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The Rise and Fall and Rise of Multiple 
Regression 

Tianqi Han Dennis Leitner 
Northern Illinois University Southern Illinois University 

The rise and fall and rise of multiple regression is chronicled in the literature by examining its initial impetus and 
popularity, followed by the acknowledgement of potential problematic issues such as violation of assumptions and 
overzealous usage, and the subsequent resurgence of tile technique as tile problems are addressed and procedures clarified. 
Jacob Cohen brought to tile attention of many researcllers tllat mulliple regression can be used as a general data-analytic 
system. With the· increasing availability of mainframe computers and programs to perform statistical analysis, journal 
editors were inundated witll an avalanclle of regression analyses. The assumptions underlying the analyses were 
emphasized, considered, and often found to be unmet. Two major problems of using stepwise regression were identified: (1) 
incorrect degrees of freedom were specified when evaluating changes in e,w;plained variance and, (2) incorrect interpretation 
of stepwise resultswhen a few variables are selected from many. Subsequently, many different regression models have been 
developed for different situations, especially when auumptions arc violated. These models include ridge regression, robust 
regression, and nonlinear regression, 

Like 1he length of skirts or the cuffs on pant legs, 
the popularity of statistical tests rises_an9 J&.1.~ 
nnd rises, In his Prc8idcntial Address 10 the Mid• 

Western Educational Research Association, ~ 
(1990) trac«l lhis rise uml fall and rise of three stntistical 
tests in the literature, ~i1'11t, the iniliul presentation and 
use was followed &y n s~cQnd period of the 
aclmowledgement of potential problematic issues such 
as violation of assumptions and overzealous usage, 
which resulted in a third period characterized by a 
resurgence of the technique as the problems arc addressed 
and procedures arc clarified. The thr_ce, stati,stical 
techniques he examined were th c 
I-test/analysis of variance, factor analysis and meta­
analysis. This same approach is uaed in this paper to 
examine the rise and fall and rise of multiple regression. 

While this review of literature is largely 
chronological, it is not strictly so. Some of the 
statistical aspects are reported in the mathematical and 
statistical literature long before they appear in the 
psychological andeducatio1181 J.Herature. It is the latter 
which forms-the.principal basis of the chronology. 

The Initial Rise 
In one of the first references to multiple regression 

in the social science literature, O.~Jdberger ( 1964), 
having recognized the nature of multiple regression, 
pointed out that 

... [T)he whole point of multiple regression as 
contrasted with simple regression is lo try to 
isolate the effects of the individual regressors, 

by 'controlling' on the others. Still, when 
orJhogonali ty is absent the concept of the 
contribulion of an individual regrcssor remains 
inbcrenily ambiguous. (p. 201) 

A larjlc impetus for the use or'multiple regression came 
from the work in the late 1960's of the di~tinauished 
s111tist.ician, Jacob Cohen. Cohen (1968) pointed out 
that multiple rcgresslonand analysis of variance rutd 
covariance are special cacies _of the acne!UIHn~ m~cl. 

If you should say to a mathematical stntistician 
that you have discovered that linear multiple 
regression analysis and the analysis of variance 
(and covariance) are identical systems, he 
would mutter something like, 'Of course-­
general linear model,' and you might have 
trouble maintaining his attention. If you 
should say this to a typical psychologist, you 
would be met with incredulity, or worse. Yet 
it is true, and in its truth lie possibilities for 
more relevant and therefore snore powerful 
exploitation of research data. (Cohen, 1968, 
p. 426) 

He showed that through use of indicator variables 
(i.e., dummy variable coding). an equiv!l_el!_ce 6etween 
multiple regression and analysis of variance, in fact, 
exists. In addition. through use of contrast coding, 
powers and products of variables, and comparisons of 
appropriate regression equations, multiple regression 
can be used wi a general data-analytic system. 

At about the same time, Richard Darlington ( 1968) 



2 MI.RV• VOL 21, NO. I • FAIL 1994 

emphasized that, besides providing the partial 
correlation between the dependent variable and each of 
the independent variables, regression weights rather than 
correlation coefficients have the interpretative advantage 
in p~ction allowing statements l!ke "Increasing Xj by 
l umt mcr~es the dependent vanable by fl_j units" (p. 
167). He discussed the logical fallacies involved in 
using v~;:appQ~tioonm_~i:it_J~liniques for any 
purpose when the independent variables in a set are 
intercorrelated. He pointed out that the notion of 
"uidependc:t1t ~11tribution to variance" is meani~gl_~Sl! 
especially when multig,llinearity is a problem (p.169). 

In perhaps the fir5-tJeitUlevoted exclusively to the 
use of muhiple regression, K~llyLJ3~ggs, M9_N~il, 
Eichelberger, and Lyon (1969) took advantage of the 
gro~ing presence of high-speed digital computers by 
freemg the researcher from simplistic designs that can 
be handled computationally with ease on a desk 
calculator. By forcing researchers to use " ... a series of 
factorial designs, Type I, Type II models, etc., derived 
to ease computation with a desk calculator," ... the 
researchers were either "confused" or had to "impose 
such constraints on his design that he is forced to ask a 
limited research question." (Kelly et al., 1969, p. vii). 

In addition, Kelly ct al. (1969) emphasized that the 
availability of multiple regression procedures and 
programs allowed the researcher to ask meaninsful 
research questions. - •• - -

The multiple regression analysis presented in 
this book is designed to prepare the research 
investigator to eonstmct statistical models 
which will renect his originahescnrch quest.ion 
rather thiu, limiting that question. Reiression 
analysis will be shown to be the aieneralized 
ca.,c of analysis of variance. Thc11e <lisctu1sions 
shall be intimately related to a computer 
program so that the simple clegiu1ce of the 
gcncr1dizcd analysis of vruiancc is not obscured 
and so that the investigator call circumvent the 
nnachronistic desk calculator. (p. vii) 

Four years later, another popular text of multiple 
regression was written by ~~rJingcr and Pcdhazur 
( 1973). The book, which listed a <liff crent computer 
program in the appen<lix than did the Kelly ct al. (1969) 
text. promoted the advantages of multiple regression 
analysis. 

Multiple regression analysis (is] a most 
important branch of multivariate analysis ... It 
is a powerful analytic tool widely applicable to 
many different kinds of research problems. It 
can be used effectively in sociological, 
psychological, economic, political, and 
educational research. It can be used equally 
well in experimental or nonexperimental 
research. It can handle continuous and 
categorical variables. It can handle two, three, 
four, or more dependent variables. In 
principle, the analysis is the same. Fi_{l_ajly, 
multiple regression analysis can do anythfog 
the analysis of variance does ... (Kerlinger & 
Pedhazur, 1973, p. 2-3). [In addition]. - . 

GENERAL 

multiple regression analysis not only gives 
more information about the data, it also 
applicable to more kinds of data. (p. 6) 

Multiple reg~ession not only provides a way to 
analyze the relations of _one variable with a set of 
variables, but it, with the stg>wi~e_!!!C?th<>:d, also can be 
used for purposes o_f p~i~n_y. Efroymson (1960) 
first advanced stc:pw1s~ regression in an article in which 
he presented an algorithm -which performed a true 
stepwise (as distinguished from FORWARD or 
BACKWARD methods) regression. • ·- -

An impg.r.tfill.1.-propeny_ of the stepwise 
Pr.~.ce<!_ure is based on the facts tliat (a) a 
vanable may be indicated to be significant in 
any early stage and thus enter the equation, and 
(b) after several other variables are added to the 
~e~ession equa_tio?, ~e initial v~ab!e may be 
mdicated to be ms1gruficant. • The insignificant 
variable will be removed from the regression 
equation before adding an additional variable. 
Therefore, only significant variables are 
included in the final regression. (p. 192) 

Efroymson's ( 1960) article presented computer 
output from an example, as well as estimates of how 
much space and time would be needed to run problems 
based on the number of variables and sample size. 
Stepwise rearession ha.<1 received considerable attention 
in reducing the number of independent variables in the 
prediction equation or selecting the best subset of the 
vuriahles from a set of independent v11riubles. 

Following Cohen and Darlinaiton's work, the 
1970's saw a aircnt increase in re8carch 011 the theory as 
well as application of multiple regression. For 
exiunplc, 1cc Heise (1969, 1970) who used multiple 
regression in caus11l relation research using social 
science and pancl d.111.11. • 

As you will sec in the next section, the middle of 
the 1970s saw the peak in the number of applications of 
multiple regression. Questions about. assumptions 
being met and appropriate uses come to the forefront of 
researchers' use of the statistical methodology. 

The Subsequent Fall 
With the increasing availability of __ mainf!_!l_tne 

computers and programs to perfonn statistical analysis, 
journal editors were inundated with an avalanche_of­
regression analyses. Figure I demonstrates the growth 
of multiple regressfon, discnminant analysis, and 
canonical correlation from article references by the 
Educational Resources Information Center (ERIC). The 
ERIC database consists of the Resources in Education 
(RIE) file of document citations and the Current Index 
to Journals in Education (CUE) file of journal article 
citations from over 750 professional journals. : ' 
Questions were raised about whether assumption!J!ere 
being met. and the use of stepwise E:gression was 
strongly !Zritt~ized, .. Attention was given to whether the 
regression models were corr~_tly !lpc:c,if1ed. Confusion 
between multiple correlation and prediction estimation 
began to be identified. 
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Flaure 1 Number or Citations or Multiple Rearesslon, Discriminant Analysis, and 
Canonical Correlation In ERIC Joumals from 1965 to 1991 
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Yiolation °( the Assumptions 
Ourina 1970s there were many criticisms related to 

the assumption of normal distribution of errors of 
memuremcnt-whlcti is; in many cases, not likely to be 
true with variables in behavioral research. 

The classical linear model Y • p11 +, asswnes that 
y, an N x 1 vector, is a random variable, X is an 
N x (k+ 1) matrix with fixed (not random) values: (i.e., 
Xis matrix of known constants); fl, a (k+l) x 1 
vector, contains the k unknown parameters, or 
regression weights, plus an intercept parameter; and £, 

an N x 1 vector, is a random variable. It further 
assumes that the errors have the properties of normality, 
linearity, independence, and homoscedasticity. This 
expression of the classical model is from Sockloff 
(1976), pp. 268-9. 

It seemed that multiple regression does not have 
any requirement for the data except meeting those 
assumptions described above .. 8-<?x (1966) alerted the 
mathematical community to aposiible concern in 
treating data collected from "field research" (without 
controls on variables or manipulation of independent 
variables) in the same manner as data from "lab 
experiments" (with random assignment of subjects to 
groups). 

The method of leas!_squares is used in the 

wuilysis of data from planned e"pcrimcnts and 
also in the wuilysis of data from unplanned 
happenin11s, ... It is the tacit assumption that 
the requirements for the validity of least 
squares analysis are satisfied for unplanned data 
that produces a great deal of trouble. Whether 
the data are planned or unplanned the quantity 
c, which is usually quickly dismissed as a 
random variable having the very specific 
properties mentioned above, really describes 
the effect of a large number of 'latent' variables 
x k+l• x k+ 2 , ... , "m• which we know 
nothing about. (Box, 1966, p. 625) 

For the unplanned data, suppose k independent 
variables are input in the model, £ includes a 
combination of some latent variables, say, x k+ 1 • 
X k+ 2, ... " m. Therefore, the regression model 
contained two components: 

As an example of analysis of u11,pl~ed _d_al.il, _Box 
(1966) discussed a possible situation m industry. 
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In the operation of an industrial process past 
experience often shows that certain variables 
are of major importance. In order to control 
fluctuations in the process, therefore, careis 
taken to hold precisely these variables very 
close to fixed values. As the "statistical 
significance" of any variable is greatly affected 
by the range it covers, there is a strong 
probability, therefore, that the most important 
variables will be dubbed "not significant" by a 
standard regression analysis. A further 
difficulty is that with unplanned data regression 
variables will frequently be highly correlated 
only because of operating policy. (p. 628) 

Although presented here as a violation of the 
assumption of the errors being normally and identically" 
distributed, the problem identified by Box (1966)_may 
also be considered as pii_s_~p~fi_cation of the rejrcs~ion 
model and multicollinearity resulting from unplanned 
data. 

Some people questioned the r9bustness o{Jea,st 
square estimation when the assumption(s) was(were) not 
met. Wainer and Thissen (1976) concluded: 

·- -------•----• • - •• -•• - ••N+•• -•~a' -•• •-•• , .. 
In this paper we have explored a variety of 
schemes for estimating coefficients of linear 
functions witli respect to tlieir ability to yield 
reasonable answers when the fonn of the data 
distribution ranges broadly. o ... ~r_s~ro~J,~st 
finding is thac the most com,rionly applied 
metliodology, least squares estimators (LSE}, 
are the worst performers in general. (pp. 30· 
31) 

Earlier in tliis article, Wainer and 'Ibis11c11 discussed 
the n.~sumptions in multiple regression and using equal 
weights (fl s}. 

The r~bustncss of cqWLI weights is beyond 
question, since their estimation docs not 
involve the data at all; tl1e shape of tl1e sample 
distribution is irrelevant. Least squarca 
estimates are another story. Thef are used 
without distributional assumptions and arc 
identical to mal(imum likelihood estimates 
with Gaussian assumptions, provided that one 
assumes independence of error. If this 
assumption is violated the least squares 
estimates overestimate the betas. lltis is only 
one thing that can go wrong and is indicative 
of the "c~pi!alization on chance" that has 
become the hallmark of least squares 
regression. (p. 12) 

In another article adv~c;.ti.ng the 1:1se of. r9bust 
regression metliods, Wainef(l976) wrote: 

It is noted that the usual estimates that are 
optimal wider a Gaussian assumption are Y-~ 
vulnerable to the effects of outliers. . .. 
Normality a_ssumptions are very useful 
theoretically', but have sometimes proved 
~J_:1ti~ in practice. (p. 285) 

In a 1976 article, Sockloff noted that the 

assumptions under which analyses are conducted are not 
always specified. 

Recent works by Cohen (1968), Kelly, Beggs, 
McNeil, Eichelberger, and Lyon ( 1969), 
Kerlinger and Pedhazur (1973 ), and Bottanbecg 
and Ward ... have attested to the flex.ibili!J of 
the General Linear Model. These piiblfoations 
have shown the capabilities of a single 
approach to the solution of correlation, 
regression, and the Fisherian analysis of 
variance problems. It is noteworthy that all 
six of these publications claim, more or less, 
to be using the General Linear Model, but in 
no case has the particular linear model and its 
assumptions been clearly specified and 
consistently applied. 

The General Linear Model is a name given to 
the fami"7YofJ11odel~_~ssessing a comm...9n 
characteristic, namely, linearity., in__tJ_ie 
parameters ·or the_ equation specifying the 
model:- The members of this family are 
distinguishable rn- terms of their--various 
assumptions, and it is the contention of this 
author that the distinctions among these 
different linear models are of more than just 
passing interest. 

lbe above publications, plus t11ose of Digma.n 
( 1966} and of McNeil and Spnner ( 1971 ), have 
shown the capabilities of Ilic Oenernl Linear 
Model in hundlini the analysis of nonlinear 
data .... [f]he interest of lhis 11apcr is lo show 
lhnt the analysis of nonlinearity via 
polynomial Md product vari11bles in a linear 
model has limitations fm more strinacnt thnn 
have been realized by educational and 
psychologiatl rcsenrchers. (pp. 267-268} 

. Socldoff ( 1976) distinguished between three Ji near 
modds (fi:itcd, rMdom, nod provisional) ru1d emphasized 
the differences between a fix.ed model and a random 
model and the limitation of general linear model in 
handling nonlinear data. In tl1e "fixed" model, the 
matrix X consists of Hregressors that are observable and 
are foted (determined a priori) values of random 
variables" (p. 269). In the random model, X is a 
matrix of regressors that are observable and random 
variables. • 

The Random Nonnal Model requires the 
additional assumptions: (a) in the population, 
X and y are distributed muhivariate normal, 
and X and £ are uncorrelated; and (b) in the 
sample, each multi variate observation 
corresponding to a row of X and y is randomly 
drawn. If X and y are distributed multivariate 
normal, the c = y • X fi is independently 
distributed multivariate normal with common 

variance a 2 as in the Fixed Nom1al Model. and 
X and £ are not only uncorrelated but also 
independent The population to which 
inferences are made under the Random Nomtal 
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Model covers the total multivariate population 
from which the validation sample is randomly 
drawn." (pp. 269-270). 

Kelly et al. (1969), Kerlinger and Pedhazur 
(1973), and Bottenberg and Ward devote most 
of their respective texts to multiple regression 
and capitalize on the similarity of 
computational procedures required for the 
solution of analysis of variance, multiple 
correlation, and polynomial regression 
problems. Whereas Bottenberg and '\\'.:~41ail 
to specif)' models or assumptions, Kelly et al. 
an<l Kerlinger and Pedhazur work under an 
apparent Fixed Normal Model insofar as 
distributional assumptions are not made about 
lhe regressors. Although Kerlinger and 
Pedhazur never distinguish the two classical 
models, Kelly et al. make a distinction, but 
this distinction is made late in the book at 
which point the reader cannot easily determine 
the appropriate model for each of the problems 
presented earlier. (p. 272) 

He pointed out that the computational_ sirniltuity 
between the fixed and random models was the initial 
source of the confusion of the two models. He argued 
that ''regarding the analysis of n__gnliM@!llY in 
observational data under the Random Model, the 
Random Nonna! Model cannot be_ used, and contrary to 
the various publications extolling the generality of the 
General Linear Model, the approprinte CQUllt~.rp~t 
inferential model docs l!.°-I....CU,fl'.Cntly exist." (p. 288) 

Mullkolljncru;ity 
StatisticaJ analysts using multiple regression have 

known for some time about the problems caused by 
intcrcorrclatious among tl1c independent variables. High 
intercorrdutions runong the predictors, but not complete 
linear dependency, Im, been called "collinearity" or "iJ! 
conditioning" of the correlation uu1lri.\, cir for the 
purposes of this pnpcr, "n!UJ\i~!lincarily". ~o~~.2.,11 
( 1969) alerted us lo lhe potential problems: 

Although the warnings concerning 
multicollinearity are to be found in statistic!s 
teitts, they are insufficiently infonnative to 
prevent the mistakes described here. This is 
because the problem is essentially one of 
substantive interpretation rather than one of 
mathematical statistics per se. (p. 592) 

'The effects of multicollinearity on the leruit squares 
estimates~( thc-reiession coefficienls were pointed by 
Johnstone in 1972 as follows: 

t. The precision of estimation falls so that it 
becomes very diflicult, if not impossible, _to 
disentangle the relative influence of various it 
variables. This loss of precision has three 
aspects; Specific estimates may have very large 
errors; these error may be highly correlated, 
one with another; and the sampling variances 
of the coefficients will be very large. 

2. l11vesligalors are sometimes led lo droy 
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variables incorrectly from an analysis because 
their-coefficients are not significantly different 
from zero, but the true situation may be not 
that a variable has no effect but simply that the 
set of sample data has not enabled us to pick it 
up. 

3. Estimates of coefficients become very 
sensitive to particular sets of sample data, and 
the addition of a few more observations can 
sometimes produce dramatic shifts in some of 
the coefficients. (p. 160) 

Gordon ( 1969) concluded: 

... [W)e have not been condemning the method 
of multiple regression in general. There 
remain many situations in sociology for which 
regression is an excellent tool of analysis. We 
do condemn, however, those applications of 
regression-coefficients that seek to determine 
the relative importaJ!CC of. variables in the 
manneroi'lheexamples we have cited. (pp. 
61>6) 

Abuse of Stg>wjse Regression 

s 

One of the most common uses of regression has 
been tt.1~~!18 aut(?llla_tically, that is, detenniru~g 
the retauveJ~r•!ltlce of__t,mables by the order m 
which they are-entered (or deleted) to find the "b.e~t" 
regression model, Pope and Webster (1972) pointed out 
that: 

The methods generally known as slepwJ.~e 
procedures are, however, the mQ~J.~i~cJy_!J§~, 
da~n !!n.?.J_y~ismcthods; in particular by non­
professional statislicians. This has come 
nhout throuah the o~J-~_!>}lity of computer 
pro,ran1s: • 

·nus popcr was stimulated by tl1is widespread 
use of the stepwise procedures uud theJuck of 
understanding (by the non-statistician) o(thcfr 
weaknesses. (p. 328) 

Huberty (1989) listed three intended uses of 
stepwise regression. ·--

Stepwise analyses have basically been used for 
three purposes: (I) selection or deletion of 
variables, (2) assessing relative variable 
impor~<;e; or (3) both variable sclcc~on and 
variable ordering. (p. 45) 

Stepwise regression bas been commonly used for 
selecting the best subset for any specified number of 
retained independeiii variables. Among a total of 
k (k+ I)/ 2 fits, "as observed by Gonnan and Toman 
(1966), it is unlikely that there is a single best subset 
but rather several equally good ones" (Hocking, 1960, 
p. 9). lvlantel (1970) criticized forward selection by 
illustrating a situation in which an excellent model 
would be overlooked because of the restriction of adding 
only one variable al a time and pointed out the 
disadvantage of forward selection needs k (k+ I)/ 2 fits k 
where backward elimination only needs k fits for testing 
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among k variables. Hocking (1960) also expressed 
concern about the limited number or solutions for the 
"best" regression equation. 

Another~~~ FS Jtorward selecti~,and 
BE (backward eliminatioii}often cited is that 
tiieyToijilya.n---"otaer-of importance to • the 
variables. This can be misleading since, for 
example, it is not uncommon to find that the 
first variable included in FS is quite 
unnecessary in the presence of other 
variables .... The lack of satisfaction of any 
reasonable optimaJity criterion by the subsets 
revealed by stepwise methods, although a valid 
criticism, may not be as serious a deficiency as 
the fact, that typical computer routines usually 
reveal only one subset of a given size. (p, 9) 

Pope and Webster (1972) pointed out the 
"£!eudo!l_~~LQ[ t!it:_ .f:statistic" for testing the 
significance of independent variables in linear prediction 
equation" (p. 327). "Unfortunately, the most widely 
used computer programs print this statistic at each step 
without any wanting that it does not have the F 
distribution under automated stepwise selection" 
(Wilkinson, 1979, p. 168). Using a Monte Carlo 
simulation, Wilkinson (1979) constructed the tables of 
the upper 95th and 99th percentage points of the sample 

R2 distribution in forward selection. He examined 71 
articles published in psychology from 1969 to 1977 
which used stepwise regression. 

Out of these nrticles 66 forward selection 
analyses reported a., significant by the usual F 
test were found. or tl1cse 66 nnalyses, 19 were 
not siinificant [using Wilkinson table] .. , (p. 
172) 

The ~_i:c consequ~nces of abuse of stepwise 
regression were empha,ized by Thompsor~ in a .J.2.89 
editorial entitled, "Why Won't Stepwise Methods Die?" 

First, most researchers, thanks to "canned" 
computer programs, do not employ tllccorrcct 
degrees 9f freedom when ev11luating changes in 
c~plained.varlance (i.e., usually changes in 
squared R or lambda). . .. Second, some 
researchers i11~~~y interpr~l stepwise results 
in which q predictor variables have been 
selected as indicating that the predictor 
variables are the best variables lo use if the 
predictor variable set is limited to size q . ... 
Thkd.~ some researchers incorrectly consult 
order of .entry information to evaluate the 
importance or various predictor variables." (pp. 
146-147) 

In one of the most serio~s and tllorough critiques or 
stepwise regression: ffube~y ( 19-89) postulated that: 

( I) .. step_w_i~e analysis should.JtQ.t generally .be 
used for variable selection purposes. A basic 
detect of stepwise procedures is attributable to 
'their consideration of variables one-at-time ... 
direct tests for the additional inf ormatioo 
supplied jointly by several variables are not 

- . 

GBNERAL 

made' (McKay & Campbell, 1982, pp. 13, 45) 

(2) ... o~f vll_!_i~ble entry in a stepwise 
analysis should_not_]~_us~Jo assess relative 
variable contribution/importance." because "the 
inter-relationship of the response variables are 
completely ignored when the most 'important' 
[first variable entered] is determined ... and the 
dependence [of following variable on preceding 
variable] or conditionality truly makes variable 
importance as determined by stepwise analysis 
very question". (pp. 46-47) 

I½_c,!!_.lg~.(~986), warned researchers that sampling 
~-can seriously distort stepwise results. .---

There is a danger that we might selected 
variables for inclusion in the regression 
equation based on chance relationship. 
Therefore, as stressed in our discussion of 
multiple correlation, we should apply our 
chosen regression equation to a .f res!!._!!.~.Plt:_.Qf_, 
o~jec~. to see how well it does in fact predict 
values on the criterion variable. This 
validation procedure is absolut~ly...c:ssential if 
we are to have any faith at all in the future 
applications of the regression equation. (p, _ 1_ 

265) 

We will see in the ~eCQ.'!~ Rise section that 
Huberty proposed alternative metllo<ls·fo--address these 
problems. 

Msspedfication of Rc~cmioo Mode;! s 
Included in our definition of misspecification of 

regression models 11re spcdfication errors by usina the 
"wrona".independent variables as well a.• expressina the 
wrc>na relationship amona the. independent variables or 
the relationship between the independent variables with 
tllc dependent vuri11blc. This first type was identified In 
l '171 by Dorhnstcdt und Cartei' • ••• -• 

When one has mistakenly either omitted or 
included variables 111 ·1111 equation assumed to 
capture the true_ causal structure to Y, or when 
the functional form chosen to represent the 
variables is incorrect, we say tllat one has made 
a specification error. (p. 128) 

The second type would include following: (a) 
specifying a linear model though a nonlinear model is 
more appropriate, (b) postulating an additive model even 
though a nonadditive model is more appropriate, and (c) 
applying a linear additive model when a nonlinear or 
nonadditive one is called for (Pedhazur, 1982, pp. 225-
229>· 

When any of Ilic assumptions are violated or when 
the stepwise regression technique is not correctly used, 
misspecification of tlle regression model is an inevitable 
outcome. However, researchers often ignore such 
errors. 

Gordon ( 1969) contended that the theoretical 1 

conteifof research should determine the nature of 

iniportan~e of the variables controlled. Since R2 was 
the most often used criterion to judging predictio!_l . 
models and (partial) regression coefficients were often 
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used as indicators of the relative importance of 
variables, Gordon (1969) showed the int~@Pof 
the multicollinearity and l!).isspecificati~ll_P!Q~ems. 
He provided the examples showing that: 

[S]mall variation among the correlations of a 
highly related sci can be create !arg~ypriatio!!~ 
among their regression c:oeffietents" (i>:6f2). 
In addition "the values of regression 
coefficients are not immutable and that they 
can be greatly affected by changes in the 
selection of independent variables to be 
included in an analysis" {p. 613). He warned us 
that "multiple regression is not an all-purpose 
methods for data reduction" (p. 163) and 
emphasized going "beyond simple examination 
of the regression coefficients". (p. 615) 

Bohmstedt and Carter (1971) discussed the effect of 
specification errors: 

specification errors can seriously affect our 
estimates of the_ true structural par~ers 
operating in ihe system.-::.-ifwe hypothesize 
the wrong model, then our estimation of that 
model will yield meaningless estimates. (p. 
141) 

They concluded that "we can only come to the 
sobering conclusion, then, that many of the published 
resulfs- based on reJ:ression analysis ... arc possible 
distortions of whatever reality may eiust" (p. 143). 

Confusion Between Mulljp!c CorrcJotioo nnd Predjclion 
Es ti motion 

The prc:dictio1!_!_no_dc:I and the correlatioo.m.odel 
were seldo,niolic distinaiuishcd. I luherty and Mourad 
( 1980) ~ciiaphasiii:d the di((i:rcncc: of the parameters 
estimated in the multiple: correlation and prediction 
estimation. 

All of the stutistiCld techniques associated with 
the prediction ntodcl arc applicable with the 
correlation model. However, from a 
correlation estimation viewpoint. different 
parameters arc associated with the two models. 
With the correlation model. the population 
multiple correlation coefficient of interest is p. 
which reflects the correlation between Y and 
the optimal linear composite of X1. X2, ... Xp 
in the population as a whole. The optimal 
linear composite is that composite dctennined 
so as to mrutimize this correlation in the 
population. With the prediction model, the 
population multiple correlation coefficient of 
interest is Pv wruch reflects the correlation 
between Y and the linear composite of the X's 
which is optimal for the calibration sample. 
With each calibration sample is associated a Pv 

, which is a type of validity coefficient. 
Values of Pv are coefficients of correlation 
between a criterion Y and a linear composite of 
the predictors, the weights of which will vary 
across repeated sampling. (p. 102) 

They also critici1.cd the deficiencies in reporting 
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estimates of correlation coefficient in the literature and 
the inflated predictive validity of the studies, 
overestimation of the parameter p for prediction using 
Rw and Re' They discuss two estimation procedures for 
the parameters p and Pv cross-validation and usage of a 
"shrinkage" formula. 

The Second Rise 
In this period which these authors call the 'second 

risct,_ comparatively new techniques are recognized for 
bandli11g_~~!~ll_!_S _identified during the period of 
"the fall." Some of those techniques are robust 
regression, ridge regression and nonlinear regression. 
These methods -w-ere introduced to behavioral scientists 
in the late 70's . and early 80's. Also, new methods 
using multiple and/or categorical dependent variables, 
such as canonical correlation and discriminant artalysis, 
have been popularized. 

Nonlinear 8«'2"essjon 
When the assumption of linearity is violated, an 

appropriate nonlinear regression model should be 
considered. Since regression weights in nonlinear 
regression equations can be changed by changing the 
means of the independent variables, and the means are 
often chosen arbitrarily, the coefficients of rmnHn~ar 
regression models can not be interpreted causally. A 
general solution to the importance of each independent 
variable in the linear and nonlinear models was 
attempted by Darlington and Rom (1972). For the: sake 
of the difficulty of the interpretation of the nonlinear 
regression model. the effects on the transformation of 
p~J!~-~!i1_1I _rc:gres_!!(on equations into a format that is 
readily mterprciablc were !!~e. 

Robust Rci;ressjon 
In l2'7§1 ~~Af~.I_Wainer.wrote an article published 

in l'sychological /Jullel/11 entitled "Esti ruati ng 
Coefficients in Linear Models: It Don't Make No 
Nevcnnind." In his article, he staled: 

It is proved that und~_r- very general 
circumstances coefficients in multiple 
regression models can be replaced with equal 
weights with almost no loss in accuracy on the 
original data sample. It is then shown that 
these equal weighs will have grcat~r rol>us~!,_S~ 
than least squares regression coefficients. (p 
213) 

The general conditions given are "all predictor 
variables should be oriente4_properly" and "the predictor 
variables should be intercorrelated positively" (Wainer, 
1976, p 213), •• - •• - ••• •• • •• 

Wainer's approach essentially ignores the sample 
data. A less radical solution to the problems with 
ordinary least squares solutions (OLS) to the estimate of 
parameters in multiple regression in light of non­
normality or outlier problems has been addressed by 
Huyhn (1982), who referenced the sources of the 
alternatives for handling outliers and explained the 
concept and functions of Least Absolute. ResichrnL._ 
<.!::!\R.), first introduced by Gentle ( 1977): 

LAR estimates are the maximum-likelihood 
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estimates when the errors follow a double 
exponential structure. Because large residuals 
are given smaller weights in LAR estimation 
than in OLS (ordinary least squares] 
estimation, LAR estimates are less influenced 
than OLS estimates by those residuals. 
(Huyhn,1982,p.506) 

Huyhn reviewed each of the_f our robust r~gression 
techniques provided by Huber ( M=estilriit~)~ijl!11:1.Ple" 
(psi-function), Amfr~w. (sine estimate) and Tu key 
(biweight estimate), respectively, provided an example 
ofusingthese four robustness regression methods, and 
compared them with the results from employina the 
ordinary least square method. The reader should refer to 
H<?,gg (1979)for a discussion of the last fouu!!!imators. 
HuyhiiJt982f~wmuatj_~ the conclusions aboutrobust 
regression against OLS. 

First, if the data do not contain any ~ 
observations, then OLS and robust regressions • 
provide estimates that do not differ markedly 
from each other. ~n~.L for data with 
suspected or ab!l.!>rotal observations, OLS 
estimates may d1ffer su6stantially from the 
robust estimates; thiri.t_ observations 
considered as ouUiers oyOLS regression may 
not be outliers·a1a1tunder robust regressions. 
Fourth, robust regression procedures, as 
proposed by Hampel, Andrews, or Tukey, may 
be able to detect outliers automatically by 
giving each one· a· weight that is 1.ero or very 
small as compared with other weights. (p. 
511) 

I le re-empha.,i1.e<l the recommendations provided by 
H_<?JUt 0979) .. 

Perfonn the us1111l OLS analysis along with a 
robu!l_t procedure sucli as ihat used by Andrews. 
If the resulting estimates are in essential 
agreement, report the OLS estimates and 
relevant statistics. If substantial differences 
occur, however, take a careful look at the 
observations with large robust residuals and 
check to detcnninc whether they contain·errors 
of any or if they represent significant 
situations under which the postulated 
regression model is not appropriate. (pp. 511-
512) 

Ridge Regression 
Knowledge of the potential problems caused by 

muhicollineari ty has alerted researchers to avoid 
misinterpretations. Many alternatives have been 
proposed. A researcher might first try to eli!_ninate the 
variables that contribute to the high degree·-of 
multicollinearity. However, we should not have 
considered a logically redundant variable initially. 
Removal of any one variable may lead to 
misspecification of the model. Pedhazur (1982) noted 
other remedies: 

One of the proposed remedies is the collcc~i<>.11 
of additional data in the hope that this may 
ameHorate the condition of high - . 

multicollinearity. Another set of remedies 
relates to the gr.Q!!pjngQf variables either in 
bloclcs on the basis of a priori judgements or 
by the use of such methods as principal 
components analysis and f11~tor analysis .... 
An~ther set of proposals .. .is--to iiband<>n 
Ordinary Least-Squares analysis and use instead 
other method, of estimation. One such 
method that has been gaining in popularity is 
~~ge .Regr..e~•ion.... [N]one of the proposed 
meth~ of dealing with high multicollinearity 
consbtutes a cure. High multicollinearity is 
symptomatic of insufficient, or deficient, 
information, which no amount of data 
manipulation can rectify. ( p. 247) 

Redu~ !_~ance regresst<>n, as a compromise 
between ordinary regression and some other teclmiques 
such~ weighted least squares, was advocated for its 
potential solution of dealing with problems of 
multicolli_nearity, ratio of number of predictors-·10 
sampl~ s1~, as well as validity issues. Ridge 
regression, introduced by Hoerl and Kennard in 1970, is 
an application of reduced vanance··regression.-"Ridge 
regr~~sion i,s a CQ!!!J'<>Vcrsfal procedure that aitcmpts to 
stab1h~ estimates~( regression coefficients by inflad.ng 
the_ vanance that u analyi.cd" (Tabachnick & Fidell, 
1989, p. 130). 

In late 70's and early S0's, ridge regression was 
reemphasized in the psychology and social sciences. 
For example, Price ( 1977) and Darlington and Boyce 
( 1982_)_ highlighted the function of ridge rci:rcssion in 
explonng and extracti1111 iufonnatiou from multifactor 
data. !:ice _(1977) 1r11vc 1111 example of how to use ridi:c 
regression, rntroduced the criterion of choosing a_yaluc 
of k (11~ below) from inspection of the ridge ~ace, and 
cmphas11.cd the nature of ridge regression in reducing 
t~IILI mean square error by introducing some degree of 
b1as. 

Darlington and Boyce ( 1982) also provided the 
bchnvio~ul scienti~t with a t~.Y. comprehe_n_!Jbl_e .. 
cxpl~tion about ndiic regression ·ushig the concept of 
regression to the mean. 

It is .!.elLkn.o.wn that estimates for many 
independent pariuneter values can be improved 
by regressing the unbiased estimates of those 
values toward the grand mean of all the values. 
... l[_the investigator assumes that on _the_ 
average, each observed corrdiiuon exceeds the 
tf.§:.value by a pr~rti<>n _!c, then the_ ratio 
between average observed and true values is 
(I +k) I 1. ... Ridge regression essentially 
consi_sts of 1!dju111i11g all the correlations in the 
maim (both the X . X and the X - Y 
correlations) by this factor 1/( l+k), and then 
deriving regressiou weights in the ordinary 
way .... Thus udjustment of the X ~ X 
correlations produces the largest increases in 
apparent independence (and hence increases in • 
beta weights) for those regressors which 
correlate most highly with the other regressors. 
This is how ridge regression takes advantage of 
validity con~ntrution -- regressors correlating 
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highly with the total set of regressors are 
upgraded in importance relative to the others. 
(pp. 84-85) 

They informed researchers that about a dozen 
formulae for estimating k have been proposed and the 
ri~_g~u;a~-~88._E<> ~~g~!--!~<:<>~~-~-e._~_!>y the 
statisticians. The aftemattve (or est1matmg k, an 
iteration procedure was introduced in this paper. They 
also provided recommendations about when ridge 
regression should be used. 

Alternatives to Stepwise Remssion 
Concerning the possible distorted resu1_t§ __ from 

careless use of stepwise _regressioii:-maiiy- researchers 
triecl1ofioo better alternatives to stepwise regression. 
Huberty (1989) provide,fiheaiternative approaches and 
suggested that "a 'natural' criterion to use to determine 
the best subset size 7ifthe-context of prediction and 
estimation is to minimize the residual sum-of-squares 
value" (p. 50). For selecting the variables from a set of 
initial variables, SAS PROC RSQUARE (SAS 
Institute, Inc., 1990) procedure was recommended to 

assess 2P-l equations, where p is the -number of 
predictors (Huberty, 1989, p. SO). For determining the 
final subset_size of the independent variables, Huberty 
(1989) recommended adjusted R2 or scree test -·· 

"plot[ing] the adjusted R2 values for the 'best' subset of 
each size (determined by the researcher using 
information from computer output pl us sound 
judament) against subset size" (p. 51). 

Thompson ( 1989) proposed that a possible 
alternative to the misleadina results of stepwise 
rearcs11ion would be to "employ II cross-validation 
procedure such a, one recommended by I luck_,!iii!Uer, 
and Bounds_ (1974, p. 159)". Huck, Cormier and 
l~oui1-ds ( I ~4) propolled a.four-step method. 

-···---._. .. -- ~-

(I) 11tc original group of people (for whom 
both prcdktor and criterion scores arc available) 
is randomly divided into two subgroups. (2) 
Just one of the subgroups ,s~-used fo develop 
the prediction equation .. (3) The equation is 
used to predict a criterion score for each person 
in the second subgroup, i.e., the subgroup that 
was not used to develop the prediction 
equation). (4) The predicted criterion scores 
for people in the second subgroup arc correJat~ 
with their actual criterion scores. A high 
correlation (that is significantly different from 
zero) means that the prediction equation works 
for people other than those who were used to 
develop the equation. If the individuals in 
future studies are not too much differen~ from 
those in the cross-validation procedure, the 
researcher is justified in using the prediction 
equation for groups other than the original. 
(pp. 159-160) 

Henderson and Velleman (1981) illustrated the 
superiority or substantively guided data analysis over 
automatic model -building. "Automated multi pie 
regression model-building techniques often hide 
important aspects of data from the data analyst. Such 
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feature as nonlinearity, collinearity, outliers. and points 
with high leverage can profoundly affect aut~mated 
analyses, yet remain undetected." Henderson and 
Velleman (1981) proposed an alternate met_hod 
integrating "interactive computin_g__and ~itpl o.i_atory­
methods to discover unexpected features of the data." (p 
391). They illustrated their altemati ve method using 
two examples, one from Hocking (1973) involving 
variables on 32 automobiles and a second example on 
air pollution and mortality from McDonald and 
Schwing (1973). 

Henderson and Velleman (1981) stated a 
fundamental axiom of their philosophy of data analysis 
"Thedata analyst knows more than the computer" (p. 
391). --- -- - --- .• - - -

Checking for lhe Assumptions 
Following the concern for possible violation of 

assumptions, methods to check for whether 
assu~tions we~e_~~le_or not were developed using 
computer programs. Some of these methods were 
nicely summarized in a paper by Elmore, W ocblke, llll_<,i _ 
S~aring (1990). They also compared the procedures 
avitlablefn-SAS and SPSsX. ~-{1m)_provided 
examples of bow multicollinearity among independent 
variables can be detected using the SAS and SPSSX 
computer packages. and recommended procedures for 
reducing the eittent of multicollinearity. In addition, 
P..S>blmann (1990) presented some methods using SAS 
(version 6)checkTor outliers. 

Mulrjvariatc Tcchnjm1S< 
Althouah it was oriainally dcvclope<I in the 30's 

(I lolcllina, 1935), canonical corr~lation wa, not realized 
u., the most acnernl CUlle of the aenerul linear model 
until the late 70's or early 80's. 

... Daagaley (I 981) luL, noted that canonical 
correlation analysis, and not regression 
1malysi s, is the most 1eneral cm•~. or the 
general linear model.- ··-t{napp ( 197 8) 
demonstrated this in detail andoonduded that 
"virtually all or the commonly encounter 
parametric tests of significance can be treated 
as special C:l!s~s of ca~c:>n~cal correlation 
analysis, which IS the general procedure for 
investigating the relationships between two 
sets of variables." In a similar vein Fornell 
(1978) notes. "Multiple regression, MANOVA 
and ANOV A. and multiple discriminant 
analysis can all be shown to be s~ial case;~_!?( __ 
canoniC:(11.analysis .... " (lbompson, 1984) 

•-··-· 

Extended from a single dependent variable in the 
model 10 multiple dependent variables, canonical 
correlation could be used at least to predict or eitplain a 
set of dependent variables by a set or independent 
variables. When the dependent variables are categorical, 
the procedure is called discriminant analysis. The roles 
of discriminant analysis inchfde-- that separation, 
discrimination, and estimation of the populations of 
objects (Huberty, 1975). Since a great deal or research 
in the behavioral sciences involves these three aspects, 
discriminant analysis has been considered as, follow-up 
technique to MANOV A, one of the most significant 
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development in multivariate analysis. 

Conclusion 
While this journey through the literature was not 

exhaustive (although it may have been tiring to many 
readers) and strictly chronological, the authors feel that a 
similar trend of introduction, questioning, and 
resolution of the problems for the statistical technique 
of multiple regression eltisted as with t-test, factor 
analysis and meta-analysis. Perhaps other statistical 
procedures could similarly be documented. 
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A Comparison of the Mallows Cp and 
Principal Component Regression 

Criteria for Best Model Selection in 
Multiple Regression 

Randall E. Schumaker 
Universily of North Texas 

A cross validation comparison of the Mallows Cp subset model selection criteria using randomly generated data sets 
indicated that different subset models may be identified. The principal component regression method using Type II sum of 
1quarea with orthogonal principal component variables indicated a slightly different set of "beat" variables. The two 
methods in the presence of multicollinearity can yield different subset models. II is recommended that re11earcher1 base 
regre11ion models on substantive theory, model validation, and effect sizes for proper model testing and interpretation. 

M ultiple regression permits model testing 
wherein a set of independent variables are 
hypothesized to predict a dependent variable, 

Often when the set of variables selected docs not 
aianificantly predict, the researcher searches for a 
"subset" of variables that provides the best prediction 
model. The statistical packages provide several 
stepwise methods for this purpose. 

A review of the literature, however, indicates that 
most researchers misuse stepwise methods in 
determining the best predictor set or interJ>retina the 
importance of predictor variables (I luberty, 1989; 
Snyder, 1991; Thompson, 1989; Thompson, Smith, 
Miller, & Thomson, 1991; Welge, 1990). Tracz, 
Brown, and Kopriva (1991) summarized much of the 
literature to indicate that the results of stepwise 
procedures do not yield a "best" equation because 
different criteria can be used in the selection of different 
sets of variables; that when variables are intercorrelated, 
there is no satisfactory way to detennine the relative 
contribution of the variables to R-squared because 
various subsets of variables could yield a similar 
R-squared value; that stepwise methods innate Type I 
error rates by not using the correct degrees of freedom in 
calculating the change in R-squared; and that the order of 
variable entry is incorrectly interpreted as defining the 
importance of the variable or "best set" of predictors. 

Current research literature indicates that the all 
possible subset approach is preferred over the stepwise 
methods for determining the best model (Berk, 1977; 
Cummings, 1982; Thayer, 1986; Davidson, 1988; 
Henderson & Denison, 1989; Welge, 1990; Thayer, 
1990; Tracz, Brown, & Kopriva, 1991). Several 
criteria, however, are available for selecting the best . . 

subset model when using the all possible subset 
approach: R-squared, adjusted R-squared, mean squared 
error, Mallow's Cp, or a principal component 
rcjrcssion. Coostas and Francis ( 1992) presented a 
graphical method for sclectina the best subset rc,n:ssion 
model usina R-squared and adjusted R-squared. They 
plotted R-squared and adjustcld R-squared against the 
number of predictors in the model. The maximum 
number of predictors for best subset model was 
dctennined at the point where the R-sqW1tcd w1d/or the 
adju.'lted R-sqwircd volucs dc,cendcd. 

The Mallows Cp criteria has also been 
recommended for selecting the best subset of predictor 
variables in contrast to the stepwise methods using a 
sample data set (fracz, Brown, & Kopriva, 1991; 
Zuccaro, 1992). The Cp statistic measures the effect of 
underfitting (important predictors left out of the model) 
or overfitting (include predictors that make no 
contribution or are marginal). Mallows (1966; 1973) 
has suggested that the selection of the best subset model 
with the lowest bias is indicated by the smallest 
Mallows Cp criteria, especially in the presence of 
multicollinearity. The SAS package (Freund & Littell, 
1991) currently prints the Mallows Cp value and a 
variance inflation factor (VIF) which can be used to 
determine which variables may be involved in the 
multicollinearity. Pohlmann (1983) had previously 
noted that multicollinearity among a set of predictor 
variables didn't affect the Type I error rate, but did affect 
the Type II error rate and width of the confidence 
interval His findings suggest that sample size and 
model validity could compensate for multicollinearity 
effects, especially when certain research questions 
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require models with highly correlated predictors, for 
example, Y = 81X1 + 82X21 + e. • 

The principal component regression (PCR) has also 
been proposed as a criteria for selecting the best 
predictor model. This method appears to be useful when 
predicting values in one sample based upon estimates 
from another sample and when multicollinearity exists 
among a set of variables {Morrison, 1976). The 
indication for using a PCR approach is when the mean 
squared error of a biased estimate is smaller than the 
variance of an unbiased estimate. The PCR method 
however, is not appropriate for multiple regressio~ 
subset models containing interactions (Aiken & West, 
1993). Since the PCR method creates a set of new 
variables called principal components, which are 
uncorrelated or orthogonal, it should not be used when 
models depict nonlinear, correlated predicter sets. 

In summary, the all possible subset approach is 
recommended as an alternative over stepwise methods 
for selecting the best set of predictor variables. The 
Mallows Cp criteria or a principal components 
regression approach is advocated for determining the 
best subset model over the use of R-squared, especially 
when the predictors are correlated. The principal 
component regression method, which determines the 
best model for prediction by creating orthogonal 
variables, appears more useful when estimates from one 
sample are used to predict in another sample or when 
multicollinearity e:rtists amoni the predictors. 

How do these criteria compare when selectin&i the 
best subset model? When miaht a researcher choose 

ML.RV• VOL 21. NO. I • FAIL 1994 13 

one criteria over another for selecting the best model? 
A comparison of the Mallows Cp selection criteria 
UP<_>D cross validation and a comparison of the parameter 
estimates and standard errors between the multiple 
regression and the PCR approach should shed further 
light on their usefulness for subset model selection. 
An applied example will further elaborate the 
comparison of the two criteria 

Simulation 
A SAS program was used to generate a heuristic 

po~ulation (n = 10,000 observations) with a dependent 
vanable and ten correlated predictor variables. The 
program then randomly sampled the population data set 
for n = 200 observations. This data set was then 
randomly divided to create two separate data sets of equal 
size (nt = n2 = 100 observations). The SAS programs 
used in this simulation are available from the author. 

The population correlation matrix, variable means 
and standard deviations are in Table 1. The correlation 
matrix, variable means and standard deviations for the 
sample data set used to compute the parameter estimates 
are in Table 2. The correlation matrix, variable means 
and standard deviations for the cross validation data set 
are in Table 3. Parameter estimates, computed using 
the ordinary least squares criterion from the first data 
set, were used with the second data set to calculate R2 
and the Mallows Cp values, and to detennine the best 
variable subset models. 

Table I Population Correlation Matrhc, Means, and Standard De,latlons (n • 10,000) 

y XI X2 X3 X4 X5 X6 X7 XS X9 XlO 

XI .44 
X2 .25 .10 
X3 .34 . 13 .10 
X4 .43 .19 .10 .15 ' 
X5 .42 . l 9 .11 . 13 .19 
X6 .30 . 13 .09 .11 .13 .12 
X7 .24 .11 .07 .06 .10 .08 .07 
X8 .50 .22 . 13 .17 .21 .21 .16 .11 
X9 .28 . 12 .08 .10 .12 .11 .09 .07 .15 
XIO .26 .11 .05 .07 .11 .12 .06 .08 .14 .08 

Mean 9.99 17.92 16.12 18.94 21.96 28.05 25.97 38.90 42.05 33.97 12.05 
S.D. 2.00 4.44 8.21 6.00 4.66 4.95 6.61 8.61 4.12 6.95 8.12 

~ All uh .. , ha•e been rounded 10 two decimal places. 
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Table 2 Sample . Correlation Matrix, Means, and Standard Deviations for Esti~atlon Sample 
(n1 ~ !00) c· .. : ,. ~ .. ..'~ ~·> ; '. ,·." 

y Xl ,,''•(j.,X2 X3 X4 X5 X6 X7 X8 X9 XIO 

Xl .41 
X2 .28 .02 
X3 .41 .05 .23 
X4 .38 .23 .01 .15 
XS .24 ~.01 .Q4 .02 .16 
X6 ',33 .02 .16 .09 .08 .08 
X7 .25 .16 .08 .03 .01 .01 .JO 

• X8 .39 .22 .13 -.04, .19 .06 .21 .01 
X9 .33 .19 .07 .04 .24 -.15 .03 ,• .22 {,'' .21 
Xto A6 ,23 •. 08 .24 .21 .03 .JO .'17 .11 ;17 

Mean 10.18 18.40, 15.37 20.49. 22.76 28.41 25.88 39.55 41.89 34.27 11.04 
S.D. 1.80 4.61 8.88 5.94" 430 4.99 6.79 7.81 4.13 6.80 8.13 

' i ' ,;',..);, , 

l:iASS, All uluoa ha•• been rounded lo two decimal pl•-· ., 

Table 3 Sample Correlation Matrix, Means, and Standard Deviations for Croll Validation 
Sample (n2 • 100) 

y XI X2 X3 X4 -XS X6 X7 XS X9 XJO 

XI .39 
X2 .28 .14 
X3 .34 -.05 -.08 
X4 .52 .03 .13 .20 
X5 .54 .17 .20 .28 .37 
X6 .26 .01 .01 .07 .18 . 19 
X7 .14 ,03 .OS .08 .07 .01 -.03 
XS .55 .27 .11 .26 .26 .21 .06 .02 
X9 .32 .26 .18 -.09 .20 .07 .11 .09 .09 
Xto .31 .26 .07 .11 .12 .21 .11 .19 .09 .24 

Mean 9.94 17.91 16.55 19.26 21.37 28.40 25.34 39.23 41.92 33.93 10.38 
S.D. 1.99 4.86 8.S7 6.13 5.35 4.75 6.82 9.43 4.27 6.73 7.78 

lisl1l, AU value, have been rounded 10 lwo decimal place,. 
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·Table 4 al and Cp Values for SampleJ And Sample2 • Best Variable 'Subset Models 
(DJ =ii D2 • 100) 

Subset V ariabies in Subset Model Sample1 
Si:ze R2 Cp 

1 (10) .21 102.92 
2 (3).(8) .33 74.44 
3 (3).(8),(10) .44 49.79 
4 (I ),(3),(8),(10) .50 36.13 
s (1),(3),(6),(8),(10) .54 27.42 
6 (1),(3),(5),(8),(9),(10) .58 19.74 
7 (1),(3),(5),(6),(8).(9).(10) .62 12.26 
8 (1),(2),(3).(5),(6).(8),(9).(10) ·.63 11.85 
9 (1),(2),(3),(4),(5).(6),(8),(9),(10) .64 11.27 
10 (1),(2),(3),(4),(5),(6),(7),(8),(9),(10) · .65 11.00 

Samplei 
R2 Cp 

1 (8) 30 101.79 
2 (5),(8) ., , .49 50.44 
3 (4).(5),(8) .55 33.41 
4 (l),(4),(5),(8) .61 2134 
5 (l),(4),(5),(8),(9) .63 17.05 
6 ( 1),(3),(4),(5),(8),(9) .65 13.37 
7 ( l ),(3),( 4),(5),(6),(8).(9) ,66 11.58 
8 ( l),(2),(3),( 4),(5),(6),(8),(9) .67 • 9.79 
9 ( l ),(2),(3),(4),(5),(6),(7),(8),(9) .68 9.96 
10 ( I ).(2),(3 ).(4 ),(5).(6),(7).(8),(9).( 10) .68 11.00 

Table 5 Cro11 Validation Comparison of R2 aad Cp Values: SampleJ to Sample2 for Beat 
Variable Subset Models (na • n2 • 100) 

Subset 
Size 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Variables in Subset Model 

(10) 
(3),(8) 
(3).(8),(10) 
(1 ),(3 ),(8),(10) 
(1),(3),(6),(8),(10) 
( I ),(3 ),(5),(8),(9),( I 0) 
(1),(3),(5).(6).(8).(9),(10) 
( I ),(2),(3),(5),(6),(8),(9),( I 0) 
( I ).{2).(3 ),( 4 ).{5),(6),(8),(9).{ I 0) 
( 1).(2),(3),( 4),(5),(6).(7),(8) .(9),( l 0) 

Sample1 Sampl«:2 
Cp R2 Cp R2 

.21 
,33 
.44 
.50 
.54 
.58 
.62 
.63 
.64 
.65 

102.92 .15 
74.44 .36 
49.79 .40 
36.13 .45 
27.42 .47 
19.74 .S9 
12.26 .61 
11.8S .62 
11.27 .63 
11.00 .66 

159.53 
92.08 
77.64 
65.44 
55.18 
26.3S 
2338 
20.82 
10.34 
11.00 
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Table 4 indicates the model subset selection for 
each sample data set. Table 5 indicates a comparison 
between the R2 and Mallows Cp values from the 
estimation sample data set to the cross validation 
sample data set using parameter estimates from the 
estimation sample. The Mallows Cp values were 
inflated because the parameter estimates applied to the 
second data set altered the residual sums of squares used 
in the formula to calculate them. Although the relative 
ordering of Cp values were the same, these values did 
not indicate the same single best variable subset model 
in the second data set. 

Table 6 compares the parameter estimates using the 
Mallows Cp and the principal components regression 
method for each best variable subset model. The R2 
values will be the same regardless of which method is 
used. The real difference is seen when comparing the 
relative significance of the parameter estimates. The 
Mallows Cp method with correlated predictors indicated 
that ml the parameter estimates were significant. This 
was not the case in the principal components regression 
approach. An applied example will further illustrate 
this distinction between the two methods. 

Applied Example 

Subjects 
Participants in the study were a cohort of students 

accepted into the Texas Academy of Mathematics and 
Science (TAMS) at the University of North Texas in 
Fall, 1993. TAMS is an early college entrance program 
in which students earn approitimately 60 hours of 
college credit by takina University of North Texas 
courses. Students enter TAMS at the beginning of their 
llth year in high school. They live on campus in a 
spcci1~ residence hall and take regular university courses 
in matl1cnu1tics, science and the hun1anities. After two 
years, participnnts receive n special high school diploma 
and hnve anta.~sed at least 60 hours of college credit. 
Each year 11pproxim11tely 200 high school sophomores, 
who have met the selection criteria and completed the 
10th grade, are accepted into the Texas Academy of 
Mathematics and Science. 

In tbe study year, TAMS ncceptcd 204 students. Of 
these, 156 students attended an August orientation, 
which occurred a week prior to tbeir first semester of 
college coursework. and completed the LASSI. There 
were 80 females and 76 males wbo participated in the 
study. The students who took the LASS! were similar 
in demographic background and academic ability as 
previous classes because of the academy's consistent 
admission requirements and pool of applicants. The 
participants' SAT-Mand SAT-V means and standard 
deviations, respecti vet y, were: M =65 I, ID=57; and 
M=S30, fil:2=75. 

Instrument 
The LASSI is an English language assessment tool 

designed to measure college students' use of learning and 
study strategies. It was designed to provide assessment 
and pre-post achievement measures for students 
participating in a learning strategies and study skills 
project. A high-school version is available, but it was 

- . 
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not recommended for use with accelerated students in 
these programs (Eldredge, 1990). The LASSI can be 
administered in a group setting in approximately ,30 
minutes. The carbonless test format allows participants 
to score their own assessment and take a copy of the 
results with them from the testing session. 

The ten LASSI subscales focus on thoughts and 
behaviors related to successful learning. The ten 
subscales are (1) Attitude, (2) Motivation, (3) Time 
Management, (4) Anxiety, (5) Concentration, (6) 
Infonnation Processing, (7) Selecting the Main Ideas, 
(8) Study Aids, (9) Self-testing, and (10) Test Strategies 
(for more details see Weinstein, 1987). Reliability 
studies reported Cronbach alpha internal consistency 
values ranging from ,70 to .86 and test-retest 
reliabilities from .70 to .85. Validity studies have also 
reported normative data for high school and college 
students with different instruments for each group 
(Weinstein, Palmer, & Schulte, 1987). Students 
respond to individual items on each subscale using a 
five-point scale: (5) very typical of me; (4) fairly 
typical of me; (3) somewhat typical of me; (2) not very 
typical of me; and (I) not at all typical of me. Some 
item values are reverse keyed before being added to 
obtain a subscale score. The subscale scores are 
compared by graphing them onto a normal curve 
equi valcnt percentile chart. 

According to the LASSI user's manual (Weinstein, 
1987), students scorina above the 75th percentile do not 
need to improve that specific skill or strategy. Students 
scorina between the 75th percentile and the 50th 
percentile should consider improvement. Students 
scorina below the 50th percentile on a subscale need 
assistance to improve that skill or strnteay. For 
example, students scorina below the 50th percentile on 
the anxiety subscalc would be .considered anxious about 
being in college. Likewise, students scoring below tlae 
50th percentile on the motivation subscale lack 
appropriate motivation to do college level work 
effectively. 

Research Question 
The research question of interest was whether the 

ten LASSI subscales could predict a student's college 
grade point average after one semester of college 
coursework. A related question pertained to whether a 
"subset" of the ten LASS! subscales could better predict 
college grade point average for this sample of students. 
Students not maintaining at least a 2.50 grade point 
average after one semester of college coursework were 
dismissed from the Academy. Knowledge of which 
subscales ore best predictors of college grade point 
average would aid staff in identifying potential at-risk 
students upon entering the Academy. 

Data Analysis 
The data were analyzed using a SAS statistical 

program. The student's college grade point average was 
predicted by the ten LASS! subscales using PROC 
REG with the SELECTION statement requesting the 
best subset model criteria. The PROC PRINCOMP 
procedure was used to create ten orthogonal principal 
component variables. The principal component variable 
parameter estinwtes were then computed using the 
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Table 6 Mallows Cp and Principal Components Regression Comparison (DJ = 100) 

Best Variable 
Subset Model M!!IIQ~ ~R 

l3 Sfa p 

Xl0 .10 .02 5.00 .0001 

X3 .13 .03 4.33 .0001 
XS .18 .04 4.50 .0001 

X3 .10 ,02 5.00 .0001 
XS .16 .03 5.33 .0001 
XlO .07 .02 3.50 .0001 

Xl .10 .03 3.33 .0009 
X3 .10 .02 5.00 .0001 
XS .14 .03 4.67 .0001 
Xl0 ,06 .02 3.00 .0004 

XI .11 .03 3.67 .0004 
X3 .10 .02 5.00 .0001 
X6 .06 ,02 3.00 .0004 
X8 .12 .03 4.00 .0001 
XlO .06 .02 3.00 .0004 

XI .09 .03 3.00 .0004 
X3 .10 .02 5.00 .0001 
XS .09 ,02 4.50 .0001 
XS .12 .03 4.00 .0001 
X9 .06 .02 3.00 .0004 
Xl0 .06 ,02 3.00 .0004 

Xl . 10 .03 3.33 .0004 
X3 .09 .02 4.50 ,0001 
XS .08 .02 4.00 .0001 
X6 .05 .02 2.50 .03 
XS .10 .03 3.33 .0004 
X9 .06 .02 3.00 .0004 
Xl0 .05 .02 2.50 .03 

PROC REG procedure. The number of significant 
principal component parameter estimates were 
subsequently identified. These procedures are outlined 
in the SAS System for Regression manual (Freund & 
Littell, 1991). 

Rm!.fil 
The correlation matri1', means and standard 

deviations of the ten LASS( subscales are in Table 7. 
The intercorrelations among the subscales indicated that 
Anxiety was not significantly correlated with Time 
Management, Information Processing, Support 
Techniques/Materials, and Self-Testing. The lowest 
subscale mean was on Selecting Main Ideas. 

Mallows Cp 
The Mallows Cp statistic is calculated as: Cp = 

(SSEp/MSE). (o. 2p} + I (Freund & Littell, 1991) or 

fcia1.i12al ~ml?!.?aeats 

l3 sea p R2 

.82 . 16 5.13 .0001 .21 

.02 .15 .13 .90 .33 
1.05 . 15 7.00 .0001 

.98 .12 8.17 .0001 .44 

.42 .14 3.00 .0024 

.21 .16 1.31 .1951 

1.04 .11 9.45 .0001 .50 
.07 .12 .58 .59 
.28 .15 1.87 .07 
.14 . 16 .88 .39 

1.06 .10 .60 .0001 .54 
. 11 .12 .92 .35 
.07 .13 .54 .55 
.19 .15 1.27 .20 

-.02 .15 •, 13 .90 

.97 . 10 9.70 .0001 .58 

.42 .11 3.92 .0004 

.31 . 12 2.58 .01 

.22 .14 1.57 . 11 
•. I 1 .14 •,79 .43 
.17 , I 5 1.13 .26 

1.02 .09 11.33 .0001 .62 
.4 I .11 3.73 .0002 

•. 10 .11 -.91 .37 
.09 . 12 .15 .45 
.16 .13 1.23 .24 
.20 .14 1.43 .16 
.11 .14 .79 .44 

Cp = [J/2 (RSSp) • n + 2p] (Mallows, 1973): where 
RSSp is the residual sum of squares from the best 
variable subset model, MSE and/or 2 is the mean square 
error from the full model with all predictor variables, 
n = sample size, and p = number of predictors. 

The procedure for finding the optimum subset of all 
possible subset sizes requires computing 2m equations. 
The ten subscale predictors in the model yielded 1024 
regression equations (210) with associated selection 
criteria statistics {Note: the determination of the nwnber 
of subset equations generated for 12 predictor variables 
from an m variable full model is: m!/[p!(m-p)!]. For 
example, the number of 2 variable subset equations 
generated from a 10 variable model would be 45}. Only 
the single best variable subset models of each size are 
reported. 
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Table 6 (conL) Mallows Cp and Principal Components Regression Comparison (nt = 100) 

Best Variable 
Subset Model Mallows C12 friD£i121l Q?m~nents 

B Sfa p B Sfa p R2 

Xl .10 .03 3.33 .0004 1.03 .09 11.44 .0001 .63 
X2 .02 .01 2.00 .OS . 18 .10 1.80 .09 
X3 .09 .02 4.50 .0001 .03 .11 .27 .77 
XS .08 .02 4.00 .0001 .30 .11 2.72 .01 
X6 .OS .02 2.50 ,03 .01 .13 .08 .92 
XS ,09 .03 3.00 .0004 .12 .13 .92 .36 
X9 .OS .02 2.S0 .03 .25 .14 1.78 .09 
Xl0 .OS .02 2.50 .03 -.05 .14 -.36 .75 

Xl .09 .03 3.00 .0004 ,99 .08 12.38 .0001 .64 
X2 .02 .OJ 2.00 .05 .24 .10 2.40 .02 
X3 ,08 .02 4.00 .0001 .03 .11 .27 .77 
X4 .05 .03 1.67 . 10 .10 .11 .91 ,36 
XS .07 .02 3.50 ,0004 -.08 .13 -.62 • .52 
X6 .OS .02 2.50 ,03 .08 ,13 .62 .52 
XS ,09 .03 3.00 .0004 .02 ,14 .14 ,91 
X9 ,05 .02 2.50 .03 -.001 .14 .007 ,99 
Xl0 .05 .02 2.50 .03 .33 .IS 2.20 .04 

Xl .09 ,03 3.00 .0004 .97 ,08 12.13 .0001 .65 
X2 ,02 ,01 2.00 .OS ,27 . 10 2.70 .008 
X3 .08 ,02 4.00 ,0001 .OS .10 .50 ,60 
X4 .05 ,03 1.67 , 10 -.09 .11 -.82 .42 
XS .07 ,02 3.50 ,0004 ,06 .11 .ss .59 
X6 .05 .02 2.50 ,03 .06 .12 ;SO ,60 
X7 .02 ,02 1.00 .25 -.07 .12 .58 .51 
XS .09 ,03 3.00 .0004 ,01 .14 .07 .94 
X9 .04 .02 2.00 ,05 ,23 . IS I.SJ .12 
XlO .04 .02 2.00 .05 , 19 .15 1.27 .21 

litdl, R•1nuloo pll'lllllllen lui" been roundod lo. two dtdmal placH unlna othtrwlH DOtod. Th• I value• 11 Sl]a. 

Table 7 LASSI Sub1cale Inter-Correlations, Means, and Standard Deviations (n • 1!6) 

LASS! Subscalc 2 3· 4 s 6 7 8 9 10 

1 Attention 
2 Motivation .59 
3 Time Mngmnt .39 .60 
4 Anxiety/Worry .32 .15 ,09 
S Concentration .51 .62 .62 .33 
6 lnfonnation .20 . 15 .39 .03 .26 
7 Select Ideas .25 .36 .31 ,37 .47 .30 
8 Support .24 .40 .47 .OS .38 .45 .40 
9 Class Prep. .38 .so .63 .06 .55 .56 .39 .64 
10 Test Strategy .54 .47 ,33 .so .66 .20 .60 .21 .34 

Mean 34.33 33.12 24.91 28.38 28.S6 28.94 18.32 26.03 27.36 31.46 
SD 4.17 4.73 6. 18 S.92 4.93 5.24 3.51 S.96 5.84 4.S8 

~- Th• •al11ea have been rounded lo two decimal place,. 

- ,, 
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Table 8 Best Model Selection Criteria by Subset Size 

Subset 
Size 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Variables 
in Subset Model 

(2) 
(2).(8) 
(2),(6),(8) 
(2),( 4 ),(8),(9) 
(2),(4)l6),{8),{9) 
(2),(4),(6),(7).(8).(9) 
( 1 ),(2),(4 ),(6),(7),(8),(9) 
( 1),(2),( 4),(6),(7),(8),(9),( 10) 
( 1 ),(2),(3),( 4),(5),(6),(8),(9),(10) 
( 1 ),(2),(3),( 4),(5),(6),(7).(8),(9),( 10) 

.09 

.11 

.14 

.17 

.18 

.18 

.19 

.19 

.19 

.19 

Cp 

10.88 
8.01 
5.16 
2.72 
2.93 
3.68 
5.10 
7.05 

10.04 
11.00 

Hllll, The four irariable aubacl model accordina lo the Cp criteria would be aclcctod u lhe beat model. 

The best subset model for each subset size with the 
corresponding criteria are in Table 8. The Mallows Cp 
of 2.72 indicated afour variable subset model. The four 
variable subset model for predicting college grade point 
was Amiety/ (4), Study Aids (8), and Self Testing (9). 
The Cp criteria also indicated the overfitting caused by 
havin1 too many variables in the model. The large Cp 

Table 9 Principal Component Re1re11lon 

Model Type II SS df MS 

Regression 10,76 10 1.08 

Model 
Components 

(l) 4.16 l 
(2) .99 1 
(3) 1.13 1 
(4) 1.93 1 
(5) .09 1 
(6) .23 1 
(7) .58 1 
(8) 1.33 1 
(9) .29 1 
(10) ,03 1 

Error 46,58 145 .32 

Total 57.34 155 

b'.J!lt. Adj. R2 ,. .13, PCR R\,4,8" 69 % (7.42/10.76). 

values indicated equations with larger mean square error. 
If Cp > {p + 1), for any subset size p, tben bias was 
present. If Cp < {p + 1), for any subset size p, then the 
model contained too many variables. A plot of the Cp 
values against the number of predictors, compared to a 
plot of the (p + 1) values, visually displays this 
phenomenon in Figure 1. 

r P. R2 

3.35 .001 .19 
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Flaure 1 Overlay Plot or Cp and (p + 1) Values 
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Number of predictors in model(*) 

The present pattern of Cp values ~or ~e v~o~s 
subsets of size 1! are typical when mulucollmeanty 1s 
present. The Cp values initially become sm~l~, ~ut 
then start to increase. The plot of Cp values 1s smular 
to a "scree" plot in factor an:-Iysis and as such. a 
multiple regression method might also be useful ID 

determining the number of variables to retain (Zoski & 
Jurs, 1993). The best subset model is indicated when 
the Cp values begin to increase and cross the (p + 1) 
values (Figure 1). - • 

Principal Components Regression 
Principal components are obtained by computing 

eigenvalues from the correlation ~atrix. The 
correlation matrix is used so that vanables are not 
affected by the scale of measurement as in the use of a 
variance.covariance matrix. Since eigenvalues are the 
variances of the principal component variables, the sum 
of the eigenvalues equal the nwnber of v~ables i? the 
full model, just as the sum of standardized vanable 



variances would equal the number of variables. This 
sum is the measure of the total variation in the data set. 
A wide variation in the eigenvalues would suggest the 
presence of multicollinearity among the variables. The 
number of eigenvalues greater than unity, as in factor 
analysis, would indicate the number of variables from 
the full model that would explain most of the variance 
in the data set. The eigenvectors, in contrast, contain 
the coefficients for each principal component variable. 
These coefficients are used to create the observed values 
of the original variables. These observed values are 
then used in multiple regression as orthogonal predictor 
values with no multicollinearity present. 

Preliminary inspection of the model components 
(Type II SS) in Table 9 indicated three principal 
component variables (1, 4, and 8) that accounted for 
69% of the variance in predicting college grade point 
average (7.42/10.76). The first model component alone 
explained 39 % of the variance (4.16/10.76). 

A comparison of the full model parameter estimates 
in Table 10 between the original correlated predictors 
and the principal component regression variables sheds 
better insight into the best variable subset model 
selection criteria. The multiple regression analysis with 
correlated predictors identified Motivation (2) and 
Support (8) while the principal component method 
identified Attention (1), Anxiety/worry (4), and Support 
(8). 

Summary 
The q, criteria identified a rour variable predictor 

model as best: Motivation (2), Anxiety/worry (4), 
Support (8), and Class Preparation (9). This four 
variable subset model was further verified by cxaminini 
where the plot of Cp values against the (p + 1) values 
crossed. The Cp criteria selected the smallest variable 
subset model in the presence of var i ab I e 
multicollinearity. The principal components approach 
identified Attention (I), Anxicty(4), and Study Aids (8). 
In examining the parameter estimates in the multiple 
regression analysis, only Motivation (2) and Study Aids 

.• 
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(8) were significant relative to the other predictors in the 
model. The Mallows Cp and PCR criteria indicated 
slightly different sets of predictor variables depending 
upon whether the indcpcudeot variables were correlated. 

In using multiple regression it is important to have 
a theoretical basis for the regression model and to 
consider model validation. A common misconception 
in multiple regression is that the model with all the 
significant predictors included is the best model. This 
isn't always the case. The problem is that the beta 
values and R-squared values are data dependent due to the 
least squares criterion being applied to a specific sample 
of data. A different sample will usually result in 
different parameter estimates and variance explained. 
Although the standard errors of the beta values do 
provide the researcher with some indication of the 
amount of change expected from sample to sample, the 
fact remains that the estimates obtained from one 
sample may predict poorly when applied to a new set of 
sample data. The primary method to assess any change 
in estimates is to replicate the regression model using 
other sample data. The Mallows Cp criteria was 
similarly suspect because values were inflated upon 
cross validation and the best variable subset model in 
one sample was not identified in the other sample. 
Obviously, if the mean square error estimates and the 
residual sums of squares fluctuate, then model selection 
will be erroneous (see Mallows Cp fonnula). 

The rationale behind a regression model is to 
estimate 62 (the true model's mean square error 
variance). Since 62 is not generally known, a 
reiiearcher must estimate it from a knowledge of prior 
research (62 = 62y,,t), oblain estimates from a model 
containini all tlu .. 'Oretically relevant predictors, replicate 
the study, or use bootstrappini, jacknifing. and cross­
validation methods. In tliis regard, effect size 
considerations, as recommended by Thompson ct al. 
(1991), become important to consider in evaluating a 
regression model. 

Table 10 Multiple Regression and Principal Component Parameter Estimate Comparisons 

Mallows Cp Principal Components 

Variable 8 SEs p 8 SES p 

1 .01 .02 .68 .50 .08 .02 3.60 .001 

2 .03 .02 2.29 .02 .06 .04 1.76 .081 

3 .002 .01 . 19 ,84 -.08 .04 -1.88 .062 

4 .02 .01 1.84 .07 .14 .06 2.45 .015 

5 -.003 .02 -.17 .87 -.03 .06 -.53 .600 

6 .01 .01 1.30 .20 .05 .06 .84 .404 

7 -.02 .02 -1.02 .31 .10 .08 1.34 .182 

8 -.03 .01 -2.82 .005 -.18 .09 -2.03 .044 

9 .02 .01 1.28 .20 .09 .09 .95 .341 

10 .005 .02 .27 .79 -.03 .10 -.31 .758 
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Testing Directional Research 
Hypotheses 

Keith McNeil 
New Mexico Slate University 

Theory, literature review, and past research results will guide the development and testing or most research questions. This 
paper argues that _mos! research questions will be directional, instead of nondirectional, particularly since most researchers 
~n~ ~o make a. directional ~onc_lusion. Although manr re~earchers incorrectly make directional conclusions after finding 
a1gnif1cance with a nond1rect1onal teat, teats of directional hypotheses are the only ones that allow directional 
conclusions. 

M ost computer packages only report the 
nondirectional probability, Therefore, an 
adjustment is necessary when a directional 

research hypothesis has been tested. Exhibits are 
provided for testina both directional and nondirectional 
hypotheses rcaardina a) the difference between two 
means, b) sinale population conelation, c) traditional 
covariance, d) interaction between two dichotomous 
predictors, e) interaction between one continuous 
variable and one dichotomous variable, f) contribution 
of a variable, and a) sdected non-linear hypotheses. 

Researchers have a choice of various statistical 
tools; readers of this journal realize that most research 
hypotheses can be tested with the OLM. Each 
statistical tool can be used to test both nondirectional 
research hypotheses and directional research hypotheses. 
The researcher has to decide whether the research 
hypothesis is directional or nondirectional. The choice 
should not be difficult, as the decision is aff;ected by 
theory, literature review, and past research. If these 
areas do not provide a clue, then the researcher should 
consider the desired conclusion. If the researcher is 
content with stating, "There is a difference between 
Treatment and Comparison," then the nondirectiooal 
research hypothesis is appropriate. But if all the forces 
point to desiring to make the directional conclusion, 
"Treatment is better than Comparison," then a 
directional research hypothesis is appropriate. The 
choice of a directional or nondirectional research 
hypothesis is not a statistical one. The choice is driven 
by the research base and tied to one's desired conclusion. 

A sample of three recent statistics texts illustrates 
the confusion related to this issue. Grimm ( 1993) 
waffles on the use of directional research hypotheses. 

Research hypotheses (scientific hypotheses) are 
usually stated as predictions about the expected 
direction of an experimental effect. For Exhibit, 
persuasion technique A will induce i:reater attitude 

change than technique B; subjects' perceptions of 
control over a strcssor will S,ccrease stress reactions; 
or higher levels of physiological arousal will create 
stronger emotions. Researchers typically frame 
their statistical hypotheses in a nondircctional 
form. In other words, even thouah the research 
hypothesis makes a prediction about which of two 
means will be laraer, the null and alternative 
hypotheses allow the investiaator to discover if a 
treatment effect is opposite to the predicted effect. 
(p. 184) 

His major concerns are that choice of the direction 
should be made~ data arc wllectcd, a valid concern. 
But the other concern is that results in the opposite 
direction are ignored with a directional test. If one is 
theory buildina, then one may want to investigate those 
anomalous results to see if, in fact, they are replicable. 
Grimm (1993) does not treat directional hypotheses 
with statistical tests other than the difference between 
two means, although directional interpretations are often 
made with nondirectional tests of significance. 

Sprinthall (1990) introduces directionality when 
discussing differences between two means, but treats the 
concept as a mechanical issue, "Remember, in terms of 
technique, the only difference between a one-tail and a 
two-tail tis how we look up the significance level" 
(p.185). He also doesn't discuss directional tests of 
significance for other tests of significance, but makes 
directional conclusions from several nondirectional 
research hypotheses. Several of his examples arc stated 
as directional, but tested as nondirectional. Sprinthall 
(1990) points out that ~the alternative hypothesis for E 
can never be directional. That is, if L is computed by 
taJcing the square root off. then its significance must 
be evaluated against the critical values in the two-tailed 
!, table "(p.275). That this is not so will be 
demonstrated later. 
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Shavelson (1988) is more in line with the essence 
of this paper. He introduces directional research 
hypotheses with the very first statistical test, even 
discussing the directional hypothesis before the 
nondirectional. In discussing most subsequent tests, he 
uses the same approach. He continuously emphasizes 
that "if both theory and empirical evidence suggest the 
outcome of a study, a directional research hypothesis 
should be used" (p. 251). He discusses directional 
hypothesis testing for a single mean, difference between 
two means, correlation, planned comparisons, and 
difference between two correlations. He does not 
discuss directional hypotheses in terms of ANOVA, 
ANCOV A, or multiple regression. Because he doesn't 
discuss the use of one degree of freedom E tests, he 
doesn't attend to the issue of computer-generated 
probabilities discussed in this paper. 

Rationale for Directional Research 
Hypotheses 

In the case of a new treatment, a researcher should 
show that it is JW2tt effective, costs ku, is~ to 
administrate, has 1..2.wua: lasting impact, etc. Who 
would care if the new treatment is worse than the 
existing comparison treatment? Any idiot can design a 
new treatment that is ~. costs UU2I£, is ~ to 
administer, has a lh.2.w:r lastini: impact, etc. What 
would the research community learn from such 
findini:s? Over many years of experience with this 
issue, ii has become apparent that nondircctional 
research hypotheses arc only useful in dredging data hi 
search of hypotheses for another researcher with some 
other data to verify. If a researcher has a i:ood iiraap of 
the content area, a directional research hypothesis will 
be desired. 

Model Structure 
An area of confusion is that W2lh directional and 

nondircctional research hypotheses arc tested by the 
same null hypothesis. For instance, if the research 
hypothesis is directional, '7rcatment is more effective 
than Comparison," the statistical hypothesis ls 
"Treatment is as effective as Comparison." If the 
research hypothesis is nondircctional, "Treatment and 
Comparison arc not equally effective," the statistical 
hypothesis is "Treatment is as effective as 
Comparison." Most statistics texts illustrate this fact, 
but give primary coverage to the nondirectional 
hypothesis. Unfortunately, statistics texts do not 
emphasize the permissible conclusions of the two. 
Indeed, some statistics texts confuse the issue by 
making directional conclusions from nondireetional 
research hypotheses. Journal reviewers and editors 
reinforce the confusion by allowing only the statistical 
hypothesis to be reported. Why not force the author to 
state what is desired? 

- . 
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From a OLM perspective, the Full Model and 
Restricted Model are identical. The difference is the 
desired algebraic status of the weighting coefficient 
which will be identified as "want" in the following 
exhibits. Statistical packages (e.g., SAS, SPSS, 
BMDP) report only one probability value--that for the 
nondirectional research hypothesis. Consequently, many 
users mistakenly report that nondirectional probability 
when they have tested a directional research hypothesis. 

Adjustment of Computed Probability 
Statistics texts make the case that the required 

critical value depends upon whether one has a directional 
or noodirectional research hypothesis. We have aJI seen 
pictures of alpha in one tail of the t-distribution for a 
directional hypothesis, and alpha split between the two 
tails for a nondirectional research hypothesis. We also 
all remember that the relationship between land f is 12 
= f. Thus the tails of the negative and positive sides of 
the! distribution both constitute the right-hand tail of 
the E distribution, as in Figure 1. What this means is 
that we would get a large E value half the time when 
sample mcan-r > sample meanc and half the time when 
sample meanr < sample meanc, If our research 
hypothesis was directional, then we would be interested 
only in one of the two halves of the Edistribution in 
Figure 1. If the caleulaled f was 4.24, then the reported 
(nondirectional) probability would be .05. But if we 
had a directional research hypothesis, (say population 
mean-r > population mcaric) and the results were in 
line with our research hypothesis (sample meanr = 15, 
sample mcanc = 10) instead of being exactly opposite, 
say (sample mc:anc = 15, sample meanT = 10), then we 
would obtain a 1 value of 2.06 and we would need to 
divide the reported probability by 2, us discussed in 
Figure 2. 

On the other band, if our results did turn out 
opposite to eitpectations, we would not ww1t to say we 
Imel "significant results." Suppose our results produced 
a 1 v11Juc of -2.06 at @ in Figure l. Although that 1 
value translates to an f value of 4.24, one cannot rely 
on the f value (and the probability associated with it). 
One must check the data to see if the results are in the 
direction hypothesized. If the results are in the 
hypothesized direction (the shaded area in the bottom of 
the E distribution), then the computed probability must 
be divided by 2. If the results are not in the desired 
direction, then the computed probability must be divided 
by 2 and subtracted from 1.00. These procedures are 
outlined in Figure 2 and apply to each of the following 
exhibits. 
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Fl1ure 1 Relationship Between 1 and f. with Respect to Directional and Non-Directional 
Hypotheses 
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Flaure 2 Procedures for Cban1ln1 Computer-Generated Nondlrectlonal Probability of F-tests 
to Dlrectlonal Probabllltles 

Check to see whether Condition I or Condition II holds. 

Condi don I: If rcsul ts (means, correlations, difference between means, etc.) are in the hypothesized direction: 
Divide nondirectional computer probability by 2. 

Example: Nondircctional probability on printout is .08. Therefore the directional probability is (.08 / 2) .04, 
which is the probability that should be reported, and is indicated by the * in Figure I. 

Condition D: If results (means, correlations; differences between means, etc.) are opposite to the hypothesized 
direction, divide nondired.ional computer probability by 2 and subtract the resulting value from 1.00. 

Example: Nondirectional probability on printout is .08. Therefore the directional probability is 1 - (.08 I 2). or 
.96, which is the probability that should be reported, and is indicated by the@ in Figure I. 

l::IJlll.. Tho dinte1ioaal ._...h h,ypochai1 could oal1 ha¥1 been tuled when the numerator de'"'" of (Nedom or, equal la I. 
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Examples 

Difference Between Two Means 
Exhibit 1 contains both the directional research 

hypothesis and the nondirectional research hypoth~is 
for testing the difference between two means. NotJce 
that both research hypotheses use the same statistical 
hypothesis. The two Full Models are exactly the same, 
and the two Restricted Models are exactly the same. 
The difference is in the "want." The different wants 
require that different actions be taken on the computed 
probability, as discussed in the previous section. The 
different wants also impact the permissible conclusions. 

Exhibit 1 Difference Between Two 
Population Means 

Directional Research Hypothesis: For the population of 
interest, Group A has a higher mean than Group B on 
the criterion Y. 

Nondirectional Research Hypothesis: For the population 
of interest, Group A and Group B are not equally 
effective on the criterion Y. 

Statistical Hypothesis: For the population of interest, 
Group A and Group Bare equally effective on the 
criterion Y. 

Full Model: Y = aOU + aOA + E.1 

Want (for directional RH) a> 0; restriction: a= 0. 
Want (for nondirectional RII) a ;,t 0; restriction: a= 0. 

Restricted Model: Y = aOU + E4 

Where: Y = criterion: U = l for all subjects; OA = l if 
subject in Group A, 0 if subject in Group B: and 110 and 
11 llfe least squru-e, weighting coefficients ~culatcd sons 
to utinimi.ze the sum of the sqUllfcd values 1n the error 
vectors. 

PROC REG; MODEL Y = OA: 
TESTOA = O; 

Correlation . . 
The above discussion is also appropnate to tcsung 

correlations. If a new testing instrument is developed, 
one would hope that it is rdiable and val!d. These 
conclusions require positive correlat1~ns, not 
correlations different from 0. If a theory posits that X 
and y are related, the theory should specify if that 
relationship is positive or negative. If one is goi_ng to 
consider studying for a test, one needs to know if ~e 
relationship between studying and exam grade 1s 

positive or negative! Exhibit 2 provides _the comp~ete 
GLM solution of a research hypothesis regarding 
directional correlation. 

- ,, 
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Exhibit 2 Correlation 

Directional Research Hypothesis: For some population, 
Xis positively related with Y. 

Nondirectional Research Hypothesis: For some 
population, Xis related with Y. 

Statistical Hypothesis: For some population, X is not 
related with Y. 

Full Model: Y == a0U + bX + El 

Want (for directional RH) b > 0; restriction: b == 0. 
Want (for nondirectional RH) b "¥- O; restriction: 
b = 0. 

Restricted Model: Y = aOU + E2 

Where: Y = criterion; U;;:; 1 for all subjects; X = 
predictor score for subject; aO and b arc least squares 
weighting coefficients calculated so as to minimize the 
sum of the squared values in the error vectors. 

PROC REG; MODEL Y = X; 
TEST X =0; 

Analysis of Covariance • 
Assume that you have a Treatment and Compari~on 

situation as previously described, and you want to rulJUSt 
the posttest scores for initial differences In pretest 
scores. You would want the Treatment jroup to be 
huhll than the Comparison' iroup on the adjusted 
posttcst scores. Again, who would be interested in n 
treatment that produced lower adjusted posttest scores? 
Exhibit 3 provides the OLM solution for bot~ the 
nondirectioual and directional analysis of covariance 
research hypothesis. The directional reacarclt hypothesis 
in ANCOV A is applicable only when there are two 
groups being compared, resulting in one de~ree of 
freedom in the nwnerator of the f. When there 1s more 
than one degree of freedom in the numerator, only a 
noodircctional research hypothesis can be tested. 

Exhibit 3 Analysis of Covariance 

Research Hypothesis: For a given population, Method 
A is better than Method B on the criterion Y, over and 
above the oovariable C. 

Nondirectional Research Hypothesis: For a given 
population, Method A and Method B are differentially 
effective on the criterion Y. over and above the 
covariable C. 

Statistical Hypothesis: For a given populati?n, 
Methods A and Bare not differentially effective on the 
criterion Y, over and above the co variable C. 
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Full Model: Y = aOU + a2G2 + clC + El 

Want (for directional RH) a2 < O; restriction: a2 = O 
Want (for noodirectional RH) a2 not equal O; restriction: 
a2=0 

Restricted Model: Y = aOU + clC + E2 

Where: Y = criterion; U = I for each subject; 02 = I if 
subject received Method B, 0 if Method B; C = 
covariable score; and EiJ, a2, and cl are least squares 
weighting coefficients calculated so as to minimii.e the 
sum of the squared values in the error vectors. 

PROC REG; MODEL Y = 02 C; 
TEST 02 =0; 

Interaction Between Two Dichotomous Variables 
Suppose you have two treatments and two levels of 

motivation, and are interested in Posttest scores. 
Traditional analysis of variance tests for the interaction 
effect first, and then proceeds to the main effects if the 
interaction is no! significant, and to simple effects if the 
interaction effect is significant. The interaction effect 
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. usually is treated as an assumption, or as an effect that 
is preferably not in eltistence. But the interaction effect 
may be the researcher's primary hypothesis, and it may 
be either directional or nondirectional. (In traditional 
analysis of variance it is always nondirectional, unless 
tested as an a priori contrast.) • 

Suppose that the treatment was designed to be 
particularly responsive to highly motivated students. 
Based on the assumption that there might be ways to 
increase student's motivation, you expect the directional 
interaction pictured in Figure 3. Your expectation is 
that "Students with high motivation will do better on 
the Posttest than students with low motivation, and the 
difference will be greater for the Treatment than for the 

,:Comparison." The focus.of the directional iqteraction 
could just as well have been on treatments:••with the 
expectation being "freatment students will do better on 
the Posttest than ~omparison students, and the 
difference will be greater for high motivated students 
than for low motivated students." The two statements 
are equivalent and both identify directional interaction. 
The complete OLM solution is provided in Exhibit 4. 
Notice again that the only difference between directional 
and nondirectional is in the "want," in the adjustment of 
the probability, and the pennissible conclusion. Again, 
the directional interaction can be tested only if there is 
one degree off reedom in the numerator of the f. 

Flaure 3 Directional Interaction Between Two Dichotomous Predictors 

Treatment 

Posttesl 

Comparison 

Low High 

Motivalion 
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Exhibit 4 Directional Interaction Between 
Two Dichotomous Predictors 

Directional Research Hypothesis: For a given 
population, the relative effectiveness of MethodA 
(XIO) as compared to Method B (Xll) on theaiterion 
of interest (X9) will be greater for Group A (X 12) than 
for Group B (Xl3).. • • • • 

Nondirectional Research Hypothesis: For a given 
population, the relative effectiveness of Method A 
(X 10) as compared to Method B (X 11) on the aiterion 
of interest (X9) will be different for Group A (X12) than 
forGroupB (Xl3). ,., • • 

·.",;'/ ,' ·,.t,;, , 
Statistical Hypothesis: For a given population, the . 
relative effectiveness of Method A (Xl0) as compared to 
Method B (X 11) on the criterion of interest (X9) will be 
the same for Group A (Xl2) as for Group B (Xl3). 

Full Model: X9 = aOU + b(X10*Xl3) + c(Xl 1 *X12) + 
d(Xll *X13) + El 

Want (for directional Rl-1) (c) > (b - d); 
restriction: (c) = (b - d) 
Want (for nondirectional RH) (c} not equal (b • d); 
restriction: ( c) = (b - d) 

Restricted Model: X9 = aOU + eXl0 + fX12 + E2 

PROC RBO; MODEL X9 = XI0"'Xl3 x11•x12 
Xll"'Xl3; 

1l~T (Xll "'Xl2) = (XlO"'XIJ • Xll*Xl3); 

Jntcrprcllttion: If the wciahtina coefficient c is 
numerically laracr than (b • d), the directional 
proln1bility is appropriate and the followina conclusion 
can be made: For a given population, the relative 
cffecti vcncss of Method A (X 10) as compared to method 
B (X 11) on the criterion of interest (X9) will be greater 
for Group A (Xl2) than for Group B (Xl3). 

Interaction Between One Continuous Variable and One 
Dichotomous variable 

An e:\tension of the previous section would be to 
consider motivation as a continuous variable instead of 
as a dichotomous variable. The same rationale applies, 
although aow since motivation is being considered as a 
continuous variable two lines will be fit to the date, not 
four means. Figure 4 depicts the e:ir.pected directional 
interaction. Note that Figure 4 appears very similar to 
Figure 3, the only difference is that motivation is 

- . 

TBAauNO 

considered as a continuous variable in Figure 4. The 
directional interaction research hypothesis would be, 
"As motivation increases, the relative superiority of 
Treatment over Comparison increases." Shavelson 
(1988) presents a directional example of this type, 
framed as the "test for difference between regression 
slopes from two independent samples." His 
presentation is in terms of a complicated ! test. The 
OLM approach illustrates the similarity of all 
directional research hypotheses and relies on the same 
model comparisons as all the previous examples. 
Exhibit 5 contains the complete GlM solution for 
interaction between one continuous variable and one 
dichotomous variable. 

Exhibit 5 Interaction Between One 
Continuous Variable And One Dichotomous 
Variable 

Directional Research Hypothesis: For a given 
population, as X increases, the relative superiority of 
Method A over Method Bon Y will linearly increase. 

Nondircctional Research Hypothesis: For a given 
population, as X increases, the relative superiority of 
Method A over Method Bon Y will linearly change, 

Statistical Hypothesis: For a given population, as X 
increases, the difference between Method A and Method 
B on Y will remain the same. '· 

Full Model: Y = aU + alUl + bl XI+ b2X2 + El 

Want (for directional RH) bl> b2; 
restriction: bl= b2 . 
Want (for nondircctional RH) bl not equnl b2; 
restriction: bl = b2 

Restricted Model: Y = aU + b3X + F.8 

Where: Y = the criterion; Ul = I if tJ1e score on the 
criterion is from a subject in Method A, 0 otherwise; X 
= the continuous predictor variable; XI = (Ul *X) = the 
continuous predictor variable if the criterion is from a 
subject in Method A, 0 otherwise; U2 = 1 if the score 
on the criterion is from a subject in Method B, 0 
otherwise; X2 = (U2*X) = the continuous predictor 
variable if the criterion is from a subject ia Method B, 0 
otherwise; and a, al, bl, b2, and b3 are least squares 
weighting coefficients calculated so as to minimize the 
sum of the squared values in the error vectors. 

PROC REG; MODEL Y = Ul XI X2; 
TEST XI =X2; 
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Flaure 4 Directional Interaction Between One Continuous Predictor (Motivation) and One 
Dichotomous Predictor (Type of Treatment) 

Posttest 
------------ Treatment 

Comparison 

0 2 3 4 5 6 7 8 9 10 11 12 

Motivation 

Nou-Ljncar RcJatjonshjps 
If all the predictor variables of interest arc 

polynomial terms, the dircc:tional research hypothesis is 
still appropriate. Consider the case in which the linear 
and sccond-de&rec tcnns arc under consideration. The 
second-degree curve can be either an inverted U or U­
shaped. The U-shaped curve identifies a "trouah" of 
minimum performance on the criterion, whereas the 
inverted U identifies a "peak" of maximum perfonnancc 
on the criterion. These arc two very different 
conclWJions and arc a function of the sign of the second­
degree term. 1be curves are identified in Figure 5 and 
the OLM solution is in Exhibit 6. 

Exhibit 6 Non-linear Hypotheses 

Directional Research Hypothesis: For a given 
population, there is a positive second degree effect of X 
on Y, over and above the linear effect of X. 

Nondircc:tiooal Research Hypothesis: For a given 
population, there is a second degree effect of X on Y, 
over and above the linear effect of X. 

Statistical Hypothesis: For a given population, there is 
nQ! a positive second degree effect of X on Y, over and 
above the linear effect of X. 

Full Model: Y = a0U + a.X + bXl6 + El 
Where: XI 6 = X*X 

Want (for directional RH) b > 0; restriction: b = 0 
Want (for nondirectional RH) b not equal 0; restriction: 

b=0 

Restricted Model: Y = aOU + aX + E2 

PROCREO; MODELY=X Xl6; 
TEST X16 =0; 

Contribution of One Variable, Oyer agd Above Othq 
Variables 

A researcher may be interested in how a variable is 
related to a criterion, after the effects of several other 
variables have been "statistically adjusted." If the 
variable is dichotomous (say study or not study). then 
this question is simply an extension of the analysis of 
covariance discussion into more than one covariable. 
The OLM solution would simply have the multiple 
covariables in the Full Model as well as in the 
Restricted Model as in Exhibit 3. 

If the variable under concern is a continuous 
variable (say hours of studying), then whether the 
variable relates positively or negatively to the criterion 
after adjustment for the covariables would be of interest 
in the directional situation. Again, knowing that 
studying is predictive of the criterion (over and above 
the other variables) is not that informative; what is 
infonnative is knowing whether studying is positively 
related or negatively related to the criterion. If one 
wanted to use these results to recommend trying to 
increase the criterion, one would have to know the 
directional relationship between studying and the 
criterion. The GLM solution is provided in Exhibit 7. 
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Figure S U-Shaped Curves Resulting From Negative and Positive Weights of Second Degree 
Terms 

y 

Y = aU + bX = cX2 + E, where c is negative. 

y 

Y = aU + bX + cX2 + E, where c is positive. 

Exhibit 7 General Over and Above 

Directional Research Hypothesis: For a given 
population, X6 is positively predictive of the criterion 
Y, over and above XI, X2, X3, and X4. 

Nondirectional Research Hypothesis: For a given 
population, X6 is predictive of the criterion Y, over and 
above X 1, X2, X3, and X4. 

Statistical Hypothesis: For a given population, X6 is 
not predictive of the criterion Y, over and above X 1, 
X2, X3, and X4. 

Full Model: Y = a0U + alXl + a2X2 + a3X3 + a4X4 
+ a6X6 + El 

Want (for directional RH) a6 > 0; restriction: a6 = 0 
Want (for nondirectional RH) a6 not equal 0; restriction: 
a6=0 

Restricted Model: Y = a0U + a1Xl + a2X2 + a3X3 + 
a4X4 + E2 

Where: Y = the criterion; XI, X2, X3, X4, X6 = 
continuous or categorical information; and a0, al, a2, 
a3, a4, and a6 are least squares weighting coefficients 
calculated so as to minimize the swn of the squared 
values in the error vectors. 

PROC REG; MODEL Y = XI X2 X3 X4 X6; 
TEST X6=0; 
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Summary 
Reseachers often do not follow the knowledge base 

by stating a directional research hypothesis. Often, 
though, directional conclusions are made from testing 
non-directional research hypotheses. Since the 
statistical (or null) hypothesis is the same for 
directional and non-directional research hypotheses, 
researchers often overlook the distinction. In addition, 
all canned computer packages report only the non­
directional probability. This paper has illustrated how 
the OLM can be used for directional hypothesis testing 
and for obtaining the correct directional probability. 

All the previous exhibits are subsets of the same 
general situation described in Exhibit 7. The differences 
depend on the number of predictors, number of 
covariates (many, one, none), and whether the variable 
tested is continuous or dichotomous. In all the 
statistical tests discussed, a directional research 
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hypothesis can be tested if there is a directional 
expectation. If there is a directional research 
hypothesis, there is only gm:. want, 2ns. restriction, and 
~ degree of freedom in the numerator of the f-test. In 
all cases the reported nondirectional probability must be 
adjusted based on how the sample results match the 
directional research hypothesis. These are all essential 
elements of a directional hypothesis. 
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Orthogonal Comparisons 
A· Teaching Example 

Keith McNeil 
New Mexico Stale University 

When the omnibus one-way Analysis or Variance (ANOVA) is found to be significant, the research question that "at least 
two populations have different means" can be accepted, but is found to be lacking. (What most textbooks fail to mention is 
that this means that the one-way ANOVA question is a fruitless question.) Most textbooks tum to post-hoc analyzes as a 
way to detennin,e •w~e~e the significance is.• But that journey is often muddled by: a) discussion of a myriad of post-hoc 
p~ocedures, b) 1nsu,ffac1ent parallel examples, c) downplay or the value of planned comparisons, and d) failure to tie 
orthogonal comparisons to the two-way ANOVA. This paper will attempt to alleviate the above issues, with various 
examples of four groups. 

S uppose that a researcher is interested in comparina 
four different treatments, and is encouraged to 
"first conduct the one-way ANO VA." The 

research hypothesis bein,i tested here is, "For the 
population, at least two of these treatments arc 
differentially effective." Given that the omnibus Eis 
si,inificant, the researcher can conclude, "For the 
population, at least two of these treatments are 
differentially effective." Note that !:'..bwl treatments are 
different cannot be specified, Norean the more effective 
treatment be specified. The omnibus one-way E can be 
called a non-specific, non-directional research 
hypothesis, yielding littJe (or no) information. 

Post-Hoc Comparisons 
The myriad of post-hoc comparisons have been 

developed to attempt to rectify the non-specificity 
problem. These procedures protect the Type I error, 
some with orthogonal comparisons, It is this family of 
orthogonal comparisons on which the remainder of the 
paper will focus. 

Ortho1onal Comparisons 
A comparison is said to be orthogonal if the set of 

contrast coefficients sum to zero, and if the sum of 
cross products with all other orthogonal comparisons 
also sums to zero. The set of contrast coefficients for 
RHl in Exhibit 1 meets both criteria, as the set of 
coefficients sums to O ( l + 0 + 0 + -1 = 0), and the 
sum of the cross products of set 1 with set 2 also sums 
to O [(l x 0) + (0 x 1) + (0 x -1) + (-1 x 0) = O]. Each 
orthogonal comparison is a t-tcst question, either 
comparing one group to another (as in Rl-11 and RH2), 
or some combination of groups to some other 

- . 

combination of groups (as in RH3). With four ,iroups, 
there is three degrees of freedom associated with the 
Between groups sum of squares, The three orthoaonal 
contrasts identify three ways this sum of squares can be 
partitioned. It should be noted here that there are many 
(infinite?) ways that the sum of squares can be 
partitioned--some more meaningful for how the four 
groups were detcnnincd. 

An example of when research hypothesis l (RH 1 ), 
RH2, and RH3 might be of interest is when a researcher 
is studying two classes of each of two teachers, one in 
the AM and one in the PM. Let's assume that M 1 is 
Teacher A, AM; M4 is Teacher A, PM. RHl could be: 
"There is a difference in the effectiveness of Teacher A 
in the PM from that in the AM." Further asswne that 
Ml is Teacher B, AM and M3 is Teacher B, PM. RH2 
could be: "There is a difference in the effectiveness of 
Teacher 8 in the PM from that in the AM." While 
RIil and RH2 both compare teacher effectiveness of 
AM and PM, the comparisons are on different teachers, 
so what is found with RHl (reacher A) will not have a 
bearing on what is found with RI-12 (reacher B). In this 
case, the data to determine the answer to RH 1 is 
different from that determining the answer to RH2. 
(The data doesn't have to be different in order for 
orthogonality to hold, as evidenced by RH3, but it 
certainly clarifies the issue). RH3 compares the 
effectiveness of Teacher A (averaged over AM and PM) 
with the effectiveness of Teacher B (averaged over AM 
and PM). Logically, the outcome of RHl (the relative 
effectiveness of Teacher A al AM and PM). and the 
outcome of RH2 (the relative effectiveness of Teacher B 
at AM and PM) does not impinge on the overall 
effectiveness of Teacher A as compared to Teacher 8. 
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Exhibit 1 One Possible Set Or Contrast Coefficients With Four Groups: Non-Directional 
Hypotheses 

Ml M2 M3 M4 

RHI Non-directional: Ml not equal M4 • 
SH: Ml =M4 OR l*Ml-l*M4 = 0 0 0 -1 

RH2 Non-directional: M2 not equal M3 
SH: M2=M3 OR l *M2 -1 *M3 = 0 0 1 -1 0 

RH3 Non-directional: Ml+M4 not equal M2+:M3 
SH: Ml+M4 = M2+:M3 OR l*Ml + 1 *M4 -1 *M2 •l*:M3 = 0 1 -1 -1 I 

Dlrectlonal, Planned Orthoaonal 
Comparisons 

The above research hypotheses were non­
directional, which is to say that differences were 
expected, but not directionally specified. For RHl, if 
the orthogonal contrast if found to be significant, then 
the conclusion is simply a restatement of the research 
hypothesis, %ere is a difference in the effectiveness of 
Teacher A in the PM from that in the AM." While we 
know now that "groups Ml and M4 arc different," we 
do not know bow they are different. A directional 
conclusion can be made if the direction was posited in 
the research hypothesis before the data were looked at 
(preferably before the data were collected). Orthoaonal 
contrasts spc.cificd before data collection are ref erred to 
as planned comparisons, and may be directional. 
Directional conclusions cannot be made from any post• 
hoc comparisons, only from planned comparisons. 
fahibit 2 contains the same set of orthoaonal_ 
comparisons as in fahibit l, but here as planned 
comparisons with cxpccwtions: (Rl-11') Teacher A being 
more effective in the AM than the PM, (RH2'), Teacher 
B being more effective in the AM than the PM, and 
(RH3') Teacher A being more effective than Teacher B 
(averaging over AM and PM classes). 

Notice that the statistical hypothesis (SH) is the 

same in Exhibit 1 and Exhibit 2, and the orthogonal 
coefficients are the same. Again, what is different is the 
expected direction, and the permissible conclusion. 

RH4, RI--15, and RH6 in Exhibit 3 are another set 
of three orthogonal contrasts. While_ RHS and RH2 are 
exactly the same, RH4 and RH6 are different from RHl 
and RH3. The coefficients within RH4, RHS, and RH6 
all add up to zero, and the sum of the cross products add 
up to zero, thus RH4, RI-IS, and RH6 constitute a 
different set of three orthogonal contrasts. Which set a 
researcher should use depends on the design of the study 
and the questions one has of the aroups. Indeed, there 
arc many other sets of orthogonal contrasts. As in all 
research, the questions should guide the analysis. With 
post-hoc comparisons, the researcher is limited to one 
less question than there arc groups. 

An eitample of when RH4, RH5, and RH6 miaht 
be of interest is when a r~searcher is testing the 
eff ecti vencss of three diff crent New treatments (M 1, 
M2, and M3) and one Coinparison treatment (M4). 
Since there arc four groups, three orthogonal questions 
can be asked, and if the questions are asked before 
inspection of the data, Directional Research Hypotheses 
can be tested. Indeed, if a New treatment is being 
researched.we should expect it to be better than the 
Eltisting treaunent. RH4 detennines if the avererage 

Exhibit 2 One Possible Set Of Contrast Coerrlclents With Four Groups: Directional 
Hypotheses 

Ml M2 .MJ M4 

RHl' Directional: Ml > M4 
SH: Ml =M4 OR l*Ml-l*M4=0 0 0 -1 

RH2' Directional: M2 > M3 
-1 0 SH: M2 = M3 OR l*M2 -l*MJ = 0 0 I 

Rl-D' Directional: Ml+M4 > M2+M3 
-1 SH: Ml+M4 = M2+.MJ OR I*Ml + l*M4-l*M2 -l*M3 = 0 1 -1 
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Exhibit 3 Another Possible Set or Contrast Coefficients With Four Groups 

Ml= New Treatment #1 M2 = New Treatment #2 

RH4 Non-directional: (Ml+M2+M3)/3 not equal M4 
Directional: (Ml+M2+M3)/3 > M4 

M3 = New Treatment #3 M4 = Existing Treatment 

Ml M2 M3 M4 

SH (Ml+M2+M3)/3=M4 OR l*Ml + l*M2+ l*M3-3*M4=0 1 I ··,~3 

RH5 Non-directional: M2 not equal M3 
Directional: M2 > M3 

SH: M2 = M3 OR l *M2 - 1 *M3 = 0 

RH6 Non-directional: Ml not equal (M2+M3)/2 
Directional: MI > (M2+M3)/2 

SH: Ml = (M2+M3)/2 OR 2*Ml -I *M2 -I*M3 = 0 

of the three New treatments is better than the one 
Comparison treatment. RH5 tests if New treatment 2 is 
better than New treatment 3. Finally, RH6 tests if New 
treatment l is better than the average of the other New 
treatments. As should now be clear, the design of the 
research, and the desired conclusion(s) detenninc the 
choice of the hypotheses, and whether the hypotheses 
arc directional or non-directional. No one choice is 
always correct; the choice will depend on the research 
question., I 

Pictorial Repre,entatlon or Orthoaonal 
Comparlaons 

Notice that RH5 and RH.2 arc the same, in tenns of 
contrast coefficients. Since the two fahibits were 
discussed with different samples, the research 
hypotheses may have seemed different. But in both 
cases, M2 was contrasted with M3. Tite sum of squares 
due to the four groups, though, was partitioned in 
different ways, as depicted in the Venn diagram in 
Figure 1. Figure la illustrates the one-way partitioning 
of sum of squares, into Within groups and Between 
groups. Note that the Between groups is between the 
four aroups. Figure I b illustrates the contrasts in 
Exhibit 1. About one.half of the Between groups sum 
of squares is due to RH2, and about one-fourth is due to 
RHl and one-four1h lo RH3. If the contrasts in Exhibit 
3 were applied to the same dara as in Exhibit I, then 
Figure le might result. Note that since RHS and RH2 
are the same contrast, the sum of squares attributable to 
those contrasts is the same. But since RH4 and RH6 
are different from RHI and RH3, the sum of squares 
partitioned to these hypotheses will likely be different. 
RH6 is shown to accowit for none of the sum of 
squares in Figure le, while Rl-14 accounts for one-half 
of the Between groups swn of squares. 

Source Tables 
Another way to comprehend the different 

- . 

0 -1 0 

2 -1 -1 0 

comparisons depicted in the Exhibits and in Figure I is 
through the source tables in Tables l through 3. Table 
1 contains the one-way results, with the Total sum of 
squares being partitioned into just Between and Within. 
The four groups account for 40% of the Total sum of 
squares.Table 2 contains the partitionina depicted In 
&hibit 1. Notice that the Total and Within sum of 
squares is the same as in Table 1, but the awn of 
squares due to Between groups has been further 
partitioned Into the three comparisons. The RH2 
comparison accounts for half of the sum of squares due 
to aroups (20/40--hcnce half the overlapped area in 
Fiaure lb). Since all of the F values in Table 2 fall 
beyond the critical value, all of these comparisons 
would be significant. Table 3 reflects the contrasts in 
Exhibit 3 and Fiaurc le. Again notice that the sum of 
sqWU'cs for RH2 in Table 2 and RI 15 in Table 3 Is the 
same. RH4 and RH6 are different from RJ[1 and Rl-D, 
and therefore the sum of squares is different. RH6 
accounls for none of the sum of squares and is therefore 
not significant. 

Eumple or Non-orthogonal Hypotheses 
The reader may wonder why each of the New 

treatments in Exhibit 3 were not compared to the 
Existing treatment. These may be interesting research 
hypotheses, but they are not orthogonal. Exhibit 4 
contains the hypotheses and orthogonal coefficients. 
While the coefficients do sum to zero within each of the 
hypotheses, the sum of the cross products is not zero. 
Think of it this way--if we start out by assuming all 
four treatments arc equal, but find one inferior to 
another, isn't it likely that that one will be inferior to 
one of the others as well? In this case, the results from 
one hypothesis have a bearing on the results from 
another. Once we know the answer to one hypothesis, 
we have an inkling as to the answer to the other 
hypothesis. Additionally these hypotheses as a set are 
of little value, because they do not lead to a conclusive 
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Flaure 1 Hypothetical Sample Means and Venn Diagrams 

TEACHER A 
TEACHERB 

lA One Way Analysis 

l>oepcw:au --M 
V1ria'blc 

1B Exhibit 1 or 2 Analy1l1 

RX2 

l>tJCMCllt ---M 
Varia\1.c 

1'ctwu:ra. 

Wilha RK 1 RK3 

IC Exhibit 3 Analysis 

RH!S 

AM 

7.5 (Ml) 
10.0 (M2) 

.• 

hJ.c p«w a.t 
V1ria'bl.c 

J>eptMllll -•11t i----+ W.JtMlllt 
Y'ana \]M V'1na \]M 

W'it:IIA RX4 

PM 

12.5 {M4) 
20.0 (M3) 

3.S 
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Table 1 One-way Source Table 

SOURCE ss df 

BEfWEF.N 40 3 
WITHIN 60 60 

TOTAL 100 63 

~ AU fcv 1te at alpha = .OS. 

Table 2 Exhibit 1 Source Table 

SOURCE 

RHl 
RH2 
RID 
WITIIIN 

TOTAL 

ss 

10 
20 
10 
60 

100 

~ AU fc, are at alpha• .05. 

df 

1 
l 
1 

60 

63 

Table 3 Exhibit 3 Source Table 

SOURCE ss df 

RH4 20 I 
Rl-15 20 I 
RH6 0 1 
wmnN 60 60 

TOTAL 100 63 

MAb, AU few ate at alpha• .O.S. 

answer. Suppose that nil of the New treatments were 
better than the Eid sting treatment. Wruch New 
treatment would you recommend? The set of 
orthogona.l hypotheses in Ewbit 3, on the other hand, 
lead to such a definite recommcndatioo. 

Trend Analysis 
When the treatments are ordered on some 

underlying continuum, one may want to investigate the 
trends in the data as in &hibit S. That is, does the 
criterion increase linearly with an increase in the 
underlying continuum (as in RHI0). or is there a 
minimum performance as in RHI 1? (By reversing all 
the weights in RHI I, one could investigate maximum 
performance.) Finally, with four groups there may be a 
quadratic trend as in RH12. Note that the coefficients 
for RHJ0, RHI I, and RH12 all add to.zero, and lhat the 
cross products all add to zero. Therefore, RHIO, RI-II I, 

- . 

MS 

13.33 
1.00 

MS 

10 
20 
10 

] 

MS 

20 
20 
0 
1 

E 

1333 

E 

10.0 
20.0 
)0.0 

E 

20.0 
20.0 
0.0 

Ecv 

2.76 

Ecv 

4.0 
4.0 
4.0 

fcv 

4.0 
4.0 
4.0 

.f ~-

and Rlll2 constitute another set of orthogonal contrasts 
for four groups. 

Two Factors 
Now suppose that the four groups differ not on just 

one underlying factor as in the above e~amples, but on 
1!!2 underlying factors. Exhibit 6 posits the following 
example of two aroups getting the New treatment and 
two groups getting the Comparison treatment. Thus 
the first underlying factor is treatment: New vs. 
Comparison. 
One of the New treatment groups is in the AM and one 
is in the PM. One of the Comparison treatment groups 
is in the AM and one is in the PM. Thus, the second 
factor is time of treatment AM vs. PM. 

What would be the research hypotheses of interes l 
with this design? One probably would want to compare 
the New treatments to the Comparison treatments, and 



11'.,\0IING Ml.RV• VOL 21, NO. I• FALL 1994 37 

E,chlblt 4 Another Possible Set or Contrast Coefficients With Four Groups: Non-Orthogonal 

Ml = New Treatment #1 M2 = New Treatment #2 M3 = New Treatment #3 M4 = Existing Treatment 

Ml M2 M3 M4 

RH4 Non-directional: Ml not equal M4 
Directional: Ml > M4 

SH Ml= M4 OR l*Ml + 0*M2 + 0*M3 - 1*M4 = 0 0 0 -1 

RH5 Non-directional: M2 not equal M4 
Directional: M2 > M4 

SH M2 = M4 OR I *M2 - 1 *M4 = 0 

RH6 Non-directional: M3 not equal M4 
Directional: M3 > M4 

SH M3 = M4 OR l*M3 -1*M4 = 0 

possibly_ the AM treatments to the PM treatments. 
These two hypotheses will be developed first, and then 
we will tum our attention to the third orthogonal 
comparison. 

The Non-directional Research Hypothesis for 
treatment would be: "The two treatments, averaged 
across the two different time periods, arc not equally 
cffecti ve." resulting in the orthogonal coefficients for 
RHl3 in Exhibit 6. One could have stated this 
Research Hypothesis with a directional citpcctation, 
resulting in the same sci or orthogonal coefficients. 
The Non-directional Research Hypothesis for time of 
treatment would be RH14: "The two time periods, 
averaged across the two different treatments, are not 
equally cff cctive," Again, one could have stated this 
hypothesis with a directional expectation. Notice that 
the coefficients for RH 14 arc orthogonal to those for 

0 0 -1 

0 0 -1 

RH13. Rl-113 and RHl4 are referred toas "main effects" 
hypotheses within the Analysis or Variance framework. 
Unless stated directionally a priori, they are always 
tested in a non-directional fashion. 

Given the above two orthogonal contrasts, the third 
orthogonal contrast would have to be that specified in 
RH 15. The non-directional research hypothesis 
associated with these coefficients is: "The difference 
between AM New treatment and PM New treatment is 
di(fcrcnt from the difference between AM Comparison 
treatment and PM Comparison treatment." Again, one 
could have stated this hypothesis with a directional 
expectation. (For eltamplc, "The difference between AM 
New lffiltment and PM New lffiltmcnt is djffcrcnt from 
the difference betwccu AM Comparison treatment and 
PM comparison treatment." Again, one could have 

Eihlblt 5 One Possible Set or Contrast Coerrlclents With Four Groups: Trend Analysis 

RHI0 
linear trend 

SH 

RH11 
quadralic tmxl 

SH 

RH12 
cubic trend 

SH 

Non-directional: -3M! -IM2 +1tv13 +3M4 not equal 0 
Directional: -3MI -ltv12 +ltv13 +3M4 > 0 

-JMl -IM2 +lMJ +3M4 = 0 OR -J*Ml -t•M2 +1 *M3 +3*M4 = 0 

Non-directional: Ml -Ml -Ml+ M4 not equal 0 
Directional: Ml -M2 -Ml + M4 > 0 

Ml -Ml -Ml+ M4 = 0 OR l*MI -l*M2 -l*MJ +l*M4 = 0 

Non-directional: -MI +3M2 -JMJ +M4 not equal 0 
Directional: -Ml +3M2 -3M3 +M4 > 0 

-Ml +3M2 -3M3 +M4 = 0 OR -l*Ml +3*M2 -3*M3 +l *M4 = 0 

Ml M2 M3 M4 

.3 -1 3 

-1 -1 

-l 3 -3 
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Exhibit 6 One Possible Set or Contrast Coefficients: Two-Way Analysis or Variance' 

Ml= New treatment, AM M2 = New treatment, PM 
M3 = Comparison treatment, AM M4 = Comparison treatment, PM 

RH13 Non-directional: The two treatments, averaged across the two different time 
periods, are not equally effective 

SH 

(Ml+M2)/2 not equal (M3+M4)/2 
~rectional: 'J:1e New treatment, averaged across the two different time periods, 
1s more effective than the Comparison treatment • • 
(Ml+M2)/2 > (M3+M4)12 

(Ml+M2)/2 = (M3+M4)/2 OR (MI+M2) = (M3+M4) OR 
(Ml+M2)-(M3+M4)=0 OR l*Ml +l*M2-l*M3-l*M4=0 

RHI4 Non-directional: The two time periods, averaged across the two treatments are 
not equally effective • 

SH 

(Ml+MJ)/2 not equal (M2+M4)/2 ' 
Directional: The AM period, averaged across the two different treatments, is 
more effective than the PM period 
(Ml+MJ)/2 > (M2+M4}/2 

(Ml+M3)/2 = (M2+M4)/2 OR (Ml+M3) = (M2+M4) OR 
(Ml+M3)-(M2+M4)=0 OR l*Ml -t•M2+l*M3-l*M4=0 

RHIS Non-directional: The difference in effectiveness of the AM New treatment and 
the PM New treatment is different from the difference between the AM 
Comparison treatment and the PM Comparison trcaunent 

SH 

(Ml • M2) not equal (M3 • M4} • 
Oire()tional: The difference in effectiveness of the AM New treatment and the 
PM New treatment is arcater than the difference between the AM Comparison 
treatment and the PM Comparison t.rcatmcnt ' 
(Ml • M2) > (M3 • M4) 

The diff erencc ineffectiveness of the AM New treatment and the PM New 
treatment is the same us the difference between the AM Comparison treatment 
and the™ Comparison treatment 
(Mt • M2) = (M3 • M4) OR (Ml • M2) • (M3 • M4) = 0 OR 
l"'Ml -l*M2 -t•MJ +l*M4=0 

Ml M2 M3 M4 

l -I -I 

-1 -1 

-1 -1 

stated this hypothesis with a directional eitpcctation. 
(For eitample, "The difference between AM New 
treatment and PM New treatment is &ID1n than the 
difference between AM Comparison treatment and PM 
Comparison treatment.") RHJS is referred to in the 
ANOV A literature as the "interaction" hypothesis. 

· An alternative way of stating this hypothesis is by 
looking at the differences within time, rather than 

. within treatment: "The difference between AM New 
Treatment and AM Comparison Treatment is greater 
than the difference between PM New Treatment and PM 
Comparison Treatment. Both statements yield the same 
orthogonal coefficients, since they are the same 
question. 

Summary 
Discussing various sets of orthogonal comparisons 

for four groups should help illustrate the fact that there 
are many possible contrasts. The "appropriate contrast" 
depends on the design of the study and the research 
hypotheses of the researcher. While four groups were 
chosen for all the eMmples, the same conclusions can 
be developed for other numbers of groups. Four 
groups. though, does make the link to two-way 
ANOVAeasy. 

Few statistical texts make the link between 
orthogonal comparisons and the two-way ANOV A. 
Few also encourage directional hypothesis testing when 
there is one degree of freedom, as in the planned 
orthogonal comparisons. The reader is reminded that 

- . 
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although all these orthogonal comparisons (as well as 
many others) can be made on these four groups, only 
some of the comparisons make sense for any one 
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design. For instance, trend analysis is appropriate to 
~ the teacher-time design in Exhibits 1-4, nor the 
two-way ANOV A design in Exhibit 6. 
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