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The Rise and Fall and Rise of Multiple
Regression

Dennis Leitner
Southern Illinois University

Tiangi Han
Northern Hlinois University

The rise and fall and rise of multiple regression is chronicled in the literature by examining its initial impetus and
popularity, followed by the acknowledgement of potential problematic issues such as violalion of assumptions and
overzealous usage, and the subsequent resurgence of the technique as the problems are addressed and procedures clarified.
Jacob Cohen brought to the attention of many researchers that multiple regression can be uscd as a general data-analytic
system. With the increasing availability of mainframe computers and programs to perform slatistical analysis, journal
editors ‘were inundated with an avalanche of regression analyses. The assumplions underlying the analyses were
emphasized, considered, and often found to be unmet. Two major problems of using stepwise regression were identified: (1)
incorrect degrees of freedom were specified when evaluating changes in explained variance and, (2) incorrect interpretation
of stepwise resultawhen a few variables are selected from many. Subsequently, many different regression models have been
developed for different situations, especially when assumptions are violated. These models include ridge regression, robust

regression, and nonlincar rogression.

S

ike the leagth of skirts or the cuf(ls on pant legs,
I the popularity of statistical tests riscs.and falls
and rises. In his Presidential Address (o the Mid-
Western Educational Rescarch Association, Leitner
(1990) tranced this rise and fall and rise of three statstical
tests in the literature, First, the inital preseatation and
use was flollowed by a segond period of the
acknowledgement of potential problematic issues such
s violation of assumptions and overzealous usage,
which resulted in a third period charactcrized by a
resurgence of the technique as the problems arc addressed
and procedures are clarified. The three statistical
techniques he examined “were the
t-test/analysis of variance, factor analysis and meta-
analysis. This same approach is uded in this papcr to
examine the rise and fall and rise of multiple regression.
While this review of literature is largely
chronological, it is not strictly so. Some of the
statistical aspects are reported in the mathematical and
statistical literature long before they appear in the
psychological and educational literature. It is the latter
which forms the principal basis of the chronology.

The Initial Rise

In one of the first references to multiple regression
in the social science literature, Goldberger (1964),
having recognized the nature of multiple regression,
pointed out that

...[T]he whole point of multiple regression as
contrasted with simple regression is to ury to
isolate the effects of the individual regressors,

by ‘controlling’ on the others. Still, when
orthogonality is absent the concept of the
contribution of an individual regressor remains
inherently ambiguous. (p. 201)

A large impetus for the use of muluplc regression came
from the work in the late 1960's of the distinguished
statistician, Jacob Cohen. Cohen (1968) poimed out
that muluplc regression and analysis of variance and
covariance are special cases of the general lincar modcl

If you should say to a mathematical statistician
that you have discovered that linear multiple
regression analysis and the analysis of variance
(and covariance) are identical systems, he
would mutter something like, 'Of course--
general lincar model,' and you might have
trouble maintaining his attention. If you
should say this to a typical psychologist, you
would be met with incredulity, or worse. Yet
it is true, and in its truth lie possibilities for
more relevant and therefore more powerful
exploitation of research data. (Cohen, 1968,
p. 426)

He showed that through use of indicator variables
(i.c., dummy variable coding), an eqmvalence between
multiple regression and analysis of variance, in fact,
exists. In addition, through use of contrast codmg.
powers and products of variables, and comparisons of
appropriale regression equations, multiple regression
can be used as a general data-analytic system.

At about the same time, Rxchard Darlington (1968)

\
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emphasized that, besides providing the partial
correlation between the dependent variable and each of
the independent variables, regression weights rather than
correlation coefficients have the interpretative advantage
in prediction allowing statements like "Increasing X; by
1 unit increases the dependent variable by f; units"® (p.
167). He discussed the logical fallacies involved in
using variance-apportionment techniques for any
purpose when the independent variables in a sct are
intercorrelated. He pointed out that the notion of

"independent contribution to variance" is meaningless

especially when multicollinearity is a problem (p.169).
In perhaps the first text devoted exclusively to the
use of multiple regression, Kelly, Beggs, McNeil,
Eichelbergér, and Lyon (1969) took advantage of the
growing presence of high-speed digital computers by
freeing the researcher from simplistic designs that can
be handled computationally with case on a desk
calculator. By forcing researchers to use "...a series of
factorial designs, Type I, Type 1l models, etc., derived
to ease computation with a desk calculator,"...the
researchers were either "confused” or had to "impose
such constraints on his design that he is forced to ask a
limited research question." (Kelly et al., 1969, p. vii).
In addition, Kelly et al. (1969) emphasized that the
availability of multiple regression procedures and
programs allowed the researcher to ask meaningful
research questions. R

The multiple regression analysis presented in
this book is designed to prepare the rescarch
investigator to construct statistical models
which will reflect his original research question
rather than limiting that question. Regression
analysis will be shown to be the gencralized
case of analysis of variance. These discussions
shall be intimately related to a computer
program so that the simple clegance of the
gencralized analysis of variance is not obscured
and so that the investigator can circumvent the
anachronistic desk caleulator. (p. vii)

Four years later, another popular text of multiple

regression was written by Kerlinger and Pedhazur.

(1973). The book, which listed a diffcrent computer
program in the appendix than did the Kelly et al. (1969)
text, promoted the advantages of multiple regression
analysis.

Multiple regression analysis [is] a most
important branch of multivanatc analysis... It
is a powerful analytic tool widely applicable to
many different kinds of rescarch problems. It
can be used effectively in sociological,
psychological, economic, political, and
educational research. It can be used equally
well in experimental or nonexperimental
resecarch. It can handle continuous and
catcgorical variables. It can handle two, three,
four, or more dependent variables. In
principle, the analysis is the same. Finally,
multiple regression analysis can do anything
the analysis of variance does ... (Kerlinger &
Pedhazur, 1973, p. 2-3). [In addition],
- L

multiple regression analysis not only gives
more information about the data, it also
applicable to more kinds of data. (p. 6)

Multiple regression not only provides a way to
analyze the relations of one variable with a set of
variables, but it, with the stepwise method, also can be
used for purposes of parsimony. Efroymson (1960)
first advanced stepwise regression in an article in which
he presented an algorithm which performed a true
stepwise (as distinguished from FORWARD or
BACKWARD methods) regression.

An important .praperty of the _stepwise
procedure is based on the facts that (a) a
any early stage and thus enter the equation, and
(b) after several other variables are added to the
regression equation, the initial variable may be
indicated to be insignificant.” The insignificant
variable will be removed from the regression
cquation before adding an additional variable,
Therefore, only significant variables are -
included in the final regression. (p. 192)

Efroymson's (1960) article presented computer
output from an example, as well as estimates of how
much space and time would be needed to run problems
based on the number of variables and sample size.
Stepwise regression has received considerable attention
in reducing the number of independent variables in the
prediction equation or selecting the best subset of the
variables from a set of independent variables,

Following Cohen and Darlington's work, the
1970's saw a great increase in rescarch on the theory as
well as application of multiple regression. For
example, sec Heise (1969, 1970) who used multiple
regression in causal relation rescarch using social
scicnce and panel data,

As you will sce in the next section, the middle of
the 1970s saw the peak in the number of applications of
multiple regression.  Questions about . assumptions
being met and appropriate uses come to the forefront of
rescarchers' usc of the statistical methodology.

The Subsequent Fall

With the increasing availability of mainframe
computers and programs to perform statistical analysis,
journal editors were inundated with an avalanche_of -
regression analyses. Figure | demonstrates the growth
of multiple regression, discriminant analysis, and
canonical correlation from article references by the
Educational Resources Information Center (ERIC). The
ERIC database consists of the Resources in Education
(RIE) file of document citations and the Current Index
to Journals in Education (CIJE) file of journal article
citations from over 750 professional journals. 0
Questions were raised about whether assumptions were
being met and the use of stepwise regression was
strongly criticized. Attention was given to whether the
regression models were correctly specified. Confusion
between multiple correlation and prediction esumation
began to be identified.
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Figure 1 Number of Citations of Multiple Regression, Discriminant Analysls, and
Canonical Correlation in ERIC Journals from 1965 to 1991
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During 1970s there were many criticisms related to
the assumption of normal distribution of errors of
measurement which is, in many cases, not likely to be
true with variables in behavioral research.

The classical linear model Y = px+¢ assumes that
y, an N x 1 vector, is a random variable, X is an
N X (k+1) matrix with fixed (not random) values, (i.e.,
X is matrix of known constants); f, a (k+1) x 1
vector, contains the k unknown parameters, or
regression weights, plus an intercept parameter; and ¢,
an N X 1 vector, is a random variable. It further
assumes that the errors have the propertics of normality,
linearity, independence, and homoscedasticity. This
expression of the classical model is from Sockloff
(1976). pp. 268-9.

It seemed that multiple regression does not have
any requiremenl for the data except meeting those
assumptions described above. Box (1966) alerted the
mathematical community to a possible concern in
treating data collected from "field research" (without
controls on variables or manipulation of independent
variables) in the same manner as data from "lab
experiments” (with random assignment of subjects to
groups).

The method of least squares is used in the

analysis of data from planned experiments and
also in the analysis of data from unplanned
happenings. ... It is the tacit assumption that
the requirements for the validity of least
squares analysis are satisfied for unplanned data
that produces a great deal of trouble. Whether
the data are planned or unplanned the quantity
¢, which is usually quickly dismissed as a
random variable having the very specific
properties mentioned above, really describes
the effect of a large number of 'latent' variables
X ksl X ks2 o X g which we know

nothing about. (Box, 1966, p. 625)

For the unplanned data, suppose k independent
variables are input in the model, ¢ includes a
combination of some latent variables, say, x 4, 1.

X k42 X - Therefore, the regression model
contained (wo components:

Y =[Bo +Bix1u +B2%zut . Bakku)+[Brarkier + Bk ]

Y =xiBx2B;

As an example of analysis of unplanned data, Box
(1966) discussed a possible situation in industry.

\
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assumptions under which analyses are oonducted are not

In the operation of an industrial process past always specificd.

experience often shows that certain variables
are of major importance. In order to control
fluctuations in the process, therefore, care is
taken to hold precisely these variables very
close to fixed values. As the "statistical
significance" of any variable is greatly affected
by the range it covers, there is a strong
probability, therefore, that the most important
variables will be dubbed "not significant" by a
standard regression analysis. A further **
difficulty is that with unplanned data regression
variables will frequently be highly correlated
only because of operating policy. (p. 628)

Although presented here as a violation of the

assumption of the errors being normally and identically”

distributed, the problem identified by Box (1966) may
also be considered as misspecification of the fegression
model and multicollinearity resulting from unplanned
data.

Some pcoplc questioned the robustness of |east
square estimation when the assumptxon(s) was(were) not
met. Wamcr and Thissen (19’76) concluded:

In thns paper we have explored a variety o!'
schemes for estimating coefficicnts of lincar
functions with respect to their ability to yield
reasonable answers when the form of the data
distribution ranges broadly. Our strongest
finding is that the most commonly applicd
methodology, least squares estimators (LSE),
are the worst performers in gencral. (pp. 30- .
31)

Earlicr in this article, Waincr and Thissen discussed
the assumptions in multiple regression and using equal
weights (B s).

The robustness of cqual wcights is beyond

Recent works by Cohen (1968), Kelly, Bcggs,
McNeil, Eichelberger, and Lyon (1969),

Kerlinger and Pedhazur (1973), and Bottemberg
and Ward ... have attested to the flexibility of
the General Lmear Model. These pubhcauons
have shown the capabilities of a single
approach to the solution of correlation,
regression, and the Fisherian analysis of
variance problems. It is noteworthy that all
six of these publications claim, more or less,
to be using the General Linear Model, but in
no case has the particular linear model and its
assumptions been clearly specified and
consistently applied.

The General Linear Mode] is a name given to
the family of models_possessing a common
characteristic, namely, linearity _in_the
parameters of the equation specifying ' the
model” The members of this family are
distinguishable in terms of their various
assumptions, and it is the contention of this
author that the distinctions among thesc
different linear models are of more than just
passing interest.

The above publications, plus those of Digman
(1966) and of McNeil and Spaner (1971), have
shown the capabilities of the General Linear
Model in handling the analysis of nonlincar
data....[T]he interest of this paper is to show
that the analysis of nonlincarity vis
polynomial and product variables in a lincar
model has limitations fas more stringent than
have been realized by cducational and
psychological rescarchers. (pp. 267-268)

question, since their estimation does not
involve the data at all; the shape of the sumple
distribution is irrclevant. Least squarcs
cstimates are another story. ’ﬂ:cy are used
without distributional assumptions and are
identical to maximum likelihood estimates
with Gaussian assumptions, provided that one
assumes indcpendence of error. If this
assumption is violated the least squares
estimates overestimate the betas. This is only
one thing that can go wrong and is indicative
of the "capitalization on chance" that has
become the hallmark of lecast squares
regression. (p. 12)

In another article advocating the use of robust
regression methods, Wainér (1976) wrote:

It is noted that the usual estimates that are
optimal under a Gaussian assumption are very
vulnerable to the effects of outliers. ..
Normality assumptions are very useful
theoretically, but have sometimes proved
unrealistic in practice. (p. 285)

In a 1976 -article, Sockloff noted that the

Sockloff (1976) distinguished between three Jincar
modds (fixed, random, and provisional) and emphasized
the differences between a {ixed model and a random
model and the limitation of gencral lincar model in
handling nonlincar data. In the “lixed” model, the
matrix X consists of “regressors that are observable and
are fixed (determined a priori) values of random
variables" (p. 269). In the random model, X is a
matrix of regressors that are observable and random
variables. “

The Random Normal Model requires the
additional assumptions: (a) in the population,
X and y are distributed multivariate normal,
and X and ¢ are uncorrelated; and (b) in the
sample, each multivariate obscrvation
corresponding to a row of X and y is randomly
drawn. If X and y are distributed multivariate
normal, the ¢ =y - X B is independently
distributed multivariate normal with common
variance o2 as in the Fixed Normal Model, and
X and ¢ are not only uncorrelated but also
independent. The population to which
inferences are made under the Random Normal
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Model covers the total multivariate population
from which the validation sample is randomly
drawn.” (pp. 269-270).

Kelly et al. (1969), Kerlinger and Pedhazur
(1973), and Bottenberg and Ward devote most
of their respective texts to multiple regression
and capitalize on the similarity of
computational procedures required for the
solution of analysis of variance, multiple
correlation, and polynomial regression
problems. Whereas Bottenberg and Ward fail
to speclfy models or assumptions, Kelly et al.
and Kerlinger and Pedhazur work under an
apparent Fixed Normal Model insofar as
distributional assumptions are not made about
the regressors. Although Kerlinger and
Pedhazur never distinguish the two classical
models, Kelly et al. make a distinction, but
this distinction is made late in the book at
which point the reader cannot easily determine
the appropriate model for each of the problems
presented earlier. (p. 272)

He pointed out that the computational similarity
between the fixed and random models was the initial
source of the confusion of the two models. He argued
that “regarding the analysis of nonlinearity in
observational data under the Random Model, the
Random Normal Model cannot be used, and contrary to
the various publications extolling the gcncrahty of the
General Lincar Model, the appropriate counterpart
inferential model doces not currently exist.” (p. 288)

Statistical analysts using multiple regression have
known for some time about the problems caused by
intercorrclations among the independent variables. High
intercorrelations among the predictors, but not complete
lincar dependency, has been called "collincarity” or "ill
conditioning” of the correlation matrix, or for the
purposes of this paper, "multicollincarity”. Gor_gon
(1969) alerted us to the potential problems:

Although the warnings concerning
multicollinearily arc to be found in statistics
texts, they are insufficiently informative to
prevent the mistakes described here. This is
because the problem is essentially one of
substantive interpretation rather than one of
mathematical statistics per se. (p. 592)

The effects of multicollincarity on the least squares
estimates of the regression coefficients were pointed by
Johnstone in 1972 as follows:

1. The precision of estimation falls so that it
becomes very difficult, if not 1mpossnble. to
disentangle the relative influence of various x
variables. This loss of precision has three
aspects; Specific estimates may have very large
errors; these error may be highly correlated,
one with another; and the sampling variances
of the coefficients will be very large.

2. Investigators are sometimes led to drop

variables incorrectly from an analysis because
theéir coefficients are not slgmﬁcantly different
from zero, but the true situation may be not
that a variable has no effect but simply that the
set of sample data has not enabled us to pick it

up.

3. Estimates of coefficieats become very
sensitive to particular sets of sample data, and
the addition of a few more observations can
sometimes produce dramatic shifts in some of
the coefficieats. (p. 160)

Gordon (1969) concluded:

..[W]e have not been condemning the method
of multiple regression in general. There
remain many situations in sociology for which
regression is an excellent fool of analysis. We
do condemn, however, those applications of
regression coefficients that seck to determine
the relative importance of variables in the

manner of the examples we have cited. (pp.
615-6)

buse of Stepwise Re
One of the most common uses of regrcss:on has
been model-building automatically, that is, determining
the refative importance of variables by the order in
which thcy arc cntered (or deleted) to find the *best”
regression model. Pope and Webster (1972) pointed out
that:

The methods gencrally known as stepwise
procedures arc, however, the most widely used
data analysis mcthods; in particular by non-
professional statisticians. This has come
about through the availability of computer
programs. - T

This paper was stimulated by this widespread
usc of the stepwise procedures and the lack of
understanding (by the non-statistician) of their
weaknesses. (p. 328)

Hubcny ( 1989) listed three intended uses of
stepwise regression.

Stepwise analyses have basically been used for
three purposes: (1) sclection or deletion of
variables, (2) assessing relative variable
importance; or (3) both variable sclection and
variable ordering. (p. 45) h

Stepwise regression has been commonly used for
selecting the best subset for any specified number of
retained indepéndent variables. Among a total of
k (k+1) / 2 fits, “as observed by Gorman and Tomana
(1966), it is unlikely that there is a single best subset
but rather several equally good ones” (Hocking, 1960,
p. 9). Maatel (1970) criticized forward selection by
illustrating a situation in which an excellent model
would be overlooked because of the restriction of adding
only one variable at a time and pointed out the
disadvantage of forward selection needs k (k+1)/ 2 fits k
where backward elimination only needs k fits for testing
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among k variables. Hocking (1960) also expressed
concern about the limited number of solutions for the
"best" regression equation.

Another criticism of FS [forw, ardselwu@] and
BE [t [backward “elimination] often cited is that
they imply an order of unportance to"the
variables. This can be misleading since, for
example, it is not uncommon to find that the
first variable included in FS is quite
unnecessary in the presence of other
variables.... The lack of satisfaction of any
reasonable optimality criterion by the subsets
revealed by stepwise methods, although a valid
criticism, may not be as serious a deficiency as
the fact that typical computer routines usually
reveal only one subset of a given size. (p. 9)

Pope and Webster (1972) pointed out the
"pseudoness_of the F-statistic" for testing the
sigmificance of independent variables in lincar prediction
equation” (p. 327). “Unfortunately, the most widely
used computer programs print this statistic at cach step
without any waming that it does not have the F
distribution under automated stepwise selection”
(Wilkinson, 1979, p. 168). Using a Monte Carlo
simulation, Wilkinson (1979) constructed the tables of
the upper 95th and 99th percentage points of the sample

R? distribution in forward selection. He examined 71
articles published in psychology from 1969 to 1977
which used stepwise regression.

Out of these articles 66 forward sclection
analyses reported as significant by the usual F
test were found. Of these 66 analyses, 19 were
not significant [using Wilkinson table].. . (p.
172)

The_seyere consequences of abuse of stepwisce
regression were emphasized by Thompson in a 1989
editorial entitled, "Why Won't Stepwise Methods Dic?"

First, most rescarchers, thanks to “canned"
computer programs, do not employ the correct
degrees of I reedom when cvaluating changes in
cxplmned variance (i.e., usually changes in
squared R or lambda). Sccond, some
rescarchers incorrectly m(crprct stepwise results
in which g predictor variables have been
selected as indicating that the predictor
variables are the best variables to use if the
predictor variable set is limited to size q. ...
Third, some researchers incorrectly consult
order of entry information to evaluate the
importance of various predictor variables." (pp.
146-147)

In one of the most serious and thorough critiques of
stepwise regression, Hubeny (1989) postulated that:

(1) ..stepwise analysis should not gencrally be
used for variable selection purposes. A basic
detect of stepwise procedures is attributable to
‘ their consideration of variables one-at-time...

direct tests for the additional information
supplied jointly by several variables are not

- *

made’ (McKay & Campbell, 1982, pp. 13, 45)

(2)...otder_of variable entry in a stepwise
analysis should not_be used to assess relative
variable oontnbuuonllmponanoc " because “the
inter-relationship of the response variables are
completely ignored when the most ‘important’
[first variable entered] is determined... and the
dependence [of following variable on preceding
variable] or conditionality truly makes variable
importance as determined by stepwise analysis
very question”. (pp. 46-47)

Kachigan (1986), wamed researchers that samﬂn_gg
error can seriously distort stepwise results.

There is a danger that we might selected
variables for inclusion in the regression
equation based on chance relationship.
Therefore, as stressed in our discussion of
multiple correlation, we should apply our
chosen regression equation to a fresh sample of..
objects to see how well it does in fact predict
'valiies on the criterion variable, This
validation procedure is absolutely essential if
we are to have any faith at all in the future
applications of the regression equation. (p. .
265)

We will see in the Scchd Rise section that
Huberty proposed alternative methods to addrcss these
problems.

Included in our definition of misspcciﬁcation of
regression models are specification errors by using the
"wrong" independent variables as well as expressing the
wrong relationship among the independent variables or
the relationship between the independent variables with
the dependent variable. This first type was |dcnuﬁed in
1971 by Borhnstedt and Carter.

When one has mistakenly cither omitted or
included variables in’an cquation assumed to
capture the true causal structure to Y, or when
the functional form chosen to represent the
variables is incorrect, we say that one has made
a specification error. (p. 128)

The secoad type would include following: (a)
specifying a linear model though a nonlinear model is
more appropriate, (b) postulating an additive model even
though a nonadditive model is more appropriate, and (c)
applying a linear additive model when a nonlinear or
nonadditive one is called for (Pedhazur, 1982, pp. 225
229).

When any of the assumptions are violated or when
the stepwise regression lechmque is not correctly used,
misspecification of the regression model is an inevitable
outcome. However, researchers often ignore such
e1Tors.

Gordon (1969) contended that the theoretical
context of rescarch should determine the nature o

lmportance of the variables controlled. Since R2 was
the most often used criterion to judging predxctmn _
models and (partial) regression cocfficients were often

BEERN—————
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used as indicators of the relative importance of
variables, Gordon (1969) showed the interrelationship of
the muluoollmeamy and mnsspeclﬁcauon_problcms

(S)mall variation among the correlations of a
highly related set can be create large variations
among their regression coefficients” (p. 612)

In addition “the values of regression
coefficients are not immutable and that they
can be greatly affected by changes in the
selection of independent variables to be
included in an analysis” (p. 613). He warned us
that “multiple regression is not an all-purpose
methods for data reduction” (p. 163) and
emphasized going “beyond simple examination
of the regression coefficients”. (p. 615)

Bobmstedt and Carter ( 1971) discussed the effect of
specification errors:

specification errors can seriously affect our
estimates of the_true structural parameters
operating in the system. ... if we hypothesize
the wrong model, then our estimation of that
model will yield meaningless estimates. (p.
141) ‘

They concluded that “we can only come to the
sobering conclusion, then, that many of the published
results based on regression analysis... are possible
distortions of whatever reality may exist” (p. 143).

Confusion B Multiple Correlaii { Predicii
Catimat

The prediction model and the correlation_model
were scldom to be distinguished.  [luberty and Mourad
(1980) cmphuslzcd the diffcrence of the parameters
estimated in the multiple correlation and prediction

cstimation.

All of the statistical techniques associated with
the prediction model are applicable with the
correlation model. However, from a
correlation estimation viewpoint, different
parameters arc associated with the two models.
With the correlation model, the population
multiple correlation coefficient of interest is p,
which reflects the correlation between Y and
the optimal linear composite of X;. X», ... Xp
in the population as a whole. The oplimal
linear composite is that composite determined
s0 as to maximize this correlation in the
population. With the prediction model, the
population multiple correlation coefficicnt of
interest is p,, which reflects the correlation

between Y and the linear composite of the X's
which is optimal for the calibration sample.
With each calibration sample is associated a p,,
, which is a type of validity coefficient.
Values of p,, are coefficients of correlation
between a criterion Y and a linear composite of
the predictors, the weights of which will vary
across repeated sampling. (p. 102)

They also criticized the deficiencies in reporting

estimates of correlation coefficient in the literature and
the inflated predictive validity of the studies,
overestimation of the parameter p for prediction using
R, and R, They discuss two estimation procedures for

the parameters p and p; cross-validation and usage of a
"shrinkage" formula. '

The Second Rise

In this period which these authors call the 'second
rise!, comparatively new techniques are recognized for
handling the problems identified during the period of
“the fall." Some of those techniques are robust
regression, ridge regression and nonlinear regression.
These methods Were introduced to behavioral scientists
in the late 70's and early 80's. Also, new methods
using multiple and/or categorical dependent variables,
such as canonical correlation and discriminant analysis,
have been popularized.

onlinear esgiol

When the assumpggy of linearity is violated, an
appropriate nonlincar reEFEssnon mode! should be
considered. Since regression weights in nonlinear
regression equations can be changed by changing the
means of the independent variables, and the means are
often chosen arbitrarily, the coefficients of nonlinear
regression models can not be interpreted causally A
general solution to the importance of each independent
variable in the linear and nonlinear models was
attempted by Darlington and Rom (1972). For the sake
of the difficulty of the interpretation of the nonlincar
regression model, the cffects on the transformation of
polynomial regression cquations into a format that is
readily luth)rculblc were made.

In 1976, Howard Waincr wrote an article published
in !’sychologlcal Bulletin eatitled "Estimating
Cocfficients in Lincar Models: It Don't Make No
Nevermind." In his article, he stated:

It is proved that under very gencral
circumstances cocfficieats in multiple
regression models can be rcplaced with equal
weights with almost no loss in accuracy on the
original data sample. It is then shown that
these equal weighs will have greater robustness
than least squares regression coefficients. (p
213)

The general conditions given are "all predictor
variables should be oriented properly" and "the predictor
variables should be mtercorrelated positively” (Wainer,
1976, p 213).

Wainer's approach cssentially ignores the sample
data. A less radical solution to the problems with
ordinary least squares solutions (OLS) to the estimate of
parameters in multiple regression in light of non-
normality or outlier problems has been addressed by
Huyhn (1982), who referenced the sources of the
alternatives for handling outliers and explained the
concept and lunctions of Least Absolute Residual _
(LAR), first introduced by Gentle (1977):

LAR estimates are the maximum-likelihood

\
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estimates when the errors follow a double
exponential structure. Because large residuals
are given smaller weights in LAR estimation
than in OLS [ordinary least squares]
estimation, LAR estimates are less influenced
than OLS estimates by those residuals.
(Huyhn, 1982, p. 506)

Huyhn reviewed each of the four robust regression
techniques provided by Huber ( M-estimaté), Hample

(psi function), Andrew (sifie_estimate) and Tukey
(biweight estimate), respectively, provided an example
of using these four robustness regression methods, and
compared them with the results from employing the
ordinary least square method. The reader should refer to
Hogg (1979) for a discussion of the last four estimators.
Huyhn (1982) summarized the conclusions about robust
regression against OLS, :

First, if the data do not contain any outlying
observations, then OLS and robust regressions

provide estimates that do not differ markedly

from each other. Second, for data with

suspected or abnormal observations, OLS

estimates may differ substantially from the

robust estimates; third, observations

considered as outliers by OLS regression may -
not be outliers ai all under robust regressions.

Fourth, robust regression procedures, as

proposed by Hampel, Andrews, or Tukey, may

be able to detect outliers automatically by

giving cach one a weight that is zero or very

small as compared with other weights. (p.

511)

He re-emphasized the recommendations provided by
Hogg (1979).

Perform the usual OLS analysis along with a
robust procedure such as that used by Andrews.
If the resulting estimates are in essential
agreement, rcport the OLS estimates and
relevant statistics. [f substantial differences
occur, however, take a careful look at the
observations with large robust residuals and
check to determine whether they contain'errors
of any or il they represent significant
situations under which the postulated
regression modcl is not appropriate. (pp. 511-
512)

Ridge Regression

Knowledge of the potential problems caused by
multicollinearity has alerted researchers to avoid
misinterpretations. Many alternatives have been
proposed. A researcher might first try to eliminate the
variables that contribute to the high degree of
multicollinearity. However, we should not have
considered a logically redundant variable initially.
Removal of any one variable may lead to
misspecification of the model. Pedhazur (1982) noted
other remedies:

Oue of the proposed remedies is the collection
of additional data in the hope that this may
ameliorate the condition of high

- [ 4

multicollincarity. Another set of remedies
relates to the grouping of variables either in
blocks on the basis of a priori judgements or
by the use of such methods as principal
components analysis and factor analysis....
Another set of proposals...is to abandon
Ordinary Least-Squares analysis and use instead
other methods of estimation. One such
method that has been gaining in popularity is
Ridge Regression.... {N]one of the proposed
methods of dealing with high multicollinearity
consttutes a cure. High multicollinearity is
symptomatic of jnsufficient, or deficieat,
mfo.rmau.on, which no amount of data
manipulation can rectify. ( p. 247)

Reduced variance regression, as a compromise
between orc.!inary regression and some other technigues
such as weighted least squares, was advocated for its
potefmal. solution of dealing with problems of
multicollinearity, ratio of number of predictors to
sample size, as well as validity issues. Ridge
regression, introduced by Hoerl and Kennard in 1970, is
an application of reduced variance regression. "Ridge
regression 18 a controversial procedure that attempts to
stabilize estimates of regression cocfficients by inflating
the variance that is analyzed” (Tabachnick & Fidell,
1989, p. 130).

In late 70's and carly 80's, ridge regression was
recmphasized in the psychology and social scicnces.
For example, Pricc (1977) and Darlington and Boyce
(1982) highlighted the function of ridge regression in
exploring and extracting information (rom multifactor
data. P‘ncc '(19‘77) gave an example of how to use ridge
regression, introduced the criterion of choosing a value
of k (scg below) from inspection of the ridge trace, and
emphasized the nature of ridge regression in reducing
:?ml Incan square error by introducing some degree of

143,

Dyrliuglon and Boyce (1982) also provided the
behavioral scientist with a very comprehensible
cxplanation about ridge regression usirg the concept of
regression to the mean,

Itis well_known that estimatcs for many
independent parameter values can be improved
by regressing the unbiased estimates of those
values toward the grand mean of all the values.
. I _the investigator assumes that on the
average, each observed correlation exceeds the
true value by a proportion k, then the ratio
between average observed and true values is
(1+k) / 1. ... Ridge regression essentially
consists of adjusting all the correlations in the
matrix (both the X - X and the X - Y
correlations) by this factor 1/(1+k), and then
deriving regression weights in the ordinary
way. ... Thus adjustment of the X - X
correlations produces the largest increases in
apparent independence (and hence increases in
beta weights) for those regressors which
correlate most highly with the other regressors.
This is how ridge regression takes advantage of
validity concentration -- regressors correlating
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highly with the total set of regressors are
upgraded in importance relative to the others.

(pp. 84 - 85)

They informed researchers that about a dozen
formulac for estimating k have been proposed and the
ndge race was no longer recommended by the
statisticians, ~The alicrnative for cstimating k, an
iteration procedure was introduced in this paper. They
also provided recommendations about when ridge
regression should be used.

o Stepwise sion

Conccmmg the possible distorted results from
careless use of stepwise regression, many researchers
tried t6 Tind better alternatives to stepwise regression.
Huberty (1989) provxded the alternative approaches and
suggested that "a 'natural’ criterion to use to determine
the best subset size ifi the €ontext of prediction and
estimation is to minimize the residual sum-of-squares
value” (p. 50). For selecting the variables from a set of
initial variables, SAS PROC RSQUARE (SAS
Institute, Inc., 1990) procedure was recommended (o

assess 2P-1 equations, where p is the .number of
predictors (Huberty. 1989, p. 50). For determining the
final subset size of the mdcpendcnt variables, Huberty
(1989) “recommended ad_justed R2 or scree test ---

“plot[ing] the adjusted R2 values for the 'best' subset of
each size (determined by the researcher using
information from computer output plus sound
judgment) against subset size" (p. 51).

Thompson (1989) proposed that a possible
alternative to the misleading results of stepwise
regression would be to "employ a cross-validation
procedure such as one recommended by Huck, Cormier,
and Bouads (1974, p. 159)“ Huck, Cormier and

(l) The original group of pcoplc (lor whom
both predictor and criterion scores arc availablc)
is randomly divided into two subgroups. (2)
Just one of the subgroups s used to develop
the prediction equation.. (3) The equation is
used to predict a criterion score for each person
in the second subgroup, i.c., the subgroup that
was not used to develop the prediction
equation). (4) The predicted criterion scores
for people in the second subgroup are correlated
with their actual criterion scores. A high
correlation (that is significantly different from
zero) means that the prediction equation works
for people other than those who were used to
develop the equation. If the individuals in
future studies are not too much different from
those in the cross-validation procedure, the
researcher is justified in using the prediction
equation for groups other than the original.
(pp. 159-160)

Henderson and Velleman (1981) illustrated the
superiority of substantively guided data analysis over
automatic mode! building. "Automated multiple
regression model-building techniques often hide
important aspects of data from the data analyst. Such

feature as nonlinearity, collinearity, outliers, and points
with high leverage can profoundly affect automated
analyses, yet remain undetected." Henderson and
Velleman ( 1981) proposed an alternate method
integrating "interactive computing and exploratory
methods to discover unexpected features of the data.” (p
391). They illustrated their alternative method using
two examples, one from Hocking (1973) involving
variables on 32 automabiles and a second example on
air pollution and mortality from McDonald and
Schwing (1973).

Henderson and Velleman (1981) stated a
fundamental axiom of their philosophy of data analysis
“The data an analyst knows more than the computer” (p.
391) T

Checking for the Assumptions

Following the concern for possible violation of
assumptions, methods to check for whether
assumptions were (enable or not were developed using -
computer programs. Some of these methods were
nicely summarized in a paper by Elmore, Woehlke, and
Spearing (1990). They also compared the procedures
available in SAS and SPSSX. Leitner (1990) provided
examples of how multicollinearity among independent
variables can be detected using the SAS and SPSSX
computer packages, and recommended procedures for
reducing the extent of multicollincarity. In addition,
Pohlmann (1990) presented some methods using SAS
(version 6) chéck for outliers.
Multivasiate Technique

Although it was originally developed in the 30's
(Hotelling, 1935), canonical corrclation was not realized
as the most general Case of the gencral lincar model
untl the late 70' or carly 80's.

..Baggaley (1981) has noted that canonical
corrclation analysis, and not regression
analysis, is the most gcneral cage of the
general lincar model.” "Knapp (1978)
demonstrated this in detail and concluded that
"vu'tually all of the commounly encounter
parametric tests of significance can be treated
as special cases of canonical correlation
annlysxs which is the general procedure for
investigating the relationships between two
sets of variables." In a similar vein Fornell
(1978) notes, "Multiple regression, MANOV A
and ANOVA, and multiple discriminant
analysis can all be shown to be special cases of
canonical analysis...." (Thompson, 1984)

Extended from a single dependent variable in the
model to multiple dependent variables, canonical
correlation could be used at least to predict or explain a
set of dependent variables by a set of independent
variables. When the dependent variables are categorical,
the procedure is called discriminant analysis. The roles
of discriminant analysis includé that separation,
discrimination, and estimation of the populations of
objects (Huberty, 1975). Since a great deal of research
in the behavioral sciences involves these three aspects,
discriminant analysis has been considered as, follow-up
technique to MANOVA, one of the most significant

\
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development in multivariate analysis.

Conclusion

While this journey through the literature was not
exhaustive (although it may have been tiring to many
readers) and strictly chronological, the authors feel that a
similar trend of introduction, questioning, and
resolution of the problems for the statistical technique
of multiple regression existed as with t-test, factor
analysis and meta-analysis. Perhaps other statistical
procedures could similarly be documented.
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A Comparison of the Mallows Cp and
Principal Component Regression
Criteria for Best Model Selection in
Multiple Regression

Randall E. Schumaker
University of North Texas

A cross validation comparison of the Mallows Cp subset model selection criteria using randomly generated data sets
indicated that different subset models may be identified. The principal component regression method using Type 1l sum of
squares with orthogonal principal component variables indicated a slightly different set of "best" variabies. The two
methods in the presence of multicollinearity can yield different subset models. It is recommended that rescarchers base
regression madels on substantive theory, model validation, and effect sizes for proper model testing and interpretation.

I

ultiple regression permits model testing
Mwhcrcin a set of independent variables are
hypothesized to predict a dependent variable.
Often when the set of variables sclected does not
significantly predict, the researcher scarches for a
*subset” of variables that provides the best prediction
model. The statistical packages provide several
stepwise mcthods for this purpose.

A review of the literature, however, indicates that
most rcsearchers misuse stepwisc mcthods in
determining the best predictor set or interpreting the
importance of predictor variables (Huberty, 1989,
Sayder, 1991; Thompson, 1989; Thompson, Smith,
Miller, & Thomson, 1991; Welge, 1990). Tracz,
Brown, and Kopriva (1991) summarized much of the
literature to indicatc that thc results of stepwise
procedures do not yield a "best" equation because
different criteria can be used in the selection of different
sets of variables; that when variables are intercorrelated,
there is no satisfactory way to determine the relative
contribution of the variables to R-squared because
various subsets of variables could yield a similar
R-squared value; that stepwise methods inflate Type I
error rates by not using the correct degrees of freedom in
calculating the change in R-squared; and that the order of
variable entry is incorrectly interpreted as defining the
importance of the variable or "best set” of predictors.

Current research literature indicates that the all
possible subset approach is preferred over the stepwise
methods for determining the best model (Berk, 1977,
Cummings, 1982; Thayer, 1986; Davidson, 1988;
Henderson & Denison, 1989; Welge, 1990; Thayer,
1990; Tracz, Brown, & Kopriva, 1991). = Several
criteria, however, are available for selecting lhg best

subset model when using the all possible subset
approach: R-squared, adjusted R-squared, mean squared
crror, Mallow's C,, or a principal component
rcgression.  Constas and Francis (1992) presented a
graphical method for sclecting the best subsct regression
model using R-squarcd and adjusted R-squarcd. They
plotted R-squared and adjust¢d R-squared against the
number of predictors in the model. The maximum
number of predictors for best subset model was
determined at the point where the R-squared and/or the
adjusted R-squared values descended.

The Mallows Cp criteria has also been
recommended for selecting the best subset of predictor
variables in contrast to the stepwise methods using a
sample data set (Tracz, Brown, & Kopriva, 1991;
Zuccaro, 1992). The Cp statistic measures the effect of
underfitting (important predictors left out of the model)
or overfitting (include predictors that make no
contribution or are marginal). Mallows (1966, 1973)
has suggested that the selection of the best subset model
with the lowest bias is indicated by the smallest
Mallows Cp criteria, especially in the presence of
multicollinearity. The SAS package (Freund & Littell,
1991) currently prints the Mallows Cp valuc and a
variance inflation factor (VIF) which can be used to
determine which variables may be involved in the
multicollinearity. Pohlmann (1983) had previously
noted that multicollinearity among a set of predictor
variables didn't affect the Type [ error rate, but did affect
the Type Il error rate and width of the confidence
interval. His findings suggest that sample size and
model validity could compensate for multicollinearity
effects, especially when certain research questioas
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require models with hxghly correlated prcdlctors for
example, Y = B1X; + BoX?2; +e.

The principal component regression (PCR) has also
been proposed as a criteria for selecting the best
predictor model. This method appears to be useful when
predicting values in one sample based upon estimates
from another sample and when multicollinearity exists
among a set of variables (Morrison, 1976). The
indication for using a PCR approach is when the mean
squared error of a biased estimate is smaller than the
variance of an unbiased estimate. The PCR method,
however, is not appropriate for multiple regression
subset models containing interactions (Aiken & West,
1993). Since the PCR method creates a set of new
variables called principal components, which are
uncorrelated or orthagonal, it should not be used when
models depict nonlinear, correlated predicter sets.

In summary, the all possible subset approach is
recommended as an alternative over stepwise methods
for selecting the best set of predictor variables. The
Mallows Cp criteria or a principal components
regression approach is advocated for determining the
best subset model over the use of R-squared, especially
when the predictors are correlated. The principal
component regression method, which determines the
best model for prediction by creating orthogonal
variables, appears more useful when estimates from one
sample are used to predict in another sample or when
multicollinearity exists among the predictors.

How do these criteria compare when sclecling the
best subset model? When might a researcher choose

one criteria over another for selecting the best model?
A comparison of the Mallows Cp selection criteria
upon cross validation and a comparison of the parameter
estimates and standard errors between the multiple
regression and the PCR approach should shed further
light on their usefulness for subset mode! selection.
An applled example will further elabotatc the
comparison of the two criteria.

Simulation

A SAS program was used to generate a heuristic
population (n = 10,000 observations) with a dependent
variable and ten correlated predictor variables. The
program then randomly sampled the population data set
for n = 200 observations. This data set was then
randomly divided to create two separate data sets of equal
size (n] = n2 =100 observations). The SAS programs
used in this simulation are available from the author.

The population correlation matrix, variable means
and standard deviations are in Table 1. The correlation
matrix, variable means and standard deviations for the
sample data set used to compute the parameter estimates
are in Table 2. The correlation matrix, variable means
and standard deviations for the cross validation data set
are in Table 3. Parameter estimates, computed using
the ordinary least squares criterion {rom the first data
set, were used with the second data set to calculate R2
and the Mallows Cp values, and to determine the best
variable subset models.

Table | Population Correlation Matrix, Means, and Standard Deviations (n = 10,000)
Y X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
X1 4
X2 25 .10
X3 34 13 .10 .
X4 43 19 10 A5
XS 42 .19 1 A3 19
X6 30 13 09 11 A3 A2
X7 24 11 .07 .06 .10 .08 .07
X8 .50 22 A3 A7 21 .21 16 Al
X9 .28 12 .08 .10 A2 11 09 .07 .15
X10 .26 .11 05 .07 A1 12 .06 .08 .14 .08
Mean 9.99 17.92 16.12 1894 2196 2805 2597 3890 4205 3397 1205
S.D. 2.00 444 821 6.00 4.66 495 661 8.61 4.12 6.95 8.12

Note. All values have been rounded to two decimal places.
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. Table 2 Sample Correlatlon Matrlx, Mems, and Sumdard Devlatlons for Estlmatlon Sample

(n1=100) ekt

G0 et Tl AT By

Y X1 ~rX2 T X3 X4

X7

X9

X10

. X5 X6 X8
X1 41
X2 .28 02 ’
X3 41 .05 23
X4 38 23 01 15
X5 24 01 .04 02 16
X6 ‘33 02 16 .09 .08 .08
X7’ .25 J6 ~ 08 .03 .01 01 .10 ,
- X8 -39 22, .13 -04, 19 .06 21 .01 e
X9 33 19 07 04 24 -15 03 .22 7 21
X10 4 2308 24 21 03 10 a7 a1 17
Mean 1018 1840 1537 20..4‘9\; 2276 2841 2588 3955 4189 3427 1104
s.D. 180 461 888 594 430 499 679 781 413 680 813
g . PRI TR H kil K}
Nats, All ulunhnvobommundodto!wodocvlnﬂplncn. :
Table 3 Sample Correlation Matrix, Means, and Standard Deviations for Cross Validation
Sample (n2 = 100)
" ),,

Y XI X2 X3 X4 XS5 X6 X7 X8 X9 XI0
X1 39
X2 .28 14
X3 34 -05  -08
X4 52 03 13 20
Xs 54 17 20 28 37
X6 26 01 01 07 18 19
X7 A4 03 .05 .08 07 0l -03
X8 .55 27 11 26 26 21 .06 .02
X9 32 .26 18 -09 20 07 A1 .09 .09
X10 31 .26 07 A1 A2 21 d1 .19 .09 24
Mean 994 1791 1655 1926 2137 2840 2534 3923 4192 3393 1038
S.D. 1.99 4.86 8.57 6.13 535 475 6.82 943 4.27 6.73 778

Note. All values have been rounded to two decimal places.
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‘Table 4 R? and Cp Values for Sample; And Samplez Best Variable Subset Models
(ng =n3 = 100) ’ : : g : :

Subset Vanables in Subset Mode] : Sample|
Size : R2 Cp

1 (10) 21 102.92
2 eE 33 7444
3 (3).(8),(10) ‘ ‘ 44 49.79
4 (1),3).8)(10) .50 36.13
5 (1).3).6).8).(10) : 54 2742
7 (1).3),(5),(6).(8).(9).(10) 62 12.26
8 (1).(2),3)(9).(6).(8).(9)(10) - .63 11.85
9 (1).(2).(3).(4).(5).(6).(8).(9).(10) 64 11.27
10 (1).2).(3).(4).(5).(6).(7)(8).(9)(10) - 65 11.00

Samples
R2 Cp

1 ® ; 30 101.79
2 OX() N ‘ 49 5044
3 4).5).8) , 55 3341
4 (D4)(58) : ' 61 2134
S (1),(4).(5).8).9) 63 17.08
6 (1)4(3),(4),(5)(8),(9) 65 13.37
7 (1),(3),(9.(5):(6)(8).(9) ' 66 11.58
8 (1)(2)43)(4)(5),(6).(8).9) , 67 979
9 (1).(2),(3).(4).(5),(6).(7)(8).(9) 68 9.96
10 (1(2).(3)(D(5)6).(T)(8)(9)(10) 68 11.00

Table 5 Cross Validation Comparison of R? and Cp Values: Sampler to Samplel for Best
Variable Subset Models (nf = n2 = 100)

Subset Variables in Subset Model ! Sample) Sample2
Size Cp R2 Cp R2

t (10) 21 102.92 15 159.53
2 G 33 74.44 .36 92.08
3 (3)(8).(10) 44 49.79 40 77.64
4 (1).3).8).(10) .50 36.13 45 65.44
5 (1).3).(6).(8),(10) 54 2742 47 55.78
6 (1).(3).(5).(8).(9).(10) .58 19.74 .59 26.35
7 (1).(3),(5).(6).(8).(9).(10) 62 12.26 61 2338
8 (1).2).(3).(5).(6).(8).(9).(10) 63 11.85 62 20.82
9 (1).02).(3).(4).(5).(6).(8).(9).(10) 64 11.27 63 1034
10 (DL2).3)(4)(5)(6)(7)(8) (9).(10) 65 11.00 .66 11.00
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Table 4 indicates the model subset selection for
each sample data set. Table 5 indicates a comparison
between the R2 and Mallows Cp values from the
estimation sample data set to the cross validation
sample data set using parameter estimates from the
estimation sample. The Mallows Cp values were
inflated because the parameter estimates applied to the
second data set altered the residual sums of squares used
in the formula to calculate them. Although the relative
ordering of Cp values were the same, these values did
not indicate the same single best variable subset model
in the second data set.

Table 6 compares the parameter estimates using the
Mallows Cp and the principal components regression
method for each best variable subset model. The R2
values will be the same regardless of which method is
used. The real difference is seen when comparing the
relative significance of the parameter estimates. The
Mallows Cp method with correlated predictors indicated
that g]l the parameter estimates were significant. This
was not the case in the principal components regression
approach. An applied example will further illustrate
this distinction between the two methods.

Applied Example
Subjects

Participants in the study were a cohort of students
accepted into the Texas Academy of Mathematics and
Science (TAMS) at the University of North Texas in
Fall, 1993. TAMS is an carly college entrance program
in which students earn approximately 60 hours of
college credit by taking University of North Texas
courses. Students eater TAMS at the beginning of their
L1th year in high school. They live on campus in a
specinl residence hall and take regular university courses
in mathematics, science and the humanities. After two
years, participants receive a special high school diploma
and have amassed at least 60 hours of college credit.
Each year approximately 200 high school sophomores,
who have met the selection criteria and completed the
10th grade, arc accepted into the Texas Academy of
Mathematics and Science.

In the study year, TAMS accepted 204 students. Of
these, 156 students attended an August orientation,
which occurred a week prior to their [irst semester of
college coursework, and completed the LASSI. There
were 80 females and 76 males who participated in the
study. The students who took the LASSI were similar
in demographic background and academic ability as
previous classes because of the academy's consistent
admission requirements and pool of applicants. The
participants' SAT-M and SAT-V means and standard
deviations, respectively, were: M=651, $D=57; and
M=530, SD=75.

st t
The LASSI is an English language assessment tool
designed to measure college students' use of learning and
study strategies. It was designed to provide assessment
and pre-post achievement measures for students
participating in a learning strategies and study skills
project. A high-school version is available, but it was

- *

not recommended for use with accelerated students in
these programs (Eldredge, 1990). The LASSI can be
administered in a group setting in approximately.30
minutes. The carbonless test format allows participants
to score their own assessment and take a copy of the
results with them from the testing session.

The ten LASSI subscales focus on thoughts and
behaviors related to successful learning. The ten
subscales are (1) Attitude, (2) Motivation, (3) Time
Management, (4) Anxiety, (5) Concentration, (6)
Information Processing, (7) Selecting the Main Ideas,
(8) Study Aids, (9) Self-testing, and (10) Test Strategies
(for more details see Weinstein, 1987). Reliability
studies reported Cronbach alpha internal consistency
values ranging from .70 to .86 and test-retest
reliabilities from .70 to .85. Validity studies have also
reported normative data for high school and college
students with different instruments for each group
(Weinstein, Palmer, & Schulte, 1987). Students
respond to individual items on each subscale using a
five-point scale: (5) very typical of me; (4) fairly
typical of me; (3) somewhat typical of me; (2) not very
typical of me; and (1) not at all typical of me. Some
item values are reverse keyed before being added to
obtain a subscale score. The subscale scores are
compared by graphing them onto a normal curve
equivalent percentile chart.

According to the LASSI user's manual (Weinstein,
1987), students scoring above the 75th percentile do not
need to improve that specific skill or strategy. Students
scoring between the 75th percentile and the 50th
percentile should consider improvement. Swdents
scoring below the S0th percentile on a subscale need
assistance to improve that skill or strategy. For
cxample, students scoring below the S0th pereentile on
the anxicty subscale would be considered anxious about
being in college. Likewise, sudents scoring below the
50th percentile on the motivation subscale lack
appropriatc motivation to do college level work
cffectively.

The rescarch question of intercst was whether the

* ten LASSI subscales could predict a student’s college

grade point average after one semester of college
coursework. A related question pertained to whether a
"subset” of the ten LASSI subscales could better predict
college grade point average for this sample of students.
Students not maintaining at least a 2.50 grade point
average after one semester of college coursework were
dismissed from the Academy. Knowledge of which
subscales are best predictors of college grade point
average would aid staff in identifying poteatial at-risk
students upon entering the Academy.
D is

The data were analyzed using a SAS statistical
program. The student's college grade point average was
predicted by the ten LASSI subscales using PROC
REG with the SELECTION statement requesting the
best subset model criteria. The PROC PRINCOMP
procedure was used to create ten orthogonal principal
component variables. The principal component variable
parameter estimates were then computed using the
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Table 6 Mallows Cp and Principal Components Regression Comparison (ny = 100)
Best Variable
Subset Model Mallows Cp Brincipal Components
B SEg t p 8 SEg t ] R2
X10 .10 .02 5.00 .0001 .82 .16 5.13 .0001 .21
X3 .13 .03 4.33 .0001 .02 .15 .13 .90 .33
X8 .18 .04 4.50 .0001 1.05 .15 7.00 0001
X3 .10 .02 5.00 .0001 .98 .12 8.17 .0001 .44
X8 .16 .03 5.33 .0001 .42 .14 3.00 .0024
X10 .07 .02 3.50 .0001 .21 .16 1.31 1951
X1 .10 .03 3.33 .0009 1.04 .11 9.45 .0001 .50
X3 .10 .02 5.00 .0001 .07 .12 .58 .59
X8 .14 .03 4.67 .0001 .28 .15 1.87 .07
X10 ,06 .02 3.00 .0004 .14 .16 .88 .39
X1 .11 .03 3.67 .0004 1.06 .10 .60 .0001 .54
X3 .10 .02 5.00 .0001 A1 12 .92 .35
X6 .06 .02 3.00 .0004 .07 .13 .54 .55
X8 12 .03 4.00 .0001 .19 .15 1.27 .20
X10 .06 .02 3.00 ,0004 -.02 .15 -.13 .90
X1 .09 .03 3.00 .0004 .97 .10 9.70 .0001 .58
X3 10 .02 5.00 .0001 .42 11 3.92 .0004
X5 .09 .02 4.50 .0001 31 12 2.58 .01
X8 12 .03 4.00 0001 .22 .14 1.57 11
X9 .06 .02 3.00 .0004 - 11 .14 .79 .43
X10 ,06 02 3.00 ,0004 .17 ,15 1.13 .26
X1 10 .03 333 0004 1.02 .09 11.33 .0001 .62
X3 .09 .02 4.50 0001 41 11 3.73 .0002
XS .08 .02 4.00 .0001 ..10 A1 =91 .37
X6 .08 .02 2.50 .03 .09 12 .75 .45
X8 .10 .03 333 .0004 16 13 1.23 .24
X9 .06 .02 3.00 ,0004 .20 .14 1.43 .16
X10 .08 .02 2.50 .03 A1 14 .79 .44

PROC REG procedurc. The number of significant
principal component parameter estimates were
subsequently identified. These procedures arc outlined
in the SAS System for Regression manual (Freund &
Littell, 1991).

Results

The correlation matrix, means aod standard
deviations of the ten LASSI subscales are in Table 7.
The intercorrelations among the subscales indicated that
Anxiety was not significantly correlated with Time
Management, Information Processing, Support
Techniques/Materials, and Self-Testing. The lowest
subscale mean was on Selecting Main Ideas.

Mallows Cp
The Mallows Cp statistic is calculated as: Cp =

(SSEp/MSE) - (n - 2p) + ! (Freund & Littell, 1991) or

Cp = [1/2 (RSSp) - n + 2p] (Mallows, 1973); where
RSSp is the residual sum of squares from the best
variable subset model, MSE and/or 25 the mean square
error from the full model with all predictor variables,
n = sample size, and p = number of predictors.

The procedure for finding the optimum subset of all
possible subset sizes requires computing 2™ equations.
The ten subscale predictors in the model yielded 1024
regression equations (210) with associated selection
criteria statistics {Note: the determination of the number
of subset equations generated for p predictor variables
from an  variable full model is: m!/[p!(m-p}!]. For
example, the number of 2 variable subset equations
generated from a 10 variable model would be 45}. Only
the single best variable subset models of each size are

reported.
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Table 6 (cont.) Mallows Cp and Principal Components Regression Comparison (nj = 100)

Best Vanable

Subset Model Mallows Cp Principal Components
B SEg t P 8 SEg t p Rr2
X1 .10 .03 3.33 .0004 1.03 .09 11.44 .0001 .63
X2 .02 .01 2.00 .05 .18 .10 1.80 .09
X3 .09 .02 4.50 .0001 .03 11 .27 77
X5 .08 .02 4.00 .0001 .30 11 2.72 .01
X6 .05 .02 2.50 .03 .01 .13 .08 .92
X8 .09 .03 3.00 .0004 12 .13 .92 .36
X9 .05 .02 2.50 .03 .25 14 1.78 .09
X10 .05 .02 2.50 .03 -.05 .14 -.36 .75
X1 .09 .03 3.00 .0004 .99 .08 12.38 0001 .64
X2 .02 .01 2.00 .05 .24 .10 2.40 .02
X3 .08 02 4.00 0001 .03 Al .27 77
X4 .05 .03 1.67 10 10 g1 9l .36
X5 - 07 .02 3.50 .0004 -,08 13 <62 .52
X6 .05 02 2.50 .03 .08 13 .62 .52
X8 09 - .03 3.00 .0004 .02 14 14 91
X9 .05 02 2.50 .03 -.001 14 007 .99
X10 .05 .02 2.50 .03 .33 15 2.20 .04
X1 .09 03 3.00 0004 .97 .08 12.13 .0001 .65
X2 .02 01 2.00 .05 .27 10 2.70 .008
X3 .08 .02 4.00 0001 .05 10 .50 .60
X4 .05 .03 1.67 10 -.09 A1 -.82 42
X5 .07 .02 3.50 .0004 .06 A1 .55 -3
X6 05 02 2.50 .03 .06 A2 .50 .60
X7 .02 02 1.00 25 -07 A2 58 .57
X8 09 .03 3.00 .0004 01 7 14 07 .94
X9 .04 .02 2.00 05 23 15 1.53 12
X10 .04 02 2.00 05 A9 15 1.27 21

Note Regression parameters have besn rounded to iwo decimal piaces unless otherwise noted. The | value = 8/ SBg.

Table 7 LASSI Subscale Inter-Correlations, Means, and Standard Deviations (n = 156)

LASSI Subscale 1 2 3 4 5 6 7 8 9 10
1 Attention

2 Motivation .59

3 Time Mngmnt .39 .60

4 Anxiety/Worry .32 15 .09

5 Concentration .57 .62 .62 .33

6 Information .20 .15 .39 .03 .26

7 Select ldeas .25 .36 31 .37 .47 .30

8 Support .24 .40 .47 .05 .38 45 .40

9 Class Prep. .38 .50 .63 .06 .55 .56 .39 .64

10 Test Strategy .54 .47 .33 .50 .66 .20 .60 .21 34

Mean 34.33 33.12 24.91 28.38 28.56 28.94 18.32 26.03 27.36 31.46
sD 4,17 4.73 6.18 5.92 4.93 5.24 3.51 596 5.84 4.58

Notg. The values have been rounded to two decimal places.
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Table 8 Best Model Sélection Criteria by Subset Size

Subset Variables

Size in Subset Model

1 ¢

2 (2.8

3 (2)(6).(8®

4 (2),(4),(8).(9

5 (2).(4)(6).8).(9)

6 (2).(4).(6).(7)(8).(9)

7 (1:2),(4).6).(7).(8).(9)

8 (1.(2).(4.6).(7).(8).(9).(10)

9 (1.(2),(3).(4)(5).(6).(8).(9),(10)
10 (1.2),3).(4)(5),(6).(7).(8)(9).(10)

R2 Cp
.09 10.88
A1 8.01
14 5.16
17 2.72
.18 2.93
18 3.68
19 5.10
19 7.05
19 10.04
19 11.00

Note The four variable subset model according to the Cp criteria would be selectod as the best modsl.

The best subset model for cach subset size with the
corresponding criteria are in Table 8. The Mallows Cp
of 2.72 indicated a four variable subset model. The four
variable subset model for predicting college grade point
was Anxiety/ (4), Study Aids (8), and Self Testing (9).
The Cp criteria also indicated the overfitting caused by
having too many variables in the model. The large Cp

values indicated equations with larger mean square error.
If Cp > (p + 1), for any subset size p, then bias was
present. If Cp < (p + 1), for any subset size p, then the
model contained too many variables. A plot of the Cp
values against the number of predictors, compared to a
plot of the (p + 1) values, visually displays this
phenomenon in Figure 1.

Table 9 Principal Component Regression

Modcl Typell SS df MS F P. R?2
Regression 10.76 10 1.08 335 001 .19
Modcl :

Components

) 4.16 1 N

) 99 1

3) 1.13 1

@) 1.93 1

) .09 1

©) 23 1

)] 58 1

®) 133 1

)] 29 1

(10) .03 1

Error 46.58 145 32

Total 57.34 155

Notc. Adj.R? = .13, PCR RY, 4 ¢ = 69 % (7.42/10.76).
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Figure 1 Overlay Plot of Cp and (p + 1) Values
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The present pattern of Cp values for the various
subsets of size p are typical when multicollinearity is
present. The Cp values initially become smaller, but
then start to increase. The plot of Cp values is similar
to a "scree" plot in factor analysis and as such a
multiple regression method might also be useful in
determining the number of variables to retain (Zoski &
Jurs, 1993). The best subset model is indicated when
the Cp values begin to increase and cross the (p + 1)
values (Figure 1). -

incipal Components Regressio

Principal components are obtained by computing
eigenvalues from the correlation matrix.  The
correlation matrix is used so that variables are not
affected by the scale of measurement as in the use of a
variance-covariance matrix. Since eigenvalues are the
variances of the principal component variables, the sum
of the eigenvalues equal the number of variables in the
full model, just as the sum of standardized variable
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variances would equal the number of variables. This
sum is the measure of the total variation in the data set.
A wide varation in the cigenvalues would suggest the
presence of multicollinearity among the variables. The
number of eigenvalues greater than unity, as in factor
analysis, would indicate the number of variables from
the full model that would explain most of the variance
in the data set. The eigenvectors, in contrast, contain
the coefficients for each principal component variable.
These coefficients are used to create the observed values
of the original variables. These observed values are
then used in multiple regression as orthogonal predictor
values with no multicollinearity present.

Preliminary inspection of the model components
(Type 11 SS) in Table 9 indicated three principal
component variables (1, 4, and 8) that accounted for
69% of the variance in predicting college grade point
average (7.42/10.76). The first model componeat alone
explained 39 % of the variance (4.16/10.76).

A comparison of the full mode] parameter estimates
in Table 10 between the original correlated predictors
and the principal component regression variables sheds
better ingight into the best variable subset model
selection criteria. The multiple regression analysis with
correlated predictors identified Motivation (2) and
Support (8) while the principal component method
identified Attention (1), Anxiety/worry (4), and Support
(8).

Summary

The Cp criteria identified a four variable predictor
model as best: Motivation (2), Anxicty/worry (4),
Support (8), and Class Preparation (9). This four
variable subsct model was further verified by examining
where the plot of Cp values against the (p + 1) valucs
crossed. The Cp criteria selected the smallest variable
subset model in the presence of variable
multicollincarity. The principal components approach
identificd Attention (1), Anxicty(4), and Study Aids (8).
In examining the paramcter estimates in the multiple
regression analysis, only Motivation (2) and Study Aids

(8) were significant relative to the other predictors in the
model. The Mallows Cp and PCR criteria indicated
slightly different sets of predictor variables depending
upon whether the independent variables were correlated.

In using multiple regression it is important to have
a theoretical basis for the regression model and to
consider model validation. A common misconception
in multiple regression is that the model with all the
significant predictors included is the best model. This
isn't always the case. The problem is that the beta
values and R-squared values are data dependent due to the
least squares criterion being applied to a specific sample
of data. A different sample will usually result in
different parameter estimates and variance explained.
Although the standard errors of the beta values do
provide the researcher with some indication of the
amount of change expected from sample to sample, the
fact remains that the estimates obtained from one
sample may predict poorly when applicd to a new set of
sample data. The primary method o assess any change
in estimates is to replicate the regression model using
other sample data. The Mallows Cp criteria was
similarly suspect because values were inflated upon
cross validation and the best variable subset model in
one sample was not identified in the other sample.
Obviously, if the mean square crror estimates and the
residual sums of squares fluctuate, then model selection
will be erroneous (sce Mallows Cp formula).

The rationale behind a regression model is to
estimate G2 (the true model's mean square error
variance). Since 02 is not gencrally known, a
rescarcher must estimate it from a knowledge of prior
research (02 = G2, ,), obtain estimates from a model
containing all theoretically relevant predictors, replicate
the study, or usc bootstrapping, jacknifing, and cross-
validation methods. In this regard, effect size
considerations, as recommended by Thompson et al.
{1991), become important to consider in cvaluating a
regression model.

Table 10 Multiple Regression and Principal Component Parameter Estimate Comparisons

ws Ci Principal Components

Variable B SEp t p B SEg t p

| .01 .02 .68 .50 .08 02 3.60 001
2 .03 .02 2.29 .02 .06 04 1.76 .081
3 .002 .01 19 .84 -08 .04 -1.88 .062
q 02 01 1.84 07 .14 .06 245 015
5 -.003 .02 - 17 .87 -03 .06 -53 600
6 .01 .01 130 .20 05 .06 .84 404
7 -02 02 -1.02 31 10 .08 134 182
8 -03 .01 282 .005 -18 .09 -2.03 044
9 .02 .01 128 .20 .09 .09 .95 341
10 .005 .02 27 .79 -03 .10 -31 .758
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Testing Directional Research
Hypotheses

Keith McNeil
New Mexico State University

Theory, literature review, and past research results will guide the development and testing of most research questions. This
paper argues that most research questions will be directional, instead of nondirectional, particularly since most researchers
want to make a directional conclusion. Although many researchers incorrectly make directional conclusions after finding
significance with a nondirectional test, tests of directional hypotheses are the only ones that allow directional

conclusions.

ost computer packages only report the
Mnondircctional probability, Therefore, an
adjustment is necessary when a directional
rescarch hypothesis has been tested. Exhibits are
provided for testing both directional and nondirectional
hypotheses regarding a) the difference between two
means, b) single population correlation, c) traditional
covariance, d) intcraction between two dichotomous
predictors, ¢) interaction between onc continuous
variable and one dichotomous variable, f) contribution
of a variable, and g) sclected non-linear hypotheses.
Researchers have a choice of various statistical
tools; readers of this joumal realize that most research
hypotheses can be tested with the GLM. Each
statistical too! can be used to test both nondirectional
research hypotheses and directional research hypotheses.

The researcher has to decide whether the research’

hypothesis is directional or nondirectional. The choice
should not be difficult, as the decision is affected by
theory, literature review, and past research. If these
areas do not provide a clue, then the researcher should
consider the desired conclusion. If the researcher is
content with stating, "There is a difference between
Treatment and Comparison,” then the nondirectional
research hypothesis is appropriate. But if all the forces
point to desiring to make the directional coaclusion,
"Treatment is better than Comparison," then a
directional research hypothesis is appropriate. The
choice of a directional or nondirectional research
hypothesis is not a statistical one. The choice is driven
by the research base and tied to one's desired conclusion.
A sample of three recent statistics texts illustrates
the confusion related to this issue. Grimm (1993)
walfTles on the use of directional research hypotheses.
Research hypotheses (scientific hypotheses) are
usually stated as predictions about the expected
direction of an experimental effect. For Exhibit,
persuasion technique A will induce greater attitude

change than technique B; subjects' perceptions of
control over a stressor will decrease stress reactions;
or higher levels of physiological arousal will create
stronger emotions. Researchers typically frame
their statistical hypotheses in a nondirectional
form. In other words, even though the research
hypothesis makes a prediction about which of two
mcans will be larger, the null and alternative
hypotheses allow the investigator to discover if a
(t;)eau;:m effect is opposite to the predicted cffect.
. 184) .

His major concerns arc that choice of the direction
should be made before data are collected, a valid conoeera.
But the other concem is that results in the opposite
direction are ignored with a directional test. If one is
theory building, then one may want to investigate those
anomalous results to see if, in fact, they are replicable.
Grimm (1993) does not treat directional hypotheses
with statistical tests other than the difference between
two means, although directional interpretations are often
made with nondirectional tests of significance.

Sprinthall (1990) introduces directionality when
discussing differences between two means, but treats the
concept as a mechanical issue, "Remember, in terms of
technique, the only difference between a one-tail and a
two-tail { is how we look up the significance level”
(p.185). He also doesn't discuss directional tests of
significance for other tests of significance, but makes
directional conclusions from several nondirectional
research hypotheses. Several of his examples are stated
as directional, but tested as nondirectional. Sprinthali
(1990) points out that "the alternative hypothesis for F
can never be directional. That is, if L is computed by
taking the square root of F, then its significance ‘must
be evaluated against the critical values in the two-tailed
t table "(p.275). That this is not so will be
demounstrated later.

A
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Shavelson (1988) is more in line with the essence
of this paper. He introduces directional rescarch
hypotheses with the very first statistical test, even
discussing the directional hypothesis before the
nondirectional. In discussing most subsequent tests, he
uses the same approach. He continuously emphasizes
that "if both theory and empirical evidence suggest the
outcome of a study, a directional research hypothesis
should be used” (p. 251). He discusses directional
hypothesis testing for a single mean, difference between
two means, correlation, planned comparisons, and
difference between two correlations. He does not
discuss directional hypotheses in terms of ANOVA,
ANCOVA, or multiple regression. Because he doesn't
discuss the use of one degree of freedom F tests, he
doesn't attend to the issue of computer-generated
probabilities discussed in this paper.

Rationale for Directional Research
Hypotheses ;

In the case of a new treatment, a researcher should
show that it is more effective, costs Jess, is quicker to
administrate, has Jonger lasting impact, etc. Who
would care if the new treatment is worse than the
existing comparison treatment? Any idiot can design a
new (reatment that is worge, costs [nore, is glower to
administer, has a ghorter lasting impact, etc,  What
would the research community learn from such
findings? Over many years of cxperience with this
issue, it has become apparent that nondirectional
rescarch hypotheses are only useful in dredging data in
search of hypotheses for another researcher with some
other data to verify. If a researcher has a good grasp of
the content area, a directional research hypothesis will
be desired.

Model Structure

An arca of confusion is that both directional and
nondirectional rescarch hypotheses are tested by the
same null hypothesis. For instance, if the research
hypothesis is directional, "T'rcatment is more effective
than Comparison," the statistical hypothesis is
"Treatment is as effective as Comparison.” If the
rescarch hypothesis is nondirectional, "Treatment and
Comparison are not equally cffective,” the statistical
hypothesis is "Trcatment is as cffective as
Comparison.” Most statistics texts illustrate this fact,
but give primary coverage to the nondirectional
hypothesis. Unfortunately, statistics texts do not
emphasize the permissible conclusions of the two.
Indeed, some statistics texts confuse the issue by
making directional conclusions from nondirectional
research hypotheses. Journal reviewers and editors
reinforce the confusion by allowing only the statistical
hypothesis to be reported. Why not force the author to
state what is desired?

From a GLM perspective, the Full Model and
Restricted Model are identical. The difference is the
desired algebraic status of the weighting coefficient
which will be identified as "want" in the following
exhibits. Statistical packages (e.g., SAS, SPSS,
BMDP) report only one probability value--that for the
nondirectional research hypothesis. Consequently, many
users mistakenly report that nondirectional probability
when they have tested a directional research hypothesis.

Adjustment of Computed Probability

Statistics texts make the case that the required
critical value depends upon whether one has a directional
or nondirectional research hypothesis. We have all seen
pictures of alpha in one tail of the t-distribution for a
directional hypothesis, and alpha split between the two
tails for a nondirectional research hypothesis. We also
all remember that the relationship between t and F is 52
=F. Thus the tails of the negative and positive sides of
the ¢ distribution both constitute the right-hand tail of
the F distribution, as in Figure 1. What this mcans is
that we would get a large F value half the time when
sample meanT > sample meanc- and half the time when
sample meanT < sample meanc. If our research
hypothesis was directional, then we would be interested
only in one of the two halves of the E distribution in
Figure 1. If the calculaied | was 4.24, then the reported
(nondirectional) probability would be .05. But if we
had a directional research hypothesis, (say population
meanT > population meanc) and the results were in
line with our research hypothesis (sample meany = 15,
sample meanc = 10) instead of being exactly opposite,
say (sample meanc = 15, sample mean| = 10), then we
would obtain a t valuc of 2,06 and we would need to
divide the reported probability by 2, as discussed in
Figure 2.

On the other hand, if our results did turn out
opposite to expectations, we would not want to say we
had "significant results." Suppose our results produced
a{ valuc of -2.06 at @ in Figure 1. Although that {
value translates to an F value of 4.24, one cannot rely
on the [ value (and the probability associated with it).
One must check the data to see if the results are in the
direction hypothesized. If the results are in the
hypothesized direction (the shaded area in the bottom of
the F distribution), then the computed probability must
be divided by 2. If the results are not in the desired
direction, then the computed probability must be divided
by 2 and subtracted from 1.00. These procedures are
outlined in Figure 2 and apply to each of the following
exhibits.
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Figure 1 Relationship Between t aﬁd[ with Respect to Directional and Non-Directional
Hypotheses ' »

! 25
~2.06 1] +206 ¢
@ *
Fi,25
0 2 6

Figure 2 Procedures for Chl;‘lh'n‘ Computer-Generated Nondirectional Probabllity of F-tests
to Directional Probabilities

Check to see whether Condition I or Condition II holds.

Conditlon I: If results (means, correlations, difference between means, etc.) are in the hypothesized direction:
Divide nondirectional computer probability by 2.
Example: Nondirectional probability on printout is .08. Therefore the directional probability is (.08 / 2) .04,
which is the probability that should be reported, and is indicated by the * in Figure 1.

Condition II: If results (means, correlations, differences between means, etc.) are opposite to the hypothesized
direction, divide nondirectional computer probability by 2 and subtract the resulting value from 1.00.
Example: Nondirectional probability on printout is .08. Thercfore the directional probability is 1 - (08 / 2), or
.96, which is the probability that should be reported, and is indicated by the @ in Figure 1.

d

Note. The directional h hypothesis could only have been tested when the groes of f are equal to 1.
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Examples o

Exhibit 1 contains both the directional research
hypothesis and the nondirectional research hypothesis
for testing the difference between two means. Notice
that both research hypotheses use the same statistical
hypothesis. The two Full Models are exactly the same,
and the two Restricted Models are exactly the same.
The difference is in the "want." The different wants
require that different actions be taken on the computed
probability, as discussed in the previous section. The
different wants also impact the permissible conclusions.

Exhibit 2 Correlation

Exhibit 1 Difference
Population Means

Between Two

Directional Research Hypothesis: For the population of
interest, Group A has a higher mean than Group B on
the criterion Y,

Nondirectional Research Hypothesis: For the population
of interest, Group A and Group B are not equally
effective on the criterion Y,

Statistical Hypothesis: For the population of interest,
Group A and Group B are equally effective on the
criterion Y,

Full Model: Y = a0U + aGA + E3

Want (for directional RH) a > 0; restriction; a = 0.
Want (for nondirectional RH) a = 0; restriction: a =0,

Restricted Model: Y = a0U + E4

Where: Y = criterion; U = | for all subjects; GA = 1 if
subject in Group A, 0 if subject in Group B; and a0 and
4 arc least squares weighting coefficients calculated so as
to minimize the sum of the squared values in the error
vectors,

PROC REG; MODEL Y = GA;
TESTGA =0,

Directional Research Hypothm{s: For some ‘;Sopulatién,
X is positively related with Y.

Nondirectional Research Hypothesis: For some
population, X is related with Y,

Statistical Hypothesis: For some population, X is not
related with Y.

Full Model: Y = a0U + bX + El

Want (for directional RH) b > 0; restriction: b = 0.
Want (for nondirectional RH) b «# 0; restriction:
b=0.

Restricted Model: Y = a0U + E2

Where: Y = criterion; U = 1 for all subjects; X =
predictor score for subject; a0 and b are least squares
weighting coefficients calculated so as to minimize the
sum of the squared values in the error vectors,

PROC REG; MODEL Y = X;
TESTX =0,

Corrclation

The above discussion is also appropriate to testing
corrclations. [f a new testing instrument is developed,
one would hope that it is reliable and valid. These
conclusions require paositive correlations, not
correlations different from 0. If a theory posits that X
and Y are related, the theory should specify if that
relationship is positive or negative. If one is going to
consider studying for a test, one needs to know if the
relationship between studying and exam grade is
positive or negative! Exhibit 2 provides the complete
GLM solution of a research hypothesis regarding
directional correlation.

Assume that you have a Treatment and Comparison
situation as previously described, and you want to adjust
the posttest scores for initial differences in pretest
scores. You would want the Treatment group to be
higher than the Comparison group on the adjusted
posttest scores. Again, who would be interested in a
treatment that produced lower adjusted posttest scores?
Exhibit 3 provides the GLM solution for both the
nondirectional and directional analysis of covariance
research hypothesis. The directional research hypothesis
in ANCOVA is applicable only when there are two
groups being compared, resulting in one degree of
freedom in the numerator of the F. When there is more
than onc degree of freedom in the numerator, only a
nondirectional research hypothesis can be tested.

Exhibit 3 Analysis of Covariance

Research Hypothesis: For a given population, Method
A is better than Method B on the criterion Y, over and
above the covaniable C.

Nondirectional Research Hypothesis: For a given
population, Method A and Method B are differentially
effective on the cniterion Y, over and above the
covariable C.

Statistical Hypothesis: For a given population,
Methods A and B are not differentially effective on the
criterion Y, over and above the covanable C.
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Full Model: Y = a0U + a2G2 + c1C + El

Want (for directional RH) a2 < 0; restriction: a2 = 0
Want (for nondirectional RH) a2 not equal 0; restriction:
a2=0

Restricted Model: Y = a0U + ¢clC+ E2

Where: Y = criterion; U = 1 for each subject, G2 = 1 if
subject received Method B, 0 if Method B; C =
covariable score; and a0, a2, and c1 are least squares
weighting coefficients calculated so as to minimize the
sum of the squared values in the error vectors.

PROC REG; MODEL Y =G2 C;
TEST G2=0;

w Wi ous Varjables
Suppose you have two treatments and two levels of
motivation, and are interested in Posttest scores.
Traditional analysis of variance tests for the interaction
effect first, and then proceeds to the main effects if the
interaction is got significant, and to simple effects if the
interaction effect is significant. The interaction effect

-usually is treated as an assumption, or as an cffect that

is preferably not in existence. But the interaction effect
may be the researcher's primary hypothesis, and it may
be cither directional or nondirectional. (In traditional
analysis of variance it is always nondirectional, unless
tested as an a priori contrast.)

Suppose that the treatment was designed to be
particularly responsive to highly motivated studeats.
Based on the assumption that there might be ways to
increase student's motivation, you expect the directional
interaction pictured in Figure 3. Your expectation is
that "Students with high motivation will do better on
the Posttest than students with low motivation, and the
difference will be greater for the Treatment than for the

Comparison." The focus of the directional interaction

could just as well have been on treatments, with the
expectation being "Treatment students will do better on
the ‘Posttest than Comparison students, and the
difference will be greater for high motivated students
than for low motivated students.” The two statements
are equivalent and both identify directional interaction.
The complete GLM solution is provided in Exhibit 4.
Notice again that the only difference between directional
and nondirectional is in the "want," in the adjustment of
the probability, and the permissible conclusion. Again,
the directional interaction can be tested only if there is
one degree of freedom in the numerator of the .

Figure 3 " Directional Interaction Between Two Dichotomous Predictors

Posttest

Treatment

/ COmparison

High

Motivation
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Exhibit 4 Directional
Two Dichotomous Predlctors

Directional Research Hypothesis: For a given
population, the relative effectiveness of Method A
(X10) as compared to Method B (X11) on the criterion
of interest (X9) will be grcater for Group A (X12) than
for Group B (X13).

Nondirectional Research Hypothesis: For a given '
population, the relative effectiveness of Method A
(X10) as compared to Method B (X11) on the criterion
of interest (X9) will be dxffercnt for Group A (X12) than
for Group B (X13). ” A
Statistical Hypothesis: For a given populatidn'.' the .
relative effectiveness of Method A (X10) as compared to
Method B (X11) on the criterion of interest (X9) will be
the same for Group A (X12) as for Group B (X13).

Full Model: X9 = a0U + b(X10*X13) + c(Xl 1*X12) +
d(X11*X13) +El

Want (for directional RH) (¢) > (b - d);
restriction: (¢) = (b - d)

Want (for nondirectional RH) (c) not equal (b - d);
restriction: (c) =(b-d)
Restricted Model: X9 = a0U + ¢X10 + fX12 + E2

PROC REG; MODEL x9 = X10*X13 X1 l‘Xlz
X11*X13;

TEST (X11*X12) = (X10*X13 - X11*X13);

Interpretation: [f the weighting cocfficient ¢ is
numcncauy larger than (b - d), the dircctional
probability is appropriate and the following conclusion
can be made: For a given population, the relative
cffectivencss of Mcthod A (X10) as compared to method
B (X11) on the criterion of interest (X9) will be greater
for Group A (X12) than for Group B (X13).

considered as a continuous variable in Figure 4. The
directional interaction rescarch hypothesis would be,
"As motivation increases, the relative superiority of
Treatment over Comparison increases.” . Shavelson
(1988) presents a directional example of this type,
framed as the "test for difference between regression
slopes from two independent samples.” His
presentation is in terms of a complicated ¢ test. The
GLM approach illustrates the similarity of all
directional research hypotheses and relies on the same
model comparisons as all the previous examples.
Exhibit 5 contains the complete GLM solution for
interaction between one continuous variable and one
dichotomous variable. :

Exhibit § Interaction Between  One
Continuous Variable And One Dichotomous
Variable

tw inuous Varia ne
Dichotomous Variable

An extension of the previous section would be to
consider motivation as a continuous variable instead of
as a dichotomous variable. The same rationale applies,
although now since motivation is being considered as a
continuous variable two lines will be fit to the date, not
four means. Figure 4 depicts the expected directional
interaction. Note that Figure 4 appears very similar to
Figure 3, the only difference is that motivation is

Directional Research Hypothesis: For a given
population, as X increases, the relative superiority of
Method A over Method B on Y will linearly increase.

Nondirectional Research Hypothesis: For a giv:m
population, as X increases, the relative superiority of
Method A over Method B on Y will linearly change,

Statistical Hypothesis: For a given population, as X
increases, the difference between Method A and Method
B on Y will remain the same.

Full Model: Y = aU + alUl + b1X1 + b2X2 + El

Want ((or directional RH) bl > b2;
restriction: bl= b2

Want (for nondirectional RH) bl not equal b2;
restriction: bl = b2
Restricted Model: Y = aU + b3X + E8

Where: Y = the criterion; Ul = 1 if the score on the
criterion is from a subject in Method A, 0 otherwise; X
= the continuous predictor variable; X1 = (U1*X) = the
continuous predictor variable if the criterion is from a
subject in Method A, 0 otherwise; U2 = 1 if the score
on the criterion is from a subject in Method B, 0
otherwise; X2 = (U2*X) = the continuous predictor
variable if the criterion is from a subject in Method B, 0
otherwise; and a, al, bl, b2, and b3 are least squares
weighting coefficients calculated so as to minimize the
sum of the squared values in the error vectors.

PROC REG; MODEL Y = Ul X1 X2:
TEST X1 = X2;
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Figure 4 Directional Interaction Between One Continuous Predictor (Motivation) and One

Dichotomous Predictor (Type of Treatment)

Posttest

// Treatment

Comparison

01

Motivation

2 3 4 5 6 7 8 9 10 .11 12

If all the predictor variables of interest are
polynomial tcrms, the directional rescarch hypothesis is
atill appropriate. Consider the case in which the lincar
and sccond-degree terms are under consideration. The
sccond-degree curve can be cither an inverted U or U-
shaped. The U-shaped curve identifics a "trough" of
minimum performance on the criterion, whereas the
inverted U identifies a “peak” of maximum performance
on the criterion. These are two very different
conclusions and arc a function of the sign of the second-
degree term. The curves are identified in Figure 5 and
the GLM solution is in Exhibit 6.

b=0
Restricted Model: Y = a0U + aX + E2

PROC REG; MODEL Y =X XI16;
TEST X16 =0,

Exhibit 6 Non-linear Hypotheses .

Directional Research Hypothesis: For a given
population, there is a positive second degree effect of X
on Y, over and above the linear effect of X.

Nondirectional Research Hypothesis: For a given
population, there is a second degree effectof X on Y,
over and above the linear effect of X.

Statistical Hypothesis: For a given population, there is
pot a positive second degree effect of X on Y, over and
above the linear effect of X.

Full Model: Y = a0U + aX + bX16 + El
Where: X16 = X*X

Want (for directional RH) b > 0; restriction: b=0
Want (for nondirectional RH) b not equal 0; restriction:

Yariables

A researcher may be interested in how a variable is
related to a criterion, after the effects of several other
variables have becn "statistically adjusted.” If the
variable is dichotomous (say study or not study), then
this question is simply an extension of the analysis of
covariance discussion into more than one covariable.
The GLM solution would simply have the multiple
covariables in the Full Model as well as in the
Restricted Model as in Exhibit 3.

If the variable under concern is a continuous
variable (say hours of studying), then whether the
variable relates positively or negatively to the criterion
after adjustment for the covariables would be of interest
in the directional situation. Again, knowing that
studying is predictive of the criterion (over and above
the other variables) is not that informative; what is
informative is knowing whether studying is positively
related or negatively related to the criterion. If one
wanted to use these results to recommend trying to
increase the criterion, one would have to know the
directional relationship between studying and the
criterion. The GLM solution is provided in Exhibit 7,
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Figure 5 U-Shaped Curves Resulting From Negative and Positive Weights of‘ Second -Degree

Terms

Y = aU + bX = X2 + E, where c is negative.

e

X

Y =aU+bX + cX‘2 + E, where ¢ is posilive,

Exhibit 7 General Over and Above

Directional Research Hypothesis: For a given
population, X6 is positively predictive of the criterion
Y, over and above X1, X2, X3, and X4.

Nondirectional Research Hypothesis: For a given
population, X6 is predictive of the criterion Y, over and
above X1, X2, X3, and X4.

Statistical Hypothesis: For a given population, X6 is
not predictive of the criterion Y, over and above X1,
X2, X3, and X4.

Full Model: Y = a0U + alX1 + a2X2 + a3X3 + s4X4
+ a6X6 + El

- L

Want (for directional RH) a6 > 0; restriction: a6 =0
Want (for nondirectional RH) a6 not equal 0; restriction:
a6=0

Restricted Model: Y = a0U + alX1 + a2X2 + a3X3 +
adX4 + E2

Where: Y = the criterion; X1, X2, X3, X4, X6 =
continuous or categorical information; and a0, al, a2,
a3, a4, and a6 are least squares weighting coefficients
calculated 0 as to minimize the sum of the squared
values in the error vectors.

PROC REG; MODEL Y = X1 X2 X3 X4 X6;
TEST X6=0;
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Summary

Researchers often do not follow the knowledge base
by stating a directional research hypothesis. Often,
though, directional conclusions are made from testing
non-directional research hypotheses. Since the
statistical (or null) hypothesis is the same for
directional and non-directional research hypotheses,
rescarchers often overlook the distinction. In addition,
all canned computer packages report only the non-
directional probability. This paper has illustrated how
the GLM can be used for directional hypothesis testing
and for obtaining the cormrect directional probability.

All the previous exhibits are subsets of the same
general situation described in Exhibit 7. The differences
depend on the number of predictors, number of
covariates (many, one, none), and whether the variable
tested is continuous or dichotomous. In all the
statistical tests discussed, a directional research

hypothesis can be tested if there is a directional
cxpectation. If there is a directional research
hypothesis, there is only ope want, gpe restriction, and
one degree of freedom in the numerator of the F-test. In
all cases the reported nondirectional probability must be
adjusted based on how the sample results match the
directional research hypothesis. These are all essential
elements of a directional hypothesis.
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| Orthogonal Comparisons
A Teaching Example

Keith McNeil
New Mexico State University

When the omnibus one-way Analysis of Variance (ANOVA) is found to be significant, the research question that "at least
two populations have different means” can be accepted, but is found to be lacking. (What most textbooks fail to mention is
that this means that the one-way ANOVA question is a fruitless question.) Most textbooks tum to post-hoc analyzes as a
way to determine "where the significance is.” But that joumey is often muddled by: a) discussion of a myriad of post-hoc
procedures, b) insufficient parallel examples, c) downplay of the value of planned comparisons, and d) failure to tie
orthogonal comparisons to the two-way ANOVA. This paper will attempt to alleviate the above issues, with vanous

examples of four groups,

IR

four different treatments, and is encouraged to

"first conduct the one-way ANOVA." The
rescarch hypothesis being tested here is, "For the
population, at lcast two of these treatments are
differentially effective.”" Given that the omnibus F is
significant, the researcher can conclude, "For the
population, at least two of thesc treatments arc
differentially effective.” Note that which treatments arc
different cannot be specified. Nor can the more effective
treatment be specified. The omnibus one-way [ can be
called a non-specific, non-directional research
hypothesis, yielding little (or no) information.

S upposc that a rescarcher is interested in comparing

Post-Hoc Comparisons

The myriad of post-hoc comparisons have been
developed to attempt to rectify the non-specificity
problem. These procedures protect the Type I error,
some with orthogonal comparisons. It is this family of
orthogonal comparisons on which the remainder of the
paper will focus.

Orthogonal Comparisons

A comparison is said to be orthogonal if the set of
contrast cocfficients sum to zero, and if the sum of
cross products with all other orthogonal comparisons
also sums to zero. The set of contrast coefficients for
RH1 in Exhibit 1 meets both criteria, as the set of
coeflicients sums to 0 (1 + 0 + 0 + -1 = 0), and the
sum of the cross products of set 1 with set 2 also sums
o0 [(Ix0)+(@Ox1)+(0x-1)+(-1x0)=0]. Each
orthogonal comparison is a t-test question, either
comparing one group to another (as in RH1 and RH2),
or some combination of groups to some other

combination of groups (as in RH3). With four groups,
there is three degrees of freedom associated with the
Between groups sum of squares, The three orthogonal
contrasts identify three ways this sum of squarcs can be
pariitioned. It should be noted here that there are many
(infinitc?) ways that the sum of squarcs can be
partitioned--some more meaningfu! for how the four
groups were determined.

An example of when research hypothesis 1 (RH1),
RH2, and RH3 might be of interest is when a researcher
is studying two classes of each of two teachers, onc in
the AM and one in the PM. Let's assume that M1 is
Teacher A, AM; M4 is Teacher A, PM. RH1 could be:
*There is a difference in the effectiveness of Teacher A
in the PM from that in the AM." Further assume that
M1 is Teacher B, AM and M3 is Teacher B, PM. RH2
could be: "There is a difference in the effectiveness of
Teacher B in the PM from that in the AM." While
RHI{ and RH2 both compare teacher effectiveness of
AM and PM, the comparisons are on different teachers,
o what is found with RH1 (Teacher A) will not have a
bearing on what is found with RH2 (Teacher B). In this
case, the data to determine the answer to RHI is
different from that determining the answer to RH2.
(The data doesn't have to be diffcrent in order for
orthogonality to hold, as evidenced by RH3, but it
certainly clarifies the issue). RH3 compares the
effectiveness of Teacher A (averaged over AM and PM)
with the effectiveness of Teacher B (averaged over AM
and PM). Logically, the outcome of RHI (the relative
effectiveness of Teacher A at AM and PM), and the
outcome of RH2 (the relative effectiveness of Teacher B
at AM and PM) does not impinge on the overall
effectiveness of Teacher A as compared to Teacher B.
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Exhibit 1
Hypotheses

One Possible Set Of Contrast Coefficients Wlth Four Groups: Non-DlreétionaI

ML M2 M3 M4

RH1 Non-directional: M1 not equal M4 =
SH: Ml =M4 OR I*MI-1*M4 =0

RH?2 Non-directional: M2 not equal M3
SH: M2=M3 OR I*M2-1*M3 =0

RH3 Non-directional: M1+M4 not equal M2+M3

1 0 0 -1

SH: M1+M4 =M2+M3 OR 1*M1 + 1*M4 -1*M2 -1*M3 =0 1 -1 -1 1

Directional, Planned Orthogonal
Comparisons

The above research hypotheses were non-
directional, which is to say that differences were
expected, but not directionally specified. For RHI, if
the orthogonal contrast if found to be significant, then
the conclusion is simply a restatement of the rescarch
hypothesis, "There is a difference in the effectiveness of
Teacher A in the PM from that in the AM." While we
know now that "groups M1 and M4 are differeat," we
do not know how they are different. A directional
conclusion can be made if the direction was posited in
the rescarch hypothesis before the data were looked at
(preferably before the data were collected). Orthogonal
contrasts specified before data collection are referred to
as planned comparisons, and may be directional.
Dircctional conclusions cannot be made from any post-
hoc comparisons, only from planned comparisons.
Exhibit 2 contains the same set of orthogonal
comparisons as in Exhibit 1, but here as planned
comparisons with expectations: (RH1') Teacher A being
more effective in the AM than the PM, (RH2'), Teacher
B being more effective in the AM than the PM, and
(RH3') Teacher A being more effective than Teacher B
(averaging over AM and PM classes).

Notice that the statistical hypothesis (SH) is the

 same in Exhibit 1 and Exhibit 2, and the orthogonal

coefficients are the same. Again, what is different is the
expected direction, and the permissible conclusion.

RH4, RHS, and RH6 in Exhibit 3 are another set
of three orthogonal contrasts. While RHS and RH2 are
exactly the same, RH4 and RH6 are differeat from RH1
and RH3. The coefficients within RH4, RHS, and RH6
all add up to zero, and the sum of the cross products add
up to zero, thus RH4, RHS, and RH6 constitute a
different set of three orthogonal contrasts. Which set a
researcher should use depends on the design of the study
and the questions one has of the groups. Indeed, there
arc many other scts of orthogonal contrasts. As in all
research, the questions should guide the analysis. With
post-hoc comparisons, the rescarcher is limited to one
less question than there are groups.

An example of when RH4, RHS, and RH6 might
be of interest is when a researcher is testing the
effectiveness of three diffcrent New treatmeats (M1,
M2, and M3) and one Comparison treatment (M4).
Since there are four groups, three orthogonal questions
can be asked, and if the questions arc asked before
inspection of the data, Directional Rescarch Hypotheses
can be tested. Indeed, if a New treatment is being
researched,we should expect it to be better than the
Existing treatment. RH4 determines if the avererage

Exhibit 2 One Possible Set Of Contrast Coefficients With Four Groups:

Hypotheses

Directional

Ml M2 M3 M4

RH1' Directional: M1>M4
SH: M1 =M4 OR 1*MI1-1*"M4=0

RH2' Directional: M2 > M3
SH: M2=M3 OR 1*M2-1*M3 =0

RH3' Direclional: M1+M4 > M2+M3

SH: M1+M4 = M2+M3 OR 1*MI + 1*M4 -1*M2 -1*M3 =0 1
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Exhibit 3 Another Possible Set Of Contrast Coefficients With Four Groups

[T

M1 = New Treatment #1 M2 = New Treatment #2

M3 = New Treatment #3 M4 = Existing Treatment

Ml M2 M3 M4

Non-directional: (M1+M2+M3)/3 not equal M4
Directional: (M1+M2+M3)/3 > M4

SH MI1+M2+M3)/3 = M4 OR 1*M1 + 1*M2 + I*M3 - 3*M4 =0 1 1 1 '"': 3

Non-directional: M2 not equal M3
Directional: M2 > M3
SH: M2=M3 OR I*M2-1*M3 =0 :

Non-directional: M1 not equal (M2+M3)/2
Directional: M1 > (M2+M3)/2 S
SH: Ml =(M2+M3)i2 OR 2*M! -1*M2 -I*M3 =0

of the three New treatments is better than the one
Comparison treatment. RHS tests if New treatment 2 is
better than New treatment 3. Finally, RH6 tests if New
treatment 1 is better than the average of the other New
treatments. As should now be clear, the design of the
research, and the desired conclusion(s) determine the
choice of the hypotheses, and whether the hypothescs
are directional or non-directional. No one choice is
always correct; the choice will depend on the rescarch
questions!

Pictorial Representation of Orthogonal
Comparisons

Notice that RHS and RH2 are the satue, in terms of
contrast cocfficients. Since the two Exhibits were
discussed with different samples, the rescarch
hypotheses may have scemed different. But in both
cases, M2 was contrasted with M3. The sum of squarcs
duc to the four groups, though, was partitioaed in
different ways, as depicted in the Venn diagram in
Figure 1. Figure la illustrates the onc-way partitioning
of sum of squares, into Within groups and Between
groups. Note that the Between groups is between the
four groups. Figure 1b illustrates the contrasts in
Exhibit 1. About onc-half of the Between groups sum
of squares is due to RH2, and about one-fourth is duc to
RH! and one-fourth to REB3. If the contrasts in Exhibit
3 were applied to the same data as in Exhibit 1, then
Figure lc might result. Note that since RHS and RH2
are the same contrast, the sum of squares attributable to
those contrasts is the same. But since RH4 and RH6
are different from RH1 and RH3, the sum of squares
partitioned to these hypotheses will likely be different.
RH6 is shown to account for none of the sum of
squares in Figure Ic, while RH4 accounts for one-half
of the Between groups sum of squares.

Source Tables
Another way to comprehend the different

comparisons depicted in the Exhibits and in Figure 1 is
through the source tables in Tables 1 through 3. Table
1 contains the one-way results, with the Total sum of
squares being partitioned into just Between and Within.
The four groups account for 40% of the Total sum of
squares.Table 2 contains the partitioning depicted in
Exhibit 1, Notice that the Total and Within sum of
squares is the same as in Table 1, but the sum of
squares duc 1o Between groups has been further
partitioned into the three comparisons. The RI2
comparison accounts for half of the sum of squares due
(o groups (20/40--hence half the overlapped arca in
Figure 1b). Since all of the F values in Table 2 fall
beyond the critical value, all of these comparisons
would be significant, Table 3 reflects the contrasts in
Exhibit 3 and Figure 1c. Again notice that the sum of
squares for RH2 in Table 2 and RHS in Table 3 is the
same. RH4 and RH6 are different from REH 1 and RH3,
and therefore the sum of squares is differeat. RH6
accounts for none of the sum of squares and is therefore
not significant.

Example of Non-orthogonal Hypotheses

The reader may wonder why each of the New
treatments in Exhibit 3 were not compared to the
Existing treatment. These may be interesting research
hypothescs, but they are not orthogonal. Exhibit 4
contains the hypotheses and orthogonal coefficients.
While the coefficients do sum to zero within each of the
hypotheses, the sum of the cross products is not zero.
Think of it this way--if we start out by assuming all
four treatments are equal, but find one inferior to
another, isn't it likely that that one will be inferior to
one of the others as well? In this case, the results from
one hypothesis have a bearing on the resuits {rom
another. Once we know the answer to one hypothesis,
we have an inkling as to the answer to the other
hypothesis. Additionally these hypotheses as a set are
of litde value, because they do not lead to a conclusive
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Figure 1 Hypothetical Sample Means and Venn Diagrams

AM PM
TEACHER A 7.5 (Ml) 125 (M4)
TEACHER B 10.0 M2) 20.0 (M3)
1A One Way Analysis
Dependent Independent
Variable Variable
Within Between
IB Exhibit 1 or 2 Analysis
RK2
Dependant Independent
Variable Voriable
Wihia RH1 RK3
IC Exhibit 3 Analysis
RIS
Dependenr Independent
Yariable Variable

Within  RN4
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Table 1 One-way Source Table

SOURCE ss df MS F B
[ o ; = v
BETWEEN 40 3 1333 1333 276
WITHIN 60 60 1.00 R
TOTAL 100 63

Notg, All E,, are at alpha = .05.

Table 2 Exhibit 1 Source Table

SOURCE SS df MS E Eey
RH1 10 B 10 10.0 a0
RH2 20 1 20 20.0 4.0
RH3 10 1 10 100 4.0
WITHIN 60 60 1 -

TOTAL 100 63

Notg, All E, aro at alphs = 05,

Table 3 Exhibit 3 Source Table

SOURCE  SS df MS E Ly
RH4 20 1 20 20.0 4.0
RHS 20 t 20 20.0 4.0
RH6 0 1 0 0.0 40
WITHIN 60 60 1 ‘ e

TOTAL 100 63

Naote All E“ sre at alpha = .08,

answer. Suppose that all of the New treatments were
better than the Existing treatment. Which New
treatment would you recommend? The set of
orthogonal hypotheses in Exhibit 3, on the other hand,
lead to such a definite recommendation.

Trend Analysis

When the treatments are ordered on some
underlying continuum, one may want to investigate the
trends in the data as in Exhibit 5. That is, does the
criterion increase linearly with an increase in the
underlying continuum (as in RHI0), or is there a
minimum performance as in RH11? (By reversing all
the weights in RHI1, one could investigate maximum
performance.) Finally, with four groups there may be a
quadratic trend as in RH12. Note that the coefficients
for RH10, RH11, and RH12 all add to zero, and that the
cross products all add to zero. Therefore, RHI0, RHIL,

- ]

and RH 12 constitute another set of orthogonal contrasts
for four groups.

Two Factors

Now suppose that the four groups differ not on just
one underlying factor as in the above examples, but on
two underlying factors. Exhibit 6 posits the following
example of two groups getting the New treatment and
two groups getting the Comparison treatment. Thus
the first underlying factor is {reatment: New vs.
Comparison.
One of the New treatment groups is in the AM and one
is in the PM. One of the Comparison treatment groups
is in the AM and one is in the PM. Thus, the second
factor is time of treatment AM vs. PM.

What would be the research hypotheses of interest
with this design? One probably would want to compare
the New treatments to the Comparison treatments, and
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Exhibit 4 Another Possible Set of Contrast Coefficients With Four Groups: Non-Orthogonal

M1 = New Treatment #1 M2 = New Treatmen; #2

M3 = New Treatment #3 M4 = Existing Treatment

ML M2 M3 M4

Non-directional: M1 not equal M4
Directional: M1 >M4

SH Mil=M4 OR
RH5 Non-directional: M2 not equal M4
Directional: M2 > M4

SH M2=M4 OR I*M2-1*M4=0
RH6 Non-directional: M3 not equal M4
Directional: M3 > M4

SH M3=M4 OR I*M3 -1*M4=0

1*MI1 + 0*M2 + 0*M3 - 1*M4 =0 1 0 0 -1

possibly the AM treatments to the PM treatments.
These two hypotheses will be developed first, and then
we will turn our attention to the third orthogonal
comparison.

The Non-directional Research Hypothesis for
trecatment would be: "The two treatments, averaged
across the two different time periods, are not cqually
effective,” resulting in the orthogonal coefficients for
RHI3 in Exhibit 6. Onec could have stated this
Rescarch Hypothesis with a directional expectation,
resulting in the same set of orthogonal cocfficients.
The Non-directional Rescarch Hypothesis (or time of
treatment would be RH14: "The two time periods,
averaged across the two different treatments, are not
cqually cffective." Again, one could have stated this
hypothesis with a dircctional expectation. Notice that
the cocfficients for RH14 are orthogonal to thosc for

RH13. RH13 and RH14 are referred to as “main effects"
hypotheses within the Analysis of Variance framework.
Unless stated directionally a priori, they are always
tested in a non-directional fashion.

Given the above two orthogonal contrasts, the third
orthogonal contrast would have to be that specified in
RH1S. The non-directional research hypothesis
associated with these coefficients is: "The difference
between AM New treatment and PM New (treatment is
different from the difference between AM Comparison
trecatment and PM Comparison treatment." Again, one
could have stated this hypothesis with a directional
expectation. (For example, *The difference between AM
New treatment and PM New treatment is different from
the difference between AM Comparison treatment and
PM comparison treatment." Again, onc could have

Exhibit 5 One Possible Set of Contrast Coefficients With Four Groups: Trend Analysis

Ml M2 M3 M4

RH10 Non-directional: -3M1 -1M2 +1M3 +3M4 not equal 0

linear trend Directional: -3M1I -IM2 +IM3 +3M4 >0

SH 3M1 -IM2 +IM3 +3M4 =0 OR -3*M1 -1*M2 +1*M3 +3*Md = 0 3 4 1 3
RH11 Non-directional: M1 -M2 -M3 + M4 not equal 0

quadratictrend  Directional: M1 -M2 -M3 + M4 >0

SH Ml -M2 -M3 + Md =0 OR 1*MI -1*M2 -1*M3 +1*Md =0 | ) Y |
RH12 Non-directional: -M1 +3M2 -3M3 +M4 not equal 0

cubic trend Directional: -Ml +3M2 -3M3 +M4 > 0

SH -Ml1 +3M2 -3M3 +M4 =0 OR

1AM +3*M2 -3*M3 +1*M4 =0 13 3 1

\
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~ Exhibit 6 One Possible Set of Contrast Coefficients: Two-Way Analysis Of Variance'

M1 = New treatment, AM
M3 = Comparison treatment, AM

M2 = New treatment, PM
M4 = Comparison treatment, PM

M1 M2 M3 M4
RHI13  Non-directional: The two treatments, averaged across the two different time ‘
periods, are not equally effective
(M1+M2)/2 not equal (M3+M4)/2
Directional: The New treatment, averaged across the two different time periods,
is more effective than the Comparison treatment A '
M1+M2)/2 > (M3+M4)/2

SH M1+M2)/2 = (M3+M4)I2 OR (MI+M2) = (M3+M4) OR . o
(M1+M2) - (M3+M4) =0 OR 1*MI +1*M2 -1*M3 -1*M4 = 0 1 1 1 -

RH14  Non-directional: The two time periods, averaged across the two (reatments, are
not equally effective

(M1+M3)/2 not equal (M2+M4)/2 h ‘

Directional: The AM period, averaged across the two different reatments, is
more effective than the PM period B '
MI1+M3)/2 > (M2+M4)/2

SH  (MI+M3)22 = (M2+M4)2 OR (M1+M3) = (M2+M4) OR S o
O (MI+M3)- (M24Md) =0 OR 1*MI -1*M2 +1%M3 -1*M4 =0 RS R

Non-directional: The differenice in effectiveness of the AM New treatment and o
the PM New trcatment is diffcrent from the difference between the AM ‘
Comparison treatment and the PM Comparison treatment ' '

(M1 - M2) not equal (M3 - M4) s

Directional: The difference in cffectiveness of the AM New treatment and the

PM New treatment is greater than the difference between the AM Comparison

RHI1S

treatment and the PM Comparison treatment
M1 - M2)> (M3 - Md4)

SH The difference in effectivencss of the AM New treatment and the PM New
treatment is the same as the difference between the AM Comparison treatment

and the PM Comparison treatment

(M1 -M2) =(M3 - M4) OR (Ml - M2) - (M3 - Md) =0 OR

1*MI -1*M2 -1*M3 +1*M4 =0

stated this hypothesis with a directional expectation.
(For example, "The difference between AM New
treatment and PM New (reatment is greater than the
difference between AM Comparison treatment and PM
Comparison treatment.") RHIS is referred to in the
ANOVA literature as the "interaction" hypothesis.

An alternative way of stating this hypothesis is by
looking at the differences within time, rather than
within treatment: "The difference between AM New
Treatment and AM Comparison Treatment is greater
than the difference between PM New Treatment and PM
Comparison Treatment. Both statements yield the same
orthogonal coefficients, since they are the same
question.

Summary

Discussing various sets of orthogonal comparisons
for four groups should help illustrate the fact that there
are many possible contrasts. The "appropriate contrast"
depends on the design of the study and the research
hypotheses of the researcher. While four groups were
chosen for all the examples, the same conclusions can
be developed for other numbers of groups. Four
groups, though, does make the link to two-way
ANOVA easy.

Few statistical texts make the link between
orthogonal comparisons and the two-way ANOVA.
Few also encourage directional hypothesis testing when
there is one degree of freedom, as in the planned
orthogonal comparisons. The reader is reminded that
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although all these orthogonal comparisons (as well as  design. For instance, trend analysis is appropriate to
many others) can be made on these four groups, only  peither the teacher-time design in Exhibits 1-4, nor the
some of the comparisons make sense for any one  two-way ANOVA design in Exhibit 6.
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