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Bias Correction in Risk Assessment When Logistic 
Regression is used with An Unevenly Proportioned Sample 
between Risk and Non-Risk Groups 

Timothy H. Lee, SPS Payment Systems 
Donald T. Searls, University of Northern Colorado 

Linear Logistic Regression is a simple but a very powerful tool to assess the likelihood of being in one 
"category" for an observation with specific independent characteristic values, i.e., when the response variable is 
dichotomous and the data is replicated, the conditional probability, that an observation belongs to one of the two 
categories given independent characteristic values, can easily be estimated through Logistic Regression. For 
various reasons, stratified sampling, sometimes, causes a different sample proportion between the two groups 
from the population. Many statistical packages allow their users to adjust weights to fix this bias problem as an 
option in using the Logistic Procedure. The users, however, would experience more computing cost by using 
the option. In many cases, the purpose of the biased sampling is for computational economy and if the 
computing cost stays the same, using the biased sample with adjusted weights is not a4vantageous. 

In this study, simple bias correction without using adjusted weights is explained using simulated bankruptcy 
data. Since the method can be used for any software without adjusting weights, computational economy can be 
achieved with unbiased results. 

1. Introduction 

T wo group classification techniques arc 
instrumental in many cases of decision making 
in business, finance, and marketing, etc. For 

example, when credit grantors extend credit, they need 
to assess each applicant's credit worthiness or risk for 
the extension of credit. In marketing analysis, they 
want to target more potentially responsive 
populations for direct mailing. These examples arc 
typical cases where the dependent variable is binary, 
i.e., risk versus non-risk, or response versus non­
response. Logistic regression analysis, parametric or 
nonparametric discriminant function analysis, and 
neural net arc usual candidate tools for such cases. 
These methods are known to be comparable one to 
another in terms of classification accuracy. Each of 
these has merits and demerits depending on the user's 
point of view such as cost, purpose of analysis, etc. 
Logistic regression, for many reasons, often has been 
preferred to other methods, especially to discriminant 
function analysis. Press and Wilson ( l 978) made 
empirical applications to compare logistic regression 
and discriminant function analysis using breast cancer 
data and population change data of the U.S. They 
concluded that Logistic regression outperforms linear 
discriminant function analysis when the normality 

- . 

assumption is violated. Fienberg ( 1980), also, 
mentioned the superiority of logistic regression over 
discriminant function analysis in case of non-nonnal 
populations. In reality, the nonnality assumption is 
not easily met, especially in most of the credit or 
demographic profile data. One of the advantages of 
using the logistic regression model is that it provides 
the likelihood of being in one group for an 
observation given characteristic profile values. 
Let E be an event that an observation is from one 
category and a vector .l be the characteristic values of 
the observation. Then, the logistic regression model 
is 

p(x) = Pr{E I .1} = l/[l+ exp{ - (a.+ ~.l)}], 

where (a., ~) are unknown parameters that are to be 
estimated from the sample. This model is used to 
classify an observation into one of the two mutually 
exclusive categories based on,1. 

In actual analysis, the binary dependent variable, 
usually coded O or I for event or non-event, is 
regressed on ,1. 

1.1 Sample Bias 

In many cases of two group classification, the 
proportion of one group is far smaller than the other. 

--
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For instance, the proportion of cancer patients among 
the population, or the proportion of bankrupt 
accounts in a portfolio is observed to be very low. In 
such a case, analysts would rather choose stratified 
random sampling than simple random sampling. For 
instance, n observations are taken randomly from the 
event population, and m observations are taken from 
the non-event population. The sample ratio between 
event and non-event in such a sample is quite different 
from that in the population. For classification 
purposes, such an uneven proportion shouldn't be a 
problem, because a classification model developed on 
an unevenly proportioned sample would work as well 
as a model developed on an evenly proportioned 
sample. Such sampling scheme saves sampling cost 
and in using the data, later on, will bring a reduction 
of computing cost as well. Immeasurability is, of 
course, sometimes a cause of the uneven proportion. 
In this study, we like to consider sample bias in the 
sense of an uneven or distorted ratio between two 
mutually exclusive categories. 

1.2 Model Bias 

If a logistic regression model is derived based on 
a biased sample, the estimated probability of event 
given .1. would be either underestimated or 
overestimated even though the model has almost the 
same classification power as that derived from 
unbiased data. Let's consider, as a more detailed 
example, a case when bankruptcy is an event. That is, 
a model is developed to assess likelihood of 
bankruptcy given a vector of characteristic values. 
The risk assessment is biased if the model is 
developed by using biased data. 

2. Analysis of Data 

In this study, we used simulated bankruptcy data 
from Moody's Industrial Manuals 1968-1972 to 
expand our discussion. The data set has 4 independent 
variables, x1 = (cash flow)/(total debt), "2 = (net 
income)/(total assets), x3 = (current assets)/(current 
liabilities), and x4 = (current assets)/(net sales). The 
dependent variable is coded as O for bankruptcy and 1, 
otherwise. 
For illustration, let's assume that the proportion of 
the event (bankruptcy) is 1/50 (=0.02) in a portfolio. 
A logistic model was derived using a biased 
development sample which has proportion of event 
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(bankruptcy) 1/3 (= 0.33). The parameter estimates on 
the biased sample were 

= ( 2.8603, - 3.6938, - 1.7649, - 1.7286, 0.4760 ). 

Figure-I in the Appendix presents plots between 
estimated risk versus observed risk for the biased 
sample. A smooth curve produced by the authors' 
robust smoother (1990) is superimposed to enhance 
the visual information. Figure-2 presents the same 
plots on an unbiased sample which has the same 
proportion as the population. We can observe that 
there is, in Figure-I, a strong linear relationship 
(almost a 45 degree line with some endurable noise) 
between observed and estimated risks, while, in 
Figure-2, there is no linearity between the two values 
and it presents a bias assessment of risk. In most 
cases, the bias is leaning toward over estimation. That 
is, when the proportion of the event is very low such 
as bankruptcy, the sample proportion of the event is 
usually far higher than the population proportion and 
may result in an overestimation of risk unless an 
adjustment is made in the process of estimation. 

3. Bias Correction 

We can consider two kinds of corrections, i.e., a 
priori adjustment and a posreri correction. 

3.1 A ,,riori Adjustment 

One of the easy ways of a priori adjustment is to 
assign proper weights based on the sampling fraction, 
f = n/N, where, n and N are sample and population 
sizes, respectively. If, in the case of stratified 
sampling, / is 0.5 for a stratum, the corresponding 
sample weight 1// =2 will be assigned in the 
estimation procedure. This kind of adjustment is 
allowed, in most of the commercial software, for the 
price of additional computing cost. To compute 
estimates of the parameters, Iteratively Reweighted 
Least Squares (IRLS) or similar methods are used. For 
example, IRLS for k+ I response categories is used, 
in SAS, as in the following: 

Let Z - (Z z )t be a multinomial j - lj• ... , (k+ I )j 

vector such that 

z .. 
IJ = l if y. = i 

J 
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= 0 otherwise, for j = 1, ... , n 

(In two group case, k = 1 and Y is a binary response 
variable) 

Let Pj = E(Zj) , Vj = Cov(Zj), 
aru 

And, let Dj be the matrix of partial derivatives 
of Pj with respect to y. Then, the estimating equation 
for the regression parameters is 

t,D,1W,(Z· • P·) = 0 
J J J J J ' 

where W J = w;V,", wj is the weight of j-th 
observation, and V/ is a generalized inverse of Vi. 
v: is chosen as the inverse of the diagonal matrix 
with P; as the diagonal. The parameters are estimated 
iteratively as 

I I 

y m+I a 'Y m 

I I 

Where D j, W )' and p'J are evaluated values of Dj, 
WJ, and Pj at y m· 
If the likelihood evaluated at y' m+ 1 is less than that 
evaluated at y' m• then y' m+ 1 is recomputed using half 
the value of the second term of the right hand side, 

As was discussed, by assigning proper weights, 
if it is allowed, or by replicating 1// (to the nearest 
integer) times, if weighting is not allowed, the 
sample bias problem in risk assessment can be easily 
overcome with additional expense. 

Our interest, however, is not in a priori 
adjustment but in a posteri correction. When a model 
is developed already and the development data is no 
longer available, or redevelopment causes unexpected 
inconvenience or cost, posterior correction based on 
minimal information about the population would be 
an economical and efficient alternative. 

3.2 A posteri Correction 

This approach is used to alleviate a biased risk 
estimation due to an uneven sampling fraction by 
computing a simple correction factor. For illustration, 

- . 
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assume a situation that a probability model is derived 
using biased data and it is applied in an application 
data set. The application data is not used for the 
derivation of the model. We assume, further, that the 
proportion of the event in the application data will be 
approximately the same as that of the population. The 
probability of the event predicted will be biased and it 
should be corrected. To simplify the discussion, let's 
define the following: 

p: population proportion of events 

p': sample proportion of events in a biased data 
set 

cj>': estimated likelihood of an event for given .i 
on an application data using the biased model 
developed on the biased data set 

m: number o.f events observed at cj>' in the biased 
dataset 

n: number of non-events observed at cj>' in the 
biased data set 

M: total number of events in the biased 
data set 

N: total number of non-events in the 
biased data set 

Further, let: 

f' • m/M (Relative frequency of event at cl>' in 
the biased data set) 

g' = n/N (Relative frequency of non event at 
cj>' in the biased data set) 

Then the likelihood of event for an observation 
estim'ated on the application data, even though the 
data is not biased, would be, 

cj>' = m / (m + n) 

= f * M / (f * M + g' * N) .................. (1) 

Since the model was derived on the biased data, 4>', 
the conditional probability given characteristic values 
.l., is biased although it is calculated on the 
application data. It always results . in _the sam.e 
likelihood for .i and implies the same likehhood as if 
it were calculated on the biased sample. 

---
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The true likelihood of event at ~• can be calculated most of the observed risks occur. This shows that the 
by, biased risk is corrected. 

~ = p * f I [p * f + (1-p) * g] ................. (2) 

,where f and g are population relative frequencies for 
event and non-event, respectively. 

The problem is how to estimate (or approximate)~ in 
(2) using ~• in (1). 
One necessary condition that can be easily proven 
empirically is that 

f = f and g' = g for any f and p'. 

From (1), using above condition, 

wr1 
- I= ( g'/f) * (NIM) 

=(g/f) *(NIM) ................................. (3) 

By multiplying (MIN) * ((1-p)/p] and adding I on 
both sides of (3), 

< wr1
- 1} •(MIN)* l<I-p)/pJ + 1 

= [ f • p + g • (1-p)] / (f • p) ............... (4) 

From (2) and (4), we get, 

•I 
~ = { [(I-~')W J •(MIN)• ((1-p)/p] + I} , 

or by using the fact that (MIN)• [p'/(1-p')], we get 

.J 
~ = { [(l~')W ]*(p'/(1-p')}*[(l-p)/p] + I} f 

The last fonnula is for bias correction. It sllows 
that the biased likelihood ~, can be corrected easily 
and the only necessary information about the 
population is the proportion of the event. The 
formula was applied to the estimated likelihood of 
event (estimated risk) in Figure - 2 and the corrected 
risk and observed risk is plotted in Figure • 3. A 
strong linear relationship is found between the 
estimated risk and the observed risk, particularly for 
an observed risk under 20%. Titls is the region where 

4. Discussions 

As mentioned above, Logistic regression is a 
very popular tool in classification analysis. Especially 
in the two group case such as risk versus non-risk 
analysis, it is very instrumental in assessing risk 
level for an observation in a portfolio. An uneven 
proportion, however, will cause a biased estimation. 
In business applications, the size of the risk group is 
usually small compared to the portfolio size. For 
example, in developing a bankruptcy forecasting 
model for a portfolio, the number of bankruptcies is 
very low so all the bankruptcies are taken into the 
development sample along with a certain number of 
non-bankruptcies. Even though the resulting model 
has good separation power when measured by the 
Kolmogorov-Smimov test, Apparent Error Rate, or 
Kull-back Leibler information value, etc., the risk 
measured by the model would be overly assessed. For 
worse scenarios, redevelopment of the model is 
impossible because the original data was purged, or 
the biased model is installed on the system already and 
is in production mode. In such cases, a posteri 
correction is very handy. 

Even when the weight option is available in 
using statistical software, if the weight assigned to 
one group is too large compared to the other, such as 
the bankruptcy prediction case, the resulting estimates 
of risk may not be accurate when round-off error or 
wrong direction of convergence is cumulated in the 
process of the iterative rcweightcd algorithm of the 
logistic procedure. If such a situation is expected, 
both the weight assignment and the above correction 
algorithm can be used for a test. 
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Figure - 1: 
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Estimated Risk versus Observed Risk on 
the biased development data set 
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Figure - 2: 
Estimated Risk versus Observed Risk on an 
unbiased application data set 
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Figure - 3: 
Corrected Risk versus Observed Risk on an 
unbiased application data set 
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To Path_ Analyze or-Not To Path Analyze: Is There an 
Altemat1 ve Approach • ---

Isadore Newman, The University of Akron 
.,,,...., and 
\ :-Joseph R. Marth, Bluefield College 

----------·- 2\ . ------- . . . . .. 

/ 

/ 

D uring the past twenty years there has been, a 
tremendous increase in the frequency of social -
scientists attempting to investigate phenomena 

that can notoe studied in a laboratory. Since the ideal 
is to be able to explain complicated relationships in 
the C,fil!fil!L~ these social scientists have been 
highly attracted to sophisticated multivariate causal 
~i~g. 
- rvfuch has been written on the problems of 

modeling techniques such as j!ath analr.sis. The 
concept that any research based upon ex ost facto 
desigl!, can not assume causation (pg_sJ_hocJ~.J~fY , 
that is co~lation does not Imply causation, has been 
widely accepted. However, some social scientists are 
more frequently wondering w,h~ not acce_p_Ua.JJS.al 
mod~l!n~ ~~s~!!!eti_~~J Dot~~ a~ntages out-~!g_h 
tned1sa vanta_ges? Are the concerns voiced by many 
siatisticlansreally nitpickipg (Cliff, 1983; Daggett & 
Freedman, 1985; Freedman, 1989; Huber, 1985; 
Kenny, 1979)? 
Purpose 

The pu!E.Q._~f this paper is to examine the 
U~OO,!!gJ!!~!!!pPt~~ of path analysis ailcfiodfscuss 
some th~oretk11T]onccms. This paper will also 
suggest an ahernativc ru,proach that the authors 
believe to be m2.1:!U.9.bustto the violation of some of 
the underlying assumptions and still is very effective 
in testing the overall "goodness of fit" of a theory. 

Before beginning, however, a _9!YS:_<lLis necessary. 
There are a number of uses for which researchers 
employ path analytic procedures that this_p<}Pe~ _goes 
n~!_~J~l with. Fgr_~~<!P.P!e, we arc ~!._dealing with 
situatfons·where researchers use path analysis 
analogous to almost a ~tepwise ~~~~l __ ~!'-iJ.ding in 
which the computer identifies the best fitting models. 
From a theoretical point of view, this has virtually all 
of the problems (and maybe even more) of a stepwise 
regression procedure, and has received much criticism 
because of its antitheoretical and unstable nature. This 
paper also does not discuss the use of path analysis for 
the purpose of de~rroining which alternative models 
are better. Rather, discussion here is focused on the 
tr':;idiffonal infeni and most conservative approach of 
path analys[s,--that of theocy:j~sting and model 
confirmation. --·· • 

The Assumptions 
The upderlying premise of path analysis is that if 

·one can meet all of the assumptions, it is justifiahle 
to pr~~ll!!.!Q.1_1." Therefore, this paper begins 
with a discussion of t~e assumptions. The 
following is a summary of the.basic assumptions of 
path analysis identified by Bollen (1989), Freedman 
(1987), Dillon and Goldstein (1984), Kenny (1979), 
and Williams (1978): 

1. Requires a tpeozy and ~mQ!ogicl!L~~ 
2. There is si.&!lif.ica.nt!tl~!i.QD.shiP between the 

variable that is assumed to be the cause and 
the variable that is assumed to be the 
effect; 

3 Causal variable p~~~g~s_the effect variable 
in time; 

4. S uriousness has been controlled ... all 
meanm u relationships arc included in the 
model; 

5. Variables arc additive and no interaction 
exists; -~-·---

6. The weights arc stable (paths), therefore no 
multicQ.!!.illSt.ilrity; _ .. • • -

7. The dfstribution of rc§.i.dua~are the same no 
matter what the value of the independent 
variable; 

8. The mean of the residual values is zero; 
9. The v~_e_ofthe.residual values is fifl!te; 
10. The residuals of each of the variables are 

i~~.efr@entof all the other variables in the 
system; and '\ 

11. E!!9p_g~_l!2!-!§. variables have at ~?~.!.i!!tery11l .. 
~~!}i.e properties. 

An added concern is that totally different path analytic 
models can produce a sufficient amount of ~tistical 
v~_rif!c.atio_n to justify a variety of theoretical 
explanations for the same variables. Also, there are 
concerns about the use of latent variables (Cliff, 
1983 ), similar to the concerns of virtually all factor 
analytic procedures. That is, concern that latent traits, 
when used, are stable, meaningful, interpreffible~-a'rid 
valid. Finally, we should further note that little is 
known about the effects of heteroscedasticity or 
autocorrelated disturbances for latent variables (Bollen, 
1989). 



8 MLRV, Winter, 1995 

A discussion of some of the these crucial 
assumptions and related concerns is presented below, 
followed by an alternate approach to path analysis 
should the researcher be unable to meet the 
assumptions. 

The Need for Theory 
In path analysts and structural equation modeling 

(SEM), one builds analytic 4!M~ that ar<::i;e1J.eGtiv.e 
of the nomological net exposited by the theory it is 
intended "'lo··reflect. Therefore, one of. the key 
underlying assumptions before doing any path analysis 
or SEM, traditionally, has been the n~y ofth~ 
(Bollen, 1989; Borgatta, 1969; Duncan, 1975, 1969; 
Heise, 1974, 1975, 1977; Williams, 1978). The 
purpose of theory is to explain and help understand the 
occurrence of natural phenomena (Kerlinger, 1973). 
Theory explains the causal effects among and between 
variables (constructs). Further, since one of the 
original purposes of path analysis and SEM is to 
assume "causal" relationships between variab1eswhich 
are frequenITy;··"if'not always, nonmanipulable 
(Newman & Newman, 1992; Kerlinger, 1973), one is 
required to assume causation from correlational-type 
data. However, this does not mean you can not use 
path analytic procedures on experimental data. 
Thusly, theory is an essential component to this 
process. If one assumes causation which is consistent 
with a nomological net, one is standing on firmer 
ground than if one were assuming causation merely 
because phenomena were correlated. 

Happily, when reading research which uses path 
analysis, there tends to be a mu.9~greater explanatipn. 
of theory and the derivation of Its hypotheses, and we 
strQ!l8~Y s.~'PP~!!,!~C.!t~pproach,~s,. This is more likely 
to require Hie researcher to know the literature, to 
know the theory, and to think about the possible 
logical interrelationships of the variables. 

It should also be noted that in the use of path 
analysis for testing theory, there ar~. g<>\l~.n.~ss QLfiL ... 
indices to help estimate how well the model)its the 
tticorctically predicted relationships. Chi.squa{C and the 
absolute size of the residuals were initially the most 
frequently used goodness of fit indices. Bentler and 
Bonnett (1980) and Tanaka and Huba (1985), have 
developed goodness of fit indices, indicating that they 
are robust to N size. However, an article by Marsh, 
Balla, and McDonald ( 1988) mathematically 
demonstrates that all of the indices are really dependent 
to differing degrees on N size. 
Time-pn;<;edence and Non-spuriousness 

Kenny ( 1979) identified two requirements for path 
analysis:· 'iimrp·recedence ·ana· rion-siiunousness. 
These requirements tend to be design concerns in 
which ti_l)!~_precedence indicates that the independent 
variable, which is the presumed cause of the dependent 
variable (endogenous variable), logically has to precede 
the dependent variable. f."~r .e~.mpk., in a causal 
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sense, one would expec,!JQ._to lo~~ 
but <;!P.A wou14 _be l~~.l!!<~!Y- to logic;i}Jy preci;g~. 
N2.!}~,Pll_rjousness can be thought of as an underlr!ng_ 
assumption of the path analysis design; futiiatit 
assumes that the path analytic model c<>ntains ru.Lqt: 
the rele.vant causal variables. •• ·----- .... • ... --Interaction _________ ,, ______ . -.... 

An i'!!!:iguing aspect for and against the use of 
path analysis is that, with very few exceptions, little 
has been said about the issue of interaction. The 
~~de_rlying regression stru£1!1-n:s of path analysis are 
analy.s.t~_g[.~Qy;manc~_Jeg(e..s~iQn.mQg~J$. One of the 
most impg!f:ant ass~ptions of analysis of coyarjance, 
which can not oeviolated with impunity, is that there 
is l!Q .§!gajf},qmt interaction..betwe~_!l_ the irrq~p-~.ndent 
va~able and the covarjc1t~s. This mea,ns that_filD.'.one 
testing a siI!J.ple gr complex pat.h,_analytic model 
which represents a nomofog'fcal. net, is making the 
assumption, consciously or unconsciously, that there 
is nc;, interaction. One merely has to think of the 
social science theories and ask how many of fl\em 
make that as~umption. 

'Jii .. situations where interaction_is..found, for 
exa!11pl,;_ between sex and motiyM1on in pregi£!!E,g 
acruevert1t;nt, on~2 ugge~ted procedure for handling 
such interactions would have the researcher run 
S~j>,2_r~_teJl!ll}lyses for males_ and.fema_l_c:s. It is''llis:.ety 
th:1t a complex path _?nalytic.design will have more 
than one siniple first-order int6raction. Actually, one 
would probably expect more than one second-order 
interaction (which is an interaction between at least 
two first-order interactions) or third-order interaction 
(which is an interaction between at least two second­
order interactions) to exist in a complex path analytic 
design. The implications of these interactions for 
interpretation of path analysis is that researchers will 
have to consider many subsct __ d~s_ig11s which can 
become so conditional that they become complex 
beyond understanding. 

For non-linear sc~on9_~_oi:der.types of relationships a 
similar solution has been suggested: that a two-stage 
least square procedure be incorporated. However, it is 
interesting to ask individuals who are using path 
analysis to test a theory if they are in fact assuming 
that there is neither interaction nor a curvilinear 
relationship. __ .. __ ....... -· --

To the extent that the path analytic models do 11.ot 
reflect interactions that exist in the the·oretical 
conceptualization, the researcher is actually 
committing a Type .VI Eqgr. That is, the~ is an 
inconsistency between the research question ofmterest 
and the statistical model which was written to reflect 
the research question (Newman, Deitchman, 
Burkholder, Sanders, & Ervin, 1976). 
Beta 'Neight Interpretation . . 
-· • • It has· been well establishS).P in the statistical 
literature that beta weigl,its. are either 1!91!:!.!!!~~,table 
(Kerlinger & Peahazer, I 973; McNeil, I 993, I 992, 
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1991; Ward & Jennings, 1973) o~~l~9!ljng and 
should be interpreted with extr.eme....c.aution. Beta 
weights are more-likely to be.fri"~erpret~d correctly if 
there is ~t?ro_multicoli~(:.aj_ty between the independent 
variables. The hi_gher the correlation between these 
variables, holding everythlnf·else·constant, the higher 
the stand<i!d devil!tipn and the greater the instability of 
the weights. / 

The e:al.!~3:! !!1.l~.rpret<!_tjon of a path analytic model 
ne~ds predictor variables that are low_<:>.r zero correlated 
and/or sample sizes that are veryJargejn relation to 
the number of variables. If the sample .. si.z.~~ are so 
large, such as the High School and Beyond data set 
with 58,000 subjects, they can be considered virtual 
populations. That is, the more subjects per variable, 
the· more stable these weights tend to be. 
Unfortunately however, when the sample size is very 
large, traditional tests of significance become virtually 
meatJingless;-because any slight difference will be 
statistically significant. (The proportion of variance 
accounted for can be considered or the model can be 
used in a more descriptive manner.) 

Some approaches have dealt with the 
multicolinearity problem by employing ~asurement 
mo_clels along· with statistical models .• -The 
measurement model uses a set of indicator variables 
tliiifareconceptualiyfactor analyzcd-:----rliese·'ractors, 
sometimes·called latent traits, are assumed to be better 
measures of the underlying construct than any 
individual item. These underlying .traits are often 
assumed to be stable or at least more stable than the 
individual items they arc composed of, and therefore 
arc thought to be more reliable and valid. However, 
one must also keep in mind that these factors are 
sample specific and may be in tum highly unstable. 

Some pat!tana_lyOc_users think that using !at~nt .. 
traits jfa~t.QJ.!) decreases or eliminates the 
mulficolinearity problem and reduces measurement 
error. This is not nec.~§sai:ilyJhe cas~,_JQ!:iexample, 
if five indicator varilbles for achievement are factor 
analyzed and five for ability level, and the ten indicator 
variables are not factor analyzed together, each set of 
five items can produce factor solutions that are highly 
correlated (multicolinear). In addition, five indicator 
variables may produce three factors when factor 
analyzed but only the first factor is usually. _used 
because this approach assumes the other factors are not 
meaningful or useful. There may be no justification 
for such an assumption. Another approach sometimes 
employed is to only use the first non-rotated factor 
which maximizes the variance accounted for by that 
one factor, but also tends to disregard the empirically 
identified multidimensionality on the construct. 

If the sample is virtually a population size or is a 
population, then the model, even if not causal, can 
definitely be used descriptively to help explain 
potential relationships without ever assuming causal 
effect. There appears to be much less criticism of 
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such an application of path analysis, but there is les_s 
interest in using it in this way. For exarn_p~ while 
major ~~QJ1.<>rn,.ic forecasting models that have used 
path analysis have not held up well (McNees, 1986; 
Zarnowitz, 1979);.-they have been found to be useful 
in a more descriptive sense. 

Testing for Underlying Statistical 
Assumptions 

Aru,li~ta. isticians and sophisticated users of 
p~th c1rialysi:S such as ~n f989J, Bentler (1987), 
and Freedman (1985) have p~tty.mu9.h;ig~-~-~--f!iat one 
should test for certain underlying assumptions and do a 
pre-analy}i~ _of theaa.farelated to these assumptions 
before path~analysis or any statistical treatments are 
used. Berkane and Bentler (1987) state that BMDP 
pr6vides a test for multivariate normality, detecting or 
eliminating outliers for EQS, and Berkane and Bentler 
(1987) developed ·flesf for homogeneity of kurtosis. 
In addition, before d(?ing any analysis, one should look 
at p~§_9! residtEllsand should always cross.validate 
to establishlhestability of the prediction from sample 
to samP.le. •· 

Son\e UE_deJJY!!!&...~.S.SUIDP~ are mo~ -~.!>.l!~t 
than others. For exa_mp_~ ... certain assumptions of 
nOf!!lality and homogeneity can be Yiolated with 
virtual impunity if the N is large enough. However, 
certain assumptions oilmeanfy,'"noJ~teraction 
between the independent-variables, ~and ·-no 
multicolinearity are assumptions to which covariant 
structural models are hig~ly sensitive (D.Qt robust). 
The question is, how fre_quently does tl)e literature 
report tl1e use of these procedures to check underlying 
assumptions, and why not make this a requirement of 
the data analysis for publication? 

CQrrections for Violations of Assumptions 
Bollen ( 1989) and others (Bentler, 1987; Bentler & 

Dijkstra, 1985; Bentler & Lee, 1983; Freedman, 1985; 
Johnson, 1984; Joreskog & Sorbon, 1981; Tukey, 
1954) have dealt with v!Q_!.l).tio~ _ _!Jl,!_~~~".!E!!.QJlS-. 
and have suggested solutions. For example, the use of 
alternate estimators such as General Least Squares 
(GL"S), Uriweighted Least Squares (ULS), Elliptical 
Generalized Least Squares (EGLS), Two-Stage Least 
Squares (2SLS), Three-Stage Least Squares (3SLS), 
Instrumental-Variable Estimators (IVE), and Full­
Information Maximum Likelihood (FIML) are 
discussed by Bollen ( 1989). However, these 
techniques themselves tend to have assumptions about 
what the data truly look like in the population. If the 
researcher is correct about the nature of the distribution 
of data in the population and s/he picks a statistical 
procedure that is most appropriate for that distribution, 
it is obvious that his/her analysis is most likely to 
produce the most accurate parameter estimates. 
Unfortunate~~the researcher frequently does 
n6flrnciw what the data_ look like--in-the popufalior1 
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and/or is u~e.. . ..9.f.Jvhat is "causing" abnonnalities 
in the distribution. Further, while a statistical 
technique may allow one to correct for anomaj_~ the 
researcher must make the assumptioh that the 
anomalies are in fact errors. Otherwi~'e, the very 
c~cti~~ themselves creat!!. __ gf.~!!.t.~:Lt?.~.!s _ ~llTT no 
correct10n • at all. What we are argumg ts that 
statistical corrections for anomalies in the distribution, 
without considering the causes of the anomalies, is a 
fatal flaw in the research study. Therefore, one has to 
be aware of the assumptions one is making about the 
anomalies when one is making a correction. There is 
no correction which is a panacea that will replace 
understanding one's data. 

A Simple Alternative Approach to Path 
Analysis for Testing Theoretical 
Relationships 

The following is a S_l!ggeste~ -~P.P.f.9-~Sh that is 
m~~odio~~ally m~ch simpler ~na IS mliore rl~bu~_to 
some o u,e uevastatmg assumptions sue as meanty 
and no interaction that are underlying assumptions of 
path analysis, and yet has many of the .. same 
advant~ges for te~~g ___ ~ nomol9gi_c~L.~~J. This 
approach ~ts with JJ\¢9ry that produces a 
nomoJogical net, then identifies the logically deriv.ed 
hypo_thesis to be tested. I:.<!L«;X.alllp!«=, Jet's assume 
that !.5 ~ypotheses are produced from the nomological 
net. Some can be interactional, repeated measures, 
time lagged, multiple wave, curvilinear, main effects 
or direct effects. Let's further assume that 13 of the 
hypotheses are s_ignificant in the-predicted direction. 
One can then get arfestimate, by using a Sign test, of 
how well these hypotheses support the overall theory 
(nomological net). Depending upon one's productivity 
and situation specifics, one may choose to do 11.~!! 
test on the dircctio.n_s of each individual hypothesis 
with no concerns for the tests of significance. Or, one 
can do the Sign test only on the number of significant 
hypotheses and compare it to the total number of 
hypotheses. In either case, this nonparametric.~es~-~!ill 
be used to estimate the overall support. <>Lthe theory. 
In addition, this test of significance is not dependent 
upon the N size, but r~ther on the number of 
hypotheses generated. It is app~rent how this 
approach can fit well into i"meta-analysis. As 
Pedhazer (1990) and Ward and Jermings (1973) 
suggest, researchers should keep their-analysis simple 
but well thought out and have hypotheses that are 
derived from previous research and theory. 

The author!J>..~JJ!._VJ_~much P.ath alll,llysis r~search 
gets losCfo the complexity of the _mode_ls and the 
sophistication of the analyses. In cases where more 
sophisticated analysis may be required, based upon the 
theory and the derived hypotheses which may infer, for 
example, underlying latent structures, the suggested 
app.roach would be to do: -·-······ -
I . A fac!e>r. analysis of the variables of interest; 

- . 
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2. A cross validation of the factor structures to 
estimate:stability; • ..... •• • 

3. A fact8r regression using the J<1.,c;:JQJ.LaS., 
-prediclor·~ridJ criterion variables 
where appropriate; and 

4. Cross validation on the regression equaµ.9ns 
,. - -·-to ·estimate their stability: ••• --

Needless to say, b~e(doing any type of analysis, 
it is always desirable to'-first look at your means, 
standard deviations, frequencies, correlations, and 
residual plots before proceeding. It is this pre-analysis 
that helps to identify potential errors in the data, to 
what degree underlying assumptions have been 
violated, and if and what data transformations are 
needed or de,sirable. We think it is appropriate to end 
with a qu9te from Rogosa (1987): "[t]he transition of 
substantive theory into methods for data collections 
and analysis is where I think the fertile interaction 
between statistician and social scientist lies[,] rather 
than in arguing 'thumbs up' or 'thumbs down' on path 
analysis" (p. 185). 
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The p-Problem with Forward Selection Stepwise Regression: 
Algorithm for Controlling Type I Errors 

T. Mark Beasley, St. John's University, New York 
Dennis W. Leitner, Southern Illinois University at Carbondale 

The use of f~nvard selection stepwise regression has been criticized for both interpretive misunderstandings and 
statistical aberrations. A major statistical problem with stepwise'regression and other procedures that involve 
multiple significance tests is the inflation of the Type I error rate. Common approaches to control the family-wise 
error rate (e.g., the Bonferroni and Sidak corrections) are based on the assumptions of independent tests which 
typically reduce power. Because the presence of correlated predictors is a more realistic situation, other algorithms 
based on the average correlation in the predictor matrix have been proposed. The present study proposes an 
algorithm based on the maximum eigenvalue and the determinant of the predictor matrix for controlling the family­
wise Type I error rate for multiple, correlated tests in forward selection regression under the complete null 
hypothesis. A Monte Carlo simulation with 5,000 replications was performed to demonstrate the effectiveness of 
the proposed algorithm. 

Most users of multiple regression techniques in 
educational research are attempting to reduce a 
set of k predictor variables in order to report a 

simplified model. Typically, if a set of k predictors are 
regressed on a dependent variable, Y, only those 
predictors that are found statistically significant will be 
considered substantively valuable. Furthermore, 
because of the nature of many educational and 
psychological measurement scales, researchers are less 
likely to estimate regression coefficients as a way of 
interpreting substantive findings. Rather, F-ratios or p­
values arc used in a dichotomous decision process such 
that the relationship between a predictor and a criterion 
variable is "significant or not" (e.g., Thompson, 
1989b). Furthermore, it is possible to have a 
statistically significant model (i.e., significant full 
model R 2) when the component variables are 
individually nonsignificant in either a zero-order or 
partial manner. However, educational researchers arc 
not likely to consider such a model in the development 
of theory. Therefore, the forward selection procedure of 
stepwise regression became popular among educational 
researchers because it begins with significance tests of 
zero-order correlations and proceeds to more complex 
models. 

For several years now, applied statisticians 
(e.g., Thompson, I 989a; Wilkinson, 1979) have been 
calling attention to the abuses of stepwise regression in 
its common use by less statistically sophisticated 
researchers. But theses and dissertations continue to 
step (unwisely) across the desks of graduate educators, 
and articles with many of these same problems continue 
to appear in print. It is hoped that elaborating these 
limitations and proposing new methods for using 

stepwise regression will bring about its more 
appropriate use. Three statistical procedures are 
considered under the rubric of stepwise regression: 
Forward selection; backward elimination; and true 
stepwise (Draper & Smith, 1981). Specifically, the 
forward selection procedure forms a model from the set 
of k dependent variables by first selecting the single 
best predictor. The second best predictor is then chosen 
by the criteria of strongest contribution to the prediction 
of Y, while controlling for the effects of the first 
predictor entered. Thus, the first step involves k 
simultaneous tests of 1.ero-ordcr correlations, while the 
second step involves (k • 1) simultaneous tests of first­
order semi-partial correlations (Aitkin, 1974). The 
process continues so that at each step the variable 
selected for inclusion significantly increases the 
prediction of Y (i.e., full model R2). 

The use of the various stepwise regression 
procedures has been criticized for many interpretative 
misuses and statistical aberrations. First, researchers 
often interpret the final solution of a reduced set of g 
predictors as being the best subset of predictors overall 
and of that size. Also, there is a tendency to confuse 
the order of entry and variable importance (Huberty, 
1989). Stepwise procedures suffer from the use of the 
largest partial F as a test of a potential entry variable 
which is not in the regression model at that stage. The 
correct null sampling distribution for this test in not the 
ordinary F distribution, but is a partial F distribution 
which is very difficult to obtain. (Draper & Smith, 
1981). Moreover, researchers often proceed to test each 
stage in a stepwise regression as if the partial F 
distribution does not exist and as if the test at that step 
is the only test that has or will occur. Furthermore, the 
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degrees of freedom (dj) used for these tests are often 
incorrect. For example, in the forward selection 
procedure the dfs used for the.first step, a test ofzero­
order correlations, is (N - 2), while (N - k - 1) would be 
more appropriate. These considerations, in general, tend 
to inflate the probability of at least one Type I error 
(i.e., the probability of forming an erroneous model). 

Another interpretative problem arises when 
two or more predictor variables are highly correlated. In 
such situations, there is a strong probability that one of 
the variables will absorb the majority of the other 
variables' prediction power and therefore cause their 
exclusion from subsequent models. Not only does a set 
of correlated predictors lead to potential substantive 
misinterpretations, it also makes estimating the 
probability of a Type I error more complex. Thus, due 
to multiple tests, incorrect dfs, misunderstood partial F 
tests, and correlated predictor variables, it is difficult to 
determine the correct Type I error rate in stepwise 
regression. To compound these problems, the p-value 
associated with each variable entered stepwise into a 
regression equation (except for the final step) is 
incorrect in many canned statistical packages. 

MULTIPLE TESTING AND THE TYPE I 
ERROR RATE 

As with any statistical procedure, two kinds of 
inferential errors can be made. A Type I error occurs if 
a variable is selected when the population regression 
weight is zero. A Type II error occurs when a variable 
is not selected when it has a non-zero population 
regression weight. Many educational researchers adopt 
one of the traditional fixed significance levels (i.e., ex• 
,05 or .01) when evaluating an F-ratio. This 
significance level determines the Type I error rate for 
each test independently. However, it is rare that 
educational researchers test a single hypothesis. Several 
variables and multiple significance tests arc common. 
Thus, a researcher must consider the probability of 
committing a Type I error when multiple hypotheses 
arc tested (i.e., the family-wise error rate). 

In the context of post-hoc tests in the analysis 
of variance (ANOVA), the true family-wise Type I error 
rate (a.T) fork independent (i.e., orthogonal) tests with 
the same alpha level (a.1) is defined by the following 
equation: 

(l) 
assuming the complete null hypothesis (i.e., all groups 
have identical means). Thus, the family size of the 
tests performed is equal to k. In order to return the 
Type I error to the nominal alpha (a.;), one could adjust 
a.1 by the Sidak method: 

_ Ilk 
a. adj - 1 • (1 • a. ; ) (2) 

--
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This correction would yield an alpha level smaller than 
the nominal alpha, but over the course of multiple 
tests, this adjusted alpha (2) is expected to yield a Type 
I error rate equivalent to the nominal alpha, a.i. 

Similarly, the forward selection method in 
stepwise regression conducts no less than k 
simultaneous tests of significance as if multiple tests 
are not performed. That is, the first predictor is selected 
by the largest zero-order correlation of all k variables 
without consideration for the number of tests being 
conducted. Thus, if an educational researcher using 
forward selection regression were to commit a Type I 
error under the complete null hypothesis (i.e., all k 
zero-order correlations between Y and the predictors were 
null), it would occur on the first step. That is, when all 
predictors are not correlated with the dependent variable, 
testing the maximum of the k zero-order dependent 
variable-predictor correlations determines the Type I 
error rate of the forward selection procedure. Thus, 
assuming independent predictors, the probability of a 
Type I error on the first step is equal to (l ). To adjust 
a.T so that the Type I error rate returned to the nominal 
alpha (a.1), one could assume the family size is equal to 
k and adjust a.1 with (2). However, if the k predictors 
were all perfectly correlated, then the family size would 
be equal to one (k • 1) and the Type I error rate would 
equal the nominal alpha (i.e., a.T • a1). In the more 
realistic situation of correlated predictors, the solution 
for the correct Type I error rate is considerably more 
complex and requires the integration of the correlated F 
distribution (Pope & Webster, 1972), Furthermore, 
only limited tables of critical values are available (e.g., 
Games, 1977), while a few Monte Carlo 
approximations based on averaged correlations have 
been proposed (i.e., Krishnaiah & Armitage, 1965; 
Pohlmann, 1979). 

For example, Pohlmann ( 1979) proposed a 
metl1od based on the average squared correlation in the 
predictor matrix to control the Type I error in forward 
selection regression. To elaborate, a value, c, can 
estimate family size and substitute fork in (2) in order 
to control the family-wise Type I error rate. Pohlmann 
suggested the following function: 

c = k - (k - l )r~, (3) 

where k equals the number of predictors and r~ equals 
the averaged squared inter-predictor correlation. 
Pohlmann also suggested correcting r~ by using a less 
biased estimate of the squared correlation based on the 
McNemar (1969) shrinkage formula. Initially, each 
squared correlation in the predictor matrix is corrected 
by: 

(4) 
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where N equals the number of cases and i equals the 

square of the ijth element of the predictor matrix. Then 
~ is calculated by: 

k- I k 
2 L L ,.ij 

-2 _ I= I / = i + I 
rx------

k(k - I )/2 
(5) 

and entered into (3). However, Pohlmann's study 
simulated cases in which all correlations within the 
predictor matrix were equal which is an unrealistic 
expectation. That is, a variety of correlation patterns 
may yield the same average squared correlation, but it is 
not likely that the family-wise Type I error rates would 
be equal for these matrices. 

PROPOSED ALGORITHM FOR 
ESTIMATING FAMILY SIZE 

To consider another perspective, however, the 
appropriate Type I error rate may approach (1) w~th b 
orthogonal factors rather than these algorithms based on 
the average correlation of k predictors. To elaborate, 
one possible approach to the p-value problem would be 
to perform a principal component analysis (PCA) on 
the predictor correlation matrix and extract b orthogonal 
components. In fact, it can easily be shown that such a 
linear transformation will not affect the full model R2. 
That is, if all k variables and the k components 
extracted from the predictor matrix are used as separate 
models to predict a criterion variable, Y, then both 
models would have the same full model R2. The 
expected Type I error rate when using the k orthogonal 
principal components, however, will equal (I) for the 
first step of a forward selection stepwise regression. 
Thus, decomposing the set of k predictors into h 
orthogonal components and modifying algorithms for 
correlated predictors may provide a better approximation 
of the family-wise Type I error rate. Importantly, this 
indicates a relationship between the transformation 
matrix and the family-wise Type I error rate. Thus, it is 
proposed that the maximum eigenvalue (Amad from an 
unrotated principal components analysis and the 
determinant, IPI, of the predictor correlation matrix, P, 
is related to the proportion of Type I errors on the first­
step, which defines the probability of forming an 
erroneous model under the complete null hypothesis. 

The eigenvalues of a correlation matrix, P, are 
commonly used as indices of the number of factors that 
underlie a correlation matrix (e.g., Kaiser, 1970). 
Furthermore, the maximum eigenvalue provides an 
index for the proportion of variance accounted for by the 
largest principal component, the average correlation of 
P, and the number of underlying factors (Tatsuoka, 
1988). The determinant of a correlation matrix, IPI has 
been used in establishing the independence of variables 
in PCA (Nagarsenker, 1976). The determinant of the 
covariance matrix, ICI, gives the generalized variance 
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(f atsuoka, 1988), and the determinant of the correlation 
matrix, IPI, is equal to ICI divided by the determinant of 
the diagonal variance matrix IVI, 

(6) 

Thus, it follows that the generalized proportion of 
variance in P, that is the generalized R2, is equal to: 

Therefore, in combination ')..mtX and IPI provide rather 
unique information about the inter-correlation of the 
predictor matrix. Specifically in PCA, Amac divided by 
k gives the proportion of variance in P accounted for by 
the first and largest principal component. However, 
Amac is known to always be greater than one even in 
random data matrices (Horn, 1965). In fact, when the 
variables are independent and all off-diagonal elements 
in P are zero then P is an Identity matrix, I, and the 
expected value of Arna. equals one, 

Ii m A.max = l (
8
) 

P ➔ I 
Therefore, subtracting one from A.mac and dividing by k 
would provide a corrected proportion of variance for the 
largest principal component 

Au,ax • 
k 

(9) 
Also, if the variables are independent, then the 
detem1inant, IPI, equals one, 

lim!Pl=I 
p ➔ I 

(10) 
Although it is left undefined because such a matrix is 
not invcrtablc, one can imagine that if all predictor 
variables were perfectly correlated, then Amac would 
equal k. That is, the limit of A.mar: as all the elements 
of P approach unity is k: 

I im A.max= k 
P ➔ l (II) 

Furthermore, since the product of the eigenvalues must 
equal the determinant, then under the same conditions 
specified for (11), the limit of IPI equals zero as Amac 
approaches k : 

lim IPl=o and lim IPl=o 02) 
P ➔ I Amax➔k 
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Given conditions (11) and (12), all predictors are 
perfectly correlated and there is only one "true" variable 
and the family size (denoted as c) should be equal to 
one, which can be described as: 

c = k - (k - I) (13) 
Thus, (k - I) multiplied by (9) results in the proportion 
of (k - I) that should be subtracted from k; however, c 
also depends on the correlations in P whose generalized 
estimate comes from IP!. Thus, (k - l) should be 
multiplied by (9) and (7). Therefore, c can be estimated 
by: 

C = k _ (k • })(A.max· 1)(1 - IP/) 
k (14) 

Thus under the conditions set in (8), (10), (11), and 
(12), as the relationship among the predictor variables 
approaches perfect multicollinearity, the estimat of 
family size in (14) approaches one. Also if the k 
predictors are independent then (14) equals k. Therefore, 
if a researcher can use k, A,rux, and IPI to estimate the 
independence of the predictors in P with c, then (14) 
could be substituted fork in equation (2) and used as an 
estimate of family size to adjust <X T so that it 
approximates the nominal alpha. Thus in the present 
study, a Monte Carlo simulation of a forward-selection 
stepwise procedure with no expected correlation between 
the dependent variable, Y, and the k predictors was used 
to estimate the correct Type I error rate (p-values) fork 
• 2, 3, 4, 5, 7, and 10 correlated variables under various 
inter-predictor correlation conditions. From these 
results, the proposed formulation of c (14) was 
substituted for k in (2) to determine whether it was 
useful in controlling the Type I error rate. 

For comparison purposes, Pohlmann's (1979) 
algorithm (3) was also used. The Appendix provides 
numerical examples that demonstrate the differences 
between the two methods. 

METHODS 

Simulation Procedure 
A Monte Carlo program was written in 

SAS/IML (SAS Institute, 1990) to simulate the forward 
selection process of stepwise regression. Initially, the 
RANNOR fucnction, which provides a pseudo-random 
clock generated values, was use to generate a nonnally 
distributed predictor matrix, X, with dimensions of n 
rows (cases) and k columns (variables). All predictor 
means were equal to zero and all variances were equal to 
one. Then by using the fundamental postulate of PCA 
(Tatsuoka, 1988) and a method described by Kaiser and 
Dickman ( 1962), a k x k matrix of principal component 
coefficients, F, was derived from a prespecified predictor 
correlation matrix, P and pre-multiplied by the 
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transpose of X to create a transformed data matrix Zp 
that simulates P (see Beasley, 1994): 

(15) 

Then a nonnally distributed dependent variable vector, 
Y, was randomly generated and concatenated with the 
transpose of Zp to form the entire data matrix, M. 
Thus, although there was correlation among the k 
variables in P, there was no expected correlation 
between the predictor variables and Y. This process was 
replicated 5,000 times. Since an infinite number of 
correlation matrices can be simulated, various 
combinations of Amm- and !Pl were used for each level 
of k. Tables 1, 2, and 3 in the Results section reference 
the values of A.mac and IPI that were imposed on X. 
The number of predictors was manipulated from k = 2, 
3, 4, 5, 7, and 10. The number of cases was held 
constant at a fairly large number of N = 200 in order to 
avoid extreme shrinkage of R2 (Harris, 1975) and to 
reduce the residual error in the transpose of Zp as it 
simulates the predictor correlation matrix, P. 
Test Procedures 

Under conditions of the complete null 
hypothesis, if an erroneous model is to be formed (i.e., 
Type I error committed) using a forward selection 
procedure then it will occur on the first step. 
Furthermore most packaged stepwise programs (i.e., 
SAS STEPWISE, SPSS REGRESSION) perform the 
first entry with (N - 2) d/s. Therefore, the maximum 
zero-order correlation in the predictor column of M was 
tested. If the calculated F( 1, 180) exceeded the critical 
values for Fat the ex. • .OS level of significance, then it 
was counted as a Type I error. The number of rejections 
divided by the 5,000 replications served as empirical p­
values and estimates of the true family-wise Type I error 
rate, CY.T, The results of this procedure were used to 
help estimate family size,c. That is, if a.T and ex.; are 
known then family size, c, can be solved as follows: 

c = /n(l - ar) 
/n(I - a,) ' 

where In refers to the Naperian logarithm. 

(16) 

The expected values of k, AmtX, and !Pl using 
the formula described in (14) were regressed on c derived 
from the simulations and ( I 6) to investigate the 
goodness of fit. These results were also compared to 
the results of Pohlmann's (1979) algorithm (3). 
Furthermore, the effectiveness of (14) in controlling the 
family-wise Type I error rate was assessed by 
substituting these estimates of c for k in (2) to set a 
more stringent a.; in each simulation. These corrected 
Type I error rates were compared to the nominal alpha 
of .05 .. 
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RESULTS 

Using the expected values of k, ')..,mtK, and IPI, 
the family size estimates of c from (14) were regressed 
on the empirical values of c derived from the proportion 
of rejections at the a. = .05 level of significance during 
the 5,000 replications. Thus, the following model was 
tested 

(k - l)(A.ma.t • 1)(1 • /Pl) 
cerq:, = bl k + b2 k 

(17) 
with the intercept restricted to zero and the coefficients 
bl and b2 restricted to one. The model R2 with these 
restriction was 0.9858. Figure I (upper panel) shows a 
scatter plot of this analysis with different elements for 
each value of k. The model R2 when using Pohlmann's 
(1979) algorithm (3) based on averaged squared 
correlations was 0.9147. A scatter plot of that 
regression is shown in the lower panel of Figure I. 
The diagonals on each panel represent a perfect fit of the 
expected and empirical values of family size. As can be 
seen, many more estimates of family size, c, deviate 
from the perfect fit diagonal for the Pohlmann's average 
squared correlation estimate of c as compared to the 
current proposed algorithm. Using a dependent /-test for 
correlations, the proposed correction (14) was found to 
be significantly better than Pohlmann's estimate of c, 
/(67) • 9.70, p < .001. 

Tables 1, 2, and 3 show the expected values for 
the average squared correlation within the predictor 
matrix, P, the maximum eigenvalue (A-n,C)(,), and the 
determinant of P, IPI, These tables also show the 
empirical values of the family-wise Type I error rate· 
(Empirical p-values), the estimated value of family size, 
c from (14), and the corrected p-values after controlling 
Type I errors with (14). 

As can be seen by looking across Tables I, 2, 
and 3, when the number of predictors increased from k = 
2 to 10 the expected increase in the family-wise Type I 
error rate also occurred. Also, by examining the first 
entry for any number of predictors (k), when the average 
squared correlation of the predictor matrix is zero, the 
empirical p-values approximate their estimated value 
from (I). For example, for k = 4 independent 

predictors(i.e., E(i:?) = 0), the expected family size is 

four. Using (I) the expected family-wise Type I error 
rate under the complete null hypothesis is 0.1855. In 
comparison, the simulation in this study estimated the 
family-wise Type I error rate with an empirical p-value 
of0.1870. From (16), the estimated family size is c = 
4.0361 (see Table 2, upper panel). One can also see by 
looking within any Table that as the expected average 
squared correlation increases the Type I error rate and 
family size. Yet, some matrices with the same average 
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family size calculated from (14) 
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family size estimated from 
average squared correlation (3) 
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Figure 1. Empirical family size, c, derived from (16) 
as a function of the estimated family size from (14; 
upper panel) and from the average squared correlation (3; 
lower panel). 

p2 have different values for A-n,C)(, and IP I and more 
importantly different empirical proportions of Type I 
errors. This is most notable in Table 3 with k = IO. It 
is important to note that when corrected with (14) the 
Type I error rates (corrected p-values) are reasonably 
close to the nominal alpha of .05 regardless of these 
discrepancies. Corrections based on average squared 
correlations (i.e., Pohlmann, 1979), however, would 
correct these discrepant configurations in the same 
manner. Thus, logically as well as statistically, the 
correction formula ( 14) provides a better adjustment for 
controlling Type I errors for multiple, correlated tests. 
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In any Monte Carlo study, one must consider 
the sampling error of the simulation process. Based on 
the nominal alpha of cx = .05 and 5,000 replications, 
the standard error of each estimate is se = .003, which is 
used as a general heuristic to evaluate the proposed 
procedure. Although several corrected p-values exceed 
the + 2 standard error range, most are within the range 
of acceptability set by Bradley (1978). Explanation for 
these aberrations for the currently proposed correction 
may be twofold. One problem may be that some 
correction for sample size is necessary. Since sample 

Table 1. 
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size was held constant in this study, it should not have 
presented a serious problem. However, this possibility 
warrants further attention. A second problem is 
consistent with technical issues involving 
multicollinearity, in that the use of highly correlated 
predictor matrices yields extremely small determinants. 
In this case the accuracy of estimating such small 
values present a serious computational problem. That 
is, slight estimation errors can lead to rather large 
computational errors. 

Expected values for the population average r2, maximum eigenvalue (lmax) and determinant (!Pl) with empirical 
Type I error rate, estimated c from (I 6) and corrected Type I error rate (14) fork= 2 and 3 predictors. 

k=2 

Empirical Corrected 

E(p2) E(A.max) E( IPI) p-value C (16) p-value (14) 

0.00 1.0000• 1.0000 0.0962 1.9719 0,0506 
0,01 1.1000• 0.9900 0.0998 2.0497 0.0518 
0,09 1.3000• 0.9100 0,0934 1.9116 0,0496 
0.25 1.5000• 0.7500 0.0892 1.8215 0.05 IO 
0,49 1.7000• 0.5100 0.0896 1.8301 0.0532 
0.64 1.8000• 0.3600 0,0760 1.5410 0.0454 
0.81 1.9000• 0.1900 0.0714 1.4442 0.0438 

k•3 

0.00 1.0000• 1.0000 0.1474 3,1089 0,0502 
0,09· 1.5695 0.7609 0.1296 2.7061 0,0496 

1.5984 0.7826 0. 1394 2.9268 0.0494 
1.6000• 0.7840 0.1300 2.7150 0.0462 

0.25 1.8922 0.2910 0.1120 2.3158 0.0452 
1.9860 0.4692 0.1286 2.6837 0.0516 
2.0000• 0.5000 0.1250 2.6033 0.0540 

0.49 2.3658 0.0700 0.1052 2.1670 0.0532 
2.3986 0.2531 0.1090 2.2500 0.0504 
2.4000* 0.2160 0.1122 2.3202 0.0492 

0.64 2.5885 0.0384 0.0910 1.860 I 0.0462 
2.6000* 0.1040 0.1004 2.0627 0.0510 

Note. • indicates that all correlations in Pare equal. 
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Table 2. 
Expected values for the population average r2, maximum eigenvalue Omax) and determinant (IPI) with empirical 
Type I error rate, estimated cfrom ( 16) and corrected Type I error rate (14) fork= 4 and 5 predictors. 

k=4 

Empirical Corrected 
E(p2) E(Amax) E( IPl) p-value C (16) p-value (14) 

0.00 1.0000* 1.0000 0.1870 4.0361 0.0494 

0.09 1.7926 0.5832 0.1744 3.7363 0.0470 
1.8016 0.5439 0.1706 3.6467 0.0474 
1.8964 0.6481 0.1746 3.7410 0.0478 
1.9000* 0.6517 0.1790 3.8452 0.0552 

0.25 2.2670 0.ll88 0.1548 3.2788 0.0512 
2.4150 0.1042 0.1508 3.1868 0.0528 
2.4995 0.3019 0.1542 3.2650 0.0582 
2.5000* 0.3125 0.1650 3.5155 0.0572 

0.64 3.3696 0.0011 0.1042 2.1453 0.0538 
3.3984 0,0238 0.1106 2,2851 0,0520 
3.4000* 0,0272 0,1104 2.2807 0.0546 

0.00 1.0000* 1.0000 0,2252 4.9743 0,0460 

0,09 2.0462 0.3866 0.2068 4.5168 0,0516 
2.0558 0.4449 0,2078 4.5414 0.0524 
2.0954 0.3589 0, 1970 4,2774 0.0514 
2.1946 0.5221 0.2112 4,6252 0.0486 
2.2000• 0,5282 0.2124 4.6549 0.0508 

0.25 2.7652 0.0081 0.1648 3.5109 ,0486 
2.8100 0.0768 0.1800 3.8689 0.0556 
2.9094 0.0112 0.1728 3.6985 0.0600 
2.9914 0.1745 0.1758 3.7693 0.0516 
3.oooo• 0.1875 0.1818 3.9118 0.0628 

0.64 4.1957 0.0039 0.1250 2.6033 0.0560 
4.2000* 0.0067 0.1184 2.4568 0.0598 

0.98 4.9600 0.0001 0.0610 1.2271 0.0328 

Note. + indicates that all correlations in P are equal. 
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Table 3. 
Expected values for the population average r2, maximum eigenvalue Omax) and determinant (!Pl) with empirical 
Type I error rate, estimated c from (16) and corrected Type I error rate (14) fork= 7 and IO predictors. 

k=7 

Empirical Corrected 

E(p2) EU. .. max) E( IPI) p-value C (16) p-value (14) 

0.000 1.0000* 1.0000000 0.3024 7.0206 0.0476 

0.090 2.3742 0.1097200 0.2664 6.0396 0.0548 
2.5193 0.1764100 0.2708 6.1569 0.0570 
2.5539 0.2311600 0,2738 6.2373 0.0546 
2.7745 0,3024000 0.2720 6.1890 0.0596 
2.8000* 0.3294200 0.2602 5.8755 0.0576 

0.250 3.3159 0.0016268 0,2138 4.6896 0.0544 
3,5875 0,0004800 0.2040 4.4481 0.0486 
3.6922 0,0125600 0.2234 4.9291 0,0564 
3.7627 0.0001200 0.2072 4.5266 0.0540 
3.9779 0.0554100 0.2344 5.2072 0.0660 
4.0000* 0,0625000 0.2232 4.9241 0.0558 

0,640 5,7938 0.0002600 0.1492 3.1501 0.0586 
5.8000* 0.0003700 0.1466 3.0906 0.0574 

k• 10 

0,000 1.0000• 1.0000000 0.3920 9;7007 0.0456 
0.153 2.3770• 0,5333101 0.3960 9.8289 0.0512 

4.0039 0,0003575 0.2986 6.9147 0.0516 
0.187 2.6830• 0.4163279 0.3634 8.8045 0.0512 

4.4190 0,0000643 0.2794 6.3882 0.0514 
0,205 2.8450• 0.3608996 0.3636 8.8107 0.0484 

4.7727 0.0000260 0,2900 6.6771 0.0532 
0,327 3.9430* 0.1116766 0.3474 8.3206 0.0624 

5.8601 0,0000005 0.2462 5.51004 0.0548 
0.400 4,6000• 0,0463574 0.3062 7. 12708 0.0558 

6.5298 4.49e-8 0.2268 5.01464 0.0536 
0.532 5,7880* 0.0062336 0,2784 6.36115 0.0614 

7.4954 2.84e-9 0.1840 3.96428 0.0550 

Note. • indicates that all correlations in P are equal. 
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DISCUSSION 

The behavioral science literature is replete with 
"significant" findings that fail the ultimate test of 
replication (Pedhazur, 1982; Rosnow & Rosenthal, 
1989). One explanation for this conundrum lies in the 
family-wise Type I error rate that increases when 
stepwise regression or other multiple testing procedures 
are used. Faced with the problem of multiple tests that 
may be correlated, the researcher should take some 
action to correct the Type I error rate. Possible 
approaches to this problem include: 

a). Prior to performing a stepwise regression, conduct 
an omnibus test with all potential predictors in the 
model. 

b). When searching for a significant subset of 
predictors, use stepwise methods with backward 
elimination 

c). When searching for a reduced subset of predictors 
through stepwise methods, perform a PCA and extract 
orthogonal components and use (1) to correct the 
family-wise Type I error rate. 

d). In any multiple test situation, use one of several 
simultaneous inference tests (e.g., Games, 1977; 
Schafer, 1992; Schafer & Macready, 1975) to control 
Type I errors. 

e). Use the Bonferroni inequality, however, one may 
over-correct the probability of a Type I error and lose 
power. 

f). Use the algorithm ( 14) suggested here if multiple, 
correlated test arc being performed. 

It should be noted that there are practically an 
infinite number of configurations a correlation matrix 
can assume; therefore, there is no way to exhauss those 
possibilities. Therefore, these findings arc limited to the 
specific correlation matrices simulated. Thus, although 
extensive replications of this study are needed to assume 
the generality of these findings, it is not unreasonable 
to assume that the proposed algorithm ( 14) will work in 
other situations. 

Although the family-wise Type I error 
correction suggested here has been framed in terms of 
the forward selection procedure of stepwise regression, 
there is no reason for its exclusion from other situations 
that involve a single dependent variable and multiple 
tests that are correlated. For example, a set of 
nonorthogonal contrasts for an ANOVA, although based 
on coded vectors for means have correlations coefficients 
associated with them. Therefore, a matrix of 
correlations among contrasts could be analyzed with 
(14). In conclusion, the suggested algorithm shows 
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adequate control of the family-wise Type I error rate and 
is based on more complete information than estimates 
based simply on the average squared correlation. Yet, in 
the results the suggested correction sometimes deviated 
from the nominal alpha. Thus, further investigation 
will focus on manipulating sample sizes and using a 
shrinkage correction for the determinant of the predictor 
correlation matrix. 
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Some Historical Notes on Statistical Data Analysis 

Joe Ward 

T he hist_Qri~~--b.elow form a basis for 
concluding that combining a c~ll~means 
prediction-model approach with modern 

computers can empower data analysts to: 

-- Analyze many different-appearing. data analysis 
procedures with one general approach, wlucl1 reduces 
the amount of material to be learned. 

-- Create models that are more appropriate to the 
problems of interest, rather than forcing problems into 
packaged algorithms that may not answer the 
questions. 

-- Reduce the risk of unknowingly obtaining answers 
from statistical software that are unrelated to the 
research questions of interest. 

-- More easily and correctly specify the computational 
requirements to the computer. 

•· Simplify communicating results of the analyses, 
since the models arc developed from natural language 
concerns of the researcher. 

1951 • 
Joe Ward began working at the Air Force 

Personnel and Training Research Center (AFPTRC) at 
Lackland Air Force Base to move data analysis from 
desk calculators to IBM punched card machifles. The 
first task was to implement an iterative algorithm for 
solving least squares equations that was not sensitive 
to linearly dependent predictors. 

1953 - 1963 
' tfoJ,_Bottenberg and.IQ.~ Ward collaborated in 

enhanciiig .. ·re·search capabiHUei=-'at AFPTRC by 
exploiting the power of Regression Models (Linear 
Models) made possible through the use of high speed 
computers. Many experiences combined to bring 
about a new perspective in research analysis at 
AFPTRC. While studying at Stanford University, 
Bottenberg was influenced by Z. W. Birnbaum, Albert 
H. Bowker, Meyer A. Gershick, George Polya and 
others. And while attending several Southern Regional 

Education Board Summer Institutes at the U. of 
Florida, North Carolina State, and Virginia 
Polytechnic Institute, Ward had valuable perspectives 
from association with Richard Anderson, Gertrude 
Cox, David Duncan, George Nicholson Jr., Lowell 
Wine and others. Also, of prime importance was the 
influence of Harry M. Hughes of the Air Force School 
of Aerospace Medicine. 

During the l 950's most of the personnel at 
AFPTRC were PhD Research Psychologists who had 
received their statistics education prior to the 
availability of high speed computers. This meant that 
techniques of analysis did not involve the use of 
approaches to analysis that required a large amount of 
computing. During the late l 950's Bottenberg and 
Ward developed a Statistics course for personnel at 
AFPTRC. The plan was to provide a sequence of 
background concepts that would "eventually" lead to 
the exploitation of regression models and the computer 
for analysis. However, the participants were anxious 
to get on to the highly publicized promises that they 
would be able to create models appropriate to the 
research questions of interest and the course contents 
were adjusted accordingly. Unfortunately, little has 
changed in many one-semester, required college 
statistics courses. So much time is spent on the 
"assumed background prerequisites" that the students 
arc rarely given the opportunity to realize the data 
analysis capabilities that are readily at their command. 

During the AFPTRC course it became apparent 
that a "Top Down" approach was the way to go for 
persons who were interested in seeking answers to 
practical research questions. This implies starting 
with the problem stated in "natural language" and 
creating models that fit the problem rather than trying 
to fit the problem into an easily computable (possibly 
inappropriate) algorithm. This approach also suggests 
that concepts be introduced AS NEEDED, rather than 
spending time on topics which might have been 
assumed to be prerequisites for creating models to 
answer questions of interest. In situations where the 
participants are already indoctrinated with the pre­
computer algorithms, it may be useful to relate the 
regression model approach to the older methods. 
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This need to empower researchers to create their 
own models was recognized by Raymond Christal and 
others at AFPTRC and as a result Bottenberg and 
Ward were encouraged to develop and document their 
ideas. This resulted in publication in March, 1963 of 
"Applied Multiple Linear Regression" by Robert A. 
Bottenberg and Joe H. Ward, Jr., PRL-TDR-63-6, 
which is available as AD413-128 from the 
Clearinghouse for Federal Scientific and Technical 
Information. For several years after this document 
was published it was among the highest volume sales 
from the Clearinghouse. 

1964 -
In the summer of 1964 Bottenberg and Ward led a 

two-week National Science Foundation training 
session for a group of social sciences university 
faculty members. This session was directed by Earl 
Jennings and used the. computing and dormitory 
accommodations at the University of Texas at Austin. 
The instructional activities focused on the use of 
regression models and computers in research data 
analysis. The participants were shown that it was 
now possible to solve the systems of simultaneous 
equations that are sometimes required for statistical 
models. And it wasn't (and still isn't) really necessary 
to have "equal or proportional n's" that were required 
BC (Before Computers). Furthermore, even if a 
researcher has NO OBSERVATIONS in some 
categories of an "Analysis of Variance" model, the 
problem can be readily analyzed by stating meaningful 
hypotheses about the population "cell means" for 
which there ARE OBSERVATIONS. With model 
creation skills it may be possible to create a defensible 
model that produces estimates of population means in 
cells in which there arc no observations and to test 
hypotheses about the means of those cells. 

1967 - 1975 
During this period a series of Presessions were led 

by Bottenberg, Jennings, and Ward at the annual 
meetings of the American Educational Research 
Association. These sessions provided an opportunity 
for practitioners of educational research to become 
aware of the power of the regression models approach 
in the computer age. The large number of "graduates" 
of these Presessions stimulated the creation of the 
special interest group within AERA, SIG/Multiple 
Linear Regression. This MLR SIG has an informal 
publication, "Viewpoints", that provides 
communication among its members. 

Ward 

1973 -
After many years of teaching about and using 

regression models and computers, Ward and Jennings 
collaborated on a book that was to be included in the 
Prentice-Hall Series in Educational Measurement, 
Research, and Statistics. Specifically, the book was 
designed as a supplement to the Gene Glass and Julian 
Stanley book, "Statistical Methods in Education and 
Psychology". Englewood Cliffs, NJ: Prentice-Hall, 
1970. The book (ILM) by Ward and Jennings was 
titled "Introduction to Linear Models", Englewood 
Cliffs, NJ: Prentice-Hall, 1973. 

The book was an attempt to provide the reader 
with fundamental notions that would enable them to 
create models to answer research questions of interest. 
The ILM book developed the linear models approach 
in the traditional sequence presented in the Glass and 
Stanley book. That sequence was Inferences About 
the Mean, Difference Between Two Means, One-Factor 
Analysis of Variance, Two- Factor Analysis of 
Variance, .... 

1989 - 1994 > 
From 1989-1992 Joe Ward served as a member of 

the American Statistical Association-National Council 
of Teachers of Mathematics (ASA-NCTM) Joint 
Committee on the Curriculum in Statistics and 
Probability. Ward continues to keep in close contact 
with the activities of the Committee and continues 
work with secondary schools through the "Adopt a 
School" program of the ASA. Ward started working 
with high school students and teachers in the use of 
computers in I 958. While the emphasis during those 
early years was on introducing computers into the 
secondary schools, Ward took the opportunity to 
introduce a few high school students to the combined 
power of regression models and computers. He now 
works with high school students and teachers in the 
San Antonio area who wish to enhance their data 
analysis skills. Ward teams with Laura Niland, a 
statistics teacher at MacArthur High School and the 
1988 Texas Presidential Awardee in Secondary 
Mathematics, in workshops for high school teachers 
and students. Ward has taught Problem Solving 
Using Data Analysis to high school students in the 
Prefreshman Engineering Program (PREP) of the 
University of Texas at San Antonio. 

Teaching both high school and college students 
who have had no previous introduction to Data 
Analysis has lead to the conclusion that a "TOP­
DOWN" approach to Data Analysis will allow 
students to make practical use of their Data Analysis 
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experiences before they become "turned-off'. Notice 
the use of the term "Data Analysis" in place of 
"Statistics". The use of a "different name" for the 
course allows more freedom to start with real-world 
problems, introduce the use of regression models and 
computers and apply these techniques to the data 
analysis requirements. Topics that are frequently 
taught as prerequisites are introduced when needed in 
the data analysis process. 

1951 - 1994 
Ward has interacted with a wide variety of 

researchers who call themselves by different labels. 
These include Research Psychologists, Educational 
Researchers, Operations Researchers, Economists, 
Statisticians, Computer Scientists, Mathematicians, 
Sociologists, Management Scientists, Engineers, etc. 
Fortunately many of these researchers learn - while on 
the job -- to create models to fit their problems and to 
use the computer to "crunch the numbers". However, 
observations of newly trained researchers and the 
books used for their training indicate that much time 
is spent learning the "pre-computer'' approaches to data 
analysis. Those authors that do show the student 
some examples of the general linear model approach to 
analysis do little to empower the student to create their 
own models. It is not clear why many classical texts 
include so many special computational formulas that 
were necessary in earlier years. There may be a belief 
that a learner acquires a stronger degree of 
understanding if they know how to do the pre­
computer arithmetic. Many of the statistical software 
packages emphasize the use of the computerized 
versions of the "pre-computer" algorithms. And these 
packaged programs can occasionally provide answers 
to uninteresting questions that are diff crent from the 
hypotheses that the data analyst thought were being 
tested. 

There still remains a great need to develop 
instructional approaches that will allow researchers to 
create their own models as required and to use the 
computer to handle the computational burden. It 
seems that a good approach to introducing students to 
model development is to begin with a problem that is 
of interest to them and to use concepts that are 
familiar. The use of "averages" of collections of data 
are a great way to start since learners of all ages have 
heard the term and have been subjected in school to the 
use of "averages" as performance indicators. Most 
learners can talk easily in "natural language" about 
comparing "averages" among categories (e.g., batting 
averages, shooting average, etc.). Then these ideas can 
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be expressed in more formal prediction models of 
forms such as : 

DEPENDENT VARIABLE = PREDICTION + 
ERROR, 
DATA =FIT+ RESIDUAL, 

DAT A = MODEL + ERROR, or 

Y=XB +E. 

The important idea is to provide learning 
experiences that will eventually allow students to 
create models relevant to the questions of interest. 
The solutions to these models are now feasible by 
high-speed computers. 



Using Multiple Regression to Develop ANOV A Power 

Formulae 

Dale G. Shaw and David R. McConnack 
University of Northern Colorado 

M ultiple regression may be used to examine 
the relationship between a single dependent 
variable and a set of several independent 

variables. The ANOV A power tables presented by 
Cohen (1988) can be considered such a data set. In 
these tables, the power of a balanced one-factor 
ANOV A design may be considered the dependent 
variable which is predicted by four independent 
variables: sample size, alpha level, number of 
groups, and effect size. Cohen's 66 pages of tables 
provide 15,526 power values for various combination 
of values of the four independent variables. 

This article presents regression equations fitted to 
Cohen's ANOV A power tables in an effort to obtain 
simple yet accurate formulae for estimating the power 
of an ANOV A design. Simple equations were sought 
because power analysis is presently receiving limited 
attention in research planning (Cohen, 1988). 
Having a simple, easy-to-use formula which 
estimates a design's power might lead to improved 
designs. Obviously accurate power estimates arc 
desirable, but the criterion. of accuracy is less 
stringent than might be supposed. The researcher 
who is planning an ANOV A design docs not usually 
require a power estimate to the nearest percentage 
point as Cohen's tables provide. For example, if a 
design's power were estimated to be .88 with a ±.06 
margin of error, the experiment could proceed with 
with reasonable confidence of having high power even 
though the exact power is unknown. 

In contrast to the simplicity criterion which 
required subjective judgment, the accuracy criterion 
was quantifiable. We used 2 indicators of accura? for 
evaluating and comparing regression models: R (the 
proportion of variance "explained" by the formulae) 
and RMSE (the root mean square error). We sought 
equations with R2 > .95 and RMSE ~ .03. 
Regrettably, these two criteria for desirable formulae, 
simplicity and accuracy, conflicted with each other. 
The simplest formulae were not the most accurate and 
the most accurate formulae were not simple. 

Linear Formulae 
The first attempt to model ANOV A power was a 

simple linear model in which the dependent variable 

was Cohen's (1988) ANOVA power values. The 
independent variables were cx, u, n, and f, described in 
Table I. Cohen's tables provided 15,526 power 
values between .01 and .99, which served as data 
points on a hyper-surface. As expected, this first 
model failed to meet the accuracy criterion (R2 = 
.4320). General knowledge of power curves as well 
as inspection of Cohen's tables suggested the surface 
was curvilinear rather than linear. To accommodate 
the curvature, and still keep the models composed of 
fairly simple terms, the predictor set was increased 
from 4 to 24 variables by including the square, the 
cube, the square root, the natural logarithm (ln), and 
the natural logarithm of the natural logarithm (ln(ln)) 
of each basic predictor. The last of these new 
predictors was undefined for some data points because 
ln(ln(l)) is undefined. Therefore, the basic variables 
were modified: cx was multiplied by 1000, f by 100, 
and u by 10. R2 values for various models created 
from the 24 variables did not exceed .95. 

The search for a better model progressed by 
imposing a restriction on the data set. This was 
justified because a user of the resulting formulae 
probably would not need accuracy for very high or 
very low power values. A very low power, whether 
.10 or .25, indicates the proposed design is probably 
not worthy of further consideration. On the other 
hand, a very high power, whether .95 or ,99, suggests 
a design worthy of further consideration. Because a 
research planner probably needs only limited accuracy 
at either end of the power range, the data points of 
these asymptotic tails of the power data (which offer 
the greatest difficulty in fitting a linear model) were 
eliminated. The greatest R 2 value of the new models 
(. 9524 using the predictor set ln(f), ln(n}, ✓u, ✓a, 
ln(ln(n)), and u2) was observed when power was 
restricted to the interval (.25, .95). Thus, a decision 
was made to continue the search for linear formulae 
using only the reduced data set. 

The next step was to increase the set of predictors 
by including the products of pairs of the 24 predictors 
so that interactive effects of the predictor variables 
could be accommodated. For each basic predictor, a 
set of 6 predictors had already been included, such as 
f, r", f, ln(f), ln(ln(f)), and {f. When each of the 6 
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f predictors was paired with each of the 6 n predictors, 
36 predictors were possible. When all 4 basic 
predictor variables were considered, a total of 216 
product pairs were added to the fonner 24 predictors, 
creating a set of 240 predictors. Regression by the 
forward, stepwise, and all-possible techniques was 
employed in search of tenns that explained large 
portions of the variance in p. When the residuals of 
models based on these predictors were plotted, three 
somewhat parallel curves were observed. This 
prompted separation of the data set into three sets, 

2 one for each a level. R values greater than .98 were 
obtained for each a level considered separately. Such 
fonnulae marginally satisfied the accuracy criterion 
but did not meet the simplicity criterion in which one 
formula incorporating all a levels was desired. 

In the interest of simplicity, all terms containing 
logarithms were eliminated from the model. This 
reduced the possible P.redictor set from 240 to 112 
predictors. Similar R2 's were attained without the 
complexity of the lo~arithmic terms. While 
marginally acceptable R levels were obtained for 
specific a levels, the R 2 values obtained for general 
formulae were not deemed acceptable. 

Several recurring predictors were observed in the 
formulae for the separate a levels, and it was hoped 
some form of a could be entered as a factor with 
these predictors to develop formulae that were 
acceptable for all a levels. Especially encouraging 
was the pair f-fii and f 2n, the second being the 
square of the first. Because f-fii continued to be 
prominent throughout the experimentation, r, (eta) 

was defined u 2 to simplify future predictor notations. 
Experimentation with powers of r, and a, along with 
various other tenns from the current models, failed at 
this point to obtain acceptable fonnulae, however. 

As stated earlier, the above models included only 
power values in the interval [.25, .95]. Continuing 
the search for formulae which would be simpler and 
more accurate another reduction of the data set was 
tested. Becaus'e the user of a k-group ANOVA design 
is only rarely concerned with a comparison of more 
than five groups, the data for six or more groups was 
removed. Because u = k-1, this reduction meant only 
data points with values ofu in the interval (1, 4] were 
used in the continuing search. This restriction of the 
data set permitted a model which included all a 
levels and which attained an R2 =.9656 for the 

2 ~ 2 3 2f3 predictor set 11, fri , v ua, ua, U a , and n . 
Individual models for specific a levels attained R

2 

>.99. The best model (for a =.01 using the 
2r f2 f2 • R2 predictors 11, 11 , vu, f, , and 11) attamed 

=.9962. 
Many other possibilities were explored in the 

search for good models. Just as the separation of a 
levels had been explored, a separation off levels was 
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tested. Models in which p was replaced with ln(p ), 
exp(p), or a trigonometric function of p were tried. 
None of these experiments yielded any improvement 
when compared to those models already reported. 

To balance the two criteria, simplicity and 
accuracy, a compromise was required. Having chosen 
an accuracy requirement of RMSE < .03, it appeared 
the best general formula (given here in a factored 
form) contained six predictors and seven constants: 

p = -.034r,3 +(.240-. no../a)r,2 

+(2.11s✓a +.043u)r, -(.192f+.268) 
(1) 

The accuracy of Formula I was attained by 
considering only data points with power in (.25, .90] 
and u in (1, 4]. While Formula I is not as simple as 
originally hoped, its simplicity was deemed 
reasonable, considering the magnitude of the problem. 
The simplest possible linear combination of the four 
basic predictors would require five constants for the 
four terms plus an intercept term. That simple 
model, however, demonstrated very poor accuracy. 
Formula I requires only seven constants and it 
provides good accuracy, so it may be considered 
reasonable by potential users. 

To reduce the number of tenns (and constants) 
required in the model, consideration was given to re­
entering logarithmic predictors into the model. Many 
combinations were tried using all possible regressions 
on various predictor sets. The model 

p =.058+.149ln(a) + 

(. 355+. 045u) r,+. l 971n( n)../f 
(2) 

emerged after much experimentation. Fonnula 2 has 
only five constants, compared to seven in Fonnula 1. 
The four predictors arc, however, more complex than 
the six predictors of Formula 1. 

The two formulae presented above appeared 
comparable in simplicity. To test the accuracy of 
Formulae 1 and 2, their residuals were analyzed (see 
Table 2) and the two formulae were again found to be 
comparable. The residual plots indicated a high 
degree of accuracy had been attained, but each plot 
exhibited a curvature which invited further exploration 
using a cubic function of p. Thus a two stage 
estimation procedure was considered. Stage One was 
either of the above two formulae. Stage Two then 
entered the resulting p into the model 
P = b0 + b1p + b2p2 + b3p3

. The new P gave a better 
power prediction but the improvement was judged too 
minimal to warrant the application of Stage Two. 
The first formulae were already less simple than 
desired and it was felt the application of a second 
stage formula would probably not be attractive to any 
user. 
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Non-Linear Formulae 
Because power data is not linear, non-linear models 

such as p = b0 (1-exp(b1ue1ae2nc3f°4 )) and 

p=b0 +b1uc1 ac2 +b2ne3f"◄ were tested using 
computer iterations to detennine the b and e parameter 
values which most closely fit the surface. Although 
many models failed to converge to a set of 
parameters, the above models did each converge with 
RMSE < .04. These results were less satisfactory, 
however, than the results from the linear Fonnulae I 
and 2 already reported. Finally, the logistic model 
was considered because its graph approximates a 
power curve in shape, being asymptotic to zero and 
one. The logistic model, unlike linear models, might 
allow use of the full data set and might model 
ANOVA power well. 

The logistic model is based on a sigmoidal 
I 

curve with an equation similar to Y = 
1 

+ e-x • 

I 
With P ... Y and a transfonned p' ... x, P = -

1 
JI • 

+e 

Solving, p = In( 
1 ~P). Although P is sigmoidal, 

the transformed p' is linear. This p • was regressed on 
various sets of predictors using the linear model 

k 
p' = {30 + r, /J 1x1 . The resulting coefficients were 

/•I 
then substituted yielding a model similar to 

1 
P=----.---

Po+ r.Pr; 
1 + e .,.. 

For initial trials, the five predictors (a, u, n, f, and 
71) were tested. The standard deviation of the residuals 
was .0858 with the data set limited to power in the 
interval (.25, .95J but when the entire data set was 
allowed, the standard deviation of the residuals was 
. 0768. The logistic model performed as well, if not 
better, with an unrestricted data set. As 
experimentation continued, the predictors which had 
been discovered in the search for linear models were 
found to be helpful in the search for logistic models. 

Although logistic regression produced pleasing 
power estimates in the asymptotic tales, a disturbing 
feature of these models was the wide range of the 
prediction errors indicated by the minimums and 
maximums of the residuals. Even in the best model, 
one residual was as large as .39. Through analysis of 
the data, the source of these extreme residuals was 
found to be cases of very low n and large u. When 
the restrictions n 2: IO and u in [I, 4) were placed on 
the data, similar to the restrictions used in developing 
the linear models, a better fit was obtained: 
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p= 

(3) 

In Fonnula 3, all errors were within± .05 
and the standard deviation of the errors was .0150, a 
very pleasing result when considering the accuracy 
criterion of acceptable formulae. However, the 
simplicity criterion was challenged by this model. 
Any logistic model is by nature complex when 
compared to a linear model. 

The Formulae Compared 
The three fonnulae produced by this study each 

have features which may be attractive to users. 
Fonnula I is simple but lengthy. Fonnula 2 is more 
compact, but it includes logarithmic tenns. Fonnula 
3 is the most accurate, but it is also the most 
complex. In addition to these basic comparisons, the 
user might consider the tables of residuals associated 
with the formulae. Tables 3, 4, and 5 show the 
standard deviations of the residuals as well as the 
minimum and maximum residuals under various 
restrictions of the predictor variables. As an example, 
a design of five groups (u = 4) and five subjects per 
group (n .. 5) is described in the next to last line of 
each table. If Formula 3 is chosen, the standard 
deviation of the residuals is .0125. Assuming 
normality of the residuals, 95% of the predicted power 
values would be within± 1.96(.0125) • ± .0245. 
For the worst case, the predicted power value could be 
as much as .0984 too great or .0320 too small. 
(Power• predicted power+ error.) 

The superiority of the logistic Formula 3 of Table 
S is obvious, slrown by the smaller numbers 
throughout. In addition, the logistic formula is based 
on the entire data set with power in [.01, .99J. The 
linear formulae were developed using only the data 
with power values in (.25, .90]. Of course, the 
accuracy of Fomtula 3 was gained at the expense of 
simplicity . 

The user's choice of one of these three formulae 
will depend upon the user's desires and purposes. If 
the user desires the simplest fonnula, one of the 
linear formulae (Formula 1 or Formula 2) should be 
chosen. If greater accuracy is desired, the logistic 
formula (Formula 3) should be chosen. The user 
desiring accurate predictions in the tail regions of the 
model should always choose the logistic fonnula. A 
user may use a linear formula several times to test 
possible models and then, having narrowed the 
choices, use the logistic fonnula to make a ~~l 
model selection. With computer spreadsheets, tt ts 
also possible for the user to consider the results o~ all 
three formulae simultaneously when proposmg 
various ANOVA designs. 

Although the formulae provide good power 
estimates in most cases, a user never knows whether 
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the estimate obtained in a particular case is highly 
accurate or only marginally accurate. Reference to 
plots of residuals can provide further insight for 
interpreting the power predictions calculated from the 
formulae. Figures 2, 3, and 4 show residuals plotted 
against the predicted power for each of the three 
fonnulae. To illustrate, consider Figure 2. Under 
Formula 1, if the predicted power is .75, the plot 
shows the residuals vary from -.04 to .06. Thus the 
actual power of the design is . 71 to . 81. 

Although the user of the fonnulae may not always 
have the residual plots available, the fonnulae can 
still be used effectively if the user understands the 
general shape of the residual plots. The user of the 
linear Formulae 1 and 2 must be aware that the power 
will be over predicted when power is high, and under 
predicted when power is low. This is especially clear 
in Figure 1 where the full data set of power in [.01, 
. 99] is plotted. When such predictions are obtained 
from the fonnulae, the user must interpret the results 
as "high" or "low" power respectively, without 
stating a specific power value. Ati example of 
extreme power predictions is the case of a=.05, 
n=500, u=l, and f=.4 (prediction = 15.602, error= 
-14.612). This error results from the dramatic 
negative effect of the factor r,3 for large values of n. 
Power for n=-500 is expected to be very high, clearly 
outside of the [.25, .90) power range. Computed 
power estimates which fall into the range for which 
the formulae were developed will be reasonable power 
estimates, but the user is warned that any extreme 
power predictions of Formulae 1 or 2 should be 
ignored. . 

The shape of the residual plot of Formula 3 
. (Figure 4) is very different from the shape of tl1e plots 
for the linear formulae, the logistic fonnula being 
more accurate in the tail regions than in the central 
regions. A comparison of the scales of the plots, 
however, demonstrates that the increased tail accuracy 
is not at the expense of accuracy in the central 
regions. Formula 3 meets or exceeds the perform;mce 
of the other two formulae even in the central regions. 

The formulae developed by this study offer a new 
way to compute the power of ANOV A designs. 
These formulae resulted from a directed "trial and 
error" search among those predictors which seemed 
reasonable. Certainly, the study did not exhaust all 
possible predictors of power. Thus, other researchers 
may discover better (simpler and/or more accurate) 
fonnulae than those presented here. This may be 
done with the tool of regression, as used in this 
study, or by some other method not yet considered. 
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Fonnula 
I 
2 

Table 1. Independent Variables of the Linear Regression Model 
Variable Description 

significance level 
Values or Range 

a 
u =k -1 numerator degrees of freedom for 

a k-group ANOVA 

.01, .05, .IO 
I - 24 

n 
f 

per group sample size 2- 1000 
Cohen's effect size .05 - .80 

Table 2. Comparison of Residuals of Fonnula I and Fonnula 2 
Mean Standard Deviation Minimum Maximum 
.0006 .0254 -.1387 .0617 
.0006 .0251 -.0901 .1080 

Table 3. Residuals ofLinearFonnula I, pin [.25, .90]. 

p = -.034173 + (.240-. no.fa)112 + (2. 178.fa +.043u)11- (. I92f +.268) 

u Values n Values St Dev Min Max 
All All .1094 -.7782 .0617 

(1, 8) All .0340 -.2301 .0617 
(1,8] n2:5 .0313 -.1466 .0617 
(1, 8] n:?:10 .0306 -.1414 .0608 
(1, 4) All .0254 -.1387 .0617 
(1, 4) n:?:5 .0242 -.0979 .0617 
(1, 41 n;;:;10 .0235 -.0897 .0608 

u Values 
All 

[I, 8] 
[ 1, 8] 
[ 1, 8] 
[ l, 4] 
[ I, 4 I 
(I, 41 

u Values 
All 

[l, 8) 
[l, 8] 
[l, 8] 
[l, 4) 
[l, 4] 
(114) 

Table 4. Residuals of Linear Formula 2, pin [.25, .90). 

p =. 058+.149tn(a) + (.355+.045u)11+. 197ln(n)~ 
n Values St Dev Min 

All .1167 -.7375 
All .0350 -.2027 
n2:5 .0338 -.1221 

n2:I0 .0335 -.1221 
All .0250 -.0901 
n:?:5 .0247 -.0876 

n::;;10 .0243 -.0876 

Table 5. Residuals of Formula 3, p in (.0 I, .99]. 
I 

p= } + 2. 8 la··72u( .31- 2711)11el9lf-(2.31+ 17u)11] 

n Values St Dev Min 
All .0445 -.5195 
All .0160 -.2156 
n:?:5 .0126 -.0984 

n2:10 .0115 -.0516 
All .0143 -.1276 
n:?:5 .0125 -.0984 
glO .0113 -.0516 

Max 
.1080 
.1080 
.1080 
.1080 
.1080 
.1080 
.1080 

Max 
.0320 
.0320 
.0320 
.0295 
.0320 
.0320 
.0295 
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Comparison of General Linear Model Approaches to Testing 
Variance Heterogeneity in True and Quasi-Experiments 

T. Mark Beasley 
St. John's University, New York 

Simulation results indicated that when groups were sampled from the same platykurtic population the O'Brien 
(1981) transformation was preferred except when a positive sample size/variance correlation existed, then the Welch 
test performed on the O'Brien scores was more powerful. Also consistent with previous research, when grouped data 
were sampled from the same leptokurtic population the Brown & Forsythe (1974) transformation was preferred for 
equal sample sizes. The O'Brien test was more powerful with an indirect sample size/variance relationship regardless 
on distribution shape(e.g., Algina et al., 1989; Olejnik & Algina, 1987, 1988). The study also demonstrated that 
the Welch test performed on Brown-Forsythe scores was more powerful when a positive sample size/variance 
correlation existed in leptokurtic data. Furthermore, choosing a test of variance based on an initial test of kurtosis 
may improve power (Ramsey, 1994). When data were sampled from populations with drastically different shapes 
(kurtosis), the Type I error rate of most tests was unstable excluding the Hartley Fmax test which performed 
surprisingly well. 

The analysis of variance (ANOVA) is one of the 
most widely used statistical procedures in 
educational research. Namely, it is the technique 

of choice for True Experiments in which members 
sampled from the same population are randomly 
assigned to treatment conditions. In field research and 
Quasi-Experiments, comparisons among groups are also 
of interest; however, there exists the possibility that 
these groups arc sampled from different populations. In 
either case, behavioral researchers often compare groups 
with different distributional properties, which may be a 
result of (a) sampling from different populations or (b) 
an experimental treatment affecting something other 
than central location. Thus, as far as analytic 
procedures are concerned, the distinction between True 
and Quasi-Experiments becomes ambiguous. For the 
purposes of this study, a True Experiment is defined as 
sampling data from a single population and randomly 
assigning cases to groups. A Quasi-Experiment is 
defined by separately sampling data from populations 
which differ in distributional shape (i.e., skew and 
kurtosis). 

One of the most critical conditions for any linear 
modeling procedure involves the assumption of 
homoscedasticity across levels of the independent 
variable. In the ANOV A, it follows that heterogeneous 
variances may obscure the magnitude of test statistics 
for comparisons among means. Thus, testing variance 
equality appropriately is important in checking a vital 
assumption of the ANOV A. Furthermore, despite the 
existence of differences in central location, 
heterogeneous variances may constitute substantive and 
theoretically valuable results. That is, it may be 

- . 

interesting to know that the responses of two separately 
sampled populations differ in scale or that an 
experimental treatment significantly affects response 
variability. 

Traditional tests of variance homogeneity (e.g., 
Hartley's Fmax) can be very simple, calculating the ratio 
of two sample variances. The Fmax test, however, has 
long been known to be extremely sensitive to 
deviations in kurtosis (Box, 1953; Scheffe', 1959). 
Slight departures from normality which involve 
kurtosis have been shown to make substantial difference 
in the Type I error rate of the Fmax test (Pearson & 
Please, 1975). For instance, Hartley's Fmax test has 
been shown to be conservative for platykurtic 
distributions and liberal when distributions have 
positive kurtosis (Ourrand, 1969). Although several 
tests of variance have been proposed, the Fmax remains 
popular in a variety of applied studies because of its 
simplicity. 

In a simulation study, Conover, Johnson, and 
Johnson (1981) compared several procedures for testing 
homogeneous variances and found that most are liberal 
(i.e., the Type I error rate was considerably larger that 
the nominal alpha). Thus few tests exist that actually 
control the Type I error rate. Over the past two decades, 
robust tests of variances based on applying the ANOV A 
to transformed scores (e.g., Brown & Forsythe, 1974; 
O'Brien, 1981) have been proposed. Under conditions 
of a "True Experiment" and equal sample sizes, these 
tests have been shown to be powerful in a variety of 
population distributions (Algina, Olejnik, & Ocanto, 
1989; Olejnik & Algina, 1987; Ramsey, 1994; Ramsey 
& Brailsford, 1990). The Brown-Forsythe (BF) test has 
been criticized because it has low power for small, odd 
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sample sizes and only moderate power for platykurtic 
and normal populations (O'Brien, 1981; Olejnik & 
Algina, 1987). Under these same conditions, the most 
common form of the O'Brien (OB) procedure has been 
shown to be more powerful than BF. Also for unequal 
sample sizes, OB has been suggested for platykurtic 
distributions and BF with symmetric and/or leptokurtic 
distributions (Algina et al., 1989). 

Despite these recommendations based on the 
kurtosis of distributions, a criterion for identifying' 
population shape was not suggested. Ramsey and 
Brailsford (1990) noted that tests of kurtosis could be 
used to decide between BF and Fmax. Following the 
suggestions of previous studies, Ramsey (1994) has 
recently suggested two conditional procedures based on 
testing kurtosis for each group separately. Ramsey's 
results confirmed the robustness of OB and BF but 
indicated that optimal power can be established with the 
conditional procedure of testing kurtosis to decide 
between the these tests. However, the power of these 
conditional procedures has been shown to be dependent 
on the power of the test of kurtosis. Also, Ramsey's 
results are limited in the sense that only the conditions 
of a True Experiment were simulated. That is, the two 
groups were sampled from the same population. In 
field research and Quasi-Experiments, comparisons of 
groups sampled from different populations are often of 
interest and the suggested conditional procedures have 
yet to be fully investigated under such conditions. 

Olcjnik and Algina ( 1988) found that both OB and 
BF held the Type I error rate for a limited number of 
distributions which differed in location and form. The 
OB tended to be most powerful with equal sample sizes 
and with an inverse relationship between sample sizes 
and population variances (i.e., larger sample has the 
smaller variance). When sample sizes and population 
variances had a direct relationship (i.e., larger sample 
has the larger variance), using OB transformed scores as 
dependent variables and performing the Welch (1951) 
statistic was the most powerful procedure. 

A variety of nonparametric tests of variance are also 
available; however, they have presented problem! with 
robustness and low power. Two of the better known 
procedures were proposed by Klotz (1962) and Siegel 
and Tukey ( 1960). When data were sampled from a 
normal population, both tests demonstrated the 
appropriate Type I error rate (Penfield & Koffler, 1985; 
Olejnik & Algina, 1985). Also, the Klotz test had 
power equal to or greater than the power of OB or BF 
when samples differed in variance only. However, both 
the Siegel-Tukey and Klotz tests were strongly affected 
by differences in central location (Moses, 1963). When 
the sampled distributions share the same asymmetric 
shape but differ in location, the tests are liberal. Yet, 
both tests become less powerful as location parameters 
increase when groups share the same symmetric shape 
(Olejnik & Algina, 1985). To date, attempts to modify 
these tests through mean- and median-alignment have 
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not drastically improved their statistical properties (e.g., 
Conover et al., 1981; Olejnik & Algina, 1988). 

Thus the purpose of this study was to investigate 
the robustness and power of OB, BF, and the use of the 
Welch statistic on these transformed scores (WoB and 
WBF, respectively) under conditions of a True 
Experiment (i.e., groups are randomly constructed from 
the same population) and a Quasi-Experiment (i.e., 
groups are sampled from two different populations). 
Furthermore, the effectiveness of conditional procedures 
based on tests of kurtosis (e,g., Ramsey, 1994) was 
examined. Although tests of variance are themselves of 
interest, in most educational research differences in 
central location are to be expected; therefore, 
nonparametric procedures such as the Siegel-Tukey and 
Klotz tests were excluded from this study. Under 
several circumstances, the results were expected to 
replicate those of Ramsey (1994) and Olejnik and 
Algina (1987, 1988). Furthermore, the findings of this 
study should address the issue of the appropriate 
procedure for testing variances in Quasi-Experiments in 
which the populations may differ in variance and form 
and the samples differ in size. 

Statistics for Testing Variances 
Although many statistical tests for comparing 

population variances have been developed, only a few of 
these procedures have demonstrated robustness when 
populations are nonnonnal (i.e., Conover et al., 1981). 
Of these tests, the general linear model procedures, 
which involve performing the ANOVA (or some 
variant) on transformed scores, have shown both 
robustness and superior power. 

1/art/ey's Fmax test. This test was investigated 
because of its wide use and known properties when 
kurtosis deviates fonn normality. The Fmax test is the 
ratio of the largest to the smallest of J variance, 

s2 
Fmax = largeJt 

S
. 2 
JmalleJt 

(I) 

The degrees of freedom are (n1ar,,,, - 1) for the numerator 
and (n,,.a1,,,, - I) for the denominator. Although it_ is 
often recommended that the Fmax test only be used with 
approximately equal sample n's, its statistical properties 
were examined under all condition of this study. 
Critical values were obtained from the sampling 
distribution derived by Hartley (1950). 

Brown-Forsythe Transformation. To test 
differences in variances, Levene (1960) proposed using 
the ANOV A but replacing each score, YtJ, of subject i 
within group J with the absolute deviation from its 
respective group mean. Although this procedure is 
fairly robust, it was found not to be adequately powerful 
(Conover et al., 1981). Brown and Forsythe (1974) 
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proposed applying the ANOV A to absolute deviations 
from respective group medians, m1 , such that: 

'2) 

O'Brien Transformation. O'Brien (1979) 
proposed that the original score, Yu, of suhJCct i in 
group j be replaced with 

(w +nr 2) n1(YiJ-Y1) - ws 1(n 1 - I) 

(n1- 1) (n1- 2) 

' (3) 
where w is a parameter ranging between zero and one 

and - 2 Yi equals the mean, s1 equals the variance, and nj 
equals the sample size of group j. For most cases, 
O'Brien (1981) has recommended a value of w = 0.5 
from which the group means for r in (3) are the 

variances of each group y: ff = s} . The ANOVA is 
performed on the transformed r values. 

Welch Statistic, It is not known whether the 
OB or BF tests are asymptotically distribution free. 
Furthermore, because the variance of r is dependent on 
sample size, O'Brien (1981) suggested using a Welch 
(1951) approximate degrees of freedom analysis on r 
values in place of the ANOV A when sample sizes are 
not equal (WOB). This procedure may also be 
performed on BF transformed scores (WBF). The Welch 
statistic is calculated by 

J 
!: cl <Yr f) I (J - I ) 

W •---""-•-I-------- (4) 

where J equals the number of groups, CJ= n1 Is}, 

c• = "'f,c1, and Y = L cir /c. The Welch statistic is 
approximately distributed as F with degrees of freedom 
equal to (J - l) and 

(5) 

- . 

--
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For J = 2 groups, the degrees of freedom in (5) follow 
the Satterthwaite ( 1946) fonnula. 

Conditional Tests. Based on the simulation 
studies of Olejnik & Algina (1987, 1988), BF is 
preferred for leptokurtic populations, while OB is 
recommended for normal and platykurtic distributions. 
To achieve optimal power, Ramsey (1994) proposed 
two procedures for testing variances that are conditioned 
on applying a test for kurtosis. 

Pearson's traditional sample measure of population 

kurtosis, y2 , in group J is b 2 = m 4 Im t where 

mr = L (Yi/ -y1l ln1. Thus m2 is the second 
moment about the mean, the biased sample variance. 
Although standardized population moments for 
skewness and kurtosis provide popular significance 
tests, Ramsey and Ramsey (1993) have supplied a 
detailed and accurate table of critical values for b2, 

which are used to test kurtosis against the null 
hypothesis (Ho: J32 = 3). 

For the tests proposed by Ramsey, tests of kurtosis 
are applied in each of the two samples at the a = ,05 
significance level. A score of -1, 0, or + I is recorded 
depending on whether the test of b2 indicates that the 
distribution was significantly platykurtic, 
nonsignificant, or significantly leptokurtic, 
respectively. Combining scores from the two samples 
results in a total score, S, ranging from -2 to +2, In a 
J-group study, S would range from .J to +J. The test of 
kurtosis is taken as identifying the population for the 
entire experiment as platykurtic if S .:S -1, mcsokurtic if 
S • 0, and leptokurtic if S ~ +l. In one conditional 
procedure, OBBF, kurtosis is tested and OB is applied if 
the samples are platykurtic or mesokurtic (S .:S 0) and 
BF if the distributions are significantly lcptokurtic (S 2: 
+1). This approach is based on the recommendations of 
Olejnik and Algina ( 1987) but docs not control the 
Type I error rate under certain distributional conditions; 
therefore, Ramsey (1994) suggested another conditional 
procedure that demonstrated superior power and adequate 
robustness. This approach, BFoa, involves testing the 
fourth moment and applying OB with significantly 
platykurtic distributions (S .:S -1) and BF otherwise (S .2: 
0). 

Methods 

Consistent with previous studies (e.g., Miller, 
1968; Olejnik & Algina, 1987, 1988; Ramsey & 
Brailsford, 1990), the present investigation was 
restricted to the two-group case. These studies yielded 
results congruent with multi-group studies. 
Furthennore, the restriction to two groups allows more 
careful consideration of other factors. Since previous 
studies have indicated that shifts in central location have 
little to no effect on general linear model tests of 

n 
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variance, (Beasley & O'Connor, 1995; Olejnik & 
Algina, 1988), three population variables were 
manipulated: shape in the form of kurtosis (y2), 

variance in one group, (cr2); sample size (nj), 

Conditions 
Population Kurtosis. Previous studies have 

indicated that skewness affects the robustness and power 
of nonparametric tests (Olejnik & Algina, 1988) but 
only affects the statistical properties of parametric tests 
in combination with nonnormal kurtosis (Conover et 
al., 1981; Olejnik & Algina, 1988; Pearson & Please, 
1975). The normal and six nonnormal distributions 
that had no skewness but varied in kurtosis were 
simulated. They are presented in ascending order from 
platykurtic to leptokurtic. The first population was 
extremely platykurtic (XPL T) and continuous with 
skewness (Yt) equal to zero and kurtosis (n) equal to 
-1.80. The second population was also platykurtic 
(PLAT) and continuous with skewness (y1) equal to 
zero and kurtosis (y2) equal to -1.00. It was chosen 
because it has been used in a variety of other simulation 
studies (e.g., Olejnik & Algina, 1987, 1988). The third 
population was slightly platykurtic (SPL T) with y1 = 
0.0 and Y2 = -0.50. It was selected as a continuous 
distribution which closely matches the moments of one 
of Micceri's (1989) data sets. The fourth population 
was the normal distribution (NORM) generated with tl1e 
SAS RANNOR function. The fifth population (LEP 1) 
was selected as a slightly leptokurtic, y2 • + 1.00, 
continuous distribution with no skew comparable to tl1e 
second population (PLAT). The sixth (LEP3) and 
seventh (XLEP) were selected as highly leptokurtic (y2 
= +3.00 and +3.75, respectively) with no expected 
skewness. 

Group Sl:;e and Variance Ratio 
Parameters. Equal sample sizes of nj = IO, 13, and 
20 and unequal sample sizes of (10, 20) and (13, 20) 
were employed. To investigate power, variance ratios 
of VR = 2.0 and 5.0 were imposed by taking the 
population from which Group Two was sampled and 
multiplying it by constant equal to the square root of 
VR. 

Because Olejnik and Algina ( 1988) found that tests 
of variance were differentially powerful depending on the 
relationship between group size and population 
variance, all conditions were crossed when power was 
investigated. For example, when the variance ratio was 
VR = 2.0 and Group One, with n J = 13, was sampled 
from the normal distribution, while Group Two (nj = 
20) was sampled from a platykurtic distribution, an 
inverse relationship between group size and population 
variance (negative condition) was imposed. In order to 
create a positive condition, the sample sizes were 
reversed so that the larger group had the larger variance. 
Also because power and robustness may depend on 
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population shape, the seven populations were 
systematically manipulated as long as conditions did not 
duplicate (e.g., when investigating Type I error rate for 
equal sample sizes all population combinations are not 
necessary). Table 1 shows the sample size conditions 
for the analyses in this study. Note that two sample 
size configurations were added to impose positive and 
negative sample size/variance correlations for 
investigating power in True Experiments. For Quasi­
Experiments, all possible sample size conditions were 
used since the Type I error rate has been shown to 
depend on sample size/kurtosis configurations. In 
examining power, variance constants were imposed on 
both Group One and Group Two because power has also 
been shown to depend on the configuration of sample 
size, kurtosis, and variance (Beasley & O'Connor, 1995; 
Olejnik & Algina, 1988). 

Procedure 

The second through seventh populations were 
generated separately for each group using the RANNOR 
function is SAS/IML, which provides a clock generated 
pseudorandom standard normal deviate, Zij (SAS 
Institute, 1990). Fleishman's (1978) method was used 
to transform these distributions into non-normal data 
with specified mean, variance, skewness, and kurtosis 
values via a polynomial equation of the form, 

YIJ • a + bz11 + czi; +dz,~ . (6) 

Since the minimum kurtosis derived by Fleishman is 
Y2 • -1.00, the first population (XPL T) was simulated 
by combining_tlU'Ce uniform distributions that varied in 
central location. A small distribution of 20 cases that 
centered around O and two larger distributions of 990 
cases each which centered around -0.75 and 0.75 were 
concatenated to create this heavy-tailed distribution. 
Linear transf onnations were used in order to have the 
expected variances used in this study. During the 
simulation procedures, observations were randomly 
sampled from these distributions during each 
replication. For each condition elaborated, 5,000 
replications were completed. The proportions of 
rejections at the a = .05 level of significance were used 
as measures of empirical power and Type I error rate. 

Since 5,000 replications were conducted in each 
condition with a = .05, the standard error is .0031. 
Thus, any Type I error rate of .0562 or greater exceeded 
two standard errors and was considered a significant 
inflation of the Type I error rate. Other less stringent 
criteria include upper limits of .06 (Cochran, 1954) and 
.075 (Bradley, 1978). In order to avoid the problems 
with making multiple comparisons within this study, 
the standard error of simulation was used as a general 
heuristic rather than as a statistical test when comparing 
empirical power estimates. Furthermore, if the 
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empirical Type I error rate of a test exceeded the 
nominal alpha by two standard errors, its power was 
interpreted cautiously. If its Type I error rate exceeded 
Cochran's limit of .06, its power estimate was not 
reported. 

Results 

Simulation Accuracy 
:When multiplied as in (6), the resulting mean, 

vanance, skewness, and kurtosis of YJ approximate the 
characteristics of the distribution of interest. It should 
be noted, however, that the simulated data are not 
governed by a known mathematical function. Rather, 
the simulated data represent a distribution with the same 
skewness and kurtosis as the desired distribution. Table 
2 demonstrates the adequacy of the Fleishman 
simulation method in this study. Values for the mean 
(µ), variance (cr\ skew (Y1) and kurtosis (y2) for each 
group of n1 were taken across 15,000 replications for n1 
= 10 and 13 and across 30,000 replications for n1 =20. 
For all seven populations, µ, a 1 

, and, y I were 
adequately simulated. Furthermore, kurtosis (y2) was 
reasonably simulated for platy- and mesokurtic 
distributions, especially with n1 =20. For leptokurtic 
distributions, however, the kurtosis of the group was 
drastically underestimated which is most likely due to 
the small sample sizes used. 

True Experiment., 

Type I Error. Table 3 shows the empirical Type 
I error rate for the seven sampled populations under the 
conditions of a True Experiment (i.e., both groups 
drawn from the same population). As would be 
expected the Hartley's Fmax test showed a conservative 
rejection rate with platykurtic populations (e.g., XPLT, 
PLAT, & SPL T) but more importantly was liberal 
when the data were sampled from leptokurtic 
populations. Furthermore, when sample sizes are 
unequal, the suspension of the Fmax test is often 
suggested. However, the Type I error rate remained 
under the nominal alpha of .05 even with unequal 
samples under the meso- and platykurtic conditions. 
All other tests, except for WOB which exhibited minor 
inflation with disparate sample sizes, held the Type I 
error rate under the nominal alpha. 

Power. Tables 4 and 5 show representative results 
from the comparative power analysis of True 
Experiments with different populations and variance 
ratios of VR = 2.0 and 5.0, respectively. For all tests, 
except Fmax, it can be seen that heavy-tailed 
distributions presented a more powerful situation when 
testing variance heterogeneity. For example, the 
empirical power estimates were higher when data were 
sampled from the PLAT population as compared to 
normally distributed data. Also, higher power estimates 
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were yielded when data were sampled from the normal 
distribution as compared to the leptokurtic 
populations(e.g., LEPl and XLEP, see Tables 4 & 5). 

Under the conditions of a normally distributed 
population, the Hartley's Fmax was robust and 
demonstrated superior power, except when there was a 
positive relationship between sample size and group 
variance. In this case, the WOB was most powerful. 
When the sample size/variance correlation was negative 
Fmax and OB were of similar power. 

When data were sampled from the PLAT 
distribution, the OB transformation and Ramsey's 
OBBF were the clear choices in low power situations 
(see Table 4). However, with a variance ratio of VR = 
5.0, the Fmax test was more powerful except when the 
sample size/variance correlation was positive. Thus, in 
cases where the smaller group had the smaller variance, 
WOB was most powerful namely because neither Fmax 
nor the Ramsey's procedures make provisions for such 
situations. In high power situations (VR = 5.0) 
whether the data were meso- or platykurtic, the Fmax 
was more powerful. However, both Fmax and OB are 
very likely to reject the null hypothesis in such cases. 
Thus, if the data sampled are platykurtic, one should 
consider the O'Brien transformation in low power 
situations. In all conditions with meso- and platykurtic 
data and a positive relationship between sample size and 
variance, performing the Welch statistic on O'Brien 
scores was the most powerful procedure. 

When data were sampled from leptokurtic 
populations, the Fmax test was disqualified because it 
inflated the Type I error rate (sec Table 3 ). Of the 
remaining tests, BF and BFou had similar empirical 
power estimates with small (nj • 10) equally sized 
samples. Similarly, as was observed with platykurtic 
distribution, BF00 was more powerful than BF, which 
indicates that the Ramsey conditional procedures can 
provide more power. When sample sizes were unequal 
and positively related to the group variances, the WBF 
was more powerful. This finding seems consistent with 
previous research but has yet to be reported in the 
literature. When a negative relationship between 
sample sizes and group variances existed, OB was more 
powerful regardless of the leptokurtosis of the sampled 
population. Increasing the group Variance Ratio to VR 
= 5.0 magnified these findings. However, under these 
more powerful conditions, the power estimates of BF 
were more competitive and actually exceeded those of 
OB when there was an inverse sample size/variance 
relationship. For example in Table 5, when n l = 20, 

2 2 
O't = 1.0, n2 = 13, and 0'2 = 5.0, the power of BF, 
.5590 was much higher than that of OB, .5110. This 
indicates that OB is only more powerful under negative 
sample size/variance conditions in low power situations 
(i.e., small sample sizes, small differences in variance). 
That is, if samples are rather large and drawn from 
leptokurtic populations, the BF and WBF may be better 
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choices for testing variances. Thus, consistent with 
previous research, when there is a negative correlation 
between sample sizes and variances, the advantage in 
power of OB over BF seems to dissipate with increasing 
(a) sample sizes for both groups, (b) variance for the 
smaller group, and/or (c) kurtosis of the sampled 
population (Olejnik & Algina, 1988; Ramsey, l 994). 

Quasi-Experiments 

Type I Error. When one group was sampled from 
a population with extremely negative kurtosis (XPL T), 
while the second group was sampled from population of 
varying shapes, the Type I error rates for all tests, 
except for Fmax, were unstable and generally above the 
nominal alpha of .05 (see Table 6). However, as the 
extremity of platykurtosis declined, the Type I error 
rates became more stable for most tests (see Table 7). 

When the two groups were sampled from 
populations with similar positive kurtosis, the results 
were predictable from the Type I Error results for True 
Experiments. Table 8 shows that when both groups 
had positive kurtosis most tests, except for F max, held 
the Type I error rate at the nominal alpha of .05. 
However, WOB showed inflations when the larger 
group was sampled from a less leptokurtic distribution. 
These results extended to situations where one group is 
sampled from a slightly leptokurtic distribution (LEP I) 
and the other is sampled from a slightly platykurtic 
distribution (SPL T). 

Although the mixture of LEP I and the normal 
distribution did not affect the Type I error rate of most 
tests (sec Table 8), when the variance of a normally 
distributed sample was tested against the variance of data 
sampled from more leptokurtic populations (e.g., 
LEP3, XLEP), the Type I Error rate of all tests were 
aff ccted when sample sizes were unequal (sec Table 7). 
When the normally distributed data were compared to 
samples from platykurtic populations (PLAT), the Type 
I error rate was controlled for all tests with equal sample 
sizes. When sample sizes were not equal, only Fmax 
and BF were consistently robust to these violatidns to 
the nonnality assumption. When the larger group was 
more platykurtic, OB, WOB, and OBaF tended to inflate 
the Type I error rate (see Table 7). Thus it would 
appear that if data arc sampled from different 
populations with similar kurtosis, keeping group sizes 
approximately equal would be a reasonable step in 
controlling the Type I error rate. 

In some situations where the kurtosis of the sampled 
distributions differed in sign, the Type I error rate of 
Fmax remained under the nominal alpha of .05. 
However, when the disparity in kurtosis increased this 
was not the case. For example, in comparing the 
variance of data sampled fonn the extremely platykurtic 
population (XPL T, Y2 = -1.80) to the variance of 
samples from highly leptokurtic distributions (LEP3, 
y2 = 3.00), no test was robust (see Table 6). Thus, it 
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appears that if the kurtosis of distributions differ in sign 
to the same absolute degree, then the F max test of 
variance is robust. This supposition was confinned in 
an ad-hoc simulation in which the variance of data 
sampled from the XPL T distribution was tested against 
the variance of two leptokurtic distributions with 
population kurtosis values of Y2 = 1.75 and 2.00. 
When comparing these variances under the null 
hypothesis, the Type I error rate of Fmax remained under 
the nominal alpha of .05 while all other tests were not 
robust. 

Power. It should be noted that since Type I error 
rates for these tests of variance were dependent on the 
sample size and population kurtosis configuration, 
power was also dependent on combinations of sample 
size, population kurtosis, and group variance. In 
general, when the group with the larger variance was 
sampled from the heavier-tailed distribution there was 
more power for the tests of variance. When the more 
leptokurtic distribution was more variant, a reduction in 
power was observed. Therefore, results comparing the 
power of these tests are reported for both situations. 

In quasi-experimental situations in which one group 
was sampled from the extremely platykurtic population, 
only Fmax controlled the Type I error. Therefore, only 
Fmax can be validly used for testing variances when 
only one group is sampled from an extremely 
platykurtic population. As this negative kurtosis 
increased in value and became less extreme, more 
comparisons were possible. 

When one group was sampled from the platykurtic 
population (PLAT, Y2 • -1.00) while the other group 
was nonnally distributed, all tests of variance held the 
Type I error rate for equal sample sizes and are 
comparable (sec Table 7). Table 9 shows that under 
these conditions, OB and OBBF were the most 
powerful. With unequal sample sizes, OB, WOB, and 
OBBF, tended to inflate the Type I error rate, and 
therefore, Fmax and BF seem to be the most dependable 
tests. Furthennore, when there was a positive sample 
size/variance correlation, WBF was robust and more 
powerful as long as the disparity in sample sizes was 
not extreme. With an inverse sample size/variance 
relationship, Fmax is robust and adequately powerful. 
However, one may consider that OB, WOB, and OBsF 
only inflated the Type I error rate when the more 
platykurtic group was larger in size. Thus, under 
conditions where the sample sizes are equal or the 
smaller group is more platykurtic, OB and OBBF were 
more powerful except when the larger (more lcptokurtic) 
sample had the larger variance, in which case, WOB was 
more powerful. 

As with the extremely platykurtic population, the 
Type I error rate was controlled by Fmax when the 
platykurtic distribution (PLAT, Y2 = -1.00) was 
compared to a group sampled from a population with an 
equal degree of leptokurtosis (LEP 1, Y2 = 1.00); 
however. no other test was robust (see Table 8). Thus 
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for a test of variance to be valid when one group is 
platykurtic, the other group must be either (a) similar):; 
platykurtic, (b) symmetric, or (c) lept. artic to th-. 
same degree. If the sampled distributio1,~ are similarl.1 
platykurtic, OB or WOB are preferred. If a second group 
is symmetric in shape then overall, F max is adequate, 
however, if the platykurtic distribution has more 
variance, OB, WOB, BF, WBF may be considered. If 
the kurtosis of groups differ in sign to the same degree, 
only Fmax is adequate. 

Table 9 also shows that when normally distributed 
scores were compared to data sampled from a leptokurtic 
distribution with y2 = 1.00, all tests of variance that did 
not violate the Type I error rate were similarly 
powerful. Since OB and BF exhibited similar power, 
one of the conditional procedures may be used to decide 
which test to perform. That is, BFOB or OBBF can 
provide more power (Ramsey, 1994). With a positive 
sample size/variance correlation, the Welch procedures 
(WOB and WBF) showed more power relative to the 
other tests. With a negative sample size/variance 
correlation, OB remained the test of choice. Similar 
findings extend to situations where one group was 
leptokurtic (y2 "" 1.00) and the other was slightly 
platykurtic ('Y2 "" -0.50; see Table 10). However, in 
this situation the Welch procedures were more likely to 
inflate the Type I error rate, and BF should be considered 
when the sample size-variance correlation is positive. 

As was the case when samples were selected from 
the same leptokurtic distribution, sampling from 
different leptokurtic populations demonstrated the 
superiority of the BF procedure and its variants. For 
example, Table 10 shows comparative power estimates 
for the tests of variance when one group was sampled 
from an extremely leptokurtic population (LEP3, 'Y2 • 
3.00) while the other group was less leptokurtic (Y2 • 
1.00). With equal sample sizes, BF and BFoB were 
more powerful. As was the case in True Experiments, 
the high power of BFoB relative to BF indicates the 
effectiveness of testing kurtosis before applying a test 
of variance (Ramsey, 1994 ). When the sample 
size/variance correlation is positive, WBF was clearly 
the most powerful procedure, while OB was more 
powerful with a negative relationship. As with the 
results for True Experiments, the advantage of OB with 
an inverse sample size/variance relationship dissipated 
in high power situations (VR =5.0, results not shown). 

Discussion 

Summary 

The results demonstrated that when data were 
sampled from the same population and randomly 
assigned (i.e., True Experiments) to equally sized 
groups, Hartley's Fmax test was only robust when the 
population kurtosis was near or below zero. This 
confirms the findings of many other studies and 
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establishes the need for analytic alternatives for testing 
variances when data are nonnonnal. When data had a 
negative kurtosis, the O'Brien (1981) transformation 
was generally the best choice, while the Brown & 
Forsythe (1974) transformation was robust and showed 
superior power for testing variances in leptokurtic data. 
Also consistent with previous studies, the O'Brien test 
was generally more powerful when sample sizes and 
variances were negatively correlated, regardless of the 
shape of the distribution (Algina et al., 1989; Olejnik 
& Algina, 1988; Ramsey, 1994). The Welch procedure 
performed on O'Brien scores was more powerful when 
the sample size/variance correlation was positive in 
platykurtic samples (Algina et al., 1989). 

Furthermore, under the conditions of a positive 
sample size/variance correlation in leptokurtic samples, 
the Welch test applied to Brown-Forsythe scores was 
robust and demonstrated superior power. Although this 
finding seems reasonable given previous research, it had 
yet to be empirically confirmed until this study. The 
results also demonstrated that choosing a test of 
variance based on an initial test of kurtosis can increase 
power (Ramsey, 1994); however, the power of these 
conditional tests has been shown to be dependent on the 
power of the test of kurtosis (Beasley & O'Connor, 
1995). Thus, if tests of kurtosis are to be used to 
determine the most powerful and appropriate test of 
variance to perform, one must be concerned with the 
power of both tests. 

This study also presented many new findings about 
the statistical properties of testing variances when 
groups were not sampled from the same population 
(i.e., Quasi-Experiments). When both groups were 
sampled from similarly platykurtic or similarly 
leptokurtic distribu.tions, the results were predictable 
from the results of True Experiments. However, when 
one group was extremely platykurtic, only the Fmax 
tests controlled the Type I error rate. Furthermore, if 
the kurtosis of the groups differed in sign to the same 
absolute degree, the Fmax test was robust. 

When the variance of normally distributed data were 
tested against the variance of data sampled from a 
platykurtic population, the Type I error rate of many 
tests were less stable which in turn affected the validity 
of power estimates and recommendations for use. Most 
notably, when the larger group was normally distributed 
with a larger variance and the smaller, platykurtic group 
was less variable, WOB was robust and more powerful. 
Fmax was preferable when sample sizes were equal or 
negatively correlated to variances. However, when the 
larger group was platykurtic, the Type I error rates of 
OB and WOB were inflated. Thus, when the more 
platykurtic group had a larger variance, the OB exhibited 
more power when the sample sizes were equal or 
inversely related to variance (platykurtic group was 
smaller in size). For a positive sample size/variance 
correlation (i.e., larger platykurtic group had larger 
variance) only BF was robust and adequately powerful. 

----. 
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When the variance of nonnally distributed data was 
tested against the variance of data sampled from 
Ieptokurtic populations, the Type I error rate of Fmax is 
extremely inflated and the BF is preferred when sample 
sizes are equal; however, OB showed similar power. 
When the sample size/variance correlation was positive 
the Welch test applied to BF scores is generally more 
powerful, while OB was more powerful when the 
smaller group had a larger variance despite the 
Ieptokurtic shape of one group. 

Recommendations 

Educational researchers are typically interested in 
estimating change and differences. However, simply 
examining shifts in central location does not fully 
address these issues, all distributional differences should 
be investigated. Thus testing all moments in the 
distribution is recommended when comparing groups 
whether they are intact or randomly constructed. Not 
only does this approach test the major assumptions for 
the ANOV A, but it also investigates the issue of 
whether a treatment condition affected the shape or 
response variability of a distribution of scores in True 
Experiments. In this case, tests such as the 
Kolmogorov-Smimov test may be used to answer the 
question "Did the treatment affect the distribution of 
scores?" If intact groups are compared in central location 
or if differences in scale of the dependent variable are of 
interest, a test of variance is needed. The results 
demonstrate that the shape of the distributions should be 
examined before choosing a test of variance. 

Table 11 shows a summary of these 
recommendations based on the kurtosis of the 
distributions and whether the sample sizes arc equal, 
positively correlated, or negatively correlated with the 
variances. Entries on the diagonal exhibit 

. recommendations for data sampled from the same (i.e., 
True Experiments) or similar populations. Off-diagonal 
entries reveal the recommendations for Quasi­
Experiments and field research. Since the condiuonal 
tests examined are used to select one of these tests of 
variance (i.e., OB and BF), they are not represented. 
Furthennore, conditionally choosing the most powerful 
test based on sample characteristics may capitalize on 
chance differences in the data and inflate the Type I error 
rate. 

In evaluating the recommendations in Table 11, one 
should consider that educational data tends to be 
platykurtic in nature (Micceri, 1989). It should also be 
noted that the recommendations for situations where the 
groups are either both leptokurtic or both platykurtic 
extend to most values of kurtosis. However, one 
should be aware that for situations in which one group 
is lcptokurtic and the other is platykurtic the 
recommendations in Table 11 apply only if the kurtosis 
is of similar absolute value. Thus it is suggested that 
all relevant tests of variance be perfonned and agreement 
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among the results assessed. If all tests reject the null 
hypothesis under conditions in which the Type I error 
rate is controlled, then the statistical significance is 
likely to represent a valid result. If there is 
disagreement among tests, then the consistency of 
disagreements with empirical findings should be 
assessed. For example, if equally sized, platykurtic 
samples are tested for variance heterogeneity and only 
the O'Brien test rejects the null hypothesis, there is 
indication of statistical significance because the O'Brien 
test is robust and most powerful in this situation (see 
Table 11). 

Although this investigation was limited to the two­
sample tests, it is believed that these results extend to 
most multi-group situations. For True Experiments, 
other studies have shown this to be the case (e.g., 
Miller, 1968). For Quasi-Experiment 
recommendations, one should consider the several 
factors. If the kurtosis values for all groups indicate 
similar positive or similar negative kurtosis, then the 
recommendations for leptokurtic and platykurtic groups 
in Table 11 should be valid. Also if about half of the 
groups are mesokurtic while the other half are either 
lepto- or platykurtic, then Table 11 can be used. If the 
groups are mostly leptokurtic, using the leptokurtic 
recommendations is advised; however, if the groups are 
mostly platykurtic, recommendations are more difficult 
to make. If the groups have drastically different shapes, 
the results indicated that F max was the preferred test in 
the two group situation, but one must consider that the 
Fmax only uses the data of two groups. Thus, if 
multiple groups are present and the groups with the 
largest and smallest variances (the values used for Fmax) 
have kurtosis estimates of opposite signs, Fmax may be 
allowable as long as the kurtosis values have 
approximately the same absolute value. 
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Table 1. Summary of conditions analyzed for Sample Size and Population configurations 

True Experiment Quasi-Experiment 

Type I Power Type I Power 

(n1,n2) Error 
2 2 

(cr1 < cr2) Error 
2 2 

(cr1 < cr2) 

(10, 10) * * * * 
(13, 13) * * * * 
(20, 20) * * * * 
(10, 20) * + * + 
(13, 20) * + * + 
(20, 10) u * 
(20, 13) u * 

Note. * indicates the analysis was completed. U indicates the analysis was 
unnecessary and not completed. - indicates a negative relationship between 
sample size and variance. + indicates a positive relationship between sample size 
and variance. • 

Table 2. Average population parameters across Type I error simulations. 

Population Parameter 

Population µ 0'2 Yt Y2 

1. XPLT E(Y2) • -1.80 
n • 10 +0.003937 1.009481 -0.001320 -0.964967 
n • 13 +0.003508 1.011025 -0.006166 -1.205637 
n•20 -0.003517 1.006298 -0.010828 -1.447347 

2. PLAT E(Y2) • -1.00 
n• 10 +0.005843 1.007704 -0.012320 -0.421073 
n • 13 +0.005508 1.009243 -0.008166 -0.541785 
n • 20 +0.013517 1.011201 -0.030828 -0.686890 

3. SPLT E(Y2) = -0.50 
n • 10 +0.000090 1.017263 +0.039203 -0.172836 
n = 13 +0.001756 1.015814 +0.046087 -0.233373 
n = 20 -0.004001 1.012889 +0.058859 -0.302452 

4. NORM E(y2) = 0.00 
n = 10 -0.002803 1.006276 -0.027654 -0.003053 
n = 13 -0.001429 1.001976 -0.034611 -0.009850 
n =20 +0.000057 1.003101 -0.028943 -0.010843 

5. LEPl E(Y2) = +1.00 
n = 10 -0.000713 1.024512 +0.061602 +0.261224 
n = 13 +0.058517 1.022624 +0.065461 +0.339038 
n = 20 +0.023376 1.027412 +0.052777 +0.493708 

6. LEPJ E(Y2) = +3.00 
n = 10 +0.011568 1.028524 +0.032652 +0.553391 
n = 13 +0.008883 1.012206 +0.035397 +0.765899 
n = 20 +0.005923 1.020455 +0.213038 +1.218371 

7. XLEP E(y2) = +3.75 
n = 10 +0.010142 1.013801 +0.040116 +0.662791 
n = 13 +0.005774 1.028358 +0.017173 +0.904860 
n = 20 +0.004539 0.998350 +0.017142 +l.357478 

•• Power 
2 2 

(cr1 > cr2) 

* 
* 
* 

+ 
+ 
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Table 3. Empirical Type I Error Rate for seven procedures in True Experiments with no differences in central 
location. 

Pop. n.,n 2 Fmax OB BF WOB WBF OBBF BFoa 

I. XPLT (y2 = -1.80) 
10, 10 .0006 .0248 .0338 .0242 .0292 .0248 .0284 
13, 13 .0018 .0272 ,0058 .0262 .0054 .0272 .0272 
20, 20 .0006 .0262 .0186 .0256 .0172 .0262 .0272 
10, 20 .0030 .0372 .0366 .0288 .0316 .0372 .0380 
13, 20 .0026 .0296 .0232 .0288 .0114 .0294 .0308 

2. PLAT (y2 = -1.00) 
10, 10 .0152 ,0438 .0344 .0380 .0324 .0444 .0392 
13, 13 .0142 ,0464 .0256 .0430 .0248 ,0468 .0400 
20,20 .0082 .0474 .0386 ,0456 .0378 .0476 ,0444 
10, 20 .0124 .0494 .0384 ,0580* .0436 .0498 ,0474 
13, 20 .0110 ,0464 ,0326 ,0510 .0316 ,0464 ,0424 

3, SPLT (y2 = -0.50) 
10, 10 .0354 .0396 .0330 ,0320 .0312 .0400 ,0362 
13, 13 .0340 ,0416 ,0306 ,0366 .0294 .0422 ,0346 
20,20 .0306 ,0486 .0436 .0458 .0432 .0498 ,0456 
10, 20 ,0368 ,0498 ,0458 ,0604* .0526 ,0518 ,0494 
13, 20 ,0332 ,0458 ,0382 .0472 .0414 ,0468 ,0406 

4. NORM (y2 = 0.00) 
10, 10 ,0484 ,0336 .0402 .0258 .0370 .0352 .0414 
13, 13 .0528 ,0384 ,0312 ,0320 .0274 .0402 ,0346 
20, 20 ,0460 ,0416 .0366 ,0392 ,0358 .0428 ,0368 
10, 20 .0462 ,0364 .0392 ,0530 .0492 ,0380 .0400 
13, 20 .0478 ,0422 .0344 .0442 .0356 .0440 ,0380 

5, LEP1 (y2 • 1.00) 
10, 10 .0648• ,0352 .0404 ,0260 .0368 .0366 .0412 
13, 13 .0648• ,0362 .0324 .0316 .0298 .0376 ,0358 
20, 20 .0678* ,0380 .0398 .0352 .0382 .0412 .0388 
10, 20 .0624• ,0368 .0366 .0460 .0456 .0388 .0370 
13, 20 ,0664• .0408 ,0328 .0396 .0348 .0416 ,0362 

6. LEPJ (y2 • 3.00) 
10, 10 .1466• .0278 .0328 .0188 .0286 .0294 ,0338 
13, 13 .1538• .0332 .0346 .0278 .0316 .0364 ,0360 
20, 20 .1766• .0292 .0364 .0256 .0348 .0362 ,0368 
10, 20 .1476• ,0366 ,0358 ,0438 .0494 .0420 .0368 
13, 20 .1567• ,0316 .0384 ,0302 .0396 .0368 ,0392 

7. XLEP (y2 = 3.75) 
10, 10 .1400* .0240 .0340 .0168 .0278 .0266 .0348 
13, 13 .1496* .0294 .0338 ,0234 .0298 .0326 .0346 
20, 20 .1752* ,0346 0412 .0300 .0380 .0438 ,0418 
10, 20 .1502* .0382 .0372 .0448 .0506 .0416 .0390 
13, 20 . 1662* ,0340 .0370 .0344 .0412 .0388 .0384 

Note. * indicates the Type I error rate exceeded .0562 and is 2 standard errors above the nominal alpha of a= .05. 
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Table 4. Empirical Power for seven procedures in True Experiments with no differences in central location and cr~ 

2 = 1.0 and cr2 = 2.0. 

Pop. npn 2 Fmax OB BF WOB WBF OBBF BFoa 

I. XPLT (y2 = -1.80) 
IO, IO .0228 .4566 .1842 .4424 .1742 .4558 .4502 
13, 13 .0336 .6310 .0444 .6168 .0420 .6296 .6196 
20, 20 .0856 .8662 .2306 .8608 .2278 .8662 .8630 

Pos. 10,20 .0282 .6502 .2004 .7602 .2024 .6494 .6470 
Pos. 13, 20 .0392 .7640 .2044 .8330 .1952 .7642 .7620 
Neg. 20, IO .0546 .7038 .1846 .5224 .2192 .7036 .6964 
Neg. 20, 13 .0686 .7544 .0600 .6422 .0302 .7542 .7458 

2. PLAT (y2 = -1.00) 
IO, IO .0984 .1412 .1116 .1188 .IOSO .1424 .1262 
13, 13 .1364 .2206 .1348 .2020 .1300 .2204 .1648 
20, 20 .2680 .4086 .2950 .3950 .2910 .4084 .3392 

Pos. IO, 20 .1230 .1600 .1716 .3420* .2480 .1620 .1804 
Pos. 13, 20 .1530 .2424 .2144 ,3612 .2668 .2442 .2384 
Neg. 20, IO .1898 .3176 .1740 .1184* ,0918 .3176 .2142 
Neg. 20, 13 .2150 .3390 .1912 .1952 .1264 .3392 .2390 

4. NORM (y2 = 0.00) 
IO, IO .1508 .0994 .1070 .0782 ,0978 .1030 .1130 
13, 13 .2022 .1454 .1298 .1262 .1226 .1484 .1368 
20,20 .2850 .2348 .2182 .2190 .2122 .2412 .2250 

Pos. 10, 20 .1620 .0750 .1230 .2502 .2172 .0806 .1244 
Pos. 13, 20 .2116 .1330 .1732 .2416 .2282 .1406 .1758 
Neg. 20, 10 .2530 .2452 .1616 ,0650 .0766 .2454 .1734 
Neg. 20, 13 .2572 .2382 .1654 .1072 .0952 .2396 .1752 

5. LEP 1 (y1 • 1.00) 
10, 10 .0686 .0882 .0522 .0782 .0728 .0904 
13, 13 .1040 .1114 .0870 .1044 .1118 .1148 
20, 20 .1610 .1864 .1470 .1812 .1850 .1888 

Pos. 10, 20 .0462 .1016 .1934 .2158 .0562 .1002 
Pos. 13, 20 .0766 .1372 .1710 .1976 ,0952 .1376 
Neg. 20, 10 .1912 .1528 .0400 .0630 .1982 .1580 
Neg. 20, 13 .1798 .1544 .0668 .0834 .1904 .1576 

7. XLEP (y2 = 3.75) 
10, 10 .0602 .0830 .0444 .0724 .0672 .0848 
13, 13 .0830 .1010 ,0654 .0900 .0910 .1020 
20,20 .1438 .1776 .1322 .1712 .1764 .1792 

Pos. 10, 20 .0302 ,0916 .1680 .2020 .0438 .0910 
Pos. 13, 20 .0746 .1376 .1568 .2034 .0984 .1384 
Neg. 20, 10 .1620 .1336 .0280 .0492 .1688 .1366 
Neg. 20, 13 .1520 .1386 ,0536 .0786 .1668 .1420 

Note. * indicates that the Type I error rate exceeded the nominal alpha by 2 standard errors and should be interpreted 
cautiously. Blank entries indicate that the Type I error rate exceeded Cochran's limit of .06. Pos. indicates a 
positive correlation between sample size and variance; Neg. indicates an inverse sample size-variance relationship. 
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Table 5. Empirical Power for seven procedures in True Experiments with no differences in central location and cr~ 

2 = 1.0 and cr2 = 5.0. 

Pop. n1,n2 Fmax OB BF WOB WBF OBBF BFoa 

I. XPLT (y2 = -1.80) 
10, IO .6612 .5450 .4874 .4762 .4532 .5476 .5134 
13, 13 .8402 .7594 .6582 .7186 .6332 .7600 .6974 
20, 20 .9724 .9590 .9104 .9526 .9062 .9592 .9406 

Pos. 10, 20 .7794 .6856 .7010 .9348 .8618 .6878 .7170 
Pos. 13, 20 .9040 .8550 .8138 .9452 .8858 .8554 .8352 
Neg. 20, IO .8782 .8684 .7238 .4664 .4442 .8688 .7788 
Neg. 20, 13 .9278 .9158 .8086 .7322 .6380 .9160 .8544 

2. PLAT (y2 = -1.00) 
10, 10 .6612 .5450 .4874 .4762 .4532 .5476 .5134 
13, 13 .8402 .7594 .6582 .7186 .6332 .7600 .6974 
20, 20 .9724 .9590 .9104 .9526 .9062 .9592 .9406 

Pos. 10, 20 .7794 .6856 .7010 .9348* .8618 .6878 .7170 
Pos. 13, 20 ,9040 ,8550 .8138 .9452 .8858 .8554 .8352 
Neg. 20, 10 .8782 ,8684 .7238 .4664* .4442 ,8688 .7788 
Neg. 20, 13 .9278 ,9158 ,8086 .7322 .6380 .9160 ,8544 

4. NORM (y2 • 0.00) 
10, 10 .6396 .3616 .4136 .2876 .3772 ,3698 .4200 
13, 13 .7690 ,5528 .5646 .4924 .5392 .5630 .5726 
20,20 .9350 .8428 .8330 .8198 .8266 .8594 .8396 

Pos. 10, 20 .7264 ,3800 .5680 .7796 .7604 ,3964 ,5654 
Pos. 13, 20 ,8388 ,5860 ,6978 .7894 .8008 ,6052 .6992 
Neg. 20, 10 .8148 ,7458 .6470 .2860 .3664 .7538 .6584 
Neg. 20, 13 .8648 .7880 .7084 .4954 .5342 .7986 .7224 

5. LEP 1 (y2 • 1.00) 
10, 10 .2600 .3432 .1984 .3086 .2762 .3446 
13, 13 .4088 .4924 . .3574 .4640 .4446 .4944 
20,20 .6656 .7536 .6384 .7438 .7454 .1550 

Pos. 10, 20 .2186 .4674 .6032 .6792 .2690 .4628 
Pos. 13, 20 .3838 .5948 .6250 .7142 .4524 .5934 
Neg. 20, 10 .6160 .5600 .1838 .2890 ,6372 .5650 
Neg. 20, 13 .6400 .6362 .3452 .4530 ,6852 .6406 

6. LEPJ (y2 = 3.00) 
10, 10 .2062 .2990 1590 .2636 .2268 .2986 
13, 13 .2948 .4090 .2490 .3866 .3502 .4094 
20, 20 .4962 .6662 .4616 .6532 .6556 .6676 

Pos. 10, 20 .1400 .3666 .4794 .6086 .2082 .3598 
Pos. 13, 20 .2610 .4902 .4750 .6274 .3678 .4878 
Neg. 20, 10 .5262 .5166 .1256 .2366 .5696 .5184 
Neg. 20, 13 .5110 .5590 .2358 .3732 .5888 .5606 

Note. * indicates that the Type I error rate exceeded the nominal alpha by 2 standard errors and should be interpreted 
cautiously. Blank entries indicate that the Type I error rate exceeded Cochran's limit of .06. Pos. indicates a 
positive correlation between sample size and variance; Neg. indicates an inverse sample size-variance relationship. 

- . 
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Tahle 6. Empirical Type I Error Rates for seven procedures in Quasi-Experiments with no differences in central 
location and Group One is platykurtic y2 = -1.80. 

Group2 
Pop. ni,n 2 Fmax OB BF WOB WBF OBBF BFos 

2. PLAT (y2 = -1.00) 
IO, IO .0092 .0620* .0484 .0584* .0460 .0640* .0632* 
13, 13 .0068 .0642* .0114 .0616* .OIIO .0654* .0634* 
20,20 .0022 .0542 .0476 .0524 .0460 .0550 .0550 
IO, 20 .0048 .0282 .0408 .0402 .0658* .0348 .0364 
13, 20 .0044 .0362 .0160 .0454 .0126 .0388 .0408 
20, IO .0062 .1178* .0532 .0808* .0460 .1180* .1178* 
20, 13 .0054 .0840* .0494 .0600* .0418 .0842* .0844* 

3. SPLT (y2 = -0.50) 
IO, IO .0148 .0734* .0600* .0694* .0568* .0752* .0738* 
13, 13 .0116 .0750* .0160 .0742* .0150 .0766* .0742* 
20,20 .0084 .0674* .0582* .0656* .0566* .0678* .0680* 
IO, 20 .0082 .0358 .0458 .0462 .0682* .0420 .0452 
13, 20 .0068 .0468 .0162 .0560 .0122 .0492 .0492 
20, 10 .0096 .1238* .0660* .0936* .0580* .1240* .1230* 
20, 13 .0108 .0992* .0560 .0782* .0500 .0994* .0990* 

4. NORM (y2 = 0.00) 
IO, IO .0216 .0860* .0668* .0832* .0628* .0880* .0858* 
13, 13 .0170 .0856* .0178 .0830* .0156 .0874* ,0826* 
20, 20 .0136 .0748* .0676* .0738* .0644* .0756* .0786 
10, 20 .0090 .0438 .0464 .0560 .0752* .0480 .0516 
13, 20 .0122 .0606* .0202 .0686* .0132 .0636* .0610* 
20, 10 .0234 .1530* .0814* .1168* .0780* .1528* . 1508* 
20, 13 .0156 .1238* .0752* ,0988* .0652* .1244* .1266* 

5. LEPl (y2 • 1.00) 
10, 10 .0324 .1090* .0712* .1052* .0674* .1106* .1054* 
13, 13 .0262 .1038* .0248 .1022* .0230 .1052* .0992* 
20,20 .0252 .1036* .0872* .1022* .0836* .1040* .1074* 
IO, 20 .0160 .0614* .0548 .0706* .0838* .0642* .0652* 
13, 20 .0224 .0818* .0252 .0886* .0144 .0846* .0790* 
20, IO .0460 .1930* .1034* .1732* .1068* .1934* .1934* 
20, 13 .0354 .1624* .1078* .1440* .1018* .1630* .1626* 

6. LEPJ (y2 = 3.00) 
IO, IO .0538 . 1392* .0934* .1354* .0884* .1400* .1366* 
13, 13 .0564* .1470* .0398 .1454*• .0366 .1470* .1380* 
20, 20 .0608* .1316* .1172* .1300* .1140* .1316* .1438* 
10, 20 .0328 .0844* .0680* .0888* .1012* .0856* .0856* 
13, 20 .0446 .0990* .0404 .1036* .0234 .1006* .0942* 

20, IO .0820* .2430* .1338* .2182* .1518* .2426* .2398* 

20, 13 .0804* .2188* .1418* .1890* .1496* .2190* .2178* 

Note. * indicates the Type I error rate exceeded .0562 and is 2 standard errors above the nominal alpha of a,= .05. 
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Table 7. Empirkal Type I Error Rates for seven procedures in Quasi-Experiments with no differences in central 
location and Group One is normally distributed y2 = 0. 

Group2 __ 
Pop. n1.N2 Fmax OB BF WOB WBF OBBF BFoa 

2. PLAT (y2 = -1.00) 
10, IO .0362 .0458 .0432 .0420 .0404 .0470 .0484 
13, 13 .0280 .0472 .0340 .0434 .0328 .0478 .0412 
20, 20 .0280 .0532 .0500 .0516 .0492 .0534 .0506 
10, 20 ,0304 .0588* .0536 .0860* .0668* .0606* .0588* 
13, 20 .0304 .0566* .0484 .0654* .0536 .0578* .0534 
20, 10 .0304 .0516 .0390 .0468 .0404 .0532 .0456 
20, 13 .0228 .0422 .0328 .0360 .0282 .0430 .0400 

3. SPL T (y2 = -0.50) 
10, 10 .0446 ,0400 .0396 .0312 .0370 .0416 .0412 
13, 13 .0408 .0444 .0312 .0368 ,0296 .0454 .0372 
20, 20 ,0428 .0482 .0414 ,0444 .0412 .0498 .0430 
10, 20 ,0442 .0404 ,0404 ,0670* .0592 ,0416 .0406 
13, 20 ,0422 .0474 ,0424 ,0522 ,0460 .0490 .0442 
20, 10 ,0424 .0394 ,0354 ,0454 .0424 ,0410 ,0380 
20, 13 ,0370 .0442 ,0310 ,0402 ,0338 .0454 ,0356 

6. LEPJ (y, • 3.00) 
10, 10 ,1048• ,0478 ,0500 ,0374 ,0440 .0496 .0510 
13, 13 .1060• .0460 ,0442 ,0370 .0404 ,0494 .0464 
20, 20 .1188• .0536 .0562• ,0488 .0542 ,0598• .0572• 
10,20 ,0960* ,0586* .0470 .0292 .0366 .0602* .0492 
13, 20 .1018* .0564* .0454 ,0340 ,0364 .0584* .0482 
20, 10 .1194* .0434 .0614• .0990* ,0926• ,0474 .0624* 
20, 13 .1184* .0524 .0638* ,0730* .0746* .0568* ,0640* 

7. XLEP (y, • 3.75) 
10, 10 .1076* .0422 .0494 ,0326 .0458 .0446 .0500 
13, 13 .1174• .0480 .0474 ,0406 .0452 .0524 ,0510 
20, 20 .1228* .0564* .0658* ,0526 .0648* .0660• .0650* 
10, 20 ,1056* ,0584* .0468 ,0280 ,0336 ,0614* .0484 
13, 20 .1166* .0554 .0510 .0344 .0384 .0606* .0524 
20, 10 .1272* .0496 .0680* , 1040* ,0996• .OSSO ,0686* 
20, 13 .1376* .0548 .0676* ,0802* .0814• .0594* .0672* 

Note. * indicates the Type I error mte exceeded .0562 and is 2 standard errors above the nominal alpha of a= .05 
test. 
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Table 8. Empirical Type I Error Rates for seven procedures in Quasi-Experiments with no differences in central 
location and Group One is leptokurtic y2 = 1.00. 

Group2 
Pop. n1,n2 Fmax OB BF WOB WBF OBBF BFoB 

2. PLAT (y2 = -1.00) 
10, IO .0406 .0524 .0434 .0436 .0410 .0530 .0492 
13, 13 .0444 .0622* .0460 .0566* .0436 .0632* .0546 
20, 20 .0448 .0684* .0616* .0656* .0606* .0696* .0656* 
IO, 20 .0538 .0730* .0720* .I 134* .0980* .0756* .0740* 
13, 20 .0478 .0752* .0744* .0954* .0826* .0768* .0756* 
20, IO .0268 .0520 .0362 .0400 .0336 .0520 .0438 
20, 13 .0350 .0548 .0352 .0402 .0322 .0550 .0446 

3. SPL T (y2 = -0.50) 
IO, IO .0602* .0436 .0412 .0350 .0368 .0448 .0442 
13, 13 .0548 .0472 .0350 .0394 .0316 .0474 .0404 
20,20 .0528 .0510 .0464 .0460 .0458 .0534 .0480 
IO, 20 .0622* .0484 .0556 .0922* .0798* .0498 .0576* 
13, 20 .0586* .0468 .0494 .0630* .0562~ .0492 .0502 
20, 10 .0458 .0546 .0380 .0386 .0410 .0558 .0404 
20, 13 .0436 .0452 .0358 .0354 .0288 .0474 .0394 

4. NORM (y2 • 0.00) 
10, 10 .0102• .0322 .0378 .0242 .0348 .0336 .0396 
13, 13 .0102• ,0370 .0302 .0302 .0272 ,0382 .0342 
20,20 ,0772• .0470 .0460 • .0424 .0444 .0516 .0492 
10, 20 ,0734• ,0444 .0444 .0714• .0616• .0466 .0452 
13, 20 .0100• .0400 ,0432 .0514 .0496 .0428 .0444 
20, lO ,0628• ,0436 ,0378 .0402 .0420 .0464 .0402 
20, 13 ,0670• .0400 .0342 ,0346 .0306 .0422 .0360 

6. LEPJ (y 2 • 3.00) 
10, IO ,0858• - ,0326 .0370 .0264 .0328 .0336 .0380 
13, 13 ,0812• .0366 .0354 .0316 .0320 .0384 .0382 
20, 20 ,0982• ,0472 .0472 .0426 .0460 .0512 .0480 
10, 20 .0858• ,0462 .0392 .0350 .0408 .0496 .0402 
13, 20 .0936• ,0434 .0390 .0304 .0342 .0480 .0404 
20, 10 .1134• ,0384 .0476 .0682• .0722* .0424 .0478 
20, 13 .1248* .0380 .0448 • .0522 .0540 .0428 .0456 

7. XLEP (y2 = 3.75) 
10, 10 .1012• ,0352 .0382 .0254 .0338 .0380 .0396 
13, 13 .1078* .0374 .0360 .0296 .0326 .0400 .0360 
20,20 .1200* ,0402 .0492 .0360 .0472 .0500 .0494 
10, 20 .0996* .0492 .0382 .0282 .0342 .0530 .0040 
13, 20 .111 0* .0464 .0438 .0350 .0338 .0526 .0444 
20, 10 .1264* .0408 .0514 .0704* .0734* .0452 .0534 
20, 13 .1210* .0382 .0496 .0568* .0584* .0432 .0502 

Note. * indicates the Type I error rate exceed .0562 and is 2 standard errors above the nominal alpha of a.= .05 test. 
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Table 9. Empirical Power Estimates for seven procedures in Quasi-Experiments with no differences in central 
location and Group One is nonnally distributed y, = 0.00. 

Group Two 

PLAT 'Y, = -1.00 
2 

0"1 = 1.0 
2 

0"2 = 2.0 

Pop. n1,n2 Fmax OB BF WOB WBF OBBF BFoa 

10, 10 .1540 .1724 .1550 .1496 .1462 .1748 .1682 
13, 13 .1868 .2386 .1862 .2234 .1784 .2418 .2046 
20, 20 .2956 .3974 .3526 .3888 .3488 .4032 .3672 

Pos. 10, 20 .1684 .2120* .2358 .2380* 
Pos. 13, 20 .2064 .2746* .2758 .3274 .2812* .2842 
Neg. 20, 10 .2104 .2906 .2048 .1242 .1248 .2940 .2198 
Neg. 20, 13 .2276 .3222 .2246 .2038 .1542 .3256 .2456 

Group Two PLAT 'Y2 = -1.00 
2 

crl =2.0 
2 

cr2 = 1.0 

10, 10 ,1292 .0710 ,0722 ,0540 ,0652 ,0722 .0760 
13, 13 .1810 ,1150 ,0856 ,0964 ,0806 .1154 .0960 
20,20 ,2998 .2264 ,1748 ,2086 ,1706 .2268 ,1978 

Neg. 10, 20 .2406 ,2520* ,1386 .1762* 
Neg. 13, 20 .2686 .2396* ,1340 .0718 .2402* .1700 
Pos. 20, 10 .1268 .0474 ,0930 .2142 .1762 .0512 ,0908 
Pos. 20, 10 ,1890 ,0976 .1232 .2182 .1770 .0992 .1262 

Group Two LEPl Yz • 1.00 
2 

cr 1 • 1.0 
2 

0'2 • 2.0 

10, 10 .0640 ,0798 .0458 ,0722 ,0670 ,0814 
13, 13 ,0940 .0890 .0772 .0798 .0968 .0924 
20, 20 .1690 .1690 .1556 .1640 .1844 .1736 

Pos. 10, 20 .0404 ,0878 .1816 ,1820 .0486 .0882 
Pos. 13,20 ,0692 .1130 .1618 .1670 .0794 .1130 
Neg. 20, 10 ,1852 .1238 .1884 .1314 
Neg. 20, 13 ,1676 .1224 ,0608 .0682 .1732 ,1306 

Group Two LEP1 Yz • 1.00 
2 

cr 1 • 2.0 
2 

cr2 • 1.0 

10, 10 .1038 .1148 .0826 .1054 .1088 .1178 
13, 13 .1460 .1420 .1218 .1346 .1514 .1472 
20, 20 .2526 .2646 .2386 .2598 .2690 .2658 

Neg. 10, 20 .2320 .1758 .0608 .0818 .2352 .1822 
Neg. 13, 20 .2348 .1920 .1058 .1118 .2404 .1984 
Pos. 20, 10 .0880 .1654 .0990 .1622 
Pos. 20, 13 .1412 .1998 .2518 .2632 .1574 .2010 

Note. * indicates that the Type I error rate exceeded the nominal alpha by 2 standard errors and should be interpreted 
cautiously. Blank entries indicate that the Type I error rate exceeded Cochran's limit of .06. Pos. indicates a 
positive correlation between sample size and variance; Neg. indicates an inverse sample size-variance relationship. 
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.·Table JO. Empirical Power Estimates for seven procedures in Quasi Experiments with no differences in central 
location and Group One has positive kurtosis y2 = 1.00. 

Group Two SPL T y2 = -0.50 
2 

<r1 = 1.0 
2 

<r2 = 2.0 

Pop. n1,n2 Fmax OB BF WOB WBF OBap BFo8 

10, 10 .1390 .1362 .1102 .1272 .1442 .1418 
13, 13 .2428 .1954 .1782 .1722 .1682 .2012 .1854 
20, 20 .3410 .3082 .3042 .2960 .3006 .3218 .3084 

Pos. IO, 20 .1278 .1866 .1382 .1864* 
Pos. 13, 20 .2652* .1878 .2338 .2974* .1994 .2330 
Neg. 20, 10 .2680 .2582 .2040 .0844 .1114 .2622 .2086 
Neg. 20, 13 .2858 .2706 .2174 .1454 .1462 .2778 .2244 

Group Two SPLT Y2 = -0.50 
2 

<r1 = 2.0 
2 

<r2 = 1.0 

IO, 10 .0588 .0674 .0452 .0602 .0610 .0700 
13, 13 .1740 .0796 .0748 .0638 .0674 .0814 .0782 
20,20 .2730 .1408 .1286 .1298 .1244 .1486 .1362 

Neg. 10, 20 .2242 .1832 .1098 ,0350 .0424 .1854 .1218 
Neg. 13, 20 .2552 .1682 . I 150 .0614 ,0574 .1718 .1258 
Pos. 20, 10 .0318 ,0698 .0364 .0690* 
Pos. 20, 13 .2058• ,0694 ,1032 .1510• ,0768 .1044 

Group Two LEPJ y2 • 3.00 
2 er I • 1.0 

2 
<r2 • 2.0 

10, 10 .0460 ,0630 .0344 ,0530 .0496 ,0650 
13, 13 ,0690 ,0782 ,0558 ,0704 .0768 ,0812 
20, 20 .1048 .1238 .0978 .1196 .1278 .1236 

Pos. 10, 20 .0272 ,0722 .1450 .1654 .0362 .0716 
Pos. 13, 20 .0444 ,0832 .1174 .1386 .0576 .0836 
Neg. 20, 10 .1388 ,1052 .1460 .1086 
Neg. 20, 13 .1272 .1062 .0436 .0530 .1386 .1096 

Group Two LEPJ y2 = 3.00 
2 

<r1 = 2.0 
2 

<r2 = 1.0 

10, 10 .0932 .1174 ,0712 .1002 .0982 .1200 
13, 13 .1112 .1354 .0920 .1234 .1232 .1374 
20, 20 .1898 .2402 .1770 .2346 .2288 .2412 

Pos. 20, 10 .0732 .1490 .2386 .2654 .0876 .1476 
Pos. 20, 13 .1020 .1812 .2104 .2450 .1272 .1796 
Neg. 10, 20 .1962 .1716 .2102 .1746 
Neg. 13, 20 .2010 .1876 .0796 .1112 .2150 .1902 

Note. * indicates that the Type I error rate exceeded the nominal alpha by 2 standard errors and should be interpreted 
cautiously. Blank entries indicate that the Type I error rate exceeded Cochran's limit of .06. Pos. indicates a 
positive correlation between sample size and variance; Neg. indicates an inverse sample size-variance relationship. 
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Table 11. Recommendations based on Variance Ratios and whether the sample sizes are equal, positively 
correlated, or negatively correlated with the variances for both True and Quasi-Experiments. 

Smaller Larger Variance 
Variance PLAT SPLT NORM LEPT 

PLAT 
Equal OB OB,Fmax Fmax Fmax 

Positive WOB WOB WOB Fmax 

Negative OB OB Fmax Fmax 

SPLT 
Equal OB,Fmax OB, Fmax Fmax, OB OB,BF 
Positive WOB WOB WOB BF 
Negative OB OB,Fmax Fmax, OB OB 

NORM 
Equal OB Fmax, OB Fmax BF,OB 
Positive BF WOB WOB WBF,WOB 
Negative OB Fmax, OB Fmax OB 
LEPT 
Equal Fmax OB,BF BF,OB BF 
Positive Fmax BF BF, WBF WBF 
Negative Fmax OB OB OB 

Note. Entries on the diagonal represent recommendations 
for True Experiments, while off-diagonal entries are for 
Quasi-Experiments. PLAT • platykurtic; SPL T • slightly 
platykurtic; NORM• Nonna!; LEPT • leptokurtic; OB• O'Brien 
BF• Brown-Forsythe; W refers to perfonning Welch procedure 



MINUTES 
OF THE 

ANNUAL MEETING 
OF THE 

MULTIPLE LINEAR REGRESSION: GENERAL LINEAR MODEL SIG 
(New Orleans, LA) 

APRIL 19, 1995 

Professor Adria Karle-Weiss (Murry State University), SIG Chair, opened the business meeting. 
The first order of business was the call for nominations of Chair-elect, three replacement 
Executive Board/Editorial Board members, and Executive Secretary. Executive Secretary, Steve 
Spaner (University of Missouri - St. Louis), explained that the MLRSIG election procedures call 
for the election to be held by mail ballot and the business meeting to be a nominating meeting 
only. It was moved and passed by the members attending to suspend the election by mail ballot 
rule and to hold the election at the business meeting. Nominations for chair-elect were Professors 
Randy Schumacher (University of North Texas) and Mark Beasley (St. John's University). 
Professor Randy Schumacher and was elected Chair-elect for 1996. His term of office will begin 
following the 1996 business meeting. The nominated Executive Board/Editorial Board 
replacements were Professors Carolyn Benz (University of Dayton}, Mark Beasley , and Jeff 
Kromrey (University of South Florida}. No additional nominations were offered so all were 
elected by acclamation. Professor Carolyn Benz will complete Professor John Pohlmann's 
(Southern IUinois University- Carbondale) term (I 994 - 98). Pohlmann has taken on the MLRV 
Editorship thereby sitting on the Board by virtue of office. Professors Mark Beasley and Jeff 
Kromrey replace Board members Carl Huberty (University of Georgia) and Randy Schumacher 
and assume the four year terms from 1995 - 99. Finally, Steve Spaner was nominated for 
Executive Secretary for another three-year term ( 1995 - 98}, No additional nominations were 
offered so Spaner was elected by acclamation. 

Chair Karle-Weiss called upon Steve Spaner to give the treasurers report and the membership 
update. Spaner reported that the SIG treasury was $1995.56 on 1-1-94, the beginning of the new 
membership year, and $1917.93 just before the business meeting (3-31-95). Spaner reported that 
the current paid membership was down from 1994. Spaner attributed the decline to the reduced 
number of issues of and irregular schedule for the Multiple Linear Regression Viewpoints, the 
MLRSIG's journal. 

(Secretary's note: 1995 membership payment was due at the 
beginning of the 1995 calendar year; if your mailing label has 94 
or earlier at the end of the first line, you are unpaid for the past 
1995 MLRSIG membership year as well as now owing for the 
1996 MLR:GLM/SIG membership year) 



Discussion ensued following the Executive Secretary's report regarding the future of the MLRSIG 
and the MLRV. It was affirmed that the SIG wanted to continue and wanted to produce the 
journal. It was suggested, once again, that persons making presentations under the MLRSIG 
sponsorship at the AERA conference should at least be invited to submit their papers to the 
1v1LRV. 

It was also pointed out that in the 1970s and 1980s the SIG sponsored presessions on MLR (Joe 
Ward, Earl Jennings to name a few) and on Path Analysis (Lee Wolfle, John Williams to name a 
few). These presessions were very successful and provided significant numbers of new members 
for the SIG. Past chair Keith McNeil and incoming chair Isadore Newman pledged to develop 
and conduct an AERA presession on MLR/GLM at the 1996 AERA meeting. 

Comment was made regarding the name of the SIG (Multiple Linear Regression SIG) and the 
possible datedness of the term 1v1LR verses, for example, GLM (General Linear Model). After 
considerable discussion a motion was offered and passed to change the name of the SIG to 
Multiple Linear Regression: General Line3r Model Special Interest Group (MLR:GLM/SIG). 

A comment regarding the role and responsibility of SIG Executive/Editorial Board members drew 
attention to the fact that some journals expect if not require their editorial board members to 
regularly contribute to their journal. A motion was made and passed to instruct the MLRY editor 
to send a letter to each MLR v Editorial Board member encouraging them to submit an article for 
reyiew and publication in MLRV. 

Finally, SIG member Sue Trace (California State University - Fresno) moved a resolution 
thanking the 1994 MLRSIG Chair, Adria Karle-Weiss for her leadership and work for the SIG 
over the past year, in particular her advocacy for participation and recognition of the female SIG 
members. The resolution passed unanimously, 

The meeting was adjourned to allow members to attend the SIG's social that was to follow. 

Respectfully submitted, 

Steven D. Spaner, Executive Secretary 
Multiple Linear Regression: General Linear Model SIG 
Department of Behavioral Studies 
University of Missouri - St. Louis 
St. Louis, MO 63121-4499 
sspaner@umslvma. urns!. edu 
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