (12)

letting D = 1 Xl+X2;

D = 2 X3-X2;

D . = 
3 X4

+X2; and

D = 
4 X5

+X6, the restricted model is:

y = blDl+b3D2+b4D3+b5D4+elO' (13) 

Here, Rio = .71183; Ri3 
= .42882.

2 2 • F = (R10-R13)/2

(l-R�0)/(N-6)
.28301 2 = 11.79, p<.01. 
1-.71183 /24 
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This F test tests simultaneously V2-V1
=V4-V3 and V5

=V6 ; placing both sets

of restrictions a 11 ows the rejection of the null hypotheses. If these restri c­

ti ons are equivalent to hypotheses the researcher had in mind, then there is no 

further problem. Translating the meaning of these two hypotheses into English 

may leave the researcher somewhat uneasy; however, ·one attempt at a translation 

into English is: It is not simultaneously true that there is no differences 

in the means of the non-pretested group and that there is no differences in 

the gains of the pre-tested groups. 

One approach would be to test each of these hypotheses separately and using 

Dunn's (1961) test for multiple comparisons. Imposing the first restriction separately 

(b2-b1
=b4-b3) yields Y = b1X1

+(b4-b3
+bl)X2+b3X3+b4X4+b5X5+b6X6+ell;

Y = bl(Xl+X2)+b3(X3-X2)+b4(X4+X2)+b5X5+b6X6+e11· (14)

Then using D1, o2 and o3 as previously defined, Y b1D1
+b3D2+b4D3+b5X5+b6X6+e11. (15)

2 R15 = .66038 and

F = (Rio-Ri5)/l

(1-Rf0)/(N-6)

= .71183-.66038 = 
(1-. 71183)/24 

.05145 
(1-.71183)/24 

-= 4.29. 

t = if= 2.07. Since two contrasts are plan.ned, a value of 2.39 is necessary 

for significance of.the .05 level, hence the hypothesistl2
-lt1=1f4-1, corres­

ponding to V2-V1=Y4-Y3 cannot be rejected. The imposition of the second

restriction (b5=b6) yields:

y b1Xl+b2X2
+b3X3

+b4X4
+b5X5

+b6X6
+e12;

y b1Xl+b2X2+b3X3+b4X4+b5(X5
+X6)+e12. (16)

Using D4,

( 17) 

= . 71183-. 48028 
{1-. 71183) /24 
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t =IF= 4.39, t>3.09 from Dunn's table, so that p<.01. Note also that from 

the numerator of these two tests that .05145 + .23155 = .28300, within rounding 

error of the numerator when both restrictions were applied; this is because 

these contrasts are independent. From these calculations, it can be seen that 

the greatest portion of the rejection of the hypotheses tested by the restric-

tions in equation 13 is due to the differences in the groups that were posttested 

only rather than due to differential increases. 

A second set of restrictions (actually, a single restriction) is given as 

(b2-b1)-(b4-b3)=b5-b6• This restriction tests the hypothesis related to

(V2-V
1
)-(V

4
-V

3
)=V

6
-V

5
; that is, the difference between the mean of the gain

scores is equal to the difference in posttest measures of the non-pretested 

group. The restriction can be stated as b2=b5-b6
+b1+b

4-b3. Imposing this

restriction yields: 

Y = b1X1
+(b5-b6

+b1+b4-b3)x2+b3X3+b4X4+b5X5+b6X6+e13; (18)

Y = b1(X1+X2)+b3(x3-x2)+b4(x4+x2)+b5(x5+x2)+b6(x6-x2)+e13(19)

Using D1, o2, o
3 

and defining D5 = x5
+x2 and 06 

= x6-x2, equation 19 can be

rewritten as Y = b1Dtb3D2+b4D3
+b5D5+b6D6+e13. (2o)

R�0
=.70326.

Then F = . 71183-. 70326 /1 = . 01857 = 1. 55, 
1-.71183 /24 (1-.71183)/24 

which is non-significant. Thus, while we have previously showed that the 

differences between the posttested groups is significant (p<.01) and the 

differences in gains in the pretested groups are non-significant (p>,05), 

there are no significant differences between the gain of the mean scores 

and the posttested only groups differences. This is not to say the outcomes 

for the Solomon design are uninterpretable; i·t does say that the inter­

pretations are tricky. 
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Viewino the Solomon as a Three-Way Design 

It is possible to view the Solomon design as a 2x2x2 design with two 

missing cells. The missing cells are planned, as was the case in missing 

cell design described by Williams and Wali (1979). In diagramatic form, 

the three dimensional case can be seen as: 

Experimental 

Control 

Pretested 
Pre Post 

Group Group 
1 2 

Group Group 
3 4 

Non-Pretested 
Pre Post 

Group 
X 5 

Group 
X 6 

To test for the experimental-control main effect (A effect), the following 

restriction can be imposed: 

bl+b2+b5
=b3+b4

+b6
which yields 

Y = b2(X2-x1)+b3(x3+x1)+b4(x4+x1)+b5(x5-x1)+b6(x6+x1)+e14. (21)

Defining o7 = x2-x1;

08 = X3
+Xl;

D9 = X 4
+Xl;

010 = x5-x1; and

011 = X5
+Xl

y = b2D7
+b3D3+b4D9+bs01o+b6Dll+e14·

R�2 
= .29159;

(22) 

F = .71183-.29159 1 = .42024 = 35.00, p<.01. 
1-.71183 /24 .28817/24 

To test the effect of pretesting (the B effect), several rival hypotheses 

might be used to serve as the main effect. 

One such hypothesis is b1
+b2

+b3+b4
=b5+b6. This hypothesis does not

test the more appropriate hypothesis of interest, since the pretested scores 

are being compared to the scores which have been posttested only. More inter-
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esting is b2+b4
=b5+b6 or b2

=b5+b6-b4.
Then, 

Y = b1X1+b3X3+b4(X4-X2)+b5 (X5+X2)+b6 (X6+X2)+e15· (23) Defining 012 = x4-x2; 

o13 = \ +x2;
014 

= x6+x2, 
y = b1X1+b3X3+b4D12+b5D13+b6D14+e15· {24)
R�4 = .69897; 

F = .71183-.69897 1 = .01286 = 1.07, p>:05. 1-.71183 /24 (1-.71183)/24 
The outcome of this test would suggest that the effect of pretesting per seminimal for this data set. 

To test for pre-post differences .(the C main effect), the restrictionbtb3
=b2+b4 or b1

=b2+b4-b3 can be imposed. Then 
Y = (b2+b4-b3)x1+b2X2+b3X3+b4X4+b5X5+b6X6+e16, or 
y = bz {X2+Xl )+b3{X3-Xl)+b4(X4+Xl )+b5X5+b6X6+el6. (25)letting 015 = x3-x1, equation 25 can be rewritten 
y = b201+b3015+b4D9+b5X5+b6X6+el6" (26)
R�6= .50600;

indicating a pre-test increase in scores.

Interactions in the Three-Way Design 
First of all, the two missing cells will cause the non-existence oftwo interactions. The three way interaction will not exist, since it is impossible to have non-pr�tested groups who were pretested. For the samereason, the BC interaction will fail to exist. To test for the AB inter­action, that is, the interaction between the experimental-control condition
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(A) and the effect of pretesting (B), the restriction on the full model would be:

, b2-b5 = b4-b6 or b
2 

= b4-b6
+b5.

Then Y = b1X1
+{b4-b6

+b5)x2+b3X3+b4X4+b5x5+b6x6+e17, or

' J = blXl+b3X3+b4(X4+X
2
)+b5(X5+X2)+b6(X6-X2)+e17. (27)

Using previously defined transfonnations, Y = b1X1+b3X3+b4D3+b5D13+b6D6+e17. (28}
Ri7 = .71183; Ri7 is identical to the R2 for the full model. This is circum­

stantially so because V
2
-V5

=V4-V6
=13-12=7-6. Thus, the AB interaction is 

equal to zero. 

To test the AC interaction, that is, the experimental-control condition {A) 

with pre-post differences (C), the restriction b2-b1
=b4-b3 would be imposed on

the full model. This in fact was already done in equation 15, yielding Ri5=.66038,

F = 4.29, p>.05. The results from the three-way analysis can be placed into 

a summary table; see Table 4. 

Table 4 

Surrmary Table for a Three-Way Solution to the Solomon Design 

Effect Restriction R2 df ss MS 

Full Model 
A {experimental-control) b1+b

2
+b5

=b3+b4+b6 .29159 1 163.33 163.33 

B {pretesting) b
2

+b4
=b5+b6 .69897 1 5.00 5.00 

C (pre-post differences) btb3
=b2

+b4 .50600 1 80.00 80.00 

AB b
2
-b5

=b4-b6 . 71183 1 0 0 

AC b2-bi=b4-b3 .66038 1 20.00 20.00 

Deviation from Full Model .28817 24 112.00 4.67 

Finding the sum of squares in Table 4 is facilitated by knowing SST
= 388.67.

Also, the C effect and the AC effect are identical to the same effects as 

shown in Table 3. 
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TEACHING RESEARCHERS 
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ST A TISTICAL MODELS 

Joe H. Ward, Jr. 

Brooks Air Force Base, Texas 

Earl Jennings 
The University of Texas at Austin 

The purpose of the following remarks is to give you something of the 

flavor of a novel approach to the teaching of statistical model building 

and manipulation. Historically, it evolved out of an applied environment 

in which many of the classical models appeared to be inadequate or at least 
,, __ , 

,, ·-

deficient in one or more respects. Students in applied areas who have been 

exposed to the approach respond enthusiastically to it, and, in general, 

the more "traditional" work they have had, the greater their enthusiasm. The 

response of teachers has been mixed. Many of the critics make remarks similar 

to those criticisms that are directed at the "new math." It is certainly 

accurate to state that students of this approach get very little practice in 

arithmetic for even the most elementary models. In fact, the primary text 
---·--•·"· · 

[6] is almost totally devoid of computing formulae.

With respect to mathematical and statistical foundations, we rely very 

heavily on the theory of the classical fixed-x linear model, and the text 

bears some superficial resemblance to a typical text on linear models. However, 

a great deal of the material covered in a typical linear models text will be 

Presented at AERA 1982, MLR Special Interest Group 
Not refereed by editorial staff 
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found in ours only indirectly, if at all. Conversely, the concepts we identify 

and the skills we try _to ,,,develop are only indirectly i�ferable �.rom the typical

text. 

In gener�l, our approach has the following characteristics: 

1. A technical vocabulary of minimal length.

2. Very few special symbols and computational formulae. In those
"''-' ,-.,,. 

places where a new special symbol or formula would ordinarily 

be introduced, we make every effort to identify the concept as a 

special case of a more general concept and the formula as a special 

case of a more general formula. The cumulative effect of this is, 

we believe, a hierarchical structuring of the content that enhances 
"' , .. ,,-.�·-.,> • • • ·- .. ,.,.,,, .. 

learning. See Appendix A for an example of the way we summarize 

the models of one-way analysis of variance, a test for non-linearity, 

and simple regression analysis, and Appendix B for a summary of a 

two-factor problem. Students are assumed to have access to a 

canputer, so very little arithmetic is required. 

3. An emphasis on the idea that . �-�?--:_�_ is a way of formalizing_ an

argument.

Some 

example. S1 

()f two di£f, 

are randoml: 

is obtained 

end of inst: 

1-1e can prob. 

tests by co: 
l 
�, 
�.ex might i: 
{ 

Ultil 

4. 

' 

Practice in Statement i translatin9 natura:, la��u�J� into models with un�����s !

specified properties. The kind of skill required to do this is 
... ,; -�-,<., ►-,._.,,..,.� �-. 

. ·- • .. _. 

similar to the skill required to translate elementary al_gE!l:>r<1_ --"�??:d

p:t"oblems" into algebraic equations. 

performance 

that wilJ-_. p

i>f expected 
) '· ... , .. , .-, - ··-· 

�bout the r 

parameters, skill is frequently necessary to create an assumed model with specifi l_ 

properties and almost always required to produce a restricted model 

that can be used in tests of hypotheses about the parameters of the 
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assumed model. Although the� of algebra required is burdensome 

for some models, the level of skill required is minimal. 

Some of the features of the approach can best be understood by an 

1xample. Suppose we were interested in evaluating the differential effects 

'f two different methods of teaching reading in the second grade. Students 
i 
ke randomly assigned to the two conditions. A measure of reading achievement 

is obtained before instruction begins, and another measure is obtained at the 

end of instruction. Because girls tend to read better at this age than boys, 

we can probably increase the precision of our estimations and the power of our 

tests by considering sex in the model. Moreover, there is a possibility that 

sex might interact with teaching method, initial performance, or both. 

Ultimately, we are going to argue that if we can reject the hypotheses 

E<l, boy, x) = Ec2, boy, x) 

E<l, girl, x) = E<2, girl, x) 

we are in a position to conclude that the methods are not equally effective. 

Stated in prose, the hypothesis is that the expected posttest performance for 
"-----•-<�-"'--:,:e.-" , , ~�_,.,;-

,a Method 1 boy with initial performance x is the S'ame as the expected posttest 

;Performance for a Method 2 boy with the same initial performance, x. A similar 

nbiguous

l

staternent is made for girls, and x takes on all possible values of initial 

,s performance. Suppose the potential range of x is 20 to 80. we seek a model 

"word ·tha�-�-��¢,. !)r?du�e 2 (methods) X 2 (sexes) X 61 (values of x) = 244 estimates

l
of, expected values. If we are not willing to make any simplifying assumptions 

his abou:-:he relationships among the expected values, we need a model with 244 

specifi
JP�ameters, which we refer ,to as the mutually exclusive categorical model.

lllodel I Fortunately, in this problem, it seems re,c1,sonable to assume that the expected

f the jdifferenc::e_ j.n posttest performance per unit difference in initial performance 

' 
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is constant (sometimes called the linearity assumption), although perhaps a 

different constant for each of the four groups. If this assumption is true, 

then the 244 expected values are expressible as a function of only eight 

parameters. In the text, we discuss ways of investigating the tenability of 

this assumption. Although there are an infinitepumber of ways of parameterizin 

a model to estimate the eight parameters, one with intuitive appeal is 

Y = a1B (i) + a2B <2> + a3G ( i) + a�G (2) +

where 

Y is a column vector of dimension n containing the observed posttest 

scores. 

y 

;, 

B (i) is a column vector of dimension n containing a

ing value in Y was observed on a boy in ��!��d

(i = 1,2) 

lultimate hyp
one if the correspond-

based on the
le 

i; zero otherwise. •
. 

G (i) is defined for girls similar to B(i) for boys. 

Xis a column vector of dimension n containing pretest scores arranged 

in the same order as Y. 

The a's and e's are unknown scalars, and E (l) is an unknown column 

vector. A least squares solution to Model 1 might produce values 

that could be represented as in Figure 1. 

The a's are the intercepts and the e's the slopes of the four separate 

straight lines. They are also estimates of the eight parameters which are 

assumed to yield the expected values·. We could proceed to investigate our 
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Figure 1. Possible results for Model 1. 

ultimate hypothesis using Model 1 as an assumed model. However, such a test 

based on the F distribution would involve four degrees of freedom in the 

numerator and would not produce an unqualified recommendation with respect 

to method. 

a factoria.:/!:1alr,s:is <:>+,.£0V,�:;-:i,aric::� in which the assumed model is a subspace of

Mo�el 1 incorporating the assumption that each c is an estimate of the.�ame

paramet,_er_. This assumption is frequently referred to as the �enE!ity of

regression assumption. If this assumption is true, then the 244 expected
.,, · ------. •. , .,..., __ , -•--ec---,-. • "

values are expressible in terms of only,_fiy_e_ I?Ml:lllleters. A model to estimate 

these parameters is 

A least squares solution to Model 2 might be represented as in Figure 2. 
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1 

girls 

1 boys 

0 20 X 80 

Figure 2. Possible results for Model 2. 

In Model 2, the a's are the intercepts of the four lines in Figure 2, 

and c is the common slope. The test for "treaEllent effect" involves a comparison 

of what are called the "a<;ljusted means.'." namely

(a
2 

+ ex) + (a
4 

+ ex) 
=------------

2 2 

which simplifies to a1 + a3 = a
2 

+ a
4

A sufficiently large non-zero difference leads to a relatively large F, 

a rejection of the hypothesis,, and the conclusion that the methods differ.

a co�cl.usion seems defensible, but we are still not in a position to make an 

unqualified recommendation with respect to method. In Figure 2, a1 + a3 is

greater than a
2 

+ a
4 

, yet the available data seem to suggest that Method 1

is better for girls and Method 2 is better for boys. 

Such 

A number of possibilities exist to reduce this ambiguity. The standard 

covariance sex by method interaction test is relevant information, but it does 

not.directly address the issue. We could conduct pair-wise investigations

C 
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a 

s 
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:iod l 

;tandard 

it does 

ens 

{a 1 = a2 and a
3 

= a4) and suffer the problems of an increased experimentwise

Type I error rate or adopt some post hoc test and suffer the consequent loss 

of power. 

An alternative is to consider an ass'-¥"ed model that avoids the ambiguity 
,._..,_..,,.,.,.. ... .,,,.._.,��-· .-. ,_,,_,,,..,.,,,._.� '"' -...,.«· v,. . .  _,,: 

altogether. For example, if we are willing to assume the following· relation­

ships among the expected values 

and 

and 

where 

E {l, boys, x) - E (2, boys, x) = 

E (1, girls, x). - E {2 girls, x) 

E (1, boys, x
1) - E {2, boys, x1) 

E (1, boys, x2) - E {2, boys, x2)

E (1, girls, x
1

) - E (2, girls, x
1

) 

E {l, girls, x
2

) - E {2, girls, x
2

) 

the 244 expected values are expressible as a function of only five parameters 

as in Model 2, but because we are making_ different assumptions, the model we 

create will have different properties than Model 2. The skills required to 

create a model that incorporates the desired assumptions are identical to the 

skills required to test the assumption$. Involved is a simple substitution 

�or the expected values above, their estimates in symbolic form from Model l, 

and an algebraic simplification that results in three implied restrictions. 

Substituting the symbolic estimates from Model l for the expected values 

above, 

(1) 
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Equation (2) can be simplified to

Since x1 � x2, c
1 must equal c

2
, and they can be given a common name.

c
1 = c

2 = b, a common value
Similarly, Equation (3) can be simplified to

implying 

c3 = c4 = g, a common value

Substituting (4) and (5) into (1), we achieve 

• which can be written

a1 through a4 can be renamed so that they satisfy (6) as follows: 

a4 = d2 + �3 

In e·ffect, we have renamed the eight param4;!ter estimates in Model 1 in terms
of only five names: d

1
, d

2
, d

3
, b, and g.

If the new names are substituted in Model 1, we get
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(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

terms 

Expanding and simplifying yields 

Y = d1 (B(l) + B(2)
) + d2 (G(l) + G(2)

) + d3 (B( 2} + G(2)
) +

b (X * B ( l ) + X * B(2)) + g (X * G (l) + X * G(2) ) + E (3) 

'A least squares solution to Model 3 might appear as in Figure 3. 

y 

d
3 

d
3 

0 20 

Figure 3. Possible results for Model 3. 

1 

boys 
2 

80 

The essential property of Model 3 for our purpose is that the expected 

difference between any pair of persons having the same sex and initial performance, 

differing only in the method of instruction, is estimated by the same constant, 

namely d3 • When the properties of a model are not �ediately obvious by 

inspection, we encourage the practice of verifying that the model has the 

claimed properties. This involves writing the symbolic expressions that 

estimate the expected values and verifying that the symbolic expressions are 

related as the expected values are assumed to be, as shown in Table 1. 
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