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Regression equations were obtained relating the power of the completely randomized, fixed-effects, one-factor ANOVA for 
two groups to four independent variables: effect size, alpha level, sample size, and the reliability with which the dependent 
variable in the ANOV A design is measured, One equation was singled out for discussion due to the ease with which power es­
timates could be calculated using it and their degree of accuracy. The effect of reliability on the power estimates, as well as 
the nature of the relationship of power to the independent variables, was also discussed. 

T
he purpose of this study was to obtain regression 
equations for estimating the power of the 
completely randomi1.cd, fi,ted-eff ects, one-factor 

Analysis of Variance (ANOVA) for two groups from 
four independent variables: effect size, alpha level, 
sample size, and the reliability of the dependent 
measure. Of particular interest was the degree and 
nature of the contribution of the reliability variable (tl1e 
reliability with which the dependent variable in the 
ANOV A design is measured) to estimating a design's 
power. 

Background 
Hopkins, Coulter, and Hopkins (1981) and Cohen 

( 1988) presented tables for estimating tlie power of one­
factor ANOV As for various sample sizes, alpha levels, 
and effect sizes. These power estimates are not derived 
from an equation which relates tliese variables; rather, 
they are obtained by a series of steps which require a 
critical F-value to be  obtained from a central F­
distribution for a specified alpha level, and the calcula­
tion of a non-centrality parameter to determine which 
non-central F-distribution is then to be used to 
determine tlie power estimate. This process does not 
reduce to a single equation, nor does it include the effect 
of the reliability of the dependent measure on power. 

Cleary and Linn (1969) demonstrated that reliability 
does indeed have a direct effect on the power of a one­
factor ANOVA. Sutcliffe (1980) confirmed this and 
went on to show that the effect was both direct and 
monotonic. Although Nicewander and Price (1978; 
1983), Overall and Woodward (1975; 1976), and 

Zimmerman and Williams (1986) have addressed the 
extent of Ilic combined effect of reliability, sample size, 
and alpha level on power for a few specific values of 
tliese variables, no functional relationships have been 
presented which can be expressed in equation form. 
Kopriva and Shaw (1991) extended the work of 
Hopkins, Coulter, and Hopkins (1981) by deriving 
tables for estimating power which included among the 
predictor variables Ilic dependent meaimre's reliability. 
Results of their work indicated that for certain 
combinations of values for effect size, alpha, and 
sample size, the effect of reliability on power was 
substantial. 

Since the power estimates tabled by Hopkins, 
Coulter, and Hopkins (1981) and Kopriva and Shaw 
(1991) were derived from a series of steps and not from 
equations which permit their direct calculation, it 
seemed reasonable to determine if an equation could be 
derived from Ilic tables which relates power fwictionally 
to the four independent variables: effect size, alpha, 
sample size, and reliability. Thus, regression equations 
were sought relating the power estimates (dependent 
variable) to the predictor variables above, Several such 
equations are presented in this paper. 

Data 
All data were obtained from the tables f o r  

estimating power for the completely randomized, fixed­
eff ects, one-factor ANOV A for two groups which are 
presented in Hopkins, Coulter, and Hopkins (1981) and 
Kopriva and Shaw (1991). A portion of the data for a 
equal to .05 is presented in Table 1. 
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Table 1 Power Estimates for Two Groups (ex = .OS) 

Reliability 

Effect n per 
Size group .10 .20 .30 .40 

5 .02 .03 .03 .03 
10 .03 .03 .03 .03 
15 ,03 .03 .04 .04 

.10 25 ,03 .04 .04 .04 
50 .04 .04 .05 .05 

100 .04 .05 .06 .07 
200 .04 .07 ,08 .09 
400 ,07 .10 .12 .14 

s .03 .04 .04 .04 
10 .04 .04 .05 .05 

15 .04 .05 .05 .06 
.25 25 ,04 .06 ,07 .08 

so .06 .08 .10 .12 
100 .08 .13 .16 .20 
200 .12 .21 .27 .35 
400 .19 .35 .49 .62 

s ,04 .OS ,06 .06 
10 ,OS .07 .08 . 10 
15 .06 .08 , 1 1 . 13 

.so 25 ,08 .12 .15 . 19 
so .12 ,20 .28 .34 
100 , 19 .36 ,49 .60 
200 .35 .61 ,78 .89 
400 .61 .89 ,97 .99 

s .07 .09 .12 .14 
10 .10 .15 .21 .27 
15 . 13 ,22 .30 .38 

1.0 25 .20 .34 .48 .59 
50 ,35 .60 .77 ,88 
100 .61 .88 ,97 .99+ 
200 ,90 .99 ,99+ ,99+ 
400 .99 .99+ .99+ .99+ 

The observations of the power estimates given all 
combinations of eight sample sizes (ranging from 5 to 
400), four alpha levels (.01, .025, .05, and .10), four 
effect sizes (.lo, .25a, .5a, and lo), and ten 
reliabilities (.1, .2, ... , 1.0) served as the 1280 data 
points in the study. 

Model Development and Preliminary Results 
Variables in the models and discussion below are 

identified as follows: 
1 .  Dependent variable: power (P). 
2. Independent variables: sample size (n), level of

significance (ex), effect size which is the expected 
difference in means expressed in standard deviation units 
(d), and reliability estimate (r) for the dependent 
measure. 

Initial inspection of the data set in Table 1 indicated 
a five-dimensional "surface" with substantial curvature 
in certain areas and little or no curvature in• others. 

.50 .60 .70 .80 .90 1.0 

.03 .03 .03 .03 .03 .03 

.04 .04 .04 .04 .04 .04 

.04 .04 .04 .04 .04 .04 

.04 .04 .04 .05 .05 .05 

.05 .06 .06 .07 .07 .07 

.07 .08 .08 .10 .11 .11 

.11 .12 .13 .15 .16 .17 

.16 .19 ,22 .24 .28 .30 

.04 .05 .05 .05 .OS .05 

.06 .06 ,06 .07 .07 .08 

.07 .07 .08 .09 .09 . 10 
,09 .10 .11 .12 , 13 . 13 
.14 .16 .18 .20 .22 .24 
.24 .27 .32 .35 ,38 .41 
.42 .49 .54 .61 ,65 .71 
.72 .78 .84 .88 ,93 .93 

.07 .08 ,08 .09 , 10 .10 

.12 .13 ,14 , 16 .17 . 18 

.15 . 17 .19 .22 .24 ,26 

.23 .27 ,31 ,34 .38 .41 

.42 ,48 ,54 ,60 .65 ,70 

.70 .80 .84 ,88 ,92 .94 
.94 .97 .99 .99 ,99+ .99+ 
,99+ .99+ .99+ .99+ .99+ .99+ 

.17 .19 .21 .24 .26 .28 

.32 .37 .42 .48 .51 .56 

.46 .53 .60 .66 .71 .75 

.69 ,76 .83 .87 .91 ,94 
.94 .97 .98 .99 ,99+ ,99+ 
,99+ .99+ .99+ .99+ ,99+ ,99+ 
.99+ .99+ .99+ .99+ ,99+ .99+ 
,99+ ,99+ .99+ .99+ .99+ .99+ 

When any of the independent variables were inaeased in 
value either singly or in combination with others, P 
was increased and ultimately became asymptotic to the 
hyperplane P = 1. If such a surface could be determined, 
the fit would be essentially without error because all 
data would lie within the surface, not around or near il 

As a starting point, P was regressed onto the four 
predictor variables using the model below, a hyperplane 
with no curvature or warp. 

P = -.274 + .OOln + .170ex + .641d + .282r 
R2 = .698, SE= .197 [1) 

The SE of .197 for this model may be interpreted 
as there being approximately an average of .197 error 
made in estimating P for all 1280 data points. To have 
a model which would produce estimates of P within .02 
or even .05 might be useful, but a model with an 
average error of .197 is not, since P itself ranges from 0 



to 1. F.quation 1 was not expected to fit the data well 
be.cause it did not provide for curvature. 

Adding all two-way interaction terms and squares to 
the model identified by F.quation 1 in an effort to 
account for curvature or warp, brought the R2 to .766. 
Numerous nonlinear transformations of variables in this 
expanded model were tried. Logarithmic, exponential, 
and square root transformations faired no better than 
polynomial fits. Not only were these models more 
difficult to use for computation and more difficult to 
interpret, they also did not capture the asymptotic nature 
of the surf ace's curvature to the hyperplane P = 1. 

In an attempt to improve the fit substantially, 
separate models were sought for various values of relia­
bility and effect size. Typical of the nature and com­
plexity of the fits possible for r = 1.0 are the three 
models below, which are the one-term, two-term, and 
three-term models which produced the highest R2 values 
from all possible regressions onto the predictor set con­
sisting of d, a, n, their squares, and all possible two or 
more-way interactions of these six variables. 

P = .017 +.036nd2 

R2 =.865, SE=.110 [2 ] 

P = -.042 +.037nd2 +.242 a 
R2 =.949, SE=.052 [3] 

P = -.029 + .03Snd2 + .194a +.076nda 
R2=.9S7, SE=.049 [4 ] 

The improvement in the R-squares here is 
dmmatic. Adding additional terms produced R-squnrcs in 
excess of .99 after 18 terms. The substantial 
improvement in R2 wn.'I due to the inclusion of terms 
allowing complex interactions (such as nd2) and the 
deletion of observations having power values greater 
than .95 or less than .20. Deleting these observations 
permitted the complex polynomial interaction tenns to 
fit the surface without being constrained in the areas 
where the surface flattened out near P = 0 and P = J. 

At this stage in the study, a decision was made 
regarding the nature and types of additional models to 
try. Although models were being identified which 
demon.strated improved fits, they were computationally 
difficult to use. In addition, they were not likely to zero 
in on the true nature of the relationship of power to the 
independent variables; rather, they were simply surfaces 
that approximated the true relationship. Since the 
tables already existed, models providing simple 
computational estimates were sought which one might 
easily remember rather than having to carry or ref er to 
tables. 

The data set was modified to include only the 384 
observations where P was greater than or equal to .20 
and less than or equal to .95. With this modified data 
set, logarithmic and exponential transformations still 
faired no better than polynomial fits; however, square 
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root transfonnations did offer enhanced prediction. 
Thus, models were created using the four independent 
variables, their squares and square roots, and all two or 
more-way interaction terms incorporating these twelve 
variables. Using this set of predictor variables, all 
possible regressions were obtained. 

Results And Discussion 

Of all the models produced by all possible regres­
sions, the model below (F.quation 5) was judged to have 
the best balance between (a) the accuracy of the power 
estimates and (b) the simplicity of computation. 

P •.236d& + 3.178a-.372 
2 R •.971, SE-.040 [S] 

This model produced the highest R2 value of all 
possible two-term regression models. The R2 of .971 
for this model was substantially higher than the R2 of 
.787 for the best one-term model. Furthermore, of the 
best three-tenn models which had R-squares in excess of 
.971, none exceeded .981 and all were considerably more 
complex to use for computations. 

F.quation S may be simplified somewhat by speci­
fying values for a. For example, for the 106 
observations where a = .OS, F.quation 6 provides 
extremely accurate power estimates and is more easily 
recalled. 

P •. 24d& -.18 
R2 •.997, SE-. 029 (6) 

Power estimates produced by Equation 6 are on 
average within .029 of the actual power figures reported 
in the Kopriva and Shaw (1991) tables. 

F.quations Sand 6 do have one unattractive feature. 
For large values of n or d they can produce power 
estimates which are 1.0 or greater. In this case, the user 
may think of the power as being greater than . 99. 
Also, for very small values of n, d, or r, the equations 
can produce power estimates less than zero, in which 
case the power would be thought of as a. 

The reliability of the dependent variable does have 
some effect on power. F.quations Sand 6 do reflect the 
direct and monotonic nature of the effect indicated by 
Cleary and Linn (1969) and Sutcliffe (1980). The 
extent of the effect might best be illustrated with an 
example from Table 1. lf one ignores the reliability of 
the measuring device, the power estimates of Hopkins, 
Coulter, and Hopkins (1981) and Cohen (1988) are the 
same as those found in the last column of Table 1 
where the reliability is 1.0. Thus if one is using an 
instrument with less than perfect reliability, the 
Hopkins, Coulter, and Hopkins (1981) and Cohen 
(1988) power estimates are inflated. F.quations Sand 6 
indicate that these overestimates are high by a factor 
orJ;. 
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A simple, analytical approach using multiple regression analysis is presented as a way to determine the number of factors to 
retain in a factor analysis. Two regression lines are found from the points in a scree plot and the number of retained factors 
is chosen at a point that maximally separates the two regression lines. Applications of the technique to data from the liter­
ature suggest that the results agree closely with solutions based on the somewhat subjective visual scree test and may be 
better than those from the analytical CNG method. 

T
he number of factors to retain in a factor analysis 
has long been an important problem (Hakstian & 
Muller, 1973; Crawford, 1975; Horn & 

Engstrom, 1979; Hakstian, Rogers, & Cattell, 1982; 
Kano, 1990). This is critical because it demands a 
decision that affects the factor parameters and the 
interprctability of the factors (Lambert, Wildt, & 
Durand, 1990). 

The most frequently used method for determining 
the number of factors is to select only those factors 
whose ci1ienvalues exceed 1.0 (Kaiser, 1970; Kaiser & 
Caffrey, 1965). Critics of this method (Gorsuch, 1983) 
are concerned that many times there is not a clear break 
among the eigenvalues at the 1.0 value and that underes­
timating or overestimating communalties would change 
the number of retained factors when the eigenvalues 
greater than 1.0 rule is used. Therefore, the selection or 
deletion of some factors may be a function of an arbi­
trary rule that is not sensitive to the nature or pattern of 
the data. 

An approach that considers the relation of the 
eigenvalues to one another as well as their actual values 
is the scree test. Cattell ( 1966) first proposed the scree 
test to separate trivial from non-trivial factors. The pro­
cedure required one to plot the eigenvalues in decreasing 
order. The graph contained the values of the eigen­
values on the ordinate and the factors on the abscissa. 
A straight line could be drawn on the graph through the 
points associated with the smaller eigenvalues. The 
points near this line were judged trivial and the points 
above and to the left of the line were judged to be non­
trivial (Cattell, 1978; Cattell & Vogelman, 1977; 
Cattell & Jaspers, 1967). Hom and Engstrom (1979) 
provided statistical support for the scree test. 

Cattell and Vogelman ( 1977) and Cattell (1978) 
presented guidelines for this visual procedure. These 

guidelines, as summarized by Zoski and Jurs ( 1990), 
are: 

1. Three sequential points fonn an undesirably low
limit for drawing a scree. 

2. The points on the part of the curve that one
should consider scree should fit ti1ihtly. 

3. The slope of the scree should not approach verti­
cal. Instead, it should have an an1ile of 40° or less from 
tl1e horizontal, that is, a slope of the ·tan1ient less than 
-.84. 

4. In the case of multiple screes falling below 400,
the first scree on the left is the arbitrator. 

5. Generally, a sharp, albeit sometimes small,
break in the vertical level exists between the last point 
of the curve and the left-most point of the scree. 

However, problems with this procedure can occur 
when there are multiple breaks in the eigenvalue curve, 
with several straight lines in the graph. It may be diffi­
cult to select as well as to justify one break over 
another (Gorsuch, 1983). Moreover, critics of visual 
approaches are concerned about researchers seeing what 
they want to see in the data unless they are constrained 
by a mechanical decision-making rule. This position is 
demeaning to the researchers and shifts the demand for 
objectivity over subjectivity to the final stages of 
research (decisions and conclusions) and ignores the 
more critical phase (research problem definition and 
variable selection). An analytical, programmable 
approach does have some appeal, if it provides results 
that are consistent with those obtained using the guide­
lines above. We propose that multiple regression 
techniques can be used to provide such a solution. 

The Multiple Regression Approach 
Gorsuch and Nelson (1981) developed an analytical 



6 MLRV • VOL 20, NO. 1 • SPRING 1993 method for determining the number of f actors to retain. The Cattell-Nelson-Gorsuch scree test re.quires one to compare the slope of the first three roots with the slope of the next three roots. Then the slope of roots 2, 3, and 4 is compared with the slope of roots 5, 6, and 7. This process continues so that all sets of three factors are compared. The number of factors is found where the difference between the slopes is greatest. Because only three points are used to determine the slopes, the analysis is not based on as much informa­tion as is possible. Thus, we propose a somewhat different approach using multiple regression to accom­plish the same thing; objective determination of the number of factors that is sensitive to the data. The rationale for a regression approach is straightforward. It parallels the statistical work of Hom and Engstrom (1979) on Cattell's scree test using 
�artlett's chi-square test (1950, 1951). The method sed here provides virtually the same decision as the vi­ual scree test but can be easily programmed. It uses a • egression approach whe.re. th. e .. ordered eigenvalues arebought of as points in.a scatterplot. One can then j fonn two regression lines, one for the important factors and another for the scree or trivial factors. The decision � about the number of factors to retain corresponds with the maximal differences between the two regression lines. To use all the eigenvalues, fonn and compare these pairs of regression lines: line 1 (points 1 through 3) line 3 (points 1 through 4) line 5 (points 1 through 5) • • • line (m-2) (points 1, 2, ... (m-3)) 

line 2 (points 4 through m) line 4 (points 5 through m) line 6 (points 6 through m) 
• • • line (m-1) (points (m-2), (m-1), m) The slope of these regression lines will, of course, be negative and can be compared by the usual formulae (Howell, 1987, pp. 222, 239-240): 

b N}:xY -}:X}:Y
• N}:X 2 -(:�;x)i

with 

GENERAL 

[1) 

(2) 

(3) 

and when homogeneity of error variances is assumed, we can pool: 
2 (N,-2X4-x1

)+(N2 -2)(s�-x1 ) 
8Y•X •--.....i.-...;.£---�-.;..c. (4) N1 +N2 -4 ��Hent factonJ are those with eigenvalues in the odd numbered line of the line pair where the t-test is maximized (highest value). The even numbere<fliiie'o( the pafr denotes the scree line. Some analysts may choose not to include the last factor. Note that neither the CNO nor the multiple regression approach would be appropriate when there are only one or two factors. 

Examples We have compared the multiple regression approach to the CNO approach using several data sets from the literature. Preliminary results Indicate that the multiple regression approach usually agrees with a visual scree test and often provides a better solution than the CNO method . Example 1 is based on eigenvalues taken from Cliff (1970). The eigenvalues are plotted in Figure 1. Table 1 contains the slopes of the regression lines and· the t values for the multiple regression approach and the slopes and differences for the CNG approach(* indicates highest value). Note that in this case both procedures indicate that there are five factors and this agrees with a visual analysis of the plotted eigenvalues in Figure 1. 
Table 1 Comparison or Multiple Regression and CNG Approaches: Example 1 

MR CNG #of factors slone 1 slone 2 t slone 1 slone 2 differmce 3 -.563 -.071 4.044 -.563 -310 .253 4 -.441 .038 6.713 -.2.50 -.067 .183 
5 -.426 -.032 8.448* -.377 -.001 376* 6 -380 -.038 6.814 -310 -.032 .278 7 -323 -.042 3.752 -.067 -.043 .024 8 -.272 -.038 1.899 -.001 -.048 .047 9 -.234 -.040 0.890 -.032 -.040 .007 - •
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Figure 1 Scree Plot from Cliff (1970, p. 165, CS 600). 
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The second example is taken from Tucker, 
Koopman, & Linn (1969, p. 442). The plot of the 
eigenvalues is given in Fiaure 2 and the results from 
the multiple regression approach and the CNO approoch 
arc listed in Table 2. The data set was meant to have 

6 7 8 9 10 11 12 

seven factors. The CNO approach yielded three factors 
and the multiple regression approach did yield the 
expected seven factors. Visual inspection of Fiaure 2 
confinns that a seven factor solution is appropriate. 

Table 2 Comparison of Multiple Rearesslon and CNG Approaches: Example 2 

MR CNG 

# of factors stone 1 stone 2 • t slooc 1 stone 2 difference 

3 -1.595 -.084 6.346 -1.595 -.300 1.295* 
4 -1.149 -.067 6.985 -.610 -.360 .250 
5 -.904 -.051 7.327 -.360 -.415 .055 

6 -.737 -.033 1.405 -.300 -.195 .105 

7 -.651 -.023 7.665* -360 -.045 .315 
8 -.590 -.022 7.563 -.415 -.030 .385 
9 -.525 -.021 6.694 -.195 -.020 .175 
10 -.465 -.021 5.501 -.045 -.025 .020 
11 -.413 -.021 4.277 -.030 -.025 .005 

12 -367 -.020 3.176 -.020 -.025 .005 

13 -.328 -.020 2.266 -.025 -.020 .005 

14 -.295 -.019 1.555 -.025 -.020 .005 

15 -.267 -.021 1.013 -.025 -.020 .005 

16 -.243 -.020 .622 -.020 -.015 .005 

17 -.222 -.025 .335 -.020 -.025 .005 
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Figure 2 Scree Plot from Tucker, Koopman and Linn (1969, p. 442, Middle 7) 
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The third example was also taken from Tucker, 
Koopman, & Linn (1969, p. 442). This data set was 
intended to have seven factors and a visual inspection of 
the scree plot in Fiaure 3 suggests that there arc seven 
factors. The analyses presented in Table 3 indicate that 
the CNO approach yielded only three factors and the 

multiple rearcssion approach yielded eight factors. This 
example shows that results from the multiple regression 
approach may not always agree with results from a 
visual approach, but the technique seemed to work 
better than the CNO method for these data 

Table 3 Comparison of Multiple Re1resslon and CNG Approaches: Example 3 

MR CNO 

# of factors slope 1 slove2 t slove 1 slove 2 difference 

3 -1.475 -.081 5.855 -1.475 -315 1.160* 
4 -1.071 -.063 6.818 -.610 -365 .245 
5 -.850 -.047 7.522 -.345 -.440 .095 
6 -.702 -.029 7.944 -.315 -.210 .105 
7 -.625 -.018 8.369 -.365 -.015 .350 
8 -.574 -.018 8.443* -.440 -.010 .430 
9 -.513 -.018 7.401 -.210 -.010 .200 
10 -.455 -.195 5.974 -.015 -.025 .010 
11 -.403. -.019 4.554 -.010 -.025 .015 
12 -358 -.018 3.341 -.010 -.020 .010 
13 -320 -.178 2.365 -.025 -.015 .010 
14 -.287 -.177 1.611 -.025 -.020 .005 
15 -.260 -.018 1.047 -.020 -.020 .000 
16 -.235 -.015 .647 -.015 -.020 .005 
17 -.215 -.015 .356 -.020 -.ot5 .005 

- . 
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Figure 3 Scree Plot from Tucker, Koopman & Linn (1969, p. 442, Formal 7) 

6.0 

5.4 

4.8 

4.2 

3.6 

3.0 

2.4 

1.8 

1.2 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Conclusions 

Multiple rearession is a versatile set of techniques 
for which there are diverse applications. Our results 
indicate that multiple rearession can be used success­
fully to detennine how many factors to retain in a factor 
analysis. Preliminary analyses suggest that the results 
will usually aarcc with results from a visual scree test 
and the results often are better than those from alter­
native analytic techniques such as the CNO method. 
Further use of the multiple regression method will 
identify the strengths and limitations of this approach. 
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. This study examines, through Monte Carlo simulation, the effects of truncation on the gamma distribution (with one 
through four parameters). Specifically, three types of truncation (right, left, and double truncation) are considered. 
Computer facilities were used to generate 400 random samples from the gamma distribution with different parameter values 
for different sample sizes, shape, scale, location, power, and degree of truncation. Correlation and regression analysis 
demonstrated that the degree of left truncation has a significant correlation with the measures of central tendency for all 
distributions. The degree of right truncation had a 1ignificant relationship with the measures of deviation. On the other 
hand, the kind of truncation had a significant unique contribution for all models. However, the type of truncation had 
significant unique contributions for all models except two (scale and location models for gamma with three parameters). 

T
he gamma distribution, or what may be called
Pearson Type III of frequency curves, is one of 
the most important statistical distributions. It 

has been studied and investigated by many writers 
because of its application in different areas such as 
industrial engineering, physics, and quality control. For 
example, the gamma distribution can be considered as a 
description of duration variables such as the time taken 
for an instrument to be repaired, the time taken to get 
served at a store, etc. 

If x is a continuous random variable having the 
gamma distribution, the generalized aamma density 
fwtction is given by: 

r(x;c, p,>-.,a)• 

(p>-.-all /r(a) )(x -c)afl-l ex�-((x -c )/>-)P)
(1) 

where 0 :s; c < x < 00, p > 0, >-. > 0, a > 0, c is the 
location parameter, >-. is the scale parameter, p is the 
power parameter, and a is the shape parameter. 

The gamma distribution may have one, two, three, 
or four parameters. The probability density function for 
a gamma distribution with three parameters may be 
obtained from the generalized fonn (gamma with four 
parameters) by letting .6 = 1.0. The probability density 
function with two parameters can be obtained by using 
c = 0.0 and .6 = 1.0. The probability density function 
with one parameter can be obtained by letting c = 0.0 
and .6 = A = 1.0 in the generalized fonn. 

In some situations, the complete rangJ of the 
gamma distribution is not available to the researcher, in 

which case he or she works with a truncated 
distribution. The aeneral form of the probability 
density function in this case becomes: 

[2J 

where a < x < b and where the values of a and b are 
dependent on the type of truncation and truncation 
degree. Therefore, if the range of x in (2) is [a,00), the 
distribution can be called a left truncated gamma distri­
bution. However, if the range of x is (0,b], the 
distribution can be called a right truncated gamma 
distribution. 

Many writers have discussed the subject of 
truncated distributions. Most of these studies are 
devoted to the exponential and normal distribution 
(Basu, 1964a; Yang & Sirvanci, 1 m; Megahed, 1981; 
Depriest, 1983; Mittal, 1984; Mittal & Dahiya, 1987). 
Some writers have discussed the subject of the truncated 
gamma distribution. Most of these studies are devoted 
to the estimation of the parameters by the method of 
moments or by the method of maximum likelihood. 
Cohen (1950) used the method of moments while Des 
Raj (1953), Broeder (1955), and Chapman (1956) used 
the method of maximum likelihood. 

In this paper, three kinds of truncation were 
considered: (a) degree of truncation is defined as size or 
degree of right, left, and double truncation ((tr), (ti) and 
(tl,tr)), (b) type of truncation is binary coded, where 
right truncation is (0,1), left truncation is (1,0) and 



double truncation is (1,1), and (c) interaction is coded 
tl*tr(0J) and tr*tl(l,0). 

Truncation can be one-sided (right or left) or two­
sided. The three main types of truncation are right trun­
cation, left truncation, or double truncation. In each 
case the fraction of the distribution of the population 
that falls outside the truncation point or points is called 
the degree of truncation. In this study two different 
approaches were used to analyze the effects of truncation 
on the gamma distribution. First, correlation analysis 
was used to determine the effect of truncation (type and 
degree) on the measures of central tendency and/or varia­
tion for the gamma distributions. Second, the multiple 
linear regression approach was used to generate and 
analyze models to isolate unique contributions of the 
different kinds of truncation. 

Briefly, the major purpose in using multiple linear 
regression was to determine the actual impact of trunca­
tion (type, degree, etc.) on the gamma distribution of 
one, two, three and four parameters. The measures of 
central tendency are changed as a result of the type of 
truncation and/or its degree. The regression technique 
assisted in defining the theoretical consequences of trun­
cation in the gamma distribution. 

Research Limitations 

This study was carried out using empirical data 
generated by a Monte Carlo simulation. The data were 
used to investigate the eff ccts of different kinds of 
truncation on the aamma distribution. Computer 
facilities at the University of Northern Colorado were 
used to generate 400 random samples from the aamma 
distribution with different parameter values. The 
generated sample sizes were 10, 20, 30, 50, and 100. 
The shape parameter ( a • 0.5, 1.5, 2.0, 3.0, 5.0 and 
10.0), the scale parruneter ( >. = 1.0, 1.5, 2.0, 3.0, 4.0, 
w1d 5,0), the location parameter (c = 0.0, 0.1, 0.2, 0.3, 
0.5, 1.0, 2.0, 3.0, and 5.0), wid the power parameter (8 
= 1.0, 2.0, 3.0, 4.0, and 5.0) were considered. The 
truncation degrees were t times a, where t = 0.1, 0.2,
0.5, 1.0, 2.0, and 3.0. 

Generation Of Gamma Variables 

Since the gamma forms are easily obtained from 
raw data, they can approximate a wide variety of 
functional shapes. It could play a major role in digital 
simulation studies. Various investigators have been 
concerned with generating gamma variables. Phillips 
and Beightler (1972) presented a technique for generating 
random gamma varieties depending on two parameters: 

f{x)-(>..-a/r(a))xa-le-xfi., 0<x<oo 

f { x) • 0 elsewhere . 
(3) 

They made a comparison between the composition 
technique and the rejection technique. With regard to 
statistical goodness-of-fit based on limited experiments, 
the first three methods were capable of generating 
random gamma variables closely approximating the 
desired gamma density for values of a > I. For lower 
values of the scale parameter A., their method was 
better than the others. With regard to computer 
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generation times, the rejection method is recommended 
for values of a< 2.5. Naylor's (1971) method did quite 
well for values of a > I; although it was an easy 
method to program, it did require more computer 
running time. 

Whittaker (1974) introduced a method of generating 
random variables from uniform variables with a gamma 
or beta distribution having a non-integer shape 
parameter. Cheng (1977) described the rejection method 
for generating gamma varieties with shape parameter a 
where a > I. The scheme used to generate gamma 
varieties with one parameter is described below. 

1. Set a= (2a -1)-112, b = a -log4 and c' = a +a-1.
2. Generate a pair of uniform random numbers, Ut and

U2.
3. Set v = alog(U1/(1-UI)), x = a eV .
4. If b+c'v-x � log(U fU2 ), accept x, otherwise go to

Step 2.

This method was better than the previously
published method (Phillips & Beightler, 1972; 
Whittaker, 1974) in terms of speed and program com­
pactness, 

Cheng and Feast (1979) introduced a simpler and 
faster method for generating a gamma variate by using 
the rejection technique, This method is suitable for all 
a > I and it uses the ratio of uniform variable. It was 
noticed that some studies for aenerating gamma variable 
depend on specified conditions. Other methods need 
more time because the expected number of trials needed 
for each accepted variate could be more complicated than 
anticipated, and the complexity of the calculations 
required per trial arc more extensive than anticipated. 

.This is usually determined largely by the number of 
uniform random numbers needed and by the number of 
loaaritbmic or exponential function evaluations 
required. 

Ripley's (1983) algorithm was developed on the 
basis of a recent study to generate gamma variables. It 
can be executed by using a small computer. However, 
it was found that the results were not suitable for most 
values of a and the generated variables did not follow 
the gamma distribution when a > 3. The Ripley 
algorithms are called GKMl, GKM2, and GKM3. 
Algorithm GKMl is described for 1 < a < 4. 
Algorithm GKM2 applies for a > 4. More impor­
tantly, they are composite algorithm, called GKM3, 
which remains correct while covering all a > 1. 

Maio Steps of Algorithm GKMl 
1. Set a = a - 1, b = ( a - (6a f 1) / a, c' = 2 / a and

d =c'+2.
2. Generate independent U( OJ ) variates Ur and U2.
3. Let w = bU1/U2. If (c'U2 - d+w+w-1) � 0 go to 4.
4. If c' logU2 - logw+w-1 � 0 go to step 1.
5. Deliver x = aw.
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Main Steps of Algorithm GKM2 
1 . Let a, b, c', d as in GKMI; f = ./o.. 
2. Generate independent U (0, 1) variable U1 and U.

Set U2 = Ut + r- 1 (1 -l.86U). Repeat this step
unless 0 < U2 < 1 (the constant f must be Jess than
{1+/i./e)}.

Steps 3, 4, and 5 are as in GKMl. 

This method is complementary to GKMl in that it 
is slower than GKMI for a near 1, but it rapidly 
becomes faster as a increases. Since GKMI and GKM2 
differ only in step 2, it is easy to combine them by use 
of a switch. The composite algorithm is called GKM3. 

Main Steps of Algorithm GKM3 
1 . This is exactly the same as GKM2 except that step 

2 is replaced by 2'. 
2'. Use step 2 of GKMI or GKM2 according to 

whether a is less than or greater than a prescribed 
value a0• The suggested value for a0 is 2.5; this 
ensures that the speed of variate generation is sub-
stantially the same for all a > 1. 

Three algorithms are needed for the three separate 
programs; therefore, it is preferred that the three algo­
rithms be combined to make a modified algorithm 
which will be suitable for all values of a. In this way, 
a proaram is developed which can be generalized for 
aencratina aamma random variables with three or four 
parameters for any value of a, and value of A., 8, or c. 
The modified aJaorithm is introduced in the next 
section. 

Research De1l1n And General Procedures 
The Faculty of Commerce Computer facilities at 

Al-Azhar University for Girls were used first to apply 
the Moote Carlo simulation. The Pseudo-Random 

Table 1 List or Variables 

Parameters 
1 Shape Parameter YI 
2 Scale Parameter Y2 
3 Location Parameter Y3 
4 Power Parameter Y4 

Measures of Central Tendency and Deviation 
5 Mean 

X 

6 Variance 92 

7 Skewness Sk 
8 Kurtosis Ku 
9 Mode Mo 
10 Median Me 

Sample Size 
11 Sample Size n 
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Number Subroutine from the alphatronic 
Microcomputer System (BH/01824/e/k) was used next. 
FinaUy, the IBM 3081 032 Computer System at the 
University of Northern Colorado was used. 

Different random samples were used for generating 
gamma variables and different gamma distributions were 
generated with shape parameter (a = 0.5, 1.5, 2.0, 3.0, 
5.0, and 10.0), scale parameter (A = 1.0, 1.5, 2.0, 3.0, 
4.0, and 5.0), location parameter (c = 1 .0, 0.2, 0.3, 0.5,

1 .0, 3.0, and 5.0), and power parameter (8 = 1 .0, 2.0, 
3.0, 4.0, and 5.0). BASIC programs which were 
designed for generating gamma varieties were dependent 
on the following modified algorithm. 

The researchers developed an algorithm through the 
inixture of GKMI, GKM2, and GKM3. The algorithm 
was developed to he suitable for all values of the 
parameters of the three parameter gamma distribution. 
Supposing that (a < I) is a shape parameter, the 
algorithm follows these steps: 

1. Let a = a - 1, b = ( a - (6a y l) / a, c' = 2 I a,
d=c' +2 and f= ./o..

2. Generate independent U(0,l) variables UJ and l72.
3. If (a< 4) go to step 5.

4. Set U2 = Ut r-1(1 - 1.86 Uo). Repeat this step
W1less 0 < U2 < 1.

5. Let w = b U1/U2. If (c'U2 • d+w+w•l) � 0, go to
step 7.

6. If (c101U2-logw+w-l) ::i: 0 go to step 2.
7. Deliver x = (aw)A. +c.

Description or the Variables 
l11e variables used for the analyses in this study are 

listed in Table 1. 

The Kind of Truncation 
12 Degree It truncation ti. 
13 Degree rt truncation tr. 
14 Left truncation ti( 1,0) 
15 Right truncation tr(0, 1) 
16 Interaction 1 tl*tr(0,l) 
17 Interaction 2 tr• tl(l ,0) 

The Kind of Distribution 
18 Gamma one parameter kl 
19 Gamma two parameters k2 
20 Gamma three parameters k3 
21 Gamma four parameters k4 
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Table 2 Relationships Between Central Tendency and Deviation Measures and Kind of 
Truncation for Gamma Distributions (N=250) 

Measure ti  tr ti! 1,0} tr!0,l} ti* tr!0, 1} tr*tl!l,0} 

Mean 
One .977* -.011 .238* -.347* -.023 -.027 

(.0001) (.857) (.0001) (.0001) (.718) (.677) 
Two .727* -.439* .199* -.524* -.122 -.297* 

(.0001) (.0001) (.002) (.0001) (.059) (.0001) 
Three .139* .306* -.114 -.194* .113 .089 

(.028) (.0001) (.072) (.002) (.075) (.089) 
Four .403* .314* .078 -.269* -.059 .171 * 

(.0001) (.0001) (.219) (.0001) (.352) (.007) 

Mode 
One .980* -.030 .239* -.345* -.030 -.030 

(.0001) (.641) (.0001) (.0001) (.636) (.539) 
Two .756* -.423* .223* -.503* -.103 -.285* 

(.0001) (.0001) (.0003) (.0001) (.109) (.0001) 
Three .185* .309* -.062 -.199* .150* .123 

(.003) (.0001) (.329) (.002) (.017) (.052) 
Four .412* .302* .081 -.278* -.062 .159* 

(.000) (.0001) (.202) (.0001) (.325) (.012) 

Median 
One .977* -.011 .857* -.347* -.022 -.027 

(.0001) (.858) (.0001) (.0001) (.718) (.676) 
Two .728* -.438* .200* -.524* .122 -.297* 

(.0001) (,0001) (,002) (.0001) (.054) (.0001) 
Three , 140* .308* -.114 •, 192* .114 .090 

(,027) (.0001) (.073) (.002) (.072) (.155) 
Four .403* ,314* .078 .269* -.059 .171 • 

(.0001) (,0001) (.221) (.0001) (.352) (.007) 

Variance 
One .492* .533* .111 •, 218* .174* .319* 

(.0001) (.0001) (.081) (.0005) (.006) (.0001) 
Two .389* -.419* •,009 -.475* -.189* •,294* 

(.0001) (.0001) (.892) (.0001) (.003) (.0001) 
Three ., 136* .145* -.297 •, 142* •. 120• •, 145* 

(.0001) (.0001) (.892) (.0001) (.003) (.0001) 
Four .020 .193* -.028 -.058 -.030 .106 

(.752) (.002) (.660) (.363) (.638) (.095) 

Skewness 
One -.139* -.222* -.063 .009 -.022 --.127* 

(.028) (.0004) (.323) (.891) (.734) (.044) 
Two .045 -.183* .115 -.167* .146* .013 

(.476) (.004) (.071) (.008) (.021) (.636) 
Three -.077 -.537* .301 * -.347* -.135* -.202* 

(.228) (.0001) (.0001) (.0001) (.034) (.001) 
Four .245* .081 .104 -.158* .344* .186* 

(.0001) (.204) (.102) (.012) (.0001) (.003) 

Kurtosis 
One -.138 -.200* -.202* .148* -.038 .151* 

(.300) (.002) (.001) (.020) (.550) (.017) 
Two -.015 .139* .144* .160* .319* .222* 

(.816) (.028) (.023) (.011) (.0001) (.0004) 
Three -.054 .229* .347* .004 -.064 -.077 

(.397) (.0003) (.0001) (.947) (.315) (.228) 
Four .227* .213* .052 -.041 .343* .205* 

!,0003i !,0007! !.410i p24! !.oooq !,001! 
Note. One, Two, 'fhRe, and Four arc aamma diatributio11.1 with one throuah four parameten; top ownbcn refer to Peanoo correlation cocfficicota; ownben in 
parmthcan refer to p-nluca; uterialu indicate a uaoificaot rclatiooahip (p < .OS). 
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Correlation Analysis 
Table 2 shows the correlation coefficients between 

the central tendency measures and the kind of truncation 
for the gamma distribution with one through four 
parameters. This table indicates that the degree of left 
truncation had the highest correlation with the measures 
of central tendency of the gamma distribution with one 
through four parameters. 

The degree of right truncation had negative correla­
tions with the measures of central tendency of the 
gamma distribution with one and two parameters. The 
degree of right truncation has a significant relationship 
with the measures of central tendency for gamma distri­
butions except the gamma with one parameter. 

Table 2 indicates the relationship between the type 
of truncation and the measures of central tendency. The 
relationships between the left truncation and the 
measures of central tendency were positive and 
significant for the gamma with one and two parameters. 
The table also indicates that right truncation had 
negative and significant correlations with measures of 
central tendency for gamma distributions with one 
through four parameters. Further, there was no evidence 
to support that the interaction ti *tr(O, 1) had a 
significant correlation with the measures of central 
tendency for the gamma distributions except the mode 
of the three parameter gamma distribution. However, 
the interaction tr*tl( 1,0) had significant correlations 
with measures of central tendency for the gamma with 
one and four parameters. 

Also, Table 2 indicates that all types of truncation 
except the left truncation had a significant correlation 
with the variance of the giunma distributions with one 
through three parameters. The degree of left truncation 
has a significant correlation with the skewness of the 
gamma with one and four parameters, but there was no 
evidence to support that there were relationships with 
the skewness of the gamma with two and three 
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parameters. The degree of right truncation had a 
significant correlation with the skewness of the gamma 
with one through three parameters. 

Left truncation was not significantly correlated with 
the skewness of the gamma with one, two, and four 
parameters; however, it has a significant correlation 
with the skewness of the gamma with three parameters. 
The right truncation has a significant correlation with 
skewness in the different cases, except for the gamma 
with one parameter. 

Degree of left truncation has significant correlations 
only with the kurtosis of the gamma with four 
parameters; however, the degree of right truncation has 
significant correlation with kurtosis of the gamma with 
one through four parameters. Left truncation has 
significant correlations with the kurtosis of the gamma 
with one and three parameters; however, right truncation 
bas significant correlations with the gamma with one 
and two parameters. The interactions had significant 
correlation with the gamma with one and four  
parameters. 

Table 3 presents the relationships between 
measures of central tendency, dispersion, distributional 
shape measures, and the kind of truncation. This table 
is based on all samples which are used for one through 
four parameter distributions, and is a summary of these 
relationships. It indicates that the relationships between 
the measures of central tendency and both the degree and 
type of truncation were significant. 

There was no evidence that the degree of truncation 
was significantly related to the variance but the type of 
truncation was significantly related to the variance. The 
dearcc and the type of right truncation had a significant 
correlation with the measures of distributional shape, 
while ther.c was no evidence to support that left trunca­
tion was significantly related to the measures of 
distributional shape. 

Table 3 Relationships Between Distribution Measures and Kind or Truncation (N=1000) 

Measure ti tr tl(l ,0) tr(0, 1) tl*tr(0,l) tr• ti( 1,0) 

Mean .655 .081 .066 -.331 .032 -.009 
(.0001) (.010) (.036) (.0001) (.306) (.774) 

Mode .697 .076 .105 -.329 .039 .001 
(.0001) (.016) (.0009) (.0001) (.217) (.968) 

Median .655 .082 .067 -.330 .033 -.009 
(.0001) (.010) (.035) (.0001) (.301) (.788) 

Variance .049 .034 -.190 -.183 -.064 -.111 
(.119) (.277) (.0001) (.0001) (.045) (.0004) 

Skewness .005 -.267 .060 -. 167 -.010 -.118 
(.870) (.0001) (.057) (.0001) (.762) (.0002) 

Kurtosis -.044 -. 135 .036 .072 .044 .071 
(.162) (.0001) (.254) (.022) (.153) (.026) 

ti2k, Top nurnbcn refer to Peanon correlation coefficienta: nurnbcn in parenthaa are p-valuea. 
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Table 4 Relationships Between Kind of Truncation and Number of Parameters as Coded by 
Binary Vectors (N=l000) 

Number of Parameters of Gamma Distribution 

Kind of Truncation One Two Three Four 

t I .088 .036 -.042 -.082 
(.005) (.256) (.181) (.010) 

tr -.019 -.149 .088 .080 
(.547) (.0001) (.005) (.011) 

tl(l,0) .077 -.030 -.169 .124 
(.014) (.336) (.0001) (.0001) 

tr(0, 1) .004 -.095 .047 .045 
(.912) (.003) (.140) (.159) 

ti* tr(0, l) -.061 -.059 .152 -.033 
(.055) (.060) (.0001) (.300) 

tr*tl(l,0) -.011 .094 -.026 .131 
(. 731) (.003) (.415) (.0001) 

t:lll.ls., Top nwnben are Pcanon co1Tclalion coefficicota; nwnbcn In parcothcaca arc p-valuca. 

Table 4 identifies the relationships between the 
kinds of truncation and the distributions. This table 
indicates that the gamma distribution with one 
parameter bad significant relationships with the degree 
and type of left truncation. The gamma distribution 
with two parameters had significant relationships with 
the dearee and type of riaht truncation and the 
interaction tr*tl(l,0), The aamma distribution with 
three parameters had significant relationships with the 
dearee of riaht truncation, left truncation and the 
interaction (both left and right), left trw1cation and the 
interaction tr*tl( 1,0), 

Briefly, the relationships between trw1cation and 
the measures of aamma distributions were dependent on 
the kind of distribution, the type of truncation, and the 
distribution measures; whereas the relationships among 
the measures of central of tendency and the types or 
degrees of truncation were all significant. 

Multiple Regression Analysis 
Multiple regression analyses were performed to 

examine the relationships between each parameter of the 
gamma distribution (dependent variable) and the set of 
descriptive characteristics (independent variables) of the 
gamma distributions. Determination of which variable 
serves as aiterion variable and which set of variables are 
predictor variables was dependent on the model that was 
considered. 

In general, the set of descriptive characteristics of 
the gamma distributions includes the variables, 

1. Measures of central tendency (mean, mode, and
median) to be represented by X 1, X5, and X6,
respectively.

2 . Measures of deviation (variance, skewness, and
kurtosis) represented by X2, X3, and "4,
respectively.

3. Sample sire represented by X7.
4. Degree of truncation (tr) and (ti), represented as Xg

and X9,respectively.

5. Type of truncation tl(l,0) and tr(0, 1), represented as
X10 and Xt 1, respectively.

6. Interaction tl*tr(0)) and tr*tl( l,0), represented as
X12 and X13, respectively.

7. Kind of aamma distribution with one tltrough four
parameters represented as X 14, X15, X16, and X17,
respectively. Each variable was binary coded.

The full model considers all seventeen variables (X 1, 
X2, ... X17) as predictors for the dependent variables 
(one of the four gamma distribution parameters). 

Sample size should be related to the number of 
variables and should increase as the number of variables 
increases (Barcikowski & Stevens, 1975). On e 
informal guide for a lower limit is that there should be 
10 subjects for each variable. To insure sufficient 
sample size for a small set of variables, Thorndike 
( 1978) offered the following rule to determine the 
sample size: N � 10(p+c)+50, where p is the number of 
independent variables (predictors) and c is the number of 
dependent variables (criteria). In this study, Thorndike's 
sample sire requirement was satisfied in all regression 
models which were analyi.ed. 

A hierarchical chart of reduced models was con­
structed (see Table 5). Each model was reduced from the 
full model and significant drops in R 2 indicated 
significant contributions to the dependent variable, Y, 
by omitted predictors are identified by asterisks using 
the .05 level of significance (see Table 6). 

Also, comparisons between R2 for the different 
models are summarized in Table 6 for the gamma with 
one through four parameters and the general model 
(which includes all the data of the gamma distribution 
with one through four parameters) for the shape of the 
parameter model. This table indicates that a sequential 
decrease in R2 occurred from gamma with one through 
gamma with four parameters for the shape models (.952 

to .733). R-squarfS for full models depended on the 
kind of distribution and N. Furthermore, the R2 value 
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in the general case for the four parameter model dropped 
to .733 (N=lOOO) from .868 (N=250). Thus, it can be 

seen that both the sample size and number of parameters 
were factors which influence the R2 value. 

Table S List of Regression Analysis Reduced Models 

# The Reduced Model 

1 Full model - measures of central tendency (MCI) 
2 Full model - measures of deviation (M.Dev) 
3 Full model - sample size (n) 
4 Full model - kinds of truncation 
5 Full model - mean 
6 Full model - mode (mo) 
7 Full model - median (me) 
9 Full model - distributional shape measure (ds) 
10 Full model - skewness (sk) 
11 Full model - kurtosis (ku) 
12 Full model - (tr,tl) 
13 Full model - (tl( l,0), tr(0J) 
14 Full model - interactions (int) 
15 Full model - ti. 
16 Full model - tr 
17 Full model - ti (1 ,0) 
15 Full model - tr (0,1) 
19 Full model - kinds of distribution 

(for the aencral model) 

Table CS R-Square Values for Full and Reduced Models In Rqresslon Analysis for Gamma
Distribution Where Y Is the Shape Parameter 

Number or Pammcten1 or Gamma Distribution 

Model One Two Three 

EM .952 .948 .886 

FM-MCT .948* .511 • .864* 
-Mean .952 .948 .885 
-Mo .952 .948 .879* 
-Mc .952 ,948 .885 
FM-Dev. .946* .810* .865* 
-Var. ,952 .812* .873* 
EM.:.MJ.. .947* .942* .884 
-Sk .949* .942* .885 
-Ku .948* .943* .884* 
fM:.n .952 .948 .882 
EM-Iruncatism .897* .498* .809* 
-degrees .947* .645* .857* 
-ti. .948* .663* .886 
-tr. .951 * .948 .858* 
:.U'.Jze.! .947* .931 • .872* 
-tl(l ,0) .951 * .948 .881 * 
-tr(0, 1) .949* .931 * .879* 
-int eraction .924* .848 .885 

Note: Mteriak indicstea that the unique contribution for these variablea wu liaoificant al .OS level. 

- " 

Four General 

.868 .733 

.516* .580* 

.868 .732 

.865* .732 

.868 .732 

.860* .714* 

.861 * .717* 

.867 .731 

.867 .733 
.868 .733 
.867 .732 
.626* .519* 
.693* .613* 
.724* .667* 
.862* .705* 
.854* .722* 
.867 .722* 
.855* .732 
.818* .709* 
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Table 7 Significant Unique Contributions for each Kind of Truncation in Regression 
Analysis Models Kind of Truncation 

y ti tr ti( 1,0) tr(0, 1) Interaction 

Shape Parameters 
One * * * * * 
Two * * * 
Three * * * 

Four * * * * 
General * * * * 

Scale Parameters 
Two * * * * * 

Three * 

Four * * * * 

General * * 

Location Parameters 
Three * 

Four * * * 

General * * * • 

Power Parameters 
Four * • 

General • 

• � �•tcriak lndlcatoa that tho unlquo contribution for lhoao variablea waa 1l11nlficant at tho .OS lovcl. 

Moreover, Table 6 indicates that the memmres of 
central tendency, deviation, and the kinds of tnmcation 
(and especially the types of truncation) had significant 
unique contributions. Most kinds of truncation had 
significant unique contributions for all models. The 
variance had a significant, unique contribution for all 
distributions except for the gamma with -one parameter. 
Moreover, skewness and kurtosis had a significant 
unique contribution for the gamma with one and two 
parameters. 

Briefly, Table 7 shows the significant unique con­
tributions of each kind of truncation in each model. It 
indicates that the degree of left truncation, had a 
significant unique contribution with all models except 
the models of the gamma with three parameters and the 
model of the power parameter in the gamma with four 
parameters. The degree of right truncation had signifi­
cant unique contributions for all models except for the 
shape model for the gamma with two parameters, for 
location model for gamma with four parameters, and for 
the power models. 

Left truncation had significant unique contributions 
with the shape models, except the general model, in the 
scale model for the gamma with two and three 
parameters, and in the power model for the gamma with 
four parameters. Right truncation had significant 
unique contributions with the shape models, except the 
general model, with the scale model for the gamma with 
two and four parameters model, with the location model 
for the gamma with four parameters, with the general 
gamma model, and with the power model for the 
gamma with four parameters. 

The last kind of truncation (interaction) had signifi -
cant unique contributions with the shape model for the 

gamma with two and four parameters, with the scale 
model for the gamma with two and four parameters, and 
with the location model for the gamma with four 
parametc.-rs. 

Moreover, the types of truncation were considered 
as elements in the best proper subset for the different 
models. According to the backward elimination proco­
dure for a dependent variable, Y, for each model, the 
best proper subset of the predictors for each model is 
given in Table 8. 

In general, Table 8 indicates that it is possible that 
the best proper subset (using the backward elimination 
procedure) for the shape parameter included some type of 
truncation, for example, ti, tr, tl(l,O) and tl*tr(0,1) for 
the general model. For the shape parameter model of 
the gamma with four parameters, these same types of 
truncation patterns were included along with tr*tl(l,O). 
The best proper subset of independent variables for the 
scale parameter included ti, tr, and ti *tr(O,I) for the 
general model. For the shape parameter model of the 
gamma with four parameters, truncation variables 
including ti, tl(l,O), tr(0,1), and tl*tr(O,I) were 
identified as important. The best proper subset for the 
location parameter included ti, tr, tr(0,1), and tl*tr(O,l) 
for the general model. For the shape parameter model 
of the gamma with four parameters.it was found that 
ti, tr, tr(O.I). tl*tr(O,I), and tr*tl(l,0) were significant. 

General Concluding Remarks 
This study dealt with the effects of truncation on 

the family of gamma distributions. The goal was to 
determine whether the kind of truncation [ti, tr, tl(l,O), 
tr(O,l), tl*tr(O,l), 1µ1d tr*tl(l,O)) had an influence on the 
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Table 8 T he Best Proper Subset for Each Model in the Different Cases of Gamma 
Distributions 

Model General Model Gamma with Four Parameters 

Subset/Y Shaoe Scale Location Power Shape Scale Location Power 

1 mean mean Var Var Var Var mean Sk 
2 Var Var Sk Sk Mo Mo ti Mo 
3 ti Sk ti Ku ti t i  tr Me 
4 tr Ku tr Me tr tl(l,O) tr(O, 1) 
5 tl(l ,O) Me tr(O, 1) ti tr(O, 1) tr(O,l) tl*tr(0,1) 
6 ti* lr(O, 1) ti tl*tr(0,1) tl*tr(O,l) tl*tr(O,l) tr• tl(l ,0) tr*tl(l,0) 
7 kl tr kl kl tr* ti( 1,0) 
8 k2 ti* tr(O, 1) k2 k2 
9 k3 kl k3 k3 
10 k2 
11 k3 
R2 .729 .597 .875 .778 .865 .722 .845 .301 

Model I Gamma with Three Parameters I Gamma with Two Parameters I Gamma with One Parameter 

Subset/Y Shaoe Scale Location Shaoe Scale Shaoe 

1 mean var mean var mean mean 
2 var ti var sk var sk 

3 mode ti( 1,0) tl(l,0) ku ku ku 
4 n Me Me tr 
5 tr ti ti tr(l,0) 
6 ti( 1,0) tr tr ti' tr(O,I) 
7 tr(O, 1) tr(O, 1) tr(O, 1) tr• tl(l ,0) 
8 tl*tr(O,l) ti( 1,0) 
R2 ,882 .589 .500 .948 

parameters, central tendency, dispersion, and distri­
butional shape measures of the gamma distributions. 

From these analyses, it can be concluded that the 
truncation significantly affected the gamma distribution 
(its measures and its parameters). The effect was depen­
dent on the kind of truncation (type and degree), the type 
of distribution, and the values of parameters. 

The numerical analyses in this research presented 
abstract concepts about irregular relationships, but also 
introduced some details about the relationships between 
each kind of truncation and the parameters, and each 
kind of truncation and the most characteristic measures 
of gamma distributions. For example, the degree of left 
truncation had a significant correlation with the 
measures of central tendency for all kinds of 
distributions. On the other hand, the degree of right 
truncation had a significant relationship with the 
measures of central tendency and deviation for most 
kinds of gamma distributions. 

In terms of multiple regression analysis, for all 
models, the kind of truncation had significant unique 
contributions. The degree of truncation made signifi­
cant, unique contributions to all models, but tIJe types 
of truncation bad a significant unique contribution for 
all models except two (scale and location models for the 

.696 .948 

gamma with three parameters). However, the unique 
contribution for each kind of truncation was dependent 
on the kind of truncation, the distribution, and the 
measure being considered. 

The overall findings of this study were generally 
supportive of the findings of the reviewed research. 
Although this study was limited to the effects of trunca­
tion on the gamma distribution, it can be concluded that 
the findings apply also for Erlang, exponential, and chi­
square distributions. 

Suggestion for Further Studies 
The focus of this study emphasizes the effects of 

truncation on the gamma distribution. Based upon the 
findings and conclusions described above, these recom­
mendations are made for further investigation: 

1. Results were dependent on specific values of the
parameters. Therefore, for more generalizable
results, different values of the parameters may be
utilized in subsequent research.

2. Exploration should be continued in an effort to
study the effect of truncation on other distributions
such as beta, lognormal, Weibull, etc. Additional
study could determine if the research findings for
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different distributions are comparable for similar 
types of truncation. This could provide the re­
searcher with information about the effects of trun­
cation on different kinds of distributions. Also, 
research should be extended to include the study of 
effects of truncation on mixture distributions. 

3. Moreover, the effects of truncation in both
estimation and hypothesis testing when using the
transformations mentioned by Mohamed (1981)
should be examined.

4. The methods used in this study should be extended
to examine the effects of inner truncation and
partial truncation on the gamma distribution.

5. Other studies should be designed using other
techniques such as canonical correlation or factor
analysis to determine whether rotated and/or
unrotated factor solutions are affected by the type
and/or degree of truncation.
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Some Nonstandard Applications of the 
Covariance Model Analysis of 

John T. Pohlmann 
Southern lllinots University 

Carbondale 

This paper illustrates two applications of the ANCOVA model under problematic conditions: Johnson-Neyman significance 
region analysis and the analysis of a regression discontinuity design. The differences between intact and randomized group 
designs are discussed in the ANCOVA context. The analyses are demonstrated_ using the SAS REG program. 

T
he analysis of covariance (ANCOV A) is used 
when a dependent variable and an antecedent 
independent variable are measured in multiple 

groups. The antecedent variable, or covariate, measures 
a source of variation that is to be statistically 
controlled. In order to accommodate the covariate, the 
ANCOV A model posits structural assumptions about 
the relationship between the dependent variable and the 
covariate, The simplest ANCOV A model assumes a 
homoa,encous linear relationship between the dependent 
variable and covariate in each of the design aroups. 
When the structural assumptions of ANCOV A arc met, 
the ANCOV A can yield more powerful tests of 
significance than the analysis of variance (ANOV A). 
The power advantage of ANCOVA derives from a 
reduction of the error variance due to the effects of the 
covariate. 

A number of authors (Elashoff, 1969; Lord, 1969; 
Mueller, 1990) have cautioned that the ANCOVA, 
performed with intact groups, does not control for 
preexisting group differences with the same level of 
rigor as docs a randomized design. These authors argue 
that statistical controls cannot be considered as equiva­
lent substitutes for randomii.atioo. Raodomii.atioo will 
equate design populations for differences on the 
covariate along with any other differences that might 
exist prior to the experiment. Whereas, statistical 
adjustments can only be applied to variables that have 
been measured and only over the ranges of the variables 
observed in the sample. Statistical controls are also 
highly dependent on the model's structural assumptions. 
One can only statistically control for the relationships 
allowed by the model. 

The ANCOVA, however, continues to be used with 
intact groups because of its convenience. Statistical 
adjustment is often the only control mechanism avail­
able to a researcher, and the ANCOVA may be the best 
statistical treatment of the data. The ANCO'-l A can be 
used under the same conditions that would justify the 

use of a partial correlation coefficient. The major 
difference between the ANCOVA and a partial corre­
lation analysis is that the ANCOV A model is used 
when the independent variable is categorical. 

This paper will treat the ANCOV A as a multiple 
group regression model solution. It is assumed that a 
researcher has measured a dependent variable and a co­
variate in each of J aroups. The dependent variable is 
rearessed separately on the covariate for each of the J 
groups. The structural assumptions of linearity and 
homoaeneity of regression are tested. Then, tests of 
hypotheses about expected values of the dependent 
variable arc demonstrated. The tests illustrated in this 
paper will not be used to test for aroup differences 
generally, but will instead examine group diff erenccs on 
the dependent variable at specific point values of the 
covariate. A regression discontinuity design and 
Johnson-Neyman significance region analysis will be 
used to illustrate this approach. These applications 
were chosen because they present alternatives that a 
researcher may use when structural or design problems 
are encountered. 

Linear Models for the ANCOV A 

The simplest form of the ANCOV A assumes a 
homogeneous linear relationship between the dependent 
variable (Y) and the covariate (X) for each of J groups. 
The linear model for the simple ANCOV A is given by 
Winer (1971, p. 757) as: 

(1) 

Y ij and X ij are the measures on the dependent and con­
commitant variables for case i in group j. The eitpected 
values of Y and X are denoted by µ and µx respec-
tively. �w is the within groups' regression coefficient, 
and is assumed to be the common slope of the regres­
sions of Y on X for all groups. Group j's deviation on 
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Y is represented by a j, and is called the treatment effect 
for group j. The only random term in the model is Eij• 
the error term, and is assumed to be NID(O,o2 ). All 
other terms in the model are fixed. Ecisentially, model 
[l) fits J parallel regression lines, predicting Y from X 
for the J groups in the design. 

For the purposes of this paper, model [l) will be 
reparameterized into the following form: 

[2] 

Model [2) expresses «j as the Y-intercept and flw as 
the common slope for all groups. Model [2) permits 
the regression lines to have different intercepts, but only 
one slope; the regression lines are assumed to be 
parallel. If heterogeneity of regression is detected, 
model [2] can be revised to reflect nonparallel regression 
lines by replacing flw with fl j. Each group is then 
allowed to have its own slope parameter in addition to a 
unique intercept parameter. Rewriting [2] accordingly, 
yields: 

[3] 

In models [1) and [2] group differences on Y could be 
measured by differences in the aJ values. Since the 
regression lines were assumed to be parallel, the 
differences between the a J could be generalized over the 
full range of the covariate. In model (3), however, the 
difference between any two groups on Y depends on the 
value of X. Specifically, when X = C, the diff erencc 
between the expected Y values of groups k and I is 
developed as follows: 

E(Yklx-c)-ak +�kc, 

E(Y1I X -c)-a, +fl1C , 

E(Yklx-c)-E(Y 1IX -c) 

•(ak +flkC)-(a1 +�1 C) (4) 

If one hypothesized that the E(Y) values were �� at 
C, this condition could be expressed as a statistical 
hypothesis: 

[5] 

In regression parlance, expression (4) is the difference 
between the predicted Y values for populations k and l 
at the value C on X. Expression (5) will serve as the 
null hypothesis for the tests described in this paper. 

Applications or Model [J) 
Two applications of model [3] will be presented 10 
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this paper: a regression discontinuity analysis 
(Campbell and Stanley, 1963, p. 6 1) and Johnson­
Neyman significance regions (Pedhazur, 1982, p. 469-
472). These applications are interesting since they both 
represent tests that are performed under what is tradi­
tionally thought to be an undesirable situation. The 
regression discontinuity design represents an extreme 
case of group differences on the covariate. Group 
differences on the covariate can confound treatment 
effects. The Johnson-Neyman technique applies when 
heterogeneous regressions are observed. Heterogeneous 
regressions preclude a straightforward analysis of the a j 

values, since, as per model [3], the «J values only
assess differences on Y when X=O. 

The regression discontinuity design is used to test 
for effects on a dependent variable when individuals are 
treated differently, depending on the value of the 
covariate. The Campbell and Stanley (1968) illus­
tration presents a quasi-experimental design for deter­
mining if a scholarship award, given on the basis of 
performance on a selection test, positively influences 
academic achievement. The covariate is the selection 
test and the two design groups are students who received 
the award and students who did not receive an award. 
Achievement is regressed on the selection test separately 
for each group. Then, the difference between the pre­
dicted values at the award cut-off is tested to assess the 
effect of the award. A test of the hypothesis in formula 
(5) could be used to perform this analysis.

Figure 1 shows a situation where the regressions of
achievement on the selection test are homogeneous. 
The diagonal lines in the figure represent the separate 
regression lines for the award and no award groups. The 
regression lines arc represented in Figure 1 as being 
parallel. The use of model (3), however, does not 
require homogeneity of regression. F.ach group's regres­
sion line could have any equation, and hypothesis (5) is 
still testable. 

The Johnson-Neyman significance region technique 
uses tests of hypotheses like expression [SJ to define 
regions on the covariate where groups differ, or do not 
differ, significantly on Y. Figure 2 below illustrates a 
possible outcome of a Johnson-Neyman signifi_cant
region analysis. Testing differences between predicted 
values on Y for groups 1 and 2 might show that for 
values of X < X t, group 2's predicted values are signifi­
cantly higher on Y than those of group 1. Between X1 
and X2 there is no significant difference between the 
groups' regression lines. Finally, for X > X2 there is a 
significant difference favoring group _l .  These r�gions
can be defined by testing hypotheses hke expression [5] 
for a full range of values on X and then noting which 
regions permit a significant interpretation. It might be 
necessary to iterate on X for reasonably accurate values 
ofX1 andX2. 
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Figure 1 Illustration of the Regression Discontinuity Design 
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(6) The two illustrations presented above have assumed 
a linear relationship between the covariate and the 
dependent variable. This assumption has been made to 
simplify the illustrations, not because it is an essential 
assumption for the ANCOV A. For any linear model 
application, the essential assumption is that the model 
be correctly specified. 

Model (6) allows each group to have its own quadratic 
regression line. For group j, the quadratic model is 
described by the regression constant aJ; �Jt• the coeffi-

Model [3) would be inappropriate if X and Y had a 
nonlinear relationship. Suppose the relationship 
between X and Y could be described bf a quadratic 
model, then model [3] could be revised as follows: 

cient for X; and � J2 , the coefficient for X 2•

Using The SAS REG Program For 
Nonstandard ANCOV A Tests 

The SAS REG program will be used to illustrate 
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the analyses. The SAS REG program is used for this 
purpose since it conveniently provides F-tests of any 
linear hypothesis for model parameters. PROC REG 
allows natural language expressions of linear 
hypotheses of the form Ho: L.6=c, where L.6=c repre­
sents a generalized system of linear combinations of the 
.6 parameters (SAS Institute Inc., 1990, Chapter 6). 
Note that expression [5] is a linear combination of the 
a and .6 parameters, and will serve as the basis for test 
requests in PROC REG. 

Coding The Data For Analysis 
Models [3] and [6] require that each of the J groups 

in the analysis have a separate model fitting the 
covariate to the dependent variable. Any computer 
model used for these analyses must posses this funda­
mental property. Now, there are an infinite number of 
ways to fit such models. For example, models [1] and 
[2] are isomorphic representations of the same structural
model. In fact, any linear combination of the variables
in these models will produce parameter estimates that
will fit Y equally well. The approach shown here is not
distinctive, in any important sense. Rather, its value
lies in its simplicity.

Group Membership Coding 
Binary variables will be used to code membership 

in the design groups. If a case is a member of group 1, 
then a binary variable, 01, will be coded I for that case. 
If a case is not a member of aroup 1, then that case's 
value on O 1 will be 0. In a like manner each design 
group will be represented by a binary variable. For a J 
group design there will be J mutually exclusive and 
exhaustive binary variables; (01, 02, ... , OJ) 

Codjng The Covariate 
The covariate will be denoted as X in the following 

illustrations. 111 order to fit models like [3] and [6], X 
will be expanded to J variables. Cases in group 1 will 
have variable XI coded with their value of X, while 
cases not in group 1 will have a O coded in X 1. In a 
like manner X will be expressed as J variables (Xl,  X2, 
... , XJ). In the case of model [6], X 2 will also be
expanded the same way as X was expanded intd (X 1, 
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X2, ... , XJ) in the preceding coding scheme. A case in 
group 1 will be coded in the variable XSQl with its 
value of x 2. A case that is not a member of group 1, 
will receive a code of O in XSQ 1. X 2 will thereby be 
expanded to (XSQl, XSQ2, ... ,XSQJ) variables. 

Table 1 below illustrates this coding scheme for a 
three group problem fit by model [3]. 
If the data set contains only Y, X and the GROUP 
variables given in Table 1, the following data transfor­
mations can be used to generate GI through X3: 

IF GROUP= 1 TIIEN G 1 = 1; ELSE G 1 = 0; 
IF GROUP = 2 TIIEN G2 = 1; ELSE G2 = 0; 
IF GROUP= 3 TIIEN G3 = 1; ELSE G3 = 0; 
XI =Gl*X; 
X2=G2*X; 
X3=G3*X; 

PROC REG Commands 
The following commands illustrate how model (3) 

would be estimated with a data set like that in Table 1. 
The MODEL statement will use the NOINT option, 
which means that the program is not to estimate a 
common intercept for the entire sample. The coding of 
01, 02 and 03 will permit separate intercepts to be  
estimated for each group. 

PROC REO; 
MODEL Y = 010203 Xl X2 X3 / NOINT; 

The parameter estimates for 01 to X3 in this SAS 
model statement arc interpreted as follows: 

0 I = Y intercept for group 1, 
02 = Y intercept for group 2, 
03 = Y intercept for group 3, 
XI = the slope for the regression line for group 1, 
X2 = the slope for the regression line for aroup 2, 
X3 = the slope for the regression line for group 3. 

If one wanted to test the hypothesis that the expected 
values of Y when X = SO in populations 1 and 2 were 
equal, the null hypothesis would become: 

[7] 

Table 1 Coding for a Three Group ANCOV A Data Set In PROC REG 

y X GROUP G l  G2 G3 Xl X2 X3 

6 3 1 1 0 0 3 0 0 
8 2 1 1 0 0 2 0 0 
5 4 2 0 I 0 0 4 0 
9 5 2 0 1 0 0 5 0 
8 4 3 0 0 1 0 0 4 
7 6 3 0 0 1 0 0 6 
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The following TEST request could be inserted after the 
model statement to produce an F-test of this hypothesis. 

TEST Gl + SO*Xl = G2 +50*X2; 

If groups 1 and 2 were the award and no award groups in 
the Campbell and Stanley regression discontinuity 
design, and if the value X � 50 qualifies one for an 
award, then the above statement would produce an 
appropriate test of the effect of the award on achieve­
ment. 

The same type of test could be used for many 
values of X to locate regions on X for which there is a 
significant difference between the predicted Y values for 
groups 1 and 2. For example, if X was observed in the 
range (1,10), ten tests could be requested to locate the 
significance regions. 

TEST Gl + l*Xl = G2 + l*X2; 
TEST 01 + 2*Xl = G2 + 2*X2; 
TEST Gl + 3*Xl = G2 + 3*X2; 
TEST Gl + 4*Xl = G2 +4*X2; 
TEST 01 + S*Xl = 02 + S*X2; 
TEST 01 + 6*Xl = 02 + 6*X2; 
TEST 01 + 7*Xl = 02 + 7*X2; 
TEST 01 + S*Xl = 02 + 8*X2; 
TEST 01 + 9*Xl = 02 + 9*X2; 
TEST 01 + l0*Xl = 02 +10*X2; 

If the first three tests were significant and the last seven 
were not significant, the sianificance region would be 
1 :s: X :s: 3 and the nonsianificance region would be 
4 :s: X :s: 10. SASLOOs and listings with demon­
strations of nonlinear ANCOVA extensions of these 
same tests can be obtained by writing the author. 

- "
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Conclusion 

The ANCOV A can provide a flexible approach to 
many analysis problems. Researchers are encouraged to 
use ANCOV A models that are structurally appropriate 
for their data and their research questions. This paper 
illustrated some simple tests of expected values that can 
be expressed as linear combinations of the model 
parameters. These simple tests were applied to the 
regression discontinuity design and the Johnson­
Neyman significance region analysis. These appli­
cations were selected because they both are performed 
when a researcher encounters a problem with structural 
or design assumptions. The tests shown here illustrate 
how a researcher can articulate and test interesting 
hypotheses under these problematic conditions. 
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This article illustrates the appropriate use of ordinal and criterion scaling techniques in multiple regression. Since multiple 
regression is a widely used data analytic technique, it is important to know how special coding is done to answer certain 
research questions. These coding techniques involve effect, characteristic, ordinal, or contrast coding of vectors for proper 
interpretation of statistical hypotheses. 

T
he focus of this article is to demonstrate ordinal 
and criterion scaling techniques in multiple 
regression. Instructors might wish to include 

these topics when teaching multiple regression. 
Examples of each coding technique are presented to aid 
in understanding the approach and interpreting results. 

Various authors have previously discussed specific 
coding strategies needed in multiple regression to 
answer certain research questions. For example, binary, 
or characteristic coding can be used to test research 
hypotheses involving group mean differences (Draper & 
Smith, 1966; Kerlinger & Pedhazur, 1973.; Williams, 
1974; McNeil, Kelly, & McNeil, 1975) or be used in 
multiple comparisons (Williams, 1974, 1976, 1980). 
Similarly, contrast coding can be used to investigate 
complex comparisons and other types of research ques­
tions (Lewis & Mouw, 1978). Fif ect, orthogonal, and 
polynomial coding techniques have also been elaborated 
(Cohen & Cohen, 1975; Pedhazur, 1982). Within 
orthogonal techniques, Helmert contrasts (see Bock, 
1975) or polynomial regression can be completed. 
Newman ( 1988) presented several examples of how 
various coding strategies in multiple regression yield a 
t-test, analysis of variance, chi-square, discriminant, and
other statistical results. Newman, Williams and Bohner
(1982) had shown earlier that the Cochran Q test could
be readily conceptualized into a regression format; they
used a Monte Carlo study to show that the outcomes of
using regression virtually coincided with the traditional
Cochran Q analysis. Coding for two-way analysis of
variance questions has also received close scrutiny
(Bottenberg & Ward, 1963; Cohen, 1968; Overall &
Spiegel, 1969; Overall, Spiegel, & Cohen, 1975; Speed
& Hocking, 1976; Timm & Carlson, 1975; Ward &
Jennings, 1973; Williams, 1972, 1977b).

Ordinal and criterion scaling techniques have not 
received as much attention in the research literature as 
binary, effect, orthogonal, and polynomial coding 

strategies. Their application to specific Llkert (ordinal) 
scaled questionnaire data and repeated measures designs 
(criterion scaled), for example, have not been as well 
understood. Consequently, this paper presents ordinal 
and criterion scaling techniques in multiple regression. 

Ordinal Scalln1 
Boyle (1970), Lyons and Carter (1971), and Lyons 

(1971) have elaborated on the use of ordinal scaling in 
multiple regression. Basically, ordinal scnling permits 
the interpretation of Llkert (ordinal scaled) questionnaire 
dntn using multiple regression techniques. This 
approach defines the regression line between each 
ordinal point individunlly, disregarding the linear least 
squares rule applied to the entire set of dnta across the 
scale. The technique applies an eta-squared function and 
the relative contribution made by each segment of the 
ordinal variable; in essence, computing the slope of 
each regression line connecting the Y -means for succes­
sive categories of the ordinal scaled variable. 

The cumulative nature of the coding in the regres­
sion equation is the basis for interpretation of the 
ordinal coefficients. Consequently, each successive beta 
weight represents the change in predicted Y from the 
previous category of the ordinal variable to the next. 
The ordinal approach doesn't force a uniform byx for the 
full range of values, but instead allows a separate predic­
tion for each interval (a separate bi for each segment 
between levels of the ordinal variable), and thus a 
maximum nonlinear prediction of Y given a specific 
category of the ordinal variable. The non-linear eta­
squared value therefore will be equal to or greater than 
the linear least squares R-squared value. The ordinal 
interpretation is found in the bi values themselves
which are additive across categories of the ordinal 
variable. 
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Figure 1 Computer Program and Output: Ordinal Coding. 

PROGRAM 

T ITLE Regression analysis using ordinal coded variable 
COMMENT Interpretation of regression weights is additive 
DATA UST FIXED RECORDS=l/ Y 1-2 SA 4 A 6 D 8
VARIABLE LABELS Y 'score' SA 'strongly agree' A 'agree' D 'disagree' 
BEGINDATA 
10 1 1 1 

14 1 1 1 

13 1 1 1 

11 1 1 1 

9 0 1 1 

11 0 1 1 

12 0 1 1 

12 0 1 1 

6 0 0 1 

9 0 0 1 

10 0 0 1 

11 0 0 1 

6 0 0 O 
11 0 0 0 

7 0 0 0 

8 0 0 0 

END DATA 
REGRESSION VARIABLES = Y SA A DI

NOORIOIN/ 
DEPENDENT= YI

METIIOD= ENTER SA A D 
F1NISH 

COMPUTER OUTPUT 

1. Analysis of Variance Summary Table

Source df 

Model 3 

Fn-or 12 

Total 15 

2. Parameter Estimates

Variable d f  

INTERCEPT (SD) 1 

SA 1 

A 1 

D 1 

Sum of 
Squares 

40.00 

44.00 
84.00 

Parameter 
Estimate 

8.00 

1.00 

2.00 

1.00 

- "

Mean 
Square F Value 

13.33 3.63 

3.67 

Standard TforH0: 
Fn-or 

0.95 8.35 

1.35 0.74 

1.35 1.48 

1.35 0.74 

TPACHING 

Prob>F R-Square

.04 .47619 

Prob > ITI 

.0001 

.47 

.16 

.47 
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Figure 2 bi Values for Ordinal Scaled Mean Compared to the Common Slope Value byx• 

12 
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b =8 
sd 
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4 

2 

0 

ID D A 

b = 1.4 
yx 

SA 

Independent Ordered Variable 

An example computer program with the required 
o�dinal coding and the regression analysis output arc in
Figure 1. Corresponding parameter estimates are 
graphed in Figure 2, where the common slope, byx, is 
drawn relative to the successive bi ordinal parameter 
estimate values. The dependent variable is� and the 
k-1 vectors represent responses to an ordinally scaled
question. The subject responses are coded across k-1 
vectors with the neutral or undecided response omitted.
In the example, strongly disagree (SD), the first level of 
the ordinally scaled variable, has been omitted. Conse­
quently, the value for bsd is computed as the intercept 
term and reflects the starting value for interpreting 
change in the predicted Y values for successive ordinal 
categories. The ordinal coding causes the ordered 
variable means to range from lowest to highest. 

Typically, the means for each ordinal category will 
deviate from linearity such that predicting Y would 
occur to a lesser extent than would be possible using a 
non-linear function with line segments between the 
ordinal categories. The inherent feature in interpreting 
ordinal coding is the cumulative or aggregate nature of 
responses across the categories. The predicted Y values 
(Y') are the respective sums of all the bj values plus the 

intercept value (bj for the omitted vector, e.g., bsd = 8, 
and bd = 1. ba = 2, b

8a = 1 for each successive bi). 
Each successive bj reflects the change in the predicted Y 
value from the previous category. The parameter esti­
mates are also additive to produce the next ordered 
variable group mean on Y, e.g., :X,d - 8, :Xd - 9 
Xa •l 1, X,a •12. The important points for illustr� 
tive purposes is simply that ordinal coding does not 
compute a common slope (byx> across the full range of 
Y values, but instead permits separate prediction 
(separate bj) between each successive ordinal category, 
and that a cumulative effect is apparent across levels of 
ordered categories. 

How does ordinal scaling compare to other tech­
niques? It might be seen as interesting that ordinal 
scaling yields similar results to binary coding the 
separate responses. The Likert response is binary coded 
for k-1 responses, (i.e., SA is binary coded as 1 if SA, 
0 otherwise� A is binary coded as 1 if A, 0 otherwise� D 
is binary codes as 1 if D, 0 otherwise). Then, 
remarkably, if these three variables are used as 
predictors, an identical analysis of variance summary 
table to that in Figure 1 is formed. For both the ordinal 
scaling and the bi� coding, R2 =.47619. Performing 
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the binary coding rather than assuming interval level 
data was suggested by McNeil and Kelly (1970). The 
two coding approaches are similar because the process 
of creating the ordinal variables is very similar to 
testing for the departure from linearity as described by 
Bottenberg and Ward (1963). 

The advantage of ordinal scaling is its intuitive 
appeal; it has a similarity to the unfolding technique 
described by Coombs (1964). To test for the departure 
from linearity, one additional vector (predictor) is 
needed; it is coded 4 for SA, 3 for A, 2 for D, and 1 for 
SD. The regression analysis yields a R 2 =.46667, byx =
1.4, and intercept = 6.5 (see Figure 2). The F-test for 
departure from linearity is given by: 

Rk.i_ -Rk,TRICTED /(k -2) 
F•-------.--'-'---

1-Rk.i_ (N-k) [1] 

where Rk.i, •.4761 S, calculated using either the 
ordinal scaling or the binary coding; where 
Rk;TRICTED •.46667, calculated using the s ing le  
predictor; k=4; and where N=16. Using these values, F 
= .213 which is not significant. This indicates that the 
ordered variable means do not significantly deviate from 
linearity. 

To summarize, a variable's linear effect on a depen­
dent variable can only be less than or equal to the non­
linear effect. A straight regression line can poorly 
describe the relationship between means to the extent 
that the means do not lie on a straiaht line (curvilinear 
path of categorical means). The test of departure from 
linearity will assess whether this exists. Moreover, to 
include ordinal variables in rearession analysis is 
appealing, especially when one can discover which 
intervals, if any, contribute more or less and the dearee 
of change from one cateaory to another. 

Criterion Scallna 
Criterion scaling was first developed by Beaton 

(1969a; 1969b) to solve certain problems encountered in 
multiple regression. A basic problem occurred when 
using categorical variables because N - 1 vectors had to 
be created using dummy or effect coding. If the number 
of categorical independent predictors became large, then 
the number of vectors became overwhelming. A second 
problem pertained to variable selection methods where 
the categorical vectors might only be partially selected 
making interpretation difficult. Missing data on one of 
the predictor variables also presented a problem and 
usually meant exclusion from analysis even when a 
criterion value was present. These problems were 
resolved using the criterion scaling approach. 

A categorical variable is criterion scaled when it is 
transformed into a single vector in which each 
individual score is replaced with the mean of the group 
to which the individual belongs (Pedhazur, 1982, p. 
387). By criterion scaling a single categorical variable, 
the multiple regression analysis reduces to a bivariate 
regression analysis in which the dependent variable is 
regressed on the criterion scaled variable. Tfris tiolds true
regardless of the number of categories and for equal or 
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unequal n's (Williams, 1977a). Comparing this to the 
traditional analysis of variance, this process removes 
within cell variability and leaves only variability due to 
group differences. 

If the study involves several categorical variables, 
each variable can be criterion scaled separately and the 
criterion scaled variables used in the regression equation. 
Criterion scaling is therefore very useful when using a 
variable selection procedure to obtain the best set of 
independent predictors. For example, if five categorical 
variables resulted in 15-20 coded vectors, it may be 
difficult to have these sets of vectors added to or dropped 
from the equation as a set. (See however, Williams and 
Llndem, 1971 for a description of setwise regression). 
With criterion scaling, each categorical variable is repre­
sented by a single criterion scaled vector, so the 
problem is averted. 

The degrees of freedom associated with criterion 
scaled variables however present a unique problem. 
Typically, the categorical variable is associated with k -
1 degrees of freedom. However, in criterion scaling, the 
variable will only have one degree of freedom reported 
by most computer programs. The actual degrees of 
freedom are k - 1. An example of criterion scaling is 
shown in Table 1. The three dummy coded vectors, 01, 
02, and 03 are reduced to a single vector X 1. This new 
vector is criterion scaled and contains the mean on Y for 
each respective dummy coded vector. The bivariate 
regression equation then becomes: Y' = b0 + � X2 ,
which would yield the same results as the dummy coded 
vectors in a rearession analysis. 

Table 1 Criterion Scallna Example 

Score Dummy Coded V cctors Criterion 
Scale 

y 01 02 03 X2 

4 1 0 0 5 

5 1 0 0 5 

6 1 0 0 5 

7 0 1 0 8 
8 0 1 0 8 

9 0 1 0 8 
10 0 0 1 11 
11 0 0 1 11 
12 0 0 1 11 

Criterion Scaling • Repeated Measures 
Pedhamr (1977, 1982) and Williams (1977a) elabo­

rated the usefulness of criterion scaling in treatment by 
subject repeated measures designs. This approach 
involves reducing the coding of N - 1 vectors to repre­
sent subjects into a single vector whereby each subject 
in a treatment group receives the sum of the criterion 
scores for that group. This single vector in a bivariate 
regression analysis yields the same R-squared value as 
does the N - 1 binary coded subject vectors. The tradi­
tional analysis proceeds with three linear models 
(Williams, 1974): (a) treatment effects, (b) subject 
effects, and (c) combined treatment and subject effects. 
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The three regression equations can be expressed as: 
[5] Y,ubj • bo + b1Xl+ e2 

Y treat • b0 + bzX 2 + b3X3 +e1 [2] 

Ycomb •bo+b1 Xl+b2 X2+b3X3+ e3 [6] 
Y,ubj • bo + b4X4+ b5XS+ ... b12Xl2+e2 [3] 

The criterion scaling for this example treatment by 

Y comb • bo + b2X2 + b3X3+ ... b12X 12+ CJ [4] 
subjects design is in Table 2. The variable, X l • is the 
criterion scaled vector which reduces the N-1 subject 

The criterion scaling approach also involves three 
vectors (X4 to X 12) into a single vector for bi variate 
regression analysis to obtain the subjects effect in 

linear models, however, the subject effects in equation equation [5]. Score sums on Y rather than means were 
[3] and the combined treatment and subject effects in used in the criterion scaled vector, which is permissible. 
equation [4] would be substantially reduced as follows:

Table 2 Criterion Scaling In Treatment by Subject Design8 

y Xl X2 X3 X4 XS X6 X7 XS 

10 33 1 0 1 0 0 0 0 
11 33 0 1 1 0 0 0 0 
12 33 0 0 1 0 0 0 0 

13 42 1 0 0 1 0 0 0 
14 42 0 1 0 1 0 0 0 
15 42 0 0 0 1 0 0 0 

14 38 1 0 0 0 1 0 0 
13 38 0 1 0 0 1 0 0 
11 38 0 0 0 0 1 0 0 

6 21 1 0 0 0 0 0 

7 21 0 1 0 0 0 0 
8 21 0 0 0 0 0 0 

10 35 1 0 0 0 0 0 1 
14 35 0 1 0 0 0 0 1 
11 35 0 0 0 0 0 0 1 

15 35 1 0 0 0 0 0 0 
12 35 0 1 0 0 0 0 0 
8 35 0 0 0 0 0 0 0 

14 44 1 0 0 0 • 0 0 0 
15 44 0 1 0 0 0 0 0 
15 44 0 0 0 0 0 0 0 

12 39 1 0 0 0 0 0 0 
17 39 0 1 0 0 0 0 0 
10 39 0 0 0 0 0 0 0 

22 60 1 0 0 0 0 0 0 
21 60 0 1 0 0 0 0 0 
17 60 0 0 0 0 0 0 0 

11 44 1 0 0 0 0 0 0 
18 44 0 1 0 0 0 0 0 
15 44 0 0 0 0 0 0 0 

8y (criterion), Xl (criterion acaled), X2 and X3 (Treatmcota) X4 to Xl2 are lhc N-1 aubject coded ,ecton. 

X9 XlO 

0 0 
0 0 
0 0 

0 0 
0 0 
0 0 

0 0 
0 0 

0 0 

0 0 

0 0 
0 0 

0 0 
0 0 
0 0 

1 0 
1 0 
1 0 

0 1 
0 1 
0 1 

0 0 
0 0 
0 0 

0 0 
0 0 
0 0 

0 0 
0 0 
0 0 

Xll 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 

0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

1 
1 
1 

0 
0 
0 

0 
0 
0 

X12 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 

0 

0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

1 
1 
1 

0 
0 
0 

----- --·· ·



30 Ml.RV • VOL. 20, NO. 1 • SPRING 1993 

Table 3 Criterion Scaled Analysis of Variance 

Source ss df MS 

Treatments 21.67 2 10.83 
Subjects 297.63 9 
Residual 87.66 18  4.87 

Total 406.96 29 

The results obtained are identical with the tradi­
tional N - 1 coded subject vectors (sum of squares and 
R-squared values), except the degrees of freedom are
reported as N - 1, because Xl contains (N -1) linearly
independent vectors. The researcher must correct the
degrees of freedom when using general purpose multiple
regression computer programs. The criterion scaled
analysis of variance results are presented in Table 3.
The combined subject and treatment effects yield R2 = 
.7846. 

If multiple comparisons were of interest, the tests 
of significance for comparing Group 1 to Group 3 and 
Group 2 to Group 3 would be derived from the reported 
t tests for the regression coefficients bi and bJ respec­
tively in equation (6) (output not shown). Because of 
the degrees of freedom issue already described, the 
reported t's would need to be adjusted by multiplying 
by: 

l71 

where N is the number of observations (treatment by 
subject combinations), S is the number of subjects and 
g is the number of groups; an appropriate table, such as 
Dunnett's (1964), Dunn's (1961), or some other 
multiple comparison procedure being used now can be 
entered. 

Summary 
This article focused on presenting ordinal and 

criterion scaling techniques in multiple regression. The 
computer programs, coding, and output examples reflect 
the need to teach bow special coding can be used to 
answer certain research questions. These coding 
techniques also highlight the need for proper interpre­
tation of results. 

Ordinal scaling techniques in multiple regression 
provide for the analysis and interpretation of ordinal 
variables such as Likert scaled questionnaire data. The 
regression weights provide a step interpretation between 
each point on the scale or the degree of change from one 
category to the next. A test for the departure from 
linearity can also be conducted. 

Although only one example was presented, 
criterion scaling techniques can solve many of the 
problems encountered in multiple regression, namely, 
(a) the use of extensive categorical variables� (b) the
selection of the best set of predictor variables (maximize

TEACHING 

Summary 

F R2 

2.22 .0532 
.7314 
.2154 

1 .0000 

R-squared), (c) coding of subjects in repeated measures
designs, and (d) the handling of predictor variables with
missing values. Criterion scaled vectors may contain
either means or sums in the case of equal n's. The
criterion scaling technique is applicable to both linear
and non-linear regression line fitting (Hinkle, Wiersma,
& Jurs, 1988, pp. 540-544). Continuous predictor
variables can also be criterion scaled by dividing them
into equal intervals with the scores in each interval
coded the value of the mean on the criterion for that
category. In the case of multiple predictors, each
predictor is coded into a single vector, then all possible
regression techniques can be applied. Remember,
however, that the degrees of freedom must be adjusted to
N-1 not the reported df = 1. Mixed regression models
which combine categorical and continuous predictors are
also possible (Gocka, 1973).
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membership application. 

SI G/E.ducational Statisticians 
CHAIR: Schuyler Huck, University of Tennessee 

SECRETARY: Lynne E.dwards, University of Minnesota 

SIG/Professors of E.ducational Research 
CHAIR: William Schafer, University of Maryland 

SECREf ARY: Bruce Thompson, Texas A&M University 

SIG/Structural Equation Modeling 
CHAIR: Ralph Mueller, University of Toledo 

SECRET ARY: Jack Pollard, SWRL 
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1993 SIG/MLR Program at the AERA 
Annual Meeting 

April 12th - 16th Atlanta, Georgia

The AERA Special Interest Group on Multiple Linear Regression will be sponsoring three sessions at this year's AERA 
Annual Meeting. Each of these sessions will no doubt be interesting and informative. Plan now to support the SIG/MLR 
and attend all three sessions. 

Monday, April 12, 6:15 • 8:15 pm 
Quebec Room, 2nd Level, Marriott 

Business Meetlna (Session 8.38) 
CHAIR: Keith McNeil, New Mexico State University 

EXECunVE SECRETARY: Steven Spaner, University of Missouri, St. Louis 
HONOREE: Isadore Newman, University of Akron 

Retirina Editor, Multiple Unear Regression Viewpoints 

Tuesday, April 13, 8: 15 • 10: 15 am 
Flemish Room, Terrace Level, Marriott 

Applications of Multiple Linear Reare11lon (Seaslon 11.46) 
(Co-sponsored with S1O/Structurnl F.quation Modeling) 

CHAIR/DISCUSSANT: John Pohlmann, Southern Illinois University 

Type IV Errors in Path Analysis: Testing for Interaction 
Isadore Newman, University of Akron & Gregory J. Marchant, Ball State University 

Using Linear Regression to Determine the Number of Factors to Retain in Factor Analysis 
Ralph Mueller, Stephen Jurs, & Keith Zoski, University of Toledo 

Wednesday, April 14, 8:15 - 10:15 am 
Yukon Room, 3rd Level, Marriott 

Multiple Linear Regression Methodology (Session 25.51) 
CHAIR: Steven Spaner, University of Missouri, St. Louis 

DISCUSSANf: Susan Tracz, California State University, Fresno 

Full Versus Restricted Model Testing in Discriininant Analysis Applied to Personnel Selection 
Susan Whiting, Broward County Schools & John D. Morris, Florida Atlantic University 

Treatments for Missing Data in Multiple Regression: Stochastic Imputation, Deterininistic Imputation, and the 
Deletion Procedures 

Lantry Brockmeier, Constance V. Hines, & Jeffrey D. Kromrey, University of South Florida 

A Comparison of the Accuracy of Analytical and Empirical Estimates of Shrinkage in Multiple Regression 
Jeffrey D. Kromrey.& Constance V. Hines, University of South Florida 
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