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The purpose of this study was to investigate the relative
effectiveness of the traditional conjoint analysis approach to
the multiple regression approach that includes person vectors
profiles analil s. It was expected that the more sophisticated
models would increase the effectiveness in terms of its
shrinkage estimates and the accuracy of its predictability of
two holdout groups. The data source consisted of a sample of 100
students who rated eight oollogal on five attributes--quality of

education, financial aid, quality of dorm life, student/faculty
relations, and social aid.
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céé w'on of COnjoint Analylis, uultiplc Regression

wuod siwith Porlon Vectors and Profilo Analycis

to Ansoll Important ractorl Usod to Select Colleges

Introduction

In recent years, many colleges and universities have faced
increased competition for students. Thus, it has been
increasingly 1mportantf£or an institution of higher education to
‘be able to identify what factors are important to the students
 who chose to enroll 15 the institution.

Marketing research (Cattin & wittink, 1982) hal identified
conjoint analysis as a very uloful ctatiltioal tochniquo in which
one is interested in having the oliontl, ltudontl, or consumers
prioritize a variety of items. Two other approachol allo seen to
be appropriate to use when attempting to ailoiu the selection
process of college-bound ltudcntnz (i) nﬁitiplo‘roqrclsion
' models with person vectors (Frass & quigé,%iﬁiijvand (2)
profile analysia. .' o T
Objoctivoi

This paper attanptod to oonpafo tho'abiiity of conjoint
analysis, multiple regression Iodcli vith b§fth vectors, and
profile analysis to produce information th;ﬁ 60&14 be used by
college and university personnel to determine which factors were
important to students when selecting a university or what type of
students selected a given type of university.



Data Collection

The research instrument used to collect thi data analyzed
in this =tudy focused on five institutional attributes reported
to be of significance to students who martriculated to Ashland
University. This list of attributes was developed through
literature reviews (Tiernry 1980; Traynor, 1981; Kuh, Coomers, &
Lindquist, 1984; Conant, Brow, & Mokwa, 1985), discussion with
program advisors and students, and from the past experiences of
admissions recruiters. |
| The five attributes included in this study were financial
aid, social life, quality of dorm life, student-faculty
‘relationships, and quality of education. Each of the tiﬁc
attributes had two levels. The two levels that were formed for
each attribute were assigned a value of 0 or 1 in order to allow
the researchers to quantitatively form hypothetical universities
with v@flouu combinations of attribute levels. The attributes,

levels, and values assigned to each level were as follows:

1. Quality of education

fa) reputation is not well known = 0
b) reputation is well known = 1

2. Student/Faculty relationships

a) faculty are accessible if sought = 0
b) <faculty are extremely accessible = 1

3. Quality of dorm life

a) below my expectations = 0
b) above my expectatons = 1



rinancial aid

;wa) little tinancial need is met = 0
b) most financial need is met = 1

“Vs" social 1ife

a) few social activities are available = 0
b) many social activities are available = 1

- Five attributes with two levels each would allow 32
~different university p;otiicl to be formed. With the assumption
that intoraction effects are negligible, the main effects could
=5. estimated with only ciqht orthdgonal arrays.: The eight
'6rthbgona1 arrays used in this ltudy which woro formed with the
aid of tho computer lottwaro ontitlcd COnjoint Doliqnor (Bretton-
CIark. 1987), were listed in Table 1.

- In addition to the eight orthogonal arrayl, two arrays were
doliqncd to provide a means of alcollinq tho doqroo of predictive
validity. (800 rablo 1. ) Tholo twvo arrayl woro rotorrod to as
the “holdout univorsitios“ beocause they vere . not 1nc1udod in the
oltination procedures.

The quoltionnairo vas adniniutorod durinq the second week
of the fall term of 1987 to freshman ltudonts ‘enrolled in a
freshman seminar course. The rocponaou of 100 of the students

were used in this study. 8See PFraas and Paugh (1989) for



conjoint Analysis

The analysis conducted by the use of a software package
(Bretton-Clark, 1987) produces a set of tivi regression
coefficients plus a constant term for each student. That is, a
separate regression analysis was performed on the data of each of
the 100 students.

Each of the regression coefficients generated by the
conjoint analysis for a qiv;n :tudont indicated what would happ‘n
to.thc respondent's ratings of the universities when the
attribute changed from the "zero" level to the "one" level. To
illustrate the point, consider thc‘rcgronsion coefficient value
of 2.0 recorded for the financial attribute for respondent 1. If
financial aid was to increase from thc.'littlc need being met"
cafoqory to the "most need being met" category, the rc-pbndont'u
rhtingl of the universities would increase by 2.0 points on the 1
to 10 scale used on the questionnaire.

A rclatiyc importance figure was calculated for each
attribute by dividing the sum of the five average regression
coefficients into each of the average regression values. The
five relative importance figures generated by this procedure were

expressed as percentages.



" Table 1

’ a@ggadxﬁhogonal Arrays Used for Conjoint Analysis and
g ‘ ~ Multiple Linear Regression Models

W e —Student/
Quality Faculty Quality
of Relation- of Dorm Financial Social
Oniversities Education ships Life Ala Life
A o 0 0 0 0
B p (o] 0 “1 p §
e 1 1 1 1 0
D 0 1 1 0 1
E 0 1 0 1 0
. 1 1 o 0 1
6 1 0 1 o 0
" 0 0 1 1 1
Holdout
Universities
T 1 R T 0 1
J 1 | 1 -0 1 0

Note. Each characteristic is composed of two levels. The zero
value indicates the presence of the lower of the two levels.



Results of the Conjoint Analysis

The relative importance figures indicated that financial
aid wvas the most important attribute with a value of 26.24%.
Financial aid was followed in importance by the quality of dorm
life (21.29%), the quality of education (20.84%), the
student/faculty relationships (16.63%), and the social 1life
(15%). (See Table 2.)

Predictive Validit
' The observed and predicted ratings for the holdout

universities were used to provide two estimates of the ability of

the results of the conjoint analysis to predict student ratings.

The first estimate was a correlation coefficient for the
predicted and observed ratings. The second estimate was an

average absolute difference value for the difference between the
predicted and observed ratings. The correlation coefficient
value and the average absolute difference for the observed and

predicted ratings were .37 and 1.87, respectively.
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Multiple Linear Regression Model

.With a Surrogate Person Variable

'7§99.1 Structure
Thgip.cond.approach used to analyze the survey information
fcquirdd the construction of a multiple linear regression model
that included a surrogate person variable. Before such a model
is prcsintcd, howcﬁ.r, a discussion of a model that includes the
actual person variables may prove helpful. The variables
included in the model that used person variables (Model 1) were
as follows: .
Y = ratings of the eight hypothetical universities (values
| ranged from 1 to 10)
‘X1 = quality of oducation
0 = "low" lcvolr 1= “hiqh“ lcvol)
X2 = studcnt/taculty r.lationship -:
(0 = "]low" lcvclt 1 = 'hiqh" lovolj
X) = quality of dorn 11:. o N
(0 = "low" level;) 1 = "high" level)

X4 = financial aid

(0O = "low" level; 1 = "high" level)
X8 = gsocial life

(0 = "low" level; 1 = "high" level)



Pl = respondent 1
(1 if from respondent 1; 0 otherwise)
P2 = respondent 2
(1 if from roapondint 2; 0 otherwise)
P99= respondent 99
(1 if from respondent 99; 0 otherwise)
. The structure of the regression model with person variables
was:

Y = aU + blXl = b2X2 = b3X3 = bb4X4 = b5X5 = b6P1 = b7P2 = o« o o
bl04P99 = e (model 1) '

The use of the person variable required by Model 1 is not
practical due to thcirhlargc number. Thus a multiple linear
regression model designed to include a surrogate person variable
was uIQQ. This surrogate person variable measured the impact of

the 99 person variables required by Model 1.1



Table 2
Conjoint Analysis Results

Average
Regression $ of Relative
Characteristic | Coefficient Importance
Financial aiq 1.778 26.24
zbuaiity of ] ;
Dorm Life 1.440 21.29
Quality of |
Education 1.410 20.84
Student/Faculty - - . R
Relationships 1.12% 16.63

Social Life 1.018 | 15.00

Correlation coefficient between the predicted and observed
ratings of the holdout universities = .37

Average absolute difference between the predicted and observed
ratings of the holdout universities = }1.87
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The value of the surrogate person variables was composed of
an -average rating for each person. The surrogate variables was
represented in Model 2 by "X6." The values for this variable
ranged from 2.625 to 8.5 for the 100 students.

The multiple regression model with the surrogate person
variable (Model 2) used to analyze the survey information was as
follows:

Y = aU = blX2 = b2X2 = b3X3 = b4X4 = bSXS - b6X6 = @ (Model 2)

. The regression coefficients for the university attributes
that wvere generated by Model 2 were equal to the average
regression coefficients for the conjoint analysis (éda Table 3).

Before the regression coefficients could be statistically
tested, thc'ltandard errors had to be corrected for the
appropriate degrees of freedom. The number of degrees of freedom
wvas 695, which was equal to the sample size of 100 (number of
students) multiplied by 8 (number of colleges) minus 6 (number of
attributes plus one). Each of the regression coefficients for
the university attributes was statistically significant at the
«01 level. The multiple correlation coefficient was .7647 and

2 value was ,38.
the R

z;cdictgvo Validity

The regression coefficients generated by Model 2 were used

to predict the ratings of the holdout universities. The .



;féb:rdlaﬁion coefficient for the predicted and observed ratings
f?ﬁf%,.76.:ﬁrho-av¢raqo absolute difference between the predicted
The same procedure applied to the second half of the data set
| resiulted in a correlation coefficient value of .74 between the
observed and predicted ratings. Again, this value shows little

shrinkage (1.7%) from the multiple correlation coefficient of 753
for Model 2.

1 Refer to Pedhasur (1977), Williams (1977; 1980), Fraas

McDougall (1983), and Williams and Williams (19835a; 1983b) for
discussions of a surrogate variable used to measure the amount of

variation in the dependent variable associated with a set of
person variables.



Camparison of the Results
The estimated impact of the university attributes on the

student ratings by the conjoint analysis, and the multiple linear
rcgrclliéh model with a surrogate person variable were identical.
For both procedures, the order of importance was as follows:

(1) financial aid, (2) quality of dorm life, (3) quality of
education, (4) student/faculty relationships, and (5) quality of
social life. . ’

The multiple linear regression model with the surrogate
person variable, however, produced a correlation coefficient
value of .76 for the predicted and observed ratinq.zot the
holdout universities, as compared to the value of only .37 for
the conjoint analysis. |

The multiple linear regression model with the surrogate
person variable also produced a lower average absolute difference
between the predicted and observed gatingc for the holdout
universities than did the conjoint analysis. The average
absolute difference values were 1.30 and 1.87.

The low R2 values of the regression models that used the
clusters as the independent variables indicated that the clusters
were unable to explain the variation in the university ratings to
any high degree. For this data set, the cluster information was
of little assistance in identifying the importance of university

characteristics as viewed by various groups of students.
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“ ¢t_gganna1 Analysis

7,:‘%ﬁ_Thp following description of quannal analysis is heavily
'-kbgnghon,Vantuborqcn (1966) and Newman and Carolyn Benz (1988)..

_Thof;hird data analysis procedure applied to the data set was
quannal analysis. The purpose of using this procedure was to
determine whether certain types of people could be identified
~ that tavoréd different types of schools.

~ The factor analYiis computer program used in this study was

QUANNAL_Vantubcrqon, 1966). This program places squared multiple
correlation values in the principle diagonal as commonality
estimates and conducts a Q-analysis. This approach is appropriate
for the purpose of differentiating between people int erms of the
shape of their profiles. |

Five steps are used in a Q factor analysis.

Step 1 - An intercorrelation matrix is formed by
corrhlitinq every person's ratings of the

items with every other pcrlon's'ratinq of items.

Thus, the eight ratings for respondent 1 were correlated
with the ratings of the other 99 respondents. The same procedure

wvas followed for each respondent.

Step 2 - The matrix of intercorrelations if submitted

to factor analyiis.oo that "persons" are variables and

1A



items are observations. A principal axis solution is
obtained. This result is submitted to a varimax
rotation which produces orthogonal factors. On this
bagis, a factor represents a grouping of persons around
a common pattern of sorting the items. Hence, a factor

represents a type of "person" (Vantubergen, 1966).

Sub. Two Pactor Solution Sub. Three Factor Solution

No. I II h

1. .22 .83 95 Noy, I30 I3, I 135
2. «92 17 .88 2 87 16 «39 «93
3. .98 -.13 «97 3. «84 -.16 «50 .98
4. 75 49 .81 4. «33 37 «86 99
5. .82 19 71 5. «37 .05 «90 «95
6. -006 «90 «82 6. -.04 «91 .03 «83
7. .86 .09 76 7. «97 14 14 .99
8. .17 «92 .88 8. -.02 «87 «39 «91
4 L

Total ‘Total

vVar. 48 34 82 Var. 34 32 27 93

The factor analytic model constructs hypothetical types of
"persons" based on the way the actual people interviewed rated
the items. One can group people by assigning them to the type

that they are most like, i.e., the factor on which they have the
highest loading.

15



rstop 3 - Bach pattern of items associasted with each

¥ by weighting each item response of each item response

of each of the persons most highly associated with a
* .given factor by the degree to which they are loaded on

that factor, the greater is the weight. These weighted
responses are summed across each item separately. This
procedure produces an item array of weighted responses for
each factor in fho rotatcd factor analysis solution
ioiocﬁcd. The arrays of weighted rdpuonno? are then

converted to z-scores (Vantuhcrqon, 1966).

Hypothctical-tyﬁda constructed by}thoticéér analytic model
is based on a whiﬁhtqd pattern of the items (hypéthotical types) .
The more a person's rating is 1ike the hypothotibal type, the
more weight it receives in the average. The ip.citic weight
given is calculated as tollowli |

r
weight » 1 = X

where: r = loading

The weighted average is called an item tactg: array.

The persons used to estimate an array.gr. highly associated
with that type, but they are ﬁot associated to a high degree with
any of the other types. For the persons selected, the square of
the loading on that factor should approach the communality hj.
The arrays of weighted item rqtinqs‘aro'convortcd to £ scores.

The array of z scores for each type is called the factor array.

16



- 8tep 4 - The arrays of item z - scores for each factor
(factor arrays) are ordered from most rejected for each
factor. This provides a hierarchy of item acceptance for

each factor or type of "persons" (Vantubergen, 1966).

The following are examples of hypothetical types of

"persons" that the factor analytic model would construct:

Typas ' |
‘Items I II IIX

University 1 ~ 1.02 - .24 <72
University 2 1.53 1.03 1.54
University 3 42 31 «1.03
University 4 , - .06 32 - .51
University S -1.08 «1.35 -1.54
University 6 .80 1.20 .5
University 7 «1.20 .02 - .6
University 8 .70 1.50 2.0

When ordered in terms of the z-scores, the factor array
becomes a hierarchy of items that are rated for each of the
factors or types. The following is an example of the first
typology (Type I):

Z=8core Iten
1.83 University 2
1.02 University 1
.80 University 6
«70 University 6
42 University J
- .06 University 4
-1.08 University S
«1.20 University 7

S8imilar results wofc dbtainod for each type.

17
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gﬁstop 5 = The arrays of item z-scores ‘(factor arrays) for

- each type are compared by subtraction for each pair of

... . factors. - This produces arrays of difference scores for

each pair of factors. This provides the basis for
differentiating one factor or type of person from another

Vantuqofqon, 1966) .

This is accomplished by comparing the types dealing with the

tollowinq quoationn°

1. What 1t¢ml dit:orcntiato one typo from another type?
2. What 1t¢no diftorcntiato one type from all other
. typos?
3. What items ér ;roal o: agreement seem to cﬁt hcross
‘all of tho'éypoc? o
Question 1 is dealt with by comparing the array for all

types taken two at a time. The Z-scores for each pair of

universities are subtracted and ranked according to absolute

differences. To illustrate, consider the followings

1.02
-1.20
«70
1.83
.80
-1,08
- ,06
43

Type II Type 1I-Type II
- .24 - 1.26 University 1
.02 1.22 University 7
1.80 .80 University 8
1.03 «80 University 2
1.20 . +40 University ¢
-1.38 37 University S
32 38 University 4
31 .12 University 3

18



Similar analyses are conducted for all other comparisons.

Question 2. Question 2 was addressed by examining
those items that are higher (or lower) in the array for one tyﬁo
than they are in the arrays for all other types. This précosl is
similar to the process followed in Question 1. That is, the 2
lcoro-'ot Type I are conpar;d to the average 2 lcordl for Types
II and III.

Question 3. To the iitont that the z-scores for all types
are noarly equal, one assumes agreement. A consensus 1t¢n would
be one in which the dittcrancc between the largest z-score given
that 1ton by one of the typos and the smallest z score is less

than 1.00. In our example, the consensus items would be the

following:
| Average
. Rating C Z-8cores
of Univcrlitiol Maximum Difference Across Types
Univcrlity L] .46 1.32
University 2 «50 1.37
University 6 .70 .83

University 4 .83 .08

| ' The a@itaqa Z-scores of the consensus items and the Z-
scores of thc differentiation items, which resulted from
addroiuinq‘ouoctionl 1, 2, 3, are used to describe the types.
That is, the universities corresponding to the aforementioned z-

scores are used to identify types.
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EhEagacl o Results of Quannal Analysis

Three Q-factor analyses were computed. One analysis was
basod

upon tho ratinq- ot the oiqht univcrnitioa, the -ocond on
donographic variablos, and the third on the university and
danoqraphic variables toqothor. On‘all three ot thq Q-factor
_ analy;ol,'only oﬁ. tyﬁology cnorgcd.

In the first anqulil. all ot tho 100 subjactl vere
1dontiti¢d in Typo 1. In the o.cond analysis, 99 ot the 100 were
1dcnt1tiod in Typo I. In tho analylil combininq tho univoroitics
and donographic variablos, 98 of tho subjocts varo idcntitiod in
Typa I.w As one can see torn tholo ronultl, only ono typo
consistintly onorqod: thorctorc, vo vora unablo to uso
dittoronccs in types as predictor variables. A multiple
roqroulion analysis by rraal on tho inpact of the dcnoqraphic
variable of the data turthar validatos the homogeneity of thin
sanmple.

_8ince we were in a desperats search for more than one type,
it was suggested that we try a cluster approach, which tends to
produce more than one type. Ward's (1963) clustering program
takes a set of N objects, which are measured 6n a number of
different variables, and attempts to optinally‘qroup them from N
to N-1, etc. The groupings are based upon maximizing the average
intergroup distanca,‘whilo minimizing the average intragroup

distance.



The approach begins by defining each object as a group.
These N groups are then reduced by one, until all persons have
been classified into one of two groups. More detail of this
approach ‘can be found in SAS, as well as Veldman (1967).

Using the clustering program, three cluster analyses were
completed. When using a cluster analysis, one has to decide on
the number clusters one wants in the solution. The decision used
£o§ this study was that no cluster would contain less than five
people.

The first cluster analysis, using the universities' ratings
and the three demographics, produced four clusters with 27 people
in cluster one, 56 in cluster two, 11 in cluster three, and 6 in
cluster four. - These four clusters accounted for 61% of the
.varianco for all groupings. The second cluster analysis, based
upon universities' ratings, produced three clusters with an R2
equal to .55, with 58 individuals in cluster one, 36 in cluster
two, and 7 in cluster three. The third cluster analysis, based

upon demographics alone, produced only two clusters with almost
everyone loading on cluster one. Therefore, it was not
cohlidorod. '

The four clusters produced by the first cluster analysis
were used as predictor variables to predict the ratings of each

of the eight universities, the eight regression egquations



Table 3
Multiple linear Regression Results for Model 2

" Regression T
Vvariable Cowtfficients Value

X | 1.410 12,21
X2 - 1.125 . | -9.74-
X3 ot | _"12.47.

Xq 1.775 | 15,37+

Xs 1.015 | 8.79¢

X6 1.000

Constant -3.38

n = 800
R2 = .88
dfq = 695

* Statistically significant at the .01 level.



produced the following values: .12, .27, .17, .18, .18, .26,
.34, and .28. W¥When the clusters from the second cluster analysis

containing three clusters, were used as predictor variables, thay

vielded the following R values: .03, .18, .14, .15, .16, .20,

.30, and .18. Since the use of cross-validation procedures would

produce even lower values, those procedures were not implemented.



w o Discussion
,.:The conjoint analysis and the multiple regression model

with a surrogate person vector produced identical estimates for -
the ‘five university attributes. The multiple regression
procedure that incorporated a surrogate person vector was better
able to predict the holdout universities. Thus, these results
seen to imply that if a university administration wants to obtain
information on which uhivcrsity attributes are most important to
their students, either conjoint analysis or a multiple regression
model with a surfogato variable is an appropriate procedure.

With this data set the Q-factor analysis failed to provide
useful information. The classifying of student by type did not
allow for a high degree of explanation of the ratings of the
various hypothetical universities. The use of Q-factor analysis,
howvever, may provide insight into the university selection
process by students if various groups are identifiable.

Three points should be noted with regard to future
research. First, a multiple linear regression model with a
surrogate person vector is a valuable procedure to use to
determine which university attributes are important to students
vhen selecting a university. The inclusion of the surrogate
person variable did improve the researchers' ability to predict
the ratings of the holdout universities. PFurther studies in this

area with more detailed attributes would be informative.
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Second, unless various groups of students rate the
univcrsiticl.diftorontly, Q-factor analysis obviously will not
provide ucctul 1ntorna1ton. If such groups exist, however, the
intornation nay provido university administrators with some
insight into what typo of students prefer their particular
univorsity.“,

Third, the conjoint and regression analyses are really
askinq ditf.ront quoltions ‘that the Q-factor analysil. The
conjoint and rogronsion analyses are attcnpting to determine
which of. tho univor-ity characteristics are most inportant. The
Q-tactor analylil attcnptl to dctcrnino if there arc various
typoloqicl balcd on ‘the studonts' university ratings. This third
point leads to an often discussed conclulion.' Dotornining the
protorablo rclcarch method is d.pcndcnt upon the gquestion of
intorc-t.f In othcr words, the research qucltion has to dictate

the nothodoloqy

i -
- . ﬁ].
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MULTIPLE LINEAR REGREGSION VIEWPOINTS
VOLUME 18 NUMBER 1, FALL 1991

ReI;tlonshlp Between Multiple Regression,
Path, Factor, and LISREL Analyses

Randall E. 8chumacher
University of North Texas

Abstract

A basic knowledge of multiple regression concepts
permits further understanding of path, factor, and
lisrel analyses. 8pecifically, standardiszed partial
regression coefficients (beta weights) as applied in
path, factor, and lisrel analyses are presented. The
multivariable methods have in common the general linear
model and are the same in several respects. First, they
identify, partition, and control variance. 8econd, they
are based upon a linear combination of variables. And
third, the linear weights can be computed based on
standardized partial regression coefficients.

Multiple regression or the general linear model approach

to the analysis of experimental data in educational research has
become increasingly popular since 1967 (Bashaw and Findley, 1969).
In fact today, it has become recognized as an approach that bridges
the qaf between correlational and analysis of variance thought in
answering research hymtholoa (McNell, lhu{, & McNeil, 1978).
Statistical textbooks psychology and education often present the
relationship between data analysis with multiple regression and
analysis of variance (Draper & 8Smith, 1966, Williame, 1974a;
Roscoe, 1978, Edwards, 1979). Graduate students taking an advanced
statistics course are therefore provided with the multiple linear
regression framework for data analysis. @Given their knowledge of
multiple linear regression techniques applied to univariate
analysis (one dependent variable), their understanding can be
extended to the relationship of =multiple linear regression to
various multivariate statistical techniques (Kelly, Beggs, McNeil,
with Eichelberger & Lyon, 1969, pps 226-246; Newvman, 1968). The
article therefore expands upon this understanding and indicates the
importance of the standardiszed partial :oqrouion coefficient (beta
weight) in multiple linear regression as it is applied in path,
factor, and lisrel analyses.



mn. urm REGRESSION

e mltiplo roqro-lion techniques require a basic understanding of
: -nnplo statistics (n, mean, and variance), standardiszed variables,
.. correlation (Pedhazur, 1982, pp 53-57), and partial correlation
.. (Cohen & Cohen, 1975; Houston & Bolding, 1974). In standard score
form the multiple regression equation is:

J
g = bs
Yy x
The relationship between the correlation coefficient, the

unstandardized regression coefficient and the standardized
regression coefficient is:

Sss= s
x Y x
be ecocccae = b === - b 5
2 s xy
S =z Yy
x

For two independent vu‘iub].o., the regression equation with
standard scores 1.: ' '

J :
x = b T +bs
Yy 11 2 2 |
And the standardized partial regression coefficients are computed
by: ,
r = r r r - r r
yl y2 12 y2 yl 12
R § 2 2 2
o i1-r 1-r
12 12

| 'rho correlation between the original and predicted scores is
iven the special name Multiple Correlation Coeffiocient. It is
ndicated ast

R J = R
Y Y y.12
And the 8Squared Multiple Correlation Coefficient is related as
follows!
L2 2
R 4 e R = b r + b r
Yy y.1l2 1 y1 2 y2



MULTIPLE REGRESSION EXAMPLE

A multiple linear regression example using a correlation matrix
as input (SPS8SX User’s Guide, 3rd Edition, 1988, Chapter 13) is in
the appendix. The results are:

2 ..
R - b r + b r + b r
y.123 1y 2 y2 3 y3
- (.423) .507 + (.363) .481 <+ (.040) .276
2
y.1l23

A systematic determination of the most important set of
variables can be accomplished by setting the partial regression
weight .of each variable to szero. - Thie approach and other
alternative methods are presented by Kelly, Beggs, & McNeil et al
(1969) and Darlington (1968).

In summary, regression techniques have been shown to be robust
(Bohrnstedt & Carter, 1971); applicable to contrast coding (Lewis
& Mouw, 1978); dichotomous coding (McNeil, Kelly, & McNeil, 1978);
and ordinal coding (Lyons, 1971) research situations. Multiple
regression can also be viewed as a special case of path analysis.

PATH ANALYSIS

Sewall Wright is credited with the developaent of path analysis
as a method for studying the direct and indirect effects of
variables (Wright, 1921, 1934, 1960). Path analysis is not a
method for discovering ocauses, rather it tests theoretical
relationships called "causal modeling". The specified model
establishes causal relationships among the variables when:

a. temporal ordering exists
b. covariation (correlation) is present
c. controlled for other ‘causes

Model specification is necessary in examining multiple
variable relationships. 1In the absence of a model, many
different relationships among variables can be postulated
with many different path coefficients being selected. Tor

example, in a three variable model the following four relationships

could be postulated:
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X TLX X (b) X X

2 1 2 1
Y
(c) X (d) X
1 2
X Y
2
X
Y b

The four different models have been considered without reversing
the order of the variables. How can one decide which model is
correct? Path analysis doesn’t provide a way to specify the model,
but rather estimates the effects once the model has been specified
"a priori".  Path coefficients in path analysis take on the
values of a product-moment correlation and/or standardized
regression coefficients in a nodo]. (Nol.ﬂo, 1977). . For example
given model (d): .

X
2

THEN:
b = p b w p T - p
1 yl 2 y2 12 12

A path model is specified by the researcher based on theory or
prior research. Variable relationships once specified, in standard
score form, become standardised Tregression coefficlients. In
multiple regression, a dependent variable is regressed in a single
analysis on all the independent variables. In path analysie one or
more multiple regression analyses are performed. Path coefficients
are computed based upon only the particular set of independent
variables that lead to the dependent variable under consideration.
As in regression analysis, path analysis can use dichotomous and
ordinal data in the causal model (Boyle, 1970; Lyons, 1971).
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MODEL SPECIFICATION

Path models pernit diagramming how a particular set of
independent <variables 1lead to a dependent variable under
consideration. How the paths are drawn determine whether the
independent variables are correlated causes (unanalyszed), mediated
causes (indirect), or independent causes (direct). The model can
be tested for the significance of path coefficients (Pedhaszur,
1982, pp 358-62) and a goodness-of-fit criteria (Marascuilo & Levin,
1983, pp 169-172; Tatsuoka & lohnes, 1988, pp 98-100) which
reflects the significance between the original and reproduced
correlation matrix. This process is commonly called decomposing
the correlation matrix (Asher, 1976, pp 32-34) according to certain
rules (Wright, 1934).

PATH ANALYSIS EXAMPLE

A four variable path analysis program is in the appendix. In
order to calculate the path coefficients for the model, two
regression analyses were performed. The model with the path
coefficients is:

X p = .423
1 Yl
: - -0071
P = .224 3 X p = .040 Y
21 3 Y3
p = .593
32
p = .363
Y2
X
2

The original and reproduced oorrelations are presented in
matrix form. The upper half represents original ocorrelations and
the lower half the reproduced oorrelations which include the
roqiollion of paths linking independent variables to the dependent
variable.

VARIABLE Y X1 x2 X3
Y 1.000 .8507 .401 .276
X1 .423 1.000 .22¢ .062 Original
X2 362 .224 1.000 .877 Correlations
X3 - 040 -.070 .593 1.000 :
Reproduced
Correlations
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The oti.!gihai ‘correlations can be completely "reproduced" if all
effects: direct (DE), indirect (IE), -purioua (8) lnd correlated
(C) are . includod.d. ro: oxa-plo: : : L

ik b'im, +,
.

r =p o L | - .224
12 .. 12 - | ~ |
B o
r = p +ppP | ~ - .062
13 31 3221
DE IE
r = p + p P - .577
23 32 3121
DE 8
r = p + pp +PP +P PP - .507
1Y Y1 Y221 Y33 Y3 32 21
DE 1E 1E IE
r = p + PP +P P +P PP = .481
2y ¥2 ¥3 32 Y121 ¥33121
DE 1 8 8
r = p + p P +P P +P PP +P P P = .276
3y y3 Y1 31 Y232 Y12132 Y22131
DE 8 8 8 8

In summary, path analysis can be carried out within the context
of ordinary regression analysis and does not require the learning
of any new analysis techniques (Asher, 1976, p32; Williams, 1974b).
The advantage of path analysis is that it enables one to specity
direct and indirect effects among independent wvariables. In
addition, path analysis enables us to decompose the correlation
between any two variables into simple and complex paths of which
some are meaningful. Path coefficients and the relationship
between the original and reproduced correlation matrix can also be
tested for significance.
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IACTOR.ANALYSIS

'Path models lnd the lllociatod test of -1gnificnnoo between
original and reproduced correlations are used in confirmatory
factor analysis. Factor analysis assumes that the observed
(measured) variables are linear combinations of some underlying
source variable (factor). In practice, one estimates population
parameters of the measured variables from a sample (with the
uncertainties of model specification and measurement error). A
linear combination of weighted variables relates to multiple
regression in a single factor model and to a linear causal system
(path analysis - "multiple"™ multiple regressions) in multiple
factor models. Path diagrams therefore permit representation of
the causal relationships among factors and observed (measured)
variables in factor analysis.

In general, the first step in factor analysis involves the study
of interrelationships among variables in the correlation matrix.
Factor analysis will address the question of whether these subsets
can be identified by one or more factors (hypothetical constructs).
Confirmatory factor analysis is used to test specific hypotheses
regarding which va:iabloa correlate with which constructs
(Long, 1983). - ..

FACTOR MODELS

Factor analysis assumes that some factors, which are smaller in
number than the number of observed variables, are responsible for
the covariation among the observed variables. For example, given
& unidimensional trait in a single factor model with four variables
the diagram would be (Kim & Mueller, 1978a, p 35):

de 735
Y Y 4]
b= .677 Y
Y
d = ,97
X 1 o)
1 1
b= ,402
r 1
600
b= 800 X 2 U
2 2 2
d = ,043
X 3 1)
be 538 3 3
3
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The wvariance of each observed variable is therefore comprised of
‘the proportion of variance determined by the common factor and the
.proportion determined by the unique factor, which together equal
~ .the:itotal variance of each observed variable.  Therefore:

iy 4

2 2 2
8 = b + d = .]
i i -+ 4
Tﬁo\cor:biition between a common factor and a variable
is: '
PR r = b
F,X i
i
The correlation between a unique factor and a variable
is: :
T o - d
U,X i
i

The correlation between obootv‘d,(noaautod) varilbldn
sharing a common factor is:

r = b b
Xx,x 4

And finally, the vnrinndi attributed to the factor as a
result of the linear combination of wvariables is:

2
2 8b> 2
h = ie R
maee F.1234

M
Where: M = number of variables

2
bi. squared factor loadingd

2
Note: 8 Db = eigenvalue
i
2
b = communality
i
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EACTOR ANALYBIS :XANPLB

.1nglo tucto: -nllylia p:oq:un with four variables in a
correlation matrix format is in the appendix. The path diagram is
the same as abov. (Kin & Muollor, 1976a, p 35) with the weights as
follow-z” b

b --.577 ‘b m .402 b = .800 b = .535
Y 1 2 3

And, factor scores computed as:

F=bY 4+ bX + bX + bx
y 11 22 33

Multiplying the coefficients between pairs of variables qivo. the
tollowing corrolation matrix:

VARIABLE Y X1 x2 X3

2

Y b .27 .34 36
o 1

X1 B 27 b .32 22

. : 2
x2 .54 32 b .43
: : 3

' ’ 2

‘X3 T <36 22 .43 b

" - _ P

The co-hon tnaﬁor variance is:

- 2
2 8b
R : - i - 46+ .16 + .64 + .29 = .39
r.123 e ccea -
| 4

The unique taéto: variance is:

2
2 8 (1=-Db)
l1-R - i = .34 + .84 + .36+ .71 = .61

M 4
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In summary, factor loadings (variable weights) are standardized
regression coefficients. . As such, linear weighted combinations of
variables loading on a factor are used to compute factor scores
(Kim & Mueller, 1978b p 60). The weights are also the correlation
between the observed (measured) variables and the factor
(hypothetical construct). 1If the variable correlations (weights)
are squared and summed, they describe the proportion of variance
determined by that factor. This is traditionally known as an
eigenvalue, but termed communality in factor analysis. When all
variables are standardized, then the linear weights are called
standardized regression coefficients (regression analysis), path
coefficients (path analysis), or factor loadings (factor analysis).
The factor analysis approach is distinquished from regression or
path analysis in that observed variable correlation is explained by
a common factor (hypothetical construct). In factor analysis
therefore the correlation between observed variables is the result
of sharing a common factor rather than a variable being the direct
cause (path analysis) or predictor of another (regression
analysis).

LISREL

Linear structural relationships (lisrel) are often diagrammed
by wusing multiple factor path models where the factors
(hypothetical contructs) are viewed as latent traits (Joreskog &
S8orbom, 1986, pp 1.5-1.7). The lisrel model consists of two parts:
the measurement model and the structural equation model. The
measurement model specifies how the latent variables or
hypothetical constructs are measured in terms of the observed
(neasured) variables and describes their measureseant properties
(reliability and wvalidity). The structural equation model
specifies the causal relationship among the latent variables and is
used to describe the causal effects and the amount of unexplained
variance. The lisrel model includes or encompasses a wide range of
models, for example;: univariate or multivariate regression models, "
confirmatory factor analysis, and path analysis models (Joreskog &
8orbom, 1986, pp I.3, 1.9-1.12). Cuttance (1983) presents an
overview of sgseveral 1lisrel submodels with diagrams and
explanations. Wolfle (1982) presents an indepth presentation of a
single model to introduce and clarify lisrel analysis. The lisrel
program therefore permits regression, path, and factor analysis
whereby model specification and measuresant error can be assessed.
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mummmon*

rullor (1987) oxtonlivoly covor- 11.:.1 and factor unaly-ic
models and ocpocillly extends regression analysis to the case where
the variables are measured with error. Wolfe (1979, pp 48-51)
presents the relationship between 1lisrel, regression and path
analysis especially in regards to how measurement error effects the
regression coefficient (path coefficient). Errors of measureaent
in statistics have been studied extensively (Wolfe, 1979). Cochran
(1968) studied it from four different aspects: (1) types of
mathematical models, (2) standard techniques of analysis which take
into account measurement error, (3) effect of errors of measurement
in producing bias and reduced precision and what remedial
procedures are available, and (4) techniques for studying error of
measuremant. Cochran (1970) also studied the effects of error of
measurement on the squared multiple correlation cocefficient.

LISRRL-!'AC‘!‘OR ANALYSIS EXAMPLE

A LISREL factor analysis program w:l.th a corrolntion matrix as
input is in the appendix. The factor analytic model in matrix
notation is: '

X = L x + q
x

= observed variables :

= gtructural weights (factor loadings)
= latent trait (factor) .

= @error variance (unique variance)

d

Where:!

0 MR

The LISREL results are:
a. L = LAMBDA X (structural weights-factor loadings)

Ym 677 Xw» ,402 X = ,800 X = ,3538
1 2 3

b, q= Jmnu DELTA (unique factor variance)
d
Yo .84 X= 04 X= 36 X= . 7
p | 2 3
2 2
C. b = LAMBDA X (common factor variance)

Yo .46 X = ,16 X = .64 X = ,29
1l 2 3
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.o The concept of model specification and goodness of fit pertains
. touthe ‘original correlation matrix and the oati-atod co:rol.tion
. y..tgig.§ rho outi-atod co:rolation matrix 1-: SR

.542 ..321
F+362 .218 .427

!bo o:iginal cor:olntion -at:iz iss
o 507 | |
. 8 = ,481 .224

e 276 .062 577

!ho goodnoal of tit index (GrI) ulinq the unwtightod least
.qua:ol approach (ULS) is then conputod as: .

- 2
‘GFY = 1 = 1/2 t:aco (8 - 0)

Grr = 1 - 1/2 (1.308 - 1.02)
GFT = 1 - .041

-GFI - ,959 |
Lxsnzn-nzanzss:ou ANALYSIS DXAMELE

A.LIBR!L :ogro.oion p:og:nn with a correlation -atrix as input
is in the uppondix. The regression model in matrix notation is:

Y= GX+=x
ﬁhérﬁ: dnpondont variable
gn-a matrix (beta weights)

ndependent variables

Y
G
X
8 = errors of prediction (error wvarianoce)

The LISREL results are the same as in the p:cvi.oul roq:ou:l.on
program: _ i

R - (.423) .507 + (.363) .481 + (.040) .276
y.123

2

R - .40
y.123
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CONCLUSION

The appropriate statistical method to use is often an issue of
debate. It sometimes requires more than one approach to analyzing
data. The rationale for choosing between the alternative methods
of analysis is usually guided by research hypotheses or questions.

The multivariable methods discussed have in common the general
linear model and are the same in several respects. First, they
identify, partition, and control variance. 8econd, they are based
on linear combinations of variables. And third, the linear weights
can be computed based on standardized partial regression
coefficients.

The multivariable methods however have different applications.
Multiple regression seeks to identify and estimate the amount of
variance in the dependent variable attributed to one or more
independent variables (prediction). ' Path analysis seeks to
identify relationships among a set of variables (explanation).
Factor analysis seeks to identify subsets of variables from a much
larger set (common/shared variance). Lisrel determines the degree
of model specification and measurement error. The different
methods were derived because of the need for prediction,
explanation, common variance, model and measurement . error
assessment type applications.

Multiple regression techniques are robust except for model
specification and measurement errors (Borhnstedt & Carter, 1971).
Multiple regression techniques are also useful in understanding
path, factor, and LISREL applications. LISREL permits regression,
path, and factor analyses whered model specification and
measurement error can be assessed. Lisrel also permits univariate
or multivariate least squares analysis in either single sample or
multiple sample (across populations) research settings. An
understanding of multiple regression and general 1linear model
techniques can therefore greatly facilitate ones understanding of
the testing of research questions in multivariable situations.
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APP!NDIX

uunr:pnz nzcnsss:ou rnocnau o
e ’
TITLE REGRESSION WITH CORRELATION MATRIX INPUT
COMMENT VARIABLE MEANS=0; VARIANCESe]; couszanr-o

MATRIX DATA VARIABLES=Y X1 X2 xalu-1oo s g

BEGIN. DATA ' T

1.000 | . . R
'507 1.000 ; et
.481 . .224 1.000 R

.276 .062 877 1.000
END DATA

REGRESSION umrn:x-xu(*)/ : _— [
MISSING=LISTWNISE/ S e e
VARIABLES=Y X1 X2 X3/ g e
DEPENDENT=Y/ , T
"ENTER X1 X2 X3/ : ot

FINISH : :

PATH ANALYSIS PROGRAM ONE

vmnnu: 3 REGRESSED ON VARIABLES 1 m 2

'~‘ N’ ’c ‘4}- R

TITLE PATH ANAL!SIS mu WI‘I'H CONM‘I'ION wmux INPU‘.['

COMMENT VARIABLE MEANS=0; VARIANCES=]}; CONSTAN'!'-O
MATRIX DATA VARIABLES=Y X1 82 X3/N-100 S =

BEGIN DATA R ST
1.000 S
END DL‘I'A c . o
REGRESSION MATRIX.IN (*) /

MISSING=LISTWISE/

VARIABLES=Y X1 X2 X3/

DEPENDENT=X3/

ENTER X1 X2/
FINISH

a1




PATH ANALYSIS PROGRAM TWO
B. VARIABLE Y REGRESSED ON VARIARLES 1, 2, AND 3

TITLE PATH ANALYSIS EXAMPLE WITH CORRELATION MATRIX INPUT
COMMENT VARIABLE MEANS=0; VARIANCES=l; CONSTANT=(
MATRIX DATA VARIABLES=Y X1 X2 X3/N=100
BEGIN DATA
1.000
.307 1.000
.461 .224 1.000
276 .062 577 1.000

END DATA
REGRESSION MATRIX=IN (*)/
MISSING=LISTWISE/
VARIABLES=Y X1 X2 X3/
DEPENDENTwY/
ENTER X1 X2 X3/
FINISH

FACTOR ANALYSIS PROGRAM

TITLE FACTOR ANALYSIS EXAMPLE WITH CORRELATION MATRIX INPUT
COMMENT VARIABPLE MEANS=0; VARIANCES=1l; CONSTANT=(0
MATRIX DATA VARIABLES=Y X1 X2 X3/N=100
BEGIN DATA
1.000
.507 1.000 ,
.4681 .224 1.000
.276 .062 .377 1.000
END DATA
FACTOR VARIABLES=Y X1 X2 X3/
MATRIX=IN (COR=*) /
CRITERIA=FACTORS (1) /
EXTRACTION=ULS/
ROTATION=NOROTATE/
PRINT CORRELATION DET INITIAL EXTRACTION ROTATION/
FORMAT SORT/
PLOT EIGEN/
TINISH

K2



LISREL FACTOR ANALYSIS PROGRAM e

TITLE ‘LISREL FACTOR ANALYSIS WITH CORR&!A‘!ION mmx INPUT'@
INPUT PROGRAM

NUMERIC DUMMY N
END FILE . . o
END INPUT PROGRAM e

USERPROC NAME=LISREL
DATA FOR GROUP ONE

LA T
ryr rx1? rx2' X3’ : . o
KM 8Y
1.000
.507 1.000 o :
.401 .224 1.000 v T I T A

MO NX=4 NK=1 TD=DI,FR PH=ST
LK

* FACTOR'’

PA LX

4 *1 AN ST AR S

OUULBSBWPCRSVL!'SSBHI
END USER

LISREL REGRESSION ANALYSIS PROGRAM e T
TITLE ’‘LISREL REGRESSION ANALYSIS WITH CORRELATION MATIRX' -

INPUT PROGRAM CitL wa
NUMERIC DUMMY . R y

END FILE AL
R
;

END INPUT PROGRAM ‘ R TR e~ S Pk i
USERPROC NAME=LISREL T T SR
DATA FOR GROUP ONE
DA NG=]1 NI=4 NO=100
E‘g' X1’ 'X2’ X3’ ‘ R
KM 8Y W
1.000 -
401 .224 1.000
276 .062 .%577 1.000
MO NY=]l NX=3 PS=DI
OU ULS SE TV PC RS VA 88 MI T0
END USER
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The Case for Non-Zero Restrictions
in Statistical Analysis

Kefth McNell
New Meaxico State University

One of the many advantages of MLR is its versatility and its
ability to answer a vast array of questions. UuUnfortunately, most
researchers fall into the habit of asking a small aubaet of very
similar questions. The question being tested should be atated
first, but can be 1identified from the full model and the
restriction(s) placed on that full model. While the restrictions
can take on any numerical value, aimost all applications use tho

“default " value of zero:

1. &, = a, or (a, - a, = 0) (t-test)

2. n, =0 (Correlation)

30 -. g.' 'coo.' or (.'-.’g.g-.'g.'-.’ '0000)
k-toot)

4, (a-a)a(a,-a‘)or((l,-l,)-(l.-n.)!O)
(interaction)

The focus of this paper will be on the utility of making a
non-zero restriction, why the 2zero restriction occurs 8o
frequently will be questioned and hopefully researchers and
statisticians will see how the 2zero restriction l1imits the
conclusions of the research. The argument will be made for making
non-zero restrictions, resulting of course, from “non-zero"
research hypotheses. The argument will be made for each of these
statiatical proceduree: two group t teat, Pearaon correlation,
aingle population mean, one-way analyaie of variance, and
interaction, :

t _Jest
Perhaps the most widely used design compares the performance

of two groups. The research hypothesie takes the following form:
Research Hypothesis 1: For a given population, the New treatment
ije better than the Traditional treatment on Y. (8ee Note 1 for
discussion of directional hypothesie testing.)
Full Model: Y = aN + a,T + E,
Where Y = cr1tor1on of intoroat,

N =1 1f subject in New treatment; 0 otherwiee, and

T =1 1f subject in Traditional treatment; O otherwise.
The research hypothesis implies that the sample mesn for N should
be greater than the aample mean for T, or a, > a,, or a, - a; > 0.
Restriction: a, = a;, or (a, - a, = 0)
Forcing the restriction 1nto the full mddel results in:
Restricted Model: Y = aN + a,T + E
But since the two voctoro (N nnd f) are multipliod by the same
weights, the vectors can be added first. But N + T equals the uUnit
vector (or everyone). Therefore:
Restricted Model: Y = aU + E,
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There are two linearly independent pieces of information in the
full model. Forcing the one restriction on the full model results
in one 1inearly independent piece of information in the restricted
model. (See Note 2 for test of significance.)

A significant drop 1in the R®* from the full model to the
restricted model resulits in a significant F. If the sample means
are in accord with the anticipated result, then Research Hypothesis
1 can be held as tenable and the conclusion would be: For the given
population, the New treatment is better than the Traditional
treatment on Y. But all that has been said is that the New
treatment is better than the Traditional treatment. We do not know
how much better; all we know is that the two treatments are not
equally effective.

But what if the cost of the two treatments is not the same?
The Traditional treatment has surely been somewhat effective in
the past. The New treatment will surely require some additional
cost in the form of special inservice, purchase of new materials,
acceptance by teachers, students, and community, etc. Before the
Traditional treatment is replaced by the New treatment, perhaps
the researcher should demonstrate that there is, say, more than a
five-point superiority of the New treatment over the Traditional
treatment.

When a non-2ero research hypothesis 18 proposed, other
researchers and statisticians often ask for the justification for
the actual non-zero value chosen, as they should. But why should
more jJustification be required for a non-zero value than for a zero
value? Or looking at the issue form the other side, why are
researchers allowed to test a 2zero value with little or no
Justification. When one realizes that 2zero 1s only one of an
infinite number of values, then one realizes that the same amount
of Justification should be required of a zero value as of a non~
zero value. Furthermore, when one attempts to Jjustify the 2zero
value restriction, one may realize that zero is not the value of
interest. Those researchers who have been defaulting with 2zero
should know how to choose a value, but may not. It 18 not the
intent of this paper to 1llustrate how one determines ths magnitude
of the value tested 1in the research hypothesis, although a few
suggestions will be provided.

In the case where there was an expectation of a five-point
superiority, the research hypothesis would be:

Research Hypothesis 2: For a given population, the New treatment
is more than five points better than the Traditional treatment on
Y. . : _
Full Model: Y = aN + a,T + E,
The research hypothooic implies that the sample mean for the New
treatment is more than five units greater than the sample mean for
the treatment or, a, greater than (a, + 5) or (a, - &, > 5)
Restriction: a, = a, + 6, or (a, - a, = 6) or (a, = a, - §)
Restricted Modo\: = aN + (a, - 5)‘1’ + E,
aN + a,T - 5T + E,

BT) = a,(N + T) + E,

5T) = a,VU + E,
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There are two l1inearly independent pieces of information in the
full model. Forcing the one restriction on the full model results
in one 1inearly independent piece of information in the restricted
model. (See Note 1 for test of significance.)

Notice that the full model in Research Hypothesis 1 is oxactly
the same as the full model in Research Hypothesis 2. The number
of restrictions is also the same, resulting in the same number of
degrees of freedom. What is different, though, is the nature of
the restriction and hence the restricted models are different. The
two research hypotheses are both “correct” and equally “valid” -

they Just test two differeant hypotheses. Research Hypothesis 2
provides a more definitive conclusion.

The actual “"cost” of any treatment may be difficult to
determine. But one must remember that Rocoarch Hypothesis 1
reduces to the default assumption that the "costs” are equal. The
choice of a research hypothesis leading to a restriction of (a, -

a, = 0) should be defended as much as a research hypothuio
leading to a restriction of (a, - a, = aome non-zero value). The
restriction (a, -~ a;, = 0) has become a widely used default value,
bu? we must realize that it is only one of an infinite number of
values.

tion

The usual application of the Pearson correlation hypothesis
is:
Research Hypothesis 3: For a given population, the 1linear
correlation between X and Y is greater than zero.
Full Model: Y = aU + a,X + E,
The research hypothesis 1mp1100 that the slope of the 1ine of beat
fit in the campIo 1. positive, or a, > 0.
Reatriction: ‘

Restricted Mode = ay +0X + E,
V = aU + E,
There are two linearly ?ndopondont pieces of information in the

full model. Forcing the one restriction on the full model results
in one linearly independent piece of information in the restricted
mode,

If the F test is significant, then one concludes that the
research hypothesis is tenable, that the l1inear correlation between
X and Y 1e greater than 0, or that the change in Y per unit change
in X is greater than 0; but we do not know how much greater than
0. There may be reasons for wanting to know if the correlation is
greater than a particular value. For instance, if the correlation
under consideration 1is either 'a validity coefficient or a
reliability coefficient, then we would definitely want a
correlation coefficient above some specified value, such as:
Research Hypothesis 4: For a given population, the 1linear
correlation between Y and the Retest of Y is greater than .80.
Full Model: Y = aju + a;R +E,

= ,04
?ﬁ?"?ﬁ:hé??ﬁ"ﬁ?%gga..1. implies that the restricted model R will
be (.80)2 or .64. The formula in Note 2 can be used when testing
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this hypothesis for significance.

Consider Research Hypothesis 5: For a given population, there
is more than a .6 unit change in Y for every unit change in X. In
this case the models would be:

Full Model: Y = a,Uu + a,X + E,
Restriction: a, = .6
Restricted Model: Y = ajU + .6X + E,

Notice that the fu11 mode 1n Research Hypotheses 3 and 4 is
exactly the same as Research Hypothesis §. The number of
restrictions is also the same; resulting in the same number of
degrees of freedom. What is different, though, is the nature of
the restriction and hence the restricted models are different.
The three research hypotheses are all “correct” and equally “valid”
- they Just test three different hypotheses. Research Hypotheses
4 and 5 provide more definitive conclusions.

The desired correlation (reliability, va11d1ty. etc.) may be

difficult to determine, but should be no more difficult to justify

than justifying the default value of 0. Just because a, = 0 has
been used in the past does not justify its use, particularly w1th
hypotheses about reliability and validity.

The usual aprcat‘lon of the single population modn hypothesis

ie:
Research Hypothesis 6: For a given population, the populat1on moan
is greater than a particular value, 8.

Here 8 18 some meaningful value, dopond‘lnq on the o'lvon
circumstances. Maybe the researcher wants to establish that the
population mean height is greater than 72 inches. Or possibly the
researcher is concerned that a four-choice, 100 item multiple
choice test score ie greater then a chance score of 26. Note that
in these two examples (and in most hypotheses regarding a single

population mean), the value of Zero makes no sense. 8uppose that

a researcher wanted to establish that the population of freshman
at a particulsr University had a mean College Board 8core above tho
national average of 450:

Research Hypothesis 7: The population of freshmen at Un1voro1ty
X has a mean College Board 8core greater than the national mean of

450.
Full Model: College Board 8cores = a,U + E,,

The research hypothesis implies that the sample mean is oroator‘

than 450, or ‘w > 450

Restriction: - = 450 -

Restricted Modoﬁ (College Board Bcoros) = 450 U + E,,, OF
(College Board 8cores - 450) = E,,

(See bottom of Note 2 for test of significance and McN011 1973 and

McNeil, et al., 1975, p 315 for further details.)
The desired mean may be difficult to determine (i.e., it may

require some thought or knowledge of the phenomenon under

consideration), but no more difficult than justifying the default
mean of O. Indeed, using a mean of 0 in this example makes
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abgolutely no sense at all, and that is why it doesn’'t appear in
the literature.

The usual application of the multiple group F test (one-way
ANOVA) is:
Research Hypothesis 8: There is at least one difference in the
means on Y between the 1 populations. '
Full Model: Y = a,G; + a,G, + ...a,G, + E,,
The research hypothesis 1mplies that not all the sample means are
equal, or that a, not equal a, not squal ...a, for at least one pair
of means, or (a,-a, not equal 0; a,-a, not equal 0; ...a,, - a, not
equal 0 for at least one pair of means.)
‘Restriction: a, = a, = ...a;; or

ai-.'=°; .z-a'=°; c e l,.,-a'=0

By replacing all the coefficients with a common coefficient, 8y,
we arrive at the following restricted model: '
Restricted Model: Y = a,G, + 8,6, + ...8,G; + E,
Restricted Model: Y = a,,G, + G, + ...G, + E,
Restricted Model: Y = aju + Ey

When the F test fe significant then the restriction is
rejected and the research hypothesis 18 accepted as tenable. B8But
the research hypothesis just indicates that the 1 means are not
all equal. 8ince most researchers are not satisfied with that
information (confirming that the research hypothesis wasn’'t very
interesting in the first place), most researchers turn to post~
hoc comparisons to find out where the differences 1ie. These post-
hoc comparisons are basically t-test comparisons and are thus l1ike
Research Hypothesis 1. (8ee Williams 1974). The suggestion here
18 to avoid asking a research hypothesis that you aren't interested
in, and to go directly to non-%ero research hypotheses that will
yield satisfying information.

Interaction 1s wusually viewed only as a potentially
contaminating factor when trying to explain main effects. That
is, most researchers hope that there ie no interaction eo that they
can proceed with interpreting main effects. B8ut the interaction
research hypothesis may be important in and of itself. Indeed,
whenever an F has been computed for the 1interaction, the
interaction research hypothesis has been tested. The usual
interaction research hypothesie in a 2x2 design is as follows:
Research Hypothesis 9: For a given population, the difference on
Y between Treatment 1 and Treatment 2 is not the same on Level 1
as on Level 2,

Full Model: Y = a,(T,sL,) + ap(T,xL,) + a,(T,=L,) +
my, = (R% = R%) / (1, = 11p) :
wWhere T, = 1 if in Treatment 1; 0 otherwise,

T, = 1 if in Treatment 2; 0 otherwise,
Ly =1 if in Level 1; 0 otherwise,
Lp =1 if in Level 2; 0 otherwise,
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(T, x L,) =1 1f in Treatment 1 and Level 1, etc.
The research hypothesis implies that the two differences are not
the same, and that in the sample (a, - a,) not equal (a, - a,), or
[(a, - a;) - (a, ~a,) not equal 0].
Restriction: (a, - a,) = (a, - a,), or [(a, - a,) - (a, - a,) = 0].
By placing the one restriction on the ful"l model, one arrives at
the following restricted model (See Note 3 and McNeil, et al.,
1975):
Restricted Model: Y = b,T, + b,T, + bylL, + b,L; + E,

Acceptance of the non-directional research hypothesis leads.
to a non-directional statement. Al11 that can be concluded is that
the differences are not the same. Hence we don’t even know if the
differences are greater at Level 1 or Level 2, let alone the
magnitude of the difference of the differences. We have Jjust
conducted a non-directional test of interaction; a directional test
of interaction is reflected in the following:

Research Hypothesis 10: For a given population, the difference on
Y between Treatment 1 and Treatment 2 is greater at Level 1 than
at Level 2.
Full Model: Y = a,(T,*L,) + 8,(T.*Ly) + a,(Ty*L,) +

a,(Ty*L,) + E,y
The research hypothesis implies that the difference between T, and
T, is greater at Level 1 than at Level 2, or in the sample (a, - a,)
hglohor than a, - a,) or [(a, - a;) - (a, - a,) > 0].
Restriction: (a, - a;) = (a, - a,) or [(a, = a,;) - (a, - a,) = 0]
Restricted Model: Y = b,T, + baTy + byl, + b,y + Eyy
A significant F for Research Hypothesis 10 provides more insight
than would one for Research Hypothesis 9. We know that the
differences are greater at Level 1, but again we do not know how
much greater. 1f cost or theory dictate, aay, a difference greater
than six before a decision 1s made, the following Research
Hypothesis would be appropriate:
Research Hypothesis 11: For a given population, the difference on
Y between Treatment 1 and Treatment 2 is more than 6 units at Level
1 than at Level 2,
Full Model: Y & a,(T.%L,) + ag(T,%Ly) + a,(Te*L,) +

8,(Te¥Ly) + Eyy
The research hypothesis implies that the difference between T, and
T, is greater at Level 1 than at Level 2 by more than 6 units, or
in t;u utan‘lo (a; - a,) higher than (&, -~ a, + 6) or [(a; - a;) - (&,
- .‘ > ° .
Restriction: (a, - a,) = (ay, - a,) + 6; or
(‘," )-(..".‘)>°
 Restricted Model: (Y - 6) % b,T, + byTy + byl, + bLy + Eyy |
o Research Hypotheses 9, 10, and f1 all test an interaction
question, but in slightly different ways. In all three hypotheses,
there are four linearly independent pieces of information in the
full model. Forcing the one restriction on the full model results
in three 1linearly independent pieces of 1information 1in the
restricted model. Notice that the full models 1n Research
Hypotheses 9, 10, and 11 are exactly the same. The number of
restrictions is also the same; resulting in the same number of
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degrees of freedom. What is different, though, is the nature of
the restriction and hence the restricted models are different. The
three research hypotheses are all "correct” and equally “"valid" -

they just test three different hypotheses. Research Hypothesis
11, though, provides a more definitive conclusion, because as in
the previous examples, a non-zero restriction was made.

Note 1. A1l the Research Hypotheses in this paper (except the one-
way ANOVA) are directional Research Hypotheses. This follows the
author’s contention that a directional Research Hypothesis provides
conclusive information whereas a non-directional Research
Hypothesis provides no conclusive information. The Full and
Restricted models are the same for the directional and non-
directional hypotheses. The non-directional Research Hypothesis
allows the researcher to conclude that a, does not equal O, while
the directional Research Hypothesis allows the researcher to
conclude that a, > 0 (McNeil & Beggs, 1971). With reference to
the non-zero restriction, of, say 6, the non-directional Research
Hypothesis allows the conclusion that a, not equal to 6, while the
directional Research Hypothesis allows the conclusion that a, > 6.
The directional Research Hypothesis allows a more definitive
conclusion using the same data and the same degrees of freedom.

Note 2. The general F test for testing two regression models 1is
F(m', m‘) S (R" - R’.) / (]1' - 11.)

(1 - R") / (N - ‘1')
where: R: = R! of the full model,
R!y = R! of the restricted model,
11, = pieces of linearly independent information in the
full model,
11, = pieces of linearly independent information in the
restricted model,
m = (11, = 11,), and
mt = (N - ‘1')0
This test cannot be used when either the restricted model has
no predictors, when the criterion variable i1s different in the two
models, or when the Unit vector is not in the restricted Model.
In these cases, the F test must rely upon the sum of the squared
scores in the error vector, E in both the full model (ESS,) and the
restricted model (E88,):

F = ‘Essﬂ - ESB,) / (11' - 11')

(ESS,) / (N - 11“)
. The 1interaction examples all assumed equal N. The
concepts 8till apply to the unequal N situation, although the
restricted models will be different. (See Williams, 1972.)
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- SUMMARY

SIGNIFICANCE TEST USUAL RESTRICTION . SUGGESTION

Pearson Correlation zero non-zero based on thoggfg

‘ or cost )
difference between zZero | non-z.ro based W;
two means - | or cost on th‘OFY,

difference between 'only
means (one-way f) - Z0ro
1htora¢tioh o almost
. : -always or cost

.Zero
316910 population - a1wayi use more often
mean non-zero
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The selection of independent variables when utilizing -
multiple linear regression in a study is an involved and complex
process. The availability of a variety of computer programs
usually referred to as “"stepwise" procedures affords users
numerous options about which they often have little
understanding. The purpose of this paper, then, is twofold:
first, to present the major uses of regression analyses, the
advantages and disadvantages of selection procedures and some
caveats for researchers and those who teach statistics, and
secondly, to present, compare and contrast several variable
selection techniques using two data set.

Huberty (1989) suggests that the concept of variable
selection may have some worth in terms of parsimony, explaining
relationships, lowering the cost of data collection, and, S
sometimes, parameter estimation. Variable selection procedures i
called stepwise procedures are available on all the major
statistical computing packages including SAS, SPSS, and BMDP.
"Even novice researchers can easily run numerous stepwise :
procedures. Huberty (1989), however, continues by saying that ©
stepwise analyses have been basically used for three purposes: 155
selection and deletion of variables, 2) assessing relative
variable importance, and 3) a combination of selection and
variable ordering. .

Given this information, it is not surprising to find |
numerous articles in the literature and theses and dissertations
in university libraries that have used and misused stepwise
procedures despite the many published caveats concerning its
appropriateness. Perhaps one reason for the frequent misuse of
stepwise procedures is the mistaken perception that the results
of a stepwise procedure will yield the "best®™ equation.
According to Hocking (1983), “there is not likely to be a best
equation in multiple regression® (p. 226). This is because the
use of differing criteria may result in the selection of
different sets of variables (Draper & 8Smith, 1981). Pedhazur
(1962) more specifically stated that such methods as all possible
regressions, forward selection, backward elimination, stepwise :
selection and blockwise selection can be utilized with differing
criteria which will result in differing solutions depending on -
the criteria. Morris (1969) sums up these ideas by saying that
“there is little theoretical justification for expecting any
stepwise procedure to be best™ (p. 2).

The goal of stepwise regression is to choose a subset of
variables from a larger set for the purpose of parsimony,
prediction, explanation, and/or theory-building. However, since
the criteria.used in selecting variables are statistical, g
measurement error or randomness may lead to the selection of one .,
variable instead of an equally viable alternative variable. T
Cohen and Cohen (1975) expounded on this issue saying that
"problems include capitalization on chance because of i
simultaneous tests, sample specificity and trivial differences in i
partial relationships leading to choosing one variable over s
~ another” (p. 103).
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When predictor variables are intercorrelated, "there is no " -
satisfactory way to determine relative contributions of the .
variables on R squared” (Edwards, 1984, p. 107) and “"the idea of .
independent contribution to variance has no meaning® (Darlington,
1968, p. 169). Huberty (1989) reiterates these points by noting
that various subsets of a given size can yield nearly the same R?
value. Pedhazur (1982) states that the R° in variance
partitioning is sample specific and that nearly 1de9t1ca1
regression equations can havezradically different R° values.
Furthermore, an incremental R® may be statistically significant
but substantially meaningless. Pedhazur (1982) argues that the
incremental partitioning of variance may be used to control one
variable while studying another variable only in causal modeling,
andieven then the results are of limited value in determining
policy.

Another problem to be dealt with is the interpretation of
the regression coefficients. Huberty (1989) cautions that the
order in which a variable is entered into a model should not be
used to assess its relative importance. "The interpretation of
regression coefficients as indices of effects of independent
variables on the dependent variable appeals to researchers
because it holds the promise for unraveling complex phenomena.
Examination, however, is important because the apparent
simplicity is deceptive” (Pedhazur, 1982, p. 221). Pedhazur
(1962) warns that the absence of a theoretical model makes the
meaningful interpretation of the estimated regression
coefficients impossible. The types of specification errors that
can occur are numerous including omission of relevant variables,
inclusion of irrelevant variables, interactions among variables,
and the hierarchy of polynomial terms (Cohen & Cohen, 1975;
Pedhazur, 1982; Peixoto, 1990).

When 80 many caveats against it have been published, the
continued wide usage of stepwise procedures is difficult to
understand. Variable selection techniques in regression analysis
can be discussed in terms of parsimony, prediction, explanation
and theory-building, and selection techniques are problematic in
all of these areas. L

Parsimony involves finding "a smaller set of predictor
variables that do an accurate job of predicting, nearly as well
as the total set of variables®™ (Morris, 1984, p. 1). Obviously,
parsimony is helpful to researchers who reap benefits in terms of
economy of data collection costs and time., However, the criteria
for the selection of the best variables must be weighed on a ”
continuum between internal (parsimony) and external (cross
validation) accuracy (Morris, 1984). A prior decision made in
the name of parsimony can have a tremendous impact on the results
of regression analyses used for prediction, explanation and
theory-building. '

Pedhazur (1982) states that “for prediction, the goal of
regression is to optimize prediction of criteria" (p. 136). The
selection of variables for this purpose should account for as
much of the variance as possible while balancing practical
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considerations such as cost and ease of administration. while .
Morris (1989) finds “"particularly ‘pernicious’ ... a situation i
vith a naive researcher ascribing the best prediction equation ..
from the results of a stepwise program®™ (p. 1), Pedhazur (1982) .
argues that "prediction may be accomplished in the absence of ~@ﬁ£
%heory, but explanation is inconceivable without theory" (p. ' sl
74) Au*gx_

The goals of many researchers in terms of explanation have - 5%
been to identify major variables and determine their relative “*’

importance (Pedhazur, 1982). This suggests that stepwise Sk
techniques may be plausible initially. The stepwise programs 3&§
basically perform a hypothesis formulation function (McNeil, Bk

Kelly, & McNeil, 1975). However, "problems arise with the 4

stepwise approach, since a great many hypotheses are being tegted‘““
the resulting best model will most likely be drastically ovgrfit ey
with replication relatively unlikely® (p. 364). g

Cohen and Cohen (1975) state that “a research strategy of
treating all independent variables simultaneously is most -
appropriate when no logical or theoretical basis for considering”’
any variable to be prior to any other either causal or relevant -
in terms of research goals" (pp. 97-98). However, despite this
seeming endorsement, they continue by saying "a dim view is taken
of stepwise in exploratory research because orderly advance is 'ﬂiﬁ*
more likely in the social sciences when researchers use theory tOgﬁg
provide hierarchical ordering formed by causal hypotheses ratherdﬁgg
than computers ordering independent variables® (p. 103). Aiciinied

Given all the problems of sample specificity, interpretation f
of regression weights, and varying R values, the question arises!’:
when is it actually appropriate to use stepwise procedures. o
Huberty (1989) says that in cases where a large ratio of sample
size to variables exists, generalizability of stepwise regression
is enhanced, but an external analysis or a cross validation L
should also be conducted. Thorndike (1978) agrees arguing that ;.
"when a fairly large number of predictor variables are available"
it is advisable to use a stepwise approach, but cross validate"
(p. 167). Finally, Cohen and Cohen (1975) state that the <.
distrust of stepw se procedures decreases if: "1) the research’
goal is predictive not explanatory; 2) N is very large for a :
given number of independent variables (40 to 1); and, 3) cross
validate®” (p. 104). Perhaps, Huberty (1989) offers the best -:fi.i
advise when he says that "thorough study and sound judgement are ti:
suggested for choosing variables at the outset” (p. 62), and thatﬁw
*the data analyst should allow the findings at each stage to i %¢
influence the direction through subsequent stages” (Allen & COdyﬁ%ﬁ
cited in Huberty, 1989, -p. 65). ety

The numerous stepwise procedures available in the major e O
statistical computing packages are so easy to execute, however, .
that users quickly learn to rely on them, and there is a great
temptation for researchers, especially novice researchers, to .
assume that a stepwise procedure will yield the best model which’?d
will stand up to the test of cross validation. Again, this isiﬂﬁii
simply not true. Stepwise procedures actually yield many best  -:
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models depending on the procedure used and the criteria employed,
and it is up to the researcher to decide which one to use and .
why. In short, stepwise procedures are no substitution for
thinking and theorizing. This paper, will now present, compare
and contrast several variable selection techniques using two data
sets. In the first example, the results of various stepwise
techniques from the SAS package will be compared. 1In the second
example, the results of several stepwise regressions used to
answer various research questions will be compared.

The first example consists of a dummy data set of 30
subjects used for classroom teaching purposes. The dependent
variable is graduate grade point average (GPA), and the four
independent variables are the Graduate Record Exam Quantitative
subscale (GREQ), the Graduate Record Exam Verbal subscale (GREV],
the Miller’s Analogy Test (MAT), and a faculty rating of graduate
student performance (RAT). :(This data set is available from the
authors upon request). _— .

The intercorrelations among these variables and the
associated probabilities are presented in Table 1.

Yariables GREQ GREV unm BAT
GPA (r) .61 .58 .60 .62
(p) .0003 .0008 .0004 .0003
GREQ (r) .47 .27 .51
(p) .009 .15 .004
GREV (r) .43 .41
(P) .02 .03
MAT (r) .52
(p) .003

As can be seen the dependent variable GPA is highly
correlated with all of the independent variables. All the _
independent variables are also highly correlated with each other
except for the combination of GREQ and MAT (r = ,.,27) and possibly
GREV and RAT (r = ,41)., Therefore, pairs of unique information
have been set up between GREQ and MAT and between GREV and RAT.

Five different analyses were run using this data set. The
first was a full model with all four dependent variables using
the forced solution.,PROG REG. This model was significant (F 28
= 11.13, p €.0001, R’ = .64, adjusted R‘ = .58). The parameteY
estimates, t values and probabilities appear in Table 2. 1In this
model the t values for GREQ and MAT are significant, while those
for GREV and RAT are not.
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Intercept | -1. 738 | -1.83 “

GREQ | .004 2.18
GREV .002 1.45
MAT | .021 2.19
RAT .144 1.28
The next analysis which was performed was a torward o ‘fgéﬁ

selection. This program identifies a subset of variables which . i
will be as efficient as the entire set of variables for . u‘-u':
. predicting GPA. In this case, the significance level for .
entering a variable into the model has been set on the lenient
side to .15. The variables were entered into the_model in the
following order: RAT, GREV, MAT, agd GREQ. The R? values for '
each pew model and the change in R° are presented in Table 3. .
The R° for the full stepwise model is .64, as in the tull modg1,
since all the variables were entered into the model.

2 2

from.the forward selection method to predict
m.mm_allindamndanmnahln

Variable Entered 2 Change
into _the Modal R in R0
RAT .39 -
GREV 52 .13
MAT B I 57 .05
GREQ «64 .07

The third analysis was a backward elimination. The e _
procedure starts with all the variables entered into the model onst
and then eliminatel variables. The significance level for LT
retaining a variabl, in the model has been set to .05. Again the '
full nod,l had an R® of .64. The’variable, RAT, was removed B A
first = ,62) and then GREV (R .58), so the best model with -
GREQ and MAT only included has an R? of .58. The results appear .. ™
in Table (. hET S

o
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GPA_from all independent variables

Variables Variables 2 Changq
Included Removed RC in R*
GREQ, GREV, MAT, RAT - .64 -
GREQ,” GREV, MAT RAT .62 .02
GREQ, MAT RAT, GREV .58 .04

The fourth analysis used the stepwise method. This
'rocedure differs from the forward selection method in that
-ariables entered on earlier steps do not necessarily remain in
he model on subsequent steps. After a variable is added, other
ariables in the model are inspected to determine if they still
roduce a significant F statistic. If the F is not significant,
he variable is deleted from the model on that step. For this
ase, the significant level for entry into the model was set to
15, and the significance level for remaining in the model was
et to .05. The results for this analysis appear in Tgble S.
he variable‘ RAT, was entered into 2t:he model first (R" = .39),
hen GREV (R° = ,52) and then MAT (R" = ,57). 'Finally, MAT (R* =
52) was removed from the model because the F value for that
ariable was not siqnitigant, 80 the resulting best model
acluded RAT and GREV (R" = ,52).

Tabla § Reaulting R’s and changes in R’a
Lrom—the gtepwise procedure to predict GPA
from—ail independent wvariables

Variable Variable 2 Change
dtep  Entered Removad R in RC
| RAT - 39 -

2 GREV - 52 .13
3 MAT - .87 .05
4 - MAT 52 .08

Finally, the last stepwise procedure used was the q’ximum R?
:thod. This procedure adds variables that maximizes R°. The
'sults of this procedure are presented in Table 6. This
‘ocedure went through five steps and artiyod at a model which
cluded all four independent variables (R° = .64). However, it
uld be argued that the best model is determined on the basis of
e C(P) statistic. The optimal model is the one for which the
P) statistic approaches the number of predictors. 1In this
se, the researcher should stop at step 4 since the C(P) ,
atistic is then equal to 4.63 which is closest to the number of
edictor variables or four. '
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Table 6 Resulting R’ and C(P) from the maximum R® . . =
method to predict GPA from all independent variables . .-~

Variables in :

Step the model . CIP) L
1 RAT .39  16.74 SRS
2 GREV, RAT .52 9.69
3 GREV, Mat, Rat .57 7.77
4 GREQ, GREV, MAT .62 4.63
5 GREQ, GREV, MAT, RAT .64 5.00

Table 7 presents a summary of the results of all the A
procedures. The full model, forward selection, and maximum R® - wsi-
method all include all four predictor variables and give an R? of:
.64. What is curious is that for the procedures which select -
‘only two variables the solutions are quite ditf;rent. - The . . gl
stepwise procedure ends up with RAT and GREV (R -.Sg), while . @w%%*

the backward elimination ends up wi;h GREQ and MAT (R! = .S58). .. .&&.

o~

The forward, stepwise and maximum R° methods all enter RAT into :: Sk
the model first because this variable has the highest correlation it

with GPA (4 = ,62). The next variable entered is GREV. The . ... ;uwis
correlation between RAT and GREV is .41. 1In the other "best"” two 3.
variable solutions the correlation between the two predictors, =:i4k%

GREQ and MAT is .27. It is important to note that these are the |
lowest two correlations among all the predictor variables. when.
variables are highly intercorrelated and one variable is entered -
into a model first, the next variable entered will add the most =
unique information, i.e., has the lowest correlation with the - -
first variable. 1In gther words, variables are really entered as

pairs (GREQ & MAT, R° = .58y GREV & RAT, R = ,52). Also, in: -::
some situations the:procedures, namely forward selection, -
stepwise, maximum R°, did not produce the maximum R® for the two

variable models even though most users think they do. This is *
because the algorithms in these procedures don’t really check all
the possibilities. |

Iable ] Comparison amopg the bast models of the full

2

model and.atepwise rasults N
Brocedurs Yarishles in the model K
Full model GREQ, GREV, MAT, RAT .64
Forward selection RAT, GREV, MAT, GREQ .64 gl
Backward elimination ., GREQ, MAT : .58 'f£#%~
Stepwise procedure RAT, GREV - .52 “é2§;
Maximum R’ ' GREQ, GREV, MAT, RAT .64 B
T

In light of this information, what advise can be given to
researchers using stepwise procedures? First of all, users of
computer packages should know the limitations of the procedures
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they use. Secondly, researchers should always study the .
correlation matrix before looking at other results. A thorouqh
knowledge of the intercorrelations may lead researchers to torce.
certain variables into their models first. .

In the next example, the results of stepwise reqresaions are
used to answer different research questions. In this example,
data from 65 first time, post-myocardial infarction and first
time, post-coronary bypass patients were used to study
attributions, self-efficacy, and outcome expectations as
predictors of depression. The dependent variable was a 20 item
scale called the Center for Epidemiological Studies - Depression
(CES-D]. Attribution was measured by two instruments: a 9 item
behavioral attribution scale (BEHATT] measuring the causes of
heart disease that an individual can change, such as smoking,
drinking, etc., and an 8 item nonbehavioral attribution scale
(NONBATT) measuring the causes of heart disease that are less
controllable, such as heredity, luck, etc. The self-efficacy
scale (SELFEFF) has 19 items and measures behaviors that
individuals have some degree of confidence that they can change.
Outcome expectancy 1 (OUTEXPl) was a 19 item scale rating how
important patients believe changing particular behaviors are in
preventing future heart attacks. Outcome expectancy 2 [OUTEXP2]
was a 19 item scale rating the extent of a patient’s belief that
if behaviors are changed future heart disease will be prevented.
A series of four research questions was asked by individual
members of a group of researchers and medical practitioners who
each advocated a different modelling approach. The data was then
analyzed using combinations of forced and stepwise procedures.

In the first analysis, the question was asked whether the
set of attribution or the set of ’elf-efticacy and outcome
expectation yielded the largest R°. The results of this analysis
consisting of two regression models which entered all variables
simultaneously appears, in Table 8. These two regression models
produce very similar R? values (.28 for the attribution variables
and .32 for the self-efficacy and outcome expectation variables),
and the weights for four of the five variables were significant.
In general, it was found that individuals were less depressed
about their heart condition if they believed they had some
control in the matter.
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BEHATT -.37 9.6* B
NONBATT .31 6.5% IR

R? = .28 .‘
*p < .05

In the second analysis, the question was asked whicﬁ;§6t 6ff_ 
variables explains the most variance after one set was already . _ .

forced into the model. ik
expectation variables were entered into the model first, ;he R o

was .32. After the attribution measures were added the R°.
When the_attribution measures vere

the R’ was .28. After the self-
efficacy and outcome expectation variables were added, the R

The results of both analyses were

increased by .08 to .40.
forced into the model first,

increased by .12 to .40.

fairly similar.

The third analysis was a forward stepwise reqression usinq

When the self-efficacy and outcome D2 g

all five independent variables.

In this case, the two behavioral attributions added siqnificantly"
to outcome expectancy 2 in predicting depression. P

DOED W W

PHL"EW 1%, PN

dmmnn_mh_nl_indmndant.nxnhn:

These results appear in Table S.iﬁ&

Yariablea o Changa.in 3’ e ;sfﬁ
OUTEXP2 .19 .19* DT
BEHATT .31 J12¢

NONBATT .37 .06*

SELFEFF .40 .03

OUTEXP1 .40 . .00

* p< .05

The fourth analysis took a more theoretical approach. Some
theory suggests that attributions precede behaviors. Following
this reasoning two analyses were performed. For the first model,
the behavioral attribution variable was forced into the model
followed by the stepwise addition of the self-efficacy and
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outcome expectation variables. For the second model, the
nonbehavioral attribution scale was forced into the model
followed by the stepwise addition of the self-efficacy and -
soutcome expectation variables. The results appear in Table 10.
dnly the significant additions of the stepwise procedures are
ceported. In both cases, outcome expectancy 2 was the only
significant contribution to the attribution vgriable in
>redicting depression. Again the resulting R® values (.31 and
.27) from these two models are quite similar.

£ Change in &'
Regression Model 1

BEHATT o © .18 .18
OUTEXP2 .31 .13
Begression Model 2 |
NONBATT | .14 .14
OUTEXP2 o 27 .13

In summary, although one could argue in favor of each of
hese four analyses, the last analysis seems most reasonable
ince it was based on theory. This example does show,_once
gain, that the research question must dictate the research
ethodology. ' ' .

It is hoped that researchers will realize that although
ultiple linear regression is a powerful and flexible statistical
echnique and although stepwise computer procedures are
otentially useful and facilitative, using these techniques and
rocedures to meaningfully explain data is a complex process.

for non-experimental research, it is difficult if not impossible
o untangle the effects of various variables. 8ound thinking,
neoretical framework and understanding of the analytical methods
ce necessary to avoid illogical or unwarranted conclusions”
redhazur, 1982, p. 178). “Any meaningful analysis applied to
omplex problems is never routine. The clarifying of
ontroversies in social science research will not be enhanced by
oplying all sorts of techniques” (Pedhazur, 1982, p. 171).
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Case Influence Statistics
Available in SAS Version &

John T. Pohiman
Southem lllinols University, Carbondale

Abstract

Case Influence statistics are a useful dlagnostic tool for
Identifying high leverage cases In a sample. A case's Influence -
on a solved regression model depends on that case's residual
and Its location In the distribution of the predictor variables.
Cases with lange residuals and located In extreme ranges of
the predictor variables' distributions will be most Influential,
Case Influence Is fllustated with an SAS analysis of a simple
data set. |

The REG program In version S of the Statistical Analysis System (SAS)
provides a collection of case Influence statistics described by Belsley,
Kuh and Welsch (19680), and Freund and Littell (1986). Influence statistics
are designed to ald In the detection of cases which are highly Influential
in the estimation of the regression coefficients. A case's influence on the
regression solution IS estimated by deleting that case from the sample
and recomputing the coefficlents. If the coefficients change considerably
ubon deleting a case, that case Is deemed Influentfal. Generally, cases
which have large residuals and are In extreme ranges of the predictor
variables’ distributions will be most influential. |
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T

thure | presents a scatter dlagram whlch lllustrates case lnfluence o

‘for a simple linear regression model In whlcn a dependent variable (V) is o
regressed on one predictor (X). The ten ‘data points denoted with the

symbol (e) yleld the regression equation
Ye=1e1X

The ten data points denoted wltn tne letters Atod are then used, one at a

time, to augment tne orlglnal sample of ten observatlons ‘Ten augmented N N

TR

samples of slze 11 are thus cneated The first augmented sample is o

composed of the 10 orlglnal data polnts plus polnt A The second

augmented sample conslsts of the lo orlgtnal observatlon plus polnt B -
and 80 on to the tenth augmented sample using case J along with the B

original observations. The Influence of the ten lettered data polnts Is
determined by comparing the regresslon coefficients obtalned when the o
lettered cata point 18 included In the analyss with the coefflclents'
obtained after deleting that data point. Table | shows the results of this

analysis.

Ingert Figure | About Here

ﬂ Cosed e



The second and third columns In Table 1 contain the regression
coefficients obtained when cases A toJ augment the original sample of 10
cases.: The last two columns of the table show the change In the
regression coefficients due to the presence of each lettered case. Note
that the largest change In the slope coefficient occurs for cases F and J.
Cases F and J have the largest' deleted residuals and are the most
disparate cases In the dlstrlﬁution of X. Cases F and J are the most
Influential cases. Case J has a strong positive influence on the sjope
coefficient, since case Js presence In the sample causes the slope
coefficient to be .231 units higher than It Would be if case J were not In
the sample. Case F, to the contrary, has an ldenttéally strong negative
Influence on the slope coefficient.

Iinsert Table 1 About Here

INFLUENCE STATISTICS AVAILABLE IN PROC REG |

The Influence statistics described here are avallable In the SAS REG
procedure 23 0Dtions, SAS provides the statistics HAT DIAG H, DFBETA
and DFFITS. For this I1lustration assume that the general linear model s
fit to a data set, namely

Y=XB+E .

where Y Is a vector of values on the response varlabl'e, X l|$ an nx(p+1)
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. matrix of values on the Independent variables with a leading unit vector,
B 1s the vector of regression coefficlents and E IS a residual vector,

-"Lettlng XT - denote the transpose of X, the ordlnarg least squares
regression coefficients are given by : |

B~ (xrx)*"xrv.

and the predtc‘:téd values of Y are produced by
YaX8
XM~ Ty

Letting H = X(XTX)" IXT, then
Y ahy.

The matrix H I8 the projectlon matrlx for the predlctor space. ln that it
operates on YtoyteldY, and 18 termed the tanmm H Is of order nxn
and of the same rank as X The main dlagonal values of H, tm. kare
messures of the dispersion of case | from the centrold of the predlctor
variable space. Two cases with the same value of hu are on the same
probability contour of the multivariate distribution of tne predictor
varfables. In fact, hyy IS a linear transformation of the Mahalanobis
distance of case | from the centroid of X (weisberg, 1980, p. 105). The hii
values are labeled HAT DIAG H by the REG program. The hys values measure
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the potential for a case to be Influential. The actua_l influence exerted by
a case will also depend on that case's residual.

The DFBETA statistics are measures of the influence each case has on
each of the regression coefficients. For each case the will be a separate
DFBETA value for each regression coefficient in the model, including the
Intercept. The DFBETA for case | on coefficient | Is

by - by(1)

DFBETAY(1) =
[s2nomottjrz.

where b) Is the regression coefficient for predictor | estimated from the

total sample, by(i) Is the regression coefficient for variable J estimated

in the sample with case deletedjsztt) is the error varfance estimate

from the sample with case | deleted and (XTX)!! 1s the 1-th diagonal

slement of (™)1,

The DFFITS statistic 1S a scaled measure of the influence of case | on

‘he predicted value of Y. Since all of the regression coefficients are used
‘0 produce a predicted Y value, DFFITS becomes an aggregate measure of
‘he. Influence of case | on the entire regression equation. The OFFITS
statistic for case 1 IS given by

n



Yi=Yi)
DFFITS(i) =

(52t il /2

where Y'i Is the predicted Y for case 1 based on the total sample, Y'i(i) is -

the predicted Y based on the regression equation estimated without case | . -
n the sample, and hif 1s the 1~th diagonal value of H. The DFFITS statistic
Is very similar to Cook's D (Cook, 1979), another measure of influence

avallable 1n the REG program and also In the SPSS regresston program.

Cases with DFFITS values greater than 2((p+ 1)/n]1/2 are considered to bé
high leverage cases (Belsley et al., 1980, p. 28).

ILLUSTRATIONWITHADATASET

. Anpendlx A provides a SASLOG and LISTING for a sample regresslg? il
mode) based on 24 cases. Page 1 Appendix A contains the mode
statement (SASLOG line 30) which requests the regression of attltudes
toward school (ATTSCH) on INCOME and 10. The INFLUENCE option Is

requested for the model.

Page 2 In the Appendix contains the param'eter estimates for the
model, followed by the Influence statistics. The studentized resldu;ié |
(RSTUDENT) and the HAT DIAG H present the two important sources of .
case influence. Case 6 has the 1argest studenttzed residual (2.9823) and |
case 14 also has a large studentized residual (-1.5497). The DFFITS value
for case 14 18 (-1.5747), and this s the largest value, in absolute terms,
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In the sample. The negative value of DFFITS for case 14 means that the
~ predicted Y for case 14 s Increased when case 14 Is deleted from the
sample. Conversely, the presence of case 14 in the sample causes that
case’s predicted value to be reduced.

The DFBETA statistics are then presented for each regression
__coefficlent, for each case. Case 14 Is also the most Influentfal case for
estimating each of the regression parameters Individually: INTERCEP
DFBETA = -.5455, INCOME DFBETA = -1.4997 and 1Q DFBETA = .9250. As
with the DFFITS statistic, the sign of the DFBETAs Indicate the direction
of Influence on the regression coefficlents for case 14 Case 14's
presence in the sample causes the y-intercept to decrease, the regression
coefficient for INCOME to decrease and the coefficient for IQ to Increase.
On page S of the Appendix the regression equation Is estimated with case
14 deleted from the sample, and Indeed the changes (n the coefficients are
as suggested by the DFBETA diagnostics for case 14,

HANDLING INFLUENTIAL CASES

Once the Influential cases have been Identified the analyst must decide
what to do with them. The first step should be to determine (f the
influential cases are correctly coded. Typographical errors made while
entering the data can produce highly Influential cases. If data errors are
detected, clearly the‘proper course of action Is to correct the data
values. If the correct data values are not avallable then deletion of such
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. cases Isreasonable. o
7 However, If the analyst determines that a case Is correctly coded and
still highly iInfluential, three alternatives are avallable: 1. delete'the =
case from the sample, 2. retain the case in the sample but note that the
case Is Influential, or 3. revise the model to accommodate the influential

case. ' S —

BN IR .
: s ST

Rt

It 1s a questionable practlce_ to delete cases from a sample slmply
because they are unusual. In fact, uwsual cases’ often polnt‘?“m‘t’é'a |
weaknesses In our models and may suggest improvements in our theorfes. |
For example, f a researcher it a linear model to a nonlinear relationship = N
many of the data points would be found to have large reslduals”éfid"_if";' |
therefore might be highly influenttal. Deletion of unusual cases In thfs
example would lead to the interpretation of an fncorrect model. When'a -fj,'f'-
case Is deleted from a sample it Is presumed that the model fs correct o
and the offending case s invalid. Our models should be burdened to m
our data; our data should not be obliged to fit our models. Data should
not be deleted to better fit our models unless we have compelllng
evidence that the data Is wrong. |

The least squares criterion can itself be the cause of an Influence
problem. A case's Influence I8 proportional to the square of its residual
when OLS estimation 18 used. A researcher might try fitting. a model

using a criterfon other than OLS. The SAS version 5 package has a
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procedure that rits models using the least absolute value ermor (PROC
LAV). Unfortunately, this procedure Is not available In version 6 of SAS.
This program minimizes the sum of the absolute deviations from the
model, thereby tempering the influence of high residual cases. If the
coefficients estimated with OLS and LAV criteria are comparable, the
model may be considered sufficiently robust for interpretation. Page 4 in
the Appendix shows the LAV solutfon for the same model estimated
earlier using OLS. The only coefficient that Is changed markedly Is the y-
intercept. The coefficients for INCOME and IQ are approximately the same
as their OLS counterparts. One might, therefore, conclude that the OLS
estimates are fairly robust In this sample.
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Figure 1. Scatter Diagram Illustating Influence
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Table 1. Influence of Cases A-J on Model Coefficients

Case  Regression Coeficients Influence of Case on
Intercept ~ Slope ~ Intercept - Slope

A 1625 846 625 -154

B 1.435 913 435 087

C 1182 1,000 182 ooo

b o3 1087 -087 087!

E 692 1.154 =308 154

F 1920 769 2 -2

6 1.652 &0 62 - -3

H 1.273 1,000 273 000

| 870 1.130 -130 130

J 538 1231 -462 231

Note: The regression equation for the original 10 cases s Y = | + IX,
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¢ Appendix Page 4
LAV AEIFESSION PRICEILFE FOR CEPENGENT UMRIPBLE ATTSOH
L eI LW COBFFICIENT
MR 022981
INCOME - 1.12080488
| o008
(NOTE: THE COEFFICIENT ESTIMATES ARE UNI(LE.)
AESIOURL SUN OF MESILUTE UALLES = 120.74410603

MUAETED TOTAL S OF ARSOLUTE URULES = 272, Q0NOKTTD
(UMBER OF OEEDWWTIONS INOATA 8ET = M4
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' Some Parallels Between Predictive Discriminant Analysis
and Multiple Regression

The purpase of this peper is to cutline some important
similarities in, and differences between, predictive discriminant
. analysis (DA) and mltiple regression (MR). The areas covered,
chosen for their importance and need for clarification, are estimates
of model accuracy, hypotbesis tut_ing. and non-least equares models.
Same of the parallels are well knovn, same are less well known, and
same appear to have not yet been considered at all. ..

It is well known that when 1) only two groups are invalved, 2)
the two population predictor covariance matrices are assumd equal,
and 3) the two prior prababilities of qtoup mmbership are taken to
be equal, the popular *minimm chi-qm zu.lo" (Tatsucka, 1971, p.
218) associated with aw:mm_f._mwu (DA) is equivalent to
predicting a dichotamus critnrh;n ;a:hblo via multiple regression
(MR) methods and classifying a subject into the group for which the
predicted criterion is nearer the actual. An especially enligttening
oamination of this and some other multivariate techniques from the
general perspective of MR is provided by Flury and Riedwyl (1963).

However, a precaution about the euivalence of two-group
classification and multiple regression with a dichotamus criterion
is sppropriate. In a twqroup lifmtion. there is one linear
discriminant function (LDF) and there are two linear classification
functions (1CFs); an LIF and an ICF are simply linesr camposites of
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Parallels 2

the predictors. Ithtruemat\v-gmlpomtutthntthe
regression weights are proportional to the single set of LDF weights.
When ‘a linear regression function (LRF) or an LDP is used for
classification purpoees a cut-off criterion needs to be determined —
" with an LRP it is midway between the two values by wvhich the
dichotamue criterion is coded, with an LDP it is midway Letween the
LDF means for the two groups. With the use of I(Fs, there is no cut-
off per se; rather a unit is classified into the group with vhich is
associated the larger ICF score. It turns out that the respective
ICP weight differences are prdportiaul to the correspoding LDF and
(therefore) the LRF weighta.

Input scores for an LRF, an LIF, and an ICF are typically
predictor varisble mmasures. [As stated above, any of the three
linear camposite types may be used for a two~group classification
problem.]) It turns out that another, still equivalent, approach to
twogroup classification may be ezployed. Here, one uses ILDF scores
for each unit as input for an ICF; we thus have, in essence, a single
predictor score for each unit.

When generalizing from a tvo~group problem to & k-group preblem,
it is advisable to forget the LRF and IDF qpproaches and focus on the
ICP approach, with predictor measures as input ecores.

Estizates of Model Accuracy
' Estimation of the cross-validated accurecy of a prediction model

offers similaritias and differences between MR and DA mathods. In
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bothmmdll!thntumtmltdocwew!attmotcm
mm-udwcnncyuotm. Por instance, is interest in
simply estimmting an accursCy index paramster from the associated
statistic, that is, estimting the index of accuracy &2 or percent
of "hits®, respectively) that vould cbtain in the prpulatimn from
Mmhﬂutnmauplo.orhinurutmmmacymt
wvould cbtain on nppuatim of sample cptimized weights to alternate
samples £mtht-smpq:nnt1m? The cancern in this paper will be
with the latter type of accurscy. o

Mtnlnutinuotcmmuidnudkztnm. a julgmnt of DA
“hit-rate” based on the calibration sample is optimistically biased
in reference to epplication to alternate smmples. 7o estimte a
croasvalidated result in MR, another decision that must be made is
wvhetber interest is in relative accurscy, as mnifested in the
co:rohtimot!mdf. or in abeclute sccurscy, as mnifested in the
MSE. In either case, several formila estimmtes are available (see
Buberty & Mourad, 1960; Romboam, 1978). It is prubable that in most
predictive uses of MR in the behavioral sciences, such as in
personnal selection, cancern is with relative aocurecy.

Unlike in MR, the cancern in predictive DA is in classification
sccurscy; this is implicitly a conocern of ebsolute socurscy. A
formila estimte for croasvalidated hit-rate in the general k-group
case has largely eluded mwthcdalopists. Bowvever, a useful, although
oauplicated, formula estimate for croas-validated hit-rate in the
two-group case was derived by Mclachlan (1975). According to that
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Parallels 4

estimator, the hit rate, Pq for group g, where g=1or 2 is:
Py =1 = P(-D/2) - £(-0/2) {(p - 1)/(Dng)

+DI4(4p = 1) = D2)/(32) + (p = 1) (p = 2)/(4Dn?)

+ (p = D[P + ©(2p + 1) + 16/D)/(64ang)

+ D305 - ad(24p + 7) + 1602 (482 ~ 46p - 53)

+ 192(-8p + 15)})/(1228a) }, |
where P is the standard normal distribution function, i.e., P(-D/2)
is the area to the "left" of -D/2, £ is the standard normal density
function, D is the Mahalanchis distance, p is the mmber of predictor
variasbles, ng is the mumber of subjects in group g, and m = nny-2,
While the formla looks formjdable, with patience, it is calculable
with a hand—held calculator. Moreover, as the last term in the
mltiplier for £(-D/2) is usually very mmll, one may choose to
ignore it, making the formula even more tractabla. If the researcher
vith an orientation toward MR rotes that D? = R2N(N-2)/(1-R) 2nyny,
than the Mclachlan estimator of ccaas~validated hit-rate can be
cbtained from the R2 resulting from regressing the dichotamous
criterion on the predictors.

One slightly "unnerving® aspect of the Mclachlan eatimator is
that it can yield estimated hit-rates that are Jarper than those that
are estimated from the known positively biased process of
reclaseifying the calibration sample (Morris & Buberty, 1966; 1967).
This is unlike the case in MR where the "shrunken" multiple
correlation is necessarily less than the value of the multiple
correlation derived from the calibration sample. 'J.‘{n explanation for
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this apparent paradax between amthads is that estimators of the .. .-
cruas—validated sultiple cornhdfl\ are functions of the ,
correspading calibration sasple sultiple et;:tmt!m. and are . -
therefore guaranteed to yield smaller values than the sample value.
In this sense, the Mclachlan hit-rate estimator is not parallel to
the MR formila estimators. While it is an estimator of croas-
validation hit-rate, it is not a function of the calibration sample
generated hit-zate.  Rather, it is a function of the Namlambis
distance between groups, as well as other varisbles. . . That is, it
does not simply estimate a paramstar fram a function of the
correspaing statistic as do MR formila estimtors. ..

An alternate narparametcric approach to estimting cxoss~
validated hit-rate, which has a wide foulloving in the DA literature,
is the "Jesveowant" proasdure (Buberty, 1964; Ruberty & Mourad,
1960; Lachenbruch & Mickey, 1966; Mastaller & Tukey, 1968). In this
method, a subject is classified by applying the rule derived from all
Ss except the one being classified. This process is repeated "round-
robin® for each subject with a count of the overall classification
accurecy used to estimate the cross-validated socurscy.

Clearly the same "raund-tudin® procedice can be used to estimate
either relative or abecluts aoccuracy in the use of MR, and has .
appeared in that ocantaxt, with perheps the earliest reference due to
Gollob (1967). In a system intandad to select optiml IR predictor
variable subsets, Allen (1971) coined the pracedire "PRESS," and he
appears to be the source most oftan cited in the MR literature.
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The apparent coputational difficulties due to the inversion of
N matrices can be avoided in both MR and DA by using a matrix
identity due to Bartlett (1951). This identity is cited and used
explicitly in introducing the technique in the DA cntext by
Lachenbruch and Mickey (1968), but was not mmtioned by Allen in the
first introaxction of PRESS (1971) nor in its presentation in a later
text (Allen & Cady, 1962, p.’ 254), although the same identity was
implicitly used. Moreover, Allen doesn't cite the DA literature and
the parallel spplication of the PRESS procedure. It appears that

this resampling process was "inventad® {mdepmdiently in the MR and DA
literatures.

Full vs Restricted Model Bvpothesis Testing

A technique that is well known and widely used by MR researchers
is that of hypothesis testing through ammtrasting full and restricted
prediction models. The power of this method, its generality, and its
- applicability to a yery vide arena of theoretical questions in
science is no Goubt part of the reasan for the astablislzrmnt of the
MIRSIG within AERA.

The same types of model cantrast “"explanatory increment®
Questions can be asked and sea to be at least as much potantial
interest when the criterion is cinnificatim accurecy. Bowewver, we
know of n0 exarples of this technique being used in the literature.
There seans to be no reason not to test the difference in proportion
of correct classifications (hit-rate) between tu}l and restricted
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mdels to exmmine maaningful hypothemss, just as is done using the R2
in MR. The appropriate test statistic is McNemar's (1947) contrast
betveen correlated proportions. Moreover, as the index, "I", of
increase in classification accurecy over chance (see Buberty, 1984,
p. 168) is distributed similarly, it beccmes apparent that such a
test would also be applicable to that statistic.

~ An example of such a test from a study in which the mbesquent
high school dropout of a sample of 76 children was predicted from
data available in fifth grade vill now be presentad. The six
predictor varisbles were gender, race (two levels), mmber of
elsmntary schools in vhich the child had been a student, the mmber
of grades the child had repeated, the family structure (1iving with
at least one natural parent and no other adult, or not), and the
duld'lmlumto!tuthqtdom.-unhIwwm&
the relationship between both gender and race and the criterion of
high school dropout, the hypothesis to be tested concerned the
significance of the hlcmt to cdlassification accuracy afforded by
edding the four *nonocganimmic® varisbles (nimber of elamsttacy
schools, nmber of grades fepeated, family structure, and the total
mmber of £ifth grade absences) to the prediction model containing
only énhrund £ace.

Classifying the calibration sasple, the proportion of correct
claasifications for the total wodal was 7358 and for the model
including only gender and race it was 638. A 2x2 table {llustrating
the mmber of hits and misses for both models is:
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All Prediceors
MISS HIT
Gender and Race HIT 9 39
Mss 10 18

- The test statistic, z = 1.73, would typically be considered non-
significant (P = .08) and therefore offers no evidence that the
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MULTIPLE LINEAR REGRESSION VIEWPOINTS
VOLUME 18 NUMBER 1, FALL 1991

The Use of Regression Diagnostics to Improve Model Fit:
A Case of Role Strain and Job Stress

Susan Tull Bcﬁrhln and Michael Martin Beyeriain
University of North Toas

Abstract

This paper {llustrates the impartance of using regreesion diagnostics to improve
model it when using standard multiple regreesion qtatistical pacimges such as
SASPC. This study examined the relaticnahip between employee perceptions of
their work environments-and-perceived job stress. The analysis was theory driven
rather than explometory in nature, and was perfarmed using SASPC multiple
regression procedures. Variables were coded to reduce possible collinearity. Various
regression diagnoetics were examined to detect the presence of outliers, influsntial
observations, residual correladar; and collinearity ( e.g., VIFs, DFFITS, the C,
criterion, HAT (leverage) values, and the Durbin-Watson test). Theee values, coupled
with the varicus regression procedures yielded a final, best nine-variable model of

R! = 48, significantly larger than the initial value of R? = .27, Future research in this
area could be strengthened through 1) an examination of the path analytic and
LISREL models in the literature that attampt t0 model indirect effects, 2) possible
incorporation of select, higher-order terms from these stydies, and 3) utilization of the
regression diagnostic procedures cutlined in this paper.
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Imrotuctian

Roloconmamd:oloambiqmtymtwomemtbathavoboennnkodto
vaﬂoushealthmdphydcalmﬂmo Roleconmainvolvescanmmm
assignments {nitiated by superiors of equal rank and autharity. Role ambiguity
cancerns the lack MMWJ& assignments, work objectives, and others’
expectations. Kahn and others (1964) found that men who experience role canflict
and role ambiguity on the job exhihit more tension and less job satisfacdon than
mmwhooerolesmcanamm;onmambim. Regearch shows that role conflict
mmtosmmanmberdmm:outmsmdu&nammmmdwa
Slocum, 1876), poorpeexrohﬂonnh!psm& Caplan. 1972). nndtumovar (Brief
& Aldag, 1976 Hamner&'lbd. 1974) Role lmbla\myhuboenlinkadto
ineffective coping, as well as tumovu

Undenailization and job future ambiguivcy are two additional job streésors that
havo-boenlhowntomap«ooiwdjobmu(mphn. Cobb, French, Harrisun, &
Pinneay, 1880). Underudlizatdon of abilities involves the lack of oppartunixy on the
job to use siills and Enowlsdge aoquired in schoal or from previous experience and
training. Jobhmmnmhlqunymlmholwmwnmhmmm
plans appommmutorpmaﬂm.nmvduoofmjobﬂdm and future job
rnponnhnhdu 'nuubwvuhblu.thntu rolooonmot.rololmbiqmw
undanmnudon.mdjobmmiamty plulyomonthejobmdmdarm
chonenﬁomahmmdvﬁnblelbomunofmonowwmcumto
stress, and after oomhﬂonqnﬂymmlu_dthqmrotho.but set for predicting

perceived job stress.



Msthod =

The preeant study involved a survey of staff members at a large, eouthwestem
univereity. Respondams were white callar workers in various clerical, sscretartal
and administatve positions. A total of 680, 14 page surveys were sent through the R
campus mail system, and 134 were returned for a respanse rate of 20.3 parcant.
Twenty-three cases were omitted because of missing data. The initial predictar
vnﬂnhlnsusodlnthomxdymmasmnaws:mda(Dl).yombn]ob(Xl).mlo
conflict (X2), role cmbta\my(xa):. undansilizavian (X4), and job future ambiguity (X5).
The criterion vnﬂablewuporoeivod’ob stress (Y). Gendsr (D1) was represanted by
dummy coding (i.e., 0 males, 1 females). Selected intaractdon terms were then
created based on developed theory in the literature, that is, years on job times
tmdmmnudmam).miaoonmctumnmlecmmmm).mdmmjobumn
job future ambiguity (XB). Due to the fact that stress has often shown nonlinear
relationships to other variables, several squared, higher order terms were i{ncluded {n
the analysis, that is, role conflict (2X2), role ambiguity (OTIX3), ndsnmilizadan
(X4X4), and job future ambiguity (XEX5). Finally, all the predicwr variables with the
exveptian of gender (D1), were coded {n order to reduce the likelihood of rounding
eIToTS in regression coeflicients leading to collinsarity (Mendanhall & Sincich, 1689,
* p. 343). Thus, to denots coded variables, “U° replaces ‘X’ for all variables exoept D1
and the criterian variable Y.

Results

The anslysis was parfarmed using SASPC and involved & number of

procedures. MWWMomewmmdmmMnmmOn

»
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procedure, PROC REG (i.e., D1, X1-X5). This analyxis yialded an R? = .27. Next, this
procedure was repeatad with these variables and the additional interaction and
higher order terms (i.e., D1, X1-XB, XZX2, X3X3, XAX4, XEX5). This ylalded an R =
.34. The correlation procedurs, PROC CORR, was also run at this point in order %o
obtain msans and standard deviadans for the predictar variables.

The twelve variables (excluding D1 and Y) were then codad and analyzed
mqm_mrmmmm.mocmcmmmmczm
(Le., U1-UB, UZU2, U3UR, mm.’bsusy This analysis yielded an R? = .31. The
subsequamnt inclusion of D1 (gender) raised the R? value %0 .34. ‘The DFFIIS values
warothcnmnﬂnedhmdaﬂotdanﬁ!yposdblo!nﬂuanﬂnlobmﬂm. The S8AS
User's Quide: Statistics (1985) describes the DFFITS statistic as ‘a scaled measure of
the change in the predictad value of the ith abeervadan (which is) calculated by
deleting the ith observation® (p. 677). The difference, ¥, - Y. has been divided by its
standard error 8o that the differences can be maore easily compared. The investigetor
is interested in values that are cansidaruhly larger relative 10 the other differences in
predicted values, For most purpoees, a value of 1.0 is considered %o be sufiiciently
large %0 warrant attention. -In the present study, influsnce diagnostias revealed five
DFTITS values greater than 1.0. These were subsequantly deleted from the analysis
leaving a remaining sample of n=108.

The regression procedure, PROC STEPWISE, was then utilizsed, specifically,
the FORWARD, BACKWARD, and MAXR options. The PROC STEPWISE procedure is
a good choioe whea there are a number of indspendsmt variables to consider. The
varlous options do not always isolate the model with the highest Rt but rather seek
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the best one-variahle modal, two-variable modal, and so forth (SAS Uper's Guide:
Statistics, 1985). The FORWARD option requests the forward selectian techniqus,
BACKWARD requests the backward aliminadon techniqus, and MAXR requests the
maximum R? improvemsmnt technique. MAXR looks at all possible regression
equatians, however, as with the other options it outputs only the best modals, for
example, the best ten-variahle, nine-variable, eight-variahle models, and so forth.

After examining the output from the PROC STEPWISE analyses it was decided
tbntthotonowlnawthoboct;odal:l!’-.&.Dl.m.m.m.m.m.m.m.
C, = 7.87, with all variables significant at the 0.10 leval. The C, criterion is gleaned
from the FORWARD and BACKWARD provedures (rather than MAXR) and is used %o
uloctthebectcubcetmodalwnbnmnwulmomoqumouox(c,).and_avduo
of C, near p + 1, which indicates that alight or no bias exists [E(C,)x p + 1). In this
case, the C, value was slightly less than the number of pareamstare in the modal
(Lo..oi&ht).

This model was then analyzed using the gensral regression procedure, PROC
REG, with the VIF, P, R, DW, and INFLUENCE optians. VIF prints variance inflatian
ummmmmmmmummmdw;
P calculates predicted values from the eetimated model and input data; R analyzes
the reeidual and {ncludes the Cook’s D statistioc which is an overall measwre of
influence for each abservatan, the standard errore of the predicted and residual
values, and the studsudsed residual; DW calculates the Durbin-Watson statistic;

mmammwmw«mummmmmom
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absarvadaon: the residual, studentized residual, HAT or Jeverage value (h), and the .

DFFTIS gtatigtic, - - oo w : ,

 Examinavian of the plot RESID*PRED (reaiduals times predicted ecores)
revealed a value greater than +2 standard devisdans, that is, a possible outlier.
This value was subsequantly deleted leaving a sample of n=105. A rerun of the
general regression procedure, PROC REG, using the above best model yielded an

R? = 41, and a Durhin-Watson, D = 2.21, suggesung the regiduals were alightly

| ggg‘gmg_wgug.?g*g.ga
E..-iﬁqogﬂiﬁ.m|_?+s\un.s.-nnga?ﬁeiﬁ._
revealed four values greater than twice the average value, sugpesting that these
values were influsntia) cbewvations and ahould be eliminated from the data set.
| They were subsequantly dalsted leaving a final sample of n=101,
Examination of PROC STEPWIER optians, that is, FORWARD, BACKWARD,
and MAXR revealed significant guins in R? values. At this point, a nine-variable

significant at the 0.10 level; 3) there was a significant drop in R! using the
BACKWARD procedure as one dropped to the eight variable models; and 4) the
Durbin-Watson statistic was close to a value of two, !5.9&8%3-8:& _
correlation. Therefore, the best model chosen was as followw: R! = .48, D1, U1}, U2,
‘U3, U4, U7, UB, U3U3, U4U4, C, = 8.85, DW = 2.21. Thus, the final model included
the following variables: gender (D1), years on job (U1), role conflict (U2), role



ambiguity (U3), undansailizadan (U4), role conflict times role ambiguity (U7), years on
job times job future ambiguity (UB), and the equared, highar-order terms utilizing role
ambiguity (U3U3) and undenmilizatian (U4U4). The cnly canflicdng evidsnce was the
value of the variance inflation factors (VIFs) for U3, U4, U3U3, and U4U4. These
values were greatar than 10, whareas the VIFs for all other variables in the modal
were appraximataly 10 or less. VIFs greatar than 10 indicate the presence of
collinearity where, (VIF) = 1/(1-R3),i = 1, 2, . . . ., k (Mendenhall & Sincich, 1989,
. p. 237). Values greatar than 10 occurred cnly in those variables used both aingularly
ndmaredintbahiqher—ordermm.mhnathemobviouscandidmam;
collinearity. In addition, Mendenhall and Sincich (1989) discuss the need to code the
dspendarm, as well as the (ndspendam variables, in order to properly calculats VIFs
(p. 236). The criterian variable, perceived job stress (Y), was not coded in this study.
Hnnl!y.t.ben’.y 48 representing the best model did not appear to be sufficiamly
large to indicate the presence of collinearity. &mdﬂmwtihthhﬂndlnq.tho
standard errors of the individual beta paramstarey were not inflated, and the t-tests
on the individual beta paramstare were significant suggesting leck of evidence for
collinearity (Mandanhall & Sincich, 1889, p. 236).
Digrussian and Recomnendations

Of eeveral hundred studies of stress examined by the authors, it appears that
none have used the regression diagnosdas discussed in this paper, suggesting that
tbomculuo!modoﬁmmdlntboknutmvmybemahrthanmm.*
Results of the present study {llustrate that the use of the various regression
diagnostics can improve best model fit mwwb. In addition, it ahould be

L[]
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.obvigus that investiganare cannot despend solaly on regreexian salectan options such
as MAXR, FORWARD and BACKWARD when searching for the best gubset
regression modal. Opuons such as MAXR will provide K values for all genarated
modelg, however, the final decision as to which is the best model cannot be made
without the C, etadstic and other valuss, for example, regression diagnostice such as
HAT values, Cook’s D, results of jackimifing procedures such as daleted regiduals,
DFFITS, DFBETAS, and the Durbin-Wetson stadstic which are available under the

" FORWARD and BACKWARD optians of the PROC STEPWISE procedure.

The FORWARD and BACKWARD optians offer different best models. That is,
they each output best models based on the pardcular programmsd criteria
embeddad in their respective routines, with the R? as the salient criterion. Howevar,
a strang R? value is not inequivocably the last word on model fit. For example, if
two modals with gimilar R? values are examined, it may be that the model with the
slightly lower R? will better satiafy the other criteria discussed above and will thus
be the better chaice overull : Therefare, the tuveetgatar needs to utilize the power of
these routines coupled with intalligent decision making regurding the various
procedures, Coding variables reduces the likalihood of callinsarity, and outputting
regression diagnostics enablee the investigutor t0 experimant with dropping outliers
and influential abewrvedans to 9ee how their absenoce affects the variance acaoumtsed
for by the overall model. In summary, there is nothing automatio about the frooess.
8ASPC and other pecikages will provide the mathamstdcs, but it remains the
reeponaibility of the investigstor to examina the output carefully to arrive at truly the
best model.
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mmamMM@m«@mmmm
nature. In other wards, because of the authors® praference for camfirmarry
modafling tachmiquss, a limited mumber of tutaractian and highar-ordar tarms were
choeen based on the ltaranure. However, the litarature is replete with more complex
models, that is, path analyses and LISREL modals that attampt to modal indirect
effects. Thus, future analyses could be improved by studying the litaramure in more
depth to arrive at other plausible variahles and higher-order terms. Posaihle
mhblestoboimludodlnaddt;mnmadinmvolnmmmm.thm
u.l)jobdodqnﬁmmchunmanamy.ucpanmmmmk
gignificance, task whaoleness, lesdership style; and 2) modarsar variahles
mmauwwmmmmmpma.m“mo-&
locus of cantrol, and growth need strength. In addition, existing studiss could be
etrangthansd through replicadan and urllizston of the regression diagnostice
detailed in the present study.
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