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Measuring School Effects With Hierarchical Linear Modeling:
Data Handling and Modeling Issues

Eugene P. Adcock, Ph.D., Prince George’s County Public Schools, Maryland
Gary W. Phillips, Ph.D. National Center for Education Statistics, U.S. Department of Education

   Because public schools do not randomly assign students and teachers across schools (methodological utopia),
multilevel evaluation models which account for student and school contextual and practice variables in their natural
settings provide the most rigorous means for empirically showing what is actually happening in school classrooms.
Still, no statistical methodology can make up for faulty design or bad data.  This article presents some important
practical issues regarding data handling for multilevel analysis methodology.  Also presented are important  modeling
design issues that need to be considered when applying hierarchical linear models (HLM) to the measurement of
schools and for determining which factors impact the value schools add to students’ achievement.

he statistical method chosen for an analysis is
usually a function of two things: the question
being asked and the nature of the recorded data.

In the case of measuring school effects, HLM is a
multivariate regression-like analysis technique that
was developed specifically for use in school effects
research.  HLM allows the examination of
associations among multi-level, nested data such as
students within schools by estimating simultaneous
linear equations at the student level within schools
and the school level between schools.  HLM models
explain student and school variation in achievement
scores, using both student- and school-level variables
as explanatory variables, while accounting for the
variance at each level.  In the Prince George’s County
Public School district, the HLM model has been used
to rank schools on their contribution to student
achievement beyond those associated with student
poverty, student mobility and school poverty (i.e.,
Value-added Index), and HLM was also used to
evaluate which factors contribute to the value added
by schools (Adcock, 1995; Adcock, 1997).

   Despite the tremendous potential for HLM to show
how schools are doing and what can be done to make
them better, the types of evaluation-quality data
necessary to support the different levels of analysis --
student, teacher, classroom, school, district — are not
supported by the data handling practices of most
public school districts.  The fact that HLM is a non-
experimental design involving the analysis of
relationships among variables at multiple levels in
the educational system makes the integrity of the data
support system critical.  Analysis of multilevel data

must begin with an understanding of relationships
among the lowest level variables, how unbiased
higher level variables are constructed from lower level
variables, and the relationships among the lower level
and higher level variables (Cooley, Lloyd, and Mao,
1981).  

   After the multilevel evaluation design has been
determined (e.g., HLM), the availability of specified
student, classroom, school and district level
evaluation-quality data is a real-life issue to the
practical application to school effectiveness studies.
The first section of this paper will address the issue of
school district data support for multilevel evaluation
designs and the second section will address modeling
issues important to the successful application of the
HLM model.

Section One
   Data handling and data analysis are not distinctly
different.  Due to the increasing popularity of causal
analysis and structural equation models (e.g.,
LISREL, AMOS, HLM) in school effects studies, the
problems inherent in the multilevel nature of
educational data are becoming more widely recognized
(Bentler and Chou, 1988).  School district data
management systems and school district evaluation
offices need to get in sync with the research,
evaluation and accountability needs fulfilled by
multilevel analysis models.  

The formulation of explicit multilevel models with
hypotheses about effects occurring at each level and
across levels places important structural features and

T
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demands on data.  Expressing relationships among
variables within a given level, and specifying how
variables at one level influence relations occurring at
another require a data processing system purposefully
designed to support such innovative analysis
methods.  Because multilevel model analysis
requirements of school district data are statistical in
nature, it is the responsibility of school district
evaluation offices to develop a relational database that
can provide hierarchically structured and linked data —
students, classrooms, schools, and district — for
analysis by these powerful and important multilevel
evaluation methods.  From the perspective of a
school district staff member responsible for fulfilling
the data requirements of two large scale HLM school
effects studies, the following data handling issues are
identified among those which are important to the
application of HLM analysis, reporting the nature of
the analysis to colleagues, and supporting continued
multilevel analysis studies:

1. taking control of variable definitions and
parameters in determining the unit of
analysis;

2. variable selection and measurement standards
for evaluation-quality data vs. colleagues’
“wish list” for inclusion of “crucial
variables” in the analysis model; and

3. harvesting raw data from school district
legacy system sources.

Unit of Analysis

Who is a student?  Who is a teacher?  What
constitutes participation behavior, class size and
student instructional cost?  What is a  program, a
treatment, a school?  Because one can not analyze
below the data level that you observe, record, store
and manage, it is vital that the unit of analysis
parameters for measured predictor variables are
established by statistical staff with a definitive vision
and understanding of analysis. Once a plausible causal
model has been defined, the structural equations
implied by that model determine the appropriateness
of a particular data analysis scheme.  If the causal
models are multilevel (e.g., HLM), then analysis will
occur at the different levels for a complete

understanding of the teaching and learning phenomena
under investigation.  In particular, the potential
contribution of multilevel analysis is a function of
recorded data on each individual’s singular
characteristics, experiences, behaviors, and
achievements.  Furthermore, since HLM analysis
procedures take both student and school information
into account simultaneously, it is important that data
representing the same variables between these levels
are consistent, linked and stable.

   Multilevel evaluation models which account for
student and school contextual and practice variables in
their natural settings (e.g., HLM) provide a viable
means of empirically showing what is actually
happening in school classrooms.  Students who are
highly mobile and schools with highly mobile
populations, for example, represent contextual
variables which can be represented at both the student
level (Student Mobility) and the school level (School
Mobility).  Likewise, teachers who have service years
in a particular school (School Vested) and total
service years in the district (System Vested) provide
teaching experience information which naturally vary
across schools.  Rigorous variable specifications
must rely upon an understanding of the school system
source data structure   and   multilevel analysis
requirements.  These specifications enable the
appropriate unit of analysis construction for
individual student and individual teacher variables
which can, in turn, be aggregated to higher
classroom, school and district levels yielding
consistent and stable estimates at each level.  

   Table 1 lists operational examples of how the
Prince George’s school district evaluation office
fulfilled the requirements for evaluation-quality
variables included in a recent HLM value-added study
of 120 elementary schools (Adcock, 1997).  This
research study had two foci: the effects of personal
characteristics and individual educational experiences
on student learning, and how these relations are in
turn influenced by classroom organization and the
specific behavior and characteristics of the teachers
within the school.  Correspondingly, the data have a
two-level hierarchical structure.  The Level-1 units are
the persons, who are nested within the Level-2 units
of schools.

--
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Table 1

School Year 1994-95 (SY95) HLM Value-Added Assessment Study
Partial List of Individual (Level 1) and Elementary School (Level 2) Variables

Variable Defini t ion Parameters
Student
(Level 1)

For the value-added study, student is a SY95
Maryland School Performance Assessment
Program (MSPAP)   eligible   examinee with at
least one scale score in the content areas of
reading, mathematics or science.

“Student” is a Research, Evaluation
and Assimilation Database (READ)
warehouse system data element
defined as a child who has an
assigned PGCPS enrollment date and
location, student number, race code
and gender code.

Teacher
(Level 1)

For the value-added study, elementary school
teacher is a “core teacher” who is responsible for
delivering the PGCPS curriculum in the six
MSPAP test content areas (i.e., mathematics,
science, social studies, reading, writing, and
language arts).

Core teacher is a READ data
element representing a school-based
certificated “classroom” teacher
employed on the last day of the
school year and who has the assigned
responsibility to provide students
instruction and assign course grades
in one or more of the   core academic
  subject areas   of language (reading,
English, etc.), mathematics, science
or social studies.

Class Size
(Level 2)

The total number of students enrolled on the last
day of the school year divided by the number of
core teachers employed on the last day of the
school year for each elementary school.

“Core Teacher” is a READ-defined
data element: See Level 1 definition
for “teacher” listed above.  “Class
Size” is a constructed class student-
teacher ratio similar to that used by
R. F. Ferguson (1991).

Teacher College
Training
(Level 2)

The average academic training index of the core
teachers in a school.  Seven point scale:
1=Bachelors, 2=Bachelors+30 course credit hours
(cch), 3=Masters/Equivalent, 4=Masters+15(cch),
5=Masters+30(cch), 6=Masters+60(cch),
7=Doctorate.

Computed from the sum of teacher
college training index divided by the
number of core teachers employed on
the last day of the school year for
each elementary school.

Teacher Cost Per
Student
(Level 2)

The average salary of the core teachers   employed  
at end-of-year (EOY) multiplied by the number of
classroom teachers assigned ( = the budgeted1

number or the actual number of core teachers
observed, whichever greater) divided by the total
number of students enrolled in school at EOY for
each elementary school.

Permanent teachers who are replaced
by long-term  substitute teachers at
EOY required the following
correction for computing the school’s
teacher salary (numerator): The
average salary of the   observed  
permanent core teaching staff is
multiplied by the   number of
  budgeted   core teachers in each school.

                                                
1      Pupil Accounting and School Boundary “     Class Size Report: 1994-95.  "
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Enrollment
Mobility: School
(Level 2)

The average total number of days that SY95
Maryland School Performance Assessment
Program (MSPAP) examinees were NOT enrolled
in the school in which they began taking the
SY95 MSPAP test for the past 3 years (SY93-
SY95) based upon their most recent occurrence of
continuous enrollment in that school.

Only the last continuous enrollment
period is considered.  No school
transfers after the start of MSPAP
administration date are considered.
Continuous school enrollment (i.e.,
0 Mobility)  for 3 years is 540 days
(i.e., 180 * 3 years) for the MSPAP
school.

Enrollment
Mobility: System
(Level 2)

The average total number of days that SY95
MSPAP examinees were NOT enrolled in the
PGCPS system for the past 3 years (SY93-SY95)
dating back from the start of MSPAP
administration date.

Note: continuous system enrollment
(i.e., 0 Mobility)  for 3 years is 540
days (i.e., 180 * 3 years) for any
combination of schools in the
system.

Teacher Service
Years at MSPAP
School
(Level 2)

The average total number of years that core
teachers employed at SY95 MSPAP schools
“belonged” to that school based upon their most
recent occurrence of continuous employment in
that school.

Only the last continuous “belonging”
period is considered.

Teacher Service
Years in PG System
(Level 2)

The average total number of years that core
teachers have been employed as certified teachers
in the PGCPS system based upon their most
recent occurrence of continuous employment in
the system.

Only the last continuous “belonging”
period is considered.

% of MSPAP
Examinees African-
American (Minority)
(Level 2)

The proportion of the total SY95 MSPAP
examinee population who are African-American
for each elementary school.

School aggregate means of Minority
= 1 and Other = 0 are  actually
proportion values of study students
who are African-Americans.

% Poverty Among
MSPAP Examinees
(Level 2)

The proportion of the SY95 MSPAP examinee
population who are receiving a free or reduced
lunch.

School aggregate means of Poverty =
1 and Non-Poverty = 0 are  actually
proportion values of study students
who are eligible for Free/Reduced
meal program.

% of MSPAP
Examinees TAG
(Level 2)

The proportion of the total SY95 MSPAP
examinee population who are identified as
“talented and gifted” by the TAG Office.

Teacher Days
Absent in SY95
(Level 2)

The proportion of days the core teachers employed
at end-of-year (EOY) were absent during SY95 for
each elementary school.

Computed from sum of  teacher days
absent divided by sum of days
“belonging” to school for all end-of -
year (EOY) core teachers.

Teacher Salary
(Level 2)

The average core teacher salary in a school. Computed from the sum of the
teacher salary, divided by the number
of core teachers at EOY in a school.
SY95 “A” Scale Tables used for
salaries.

Achievement Test
Scale Score in
Reading,
Mathematics and
Science
(Level 2)

The school’s average unweighted third and fifth
grade student performance for SY95 MSPAP
reading, mathematics and science content areas.

A few elementary or “combination”
schools did not have both third and
fifth grade levels.  Cases deleted from
content area school aggregation if
missing test scale score.
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   As can be seen from the list of variable in Table 1,
selection of variables for this HLM research study
was not limited to “available and easy” but included
factors cited in school effects literature and by school
policy members as important contributors to teaching
and learning.  Table 1 lists Level 1 variable
definitions for student and teacher, and several Level 2
school aggregate variables used in a recent HLM
study.  The variable definitions and parameter
specifications are also shown.  Since Level 1
variables for individual characteristics, behaviors and
achievements (e.g., Student SES, Student Mobility,
and Teacher Training) are used to build Level 2
aggregate variable values, the Level 1 variables
beyond “student” and “teacher” used in the study were
omitted from the list because the reader can easily
deduce the concomitant Level 1 definitions and
specifications from those listed for Level 2.

Evaluation Variables vs. “Wish List”
   You cannot analyze what you do not measure.  It is
around the conference table where evaluation study
results are being presented that evaluation staff often
learn from colleagues of the plethora of programs and
initiatives which “explain everything!” but are
missing from the causal evaluation model.  For
example, where are the: students’ beginning
achievement levels, gain scores, teacher inservice,
Saturday Academies, parent participation, computer
labs, dimension of learning instructional practices,
content certified teachers, extra resource
teachers,...,etc. in the multilevel model analysis?
After all, schools are implementing one great thing
after another great thing, and there is no measurement
of these great things in the analysis model!  
Actually, there is no   evaluation-quality   measurement
of these great practices at all, otherwise they    would   be
in the analysis model.  Statisticians have not been
known to shy away from any available evaluation-

READ Data Warehouse E-R Diagram 

Figure 1 

Data Entities And Their Relationships In The READ Warehouse 
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quality data that may correlate with student
achievement.

   As presented in the previous section, quality
standards for evaluation analysis data must meet
rigorous specifications.  The evaluation-quality
measurement standards include unit of analysis issues
for case selection, assessment, scaling and recording.
Often these evaluation-quality measurement standards
are very difficult to achieve for many of the
innovative practices, activities, experiences, and
resources implemented by program staff and put forth
as correlates of observed student achievement.  In fact,
when the measurement specifications are delineated
for the inclusion of these practices (e.g., teacher
inservice), program staff often find them too
confining, burdensome, and in some cases menacing.
Still, it is the responsibility of the school district
evaluation office to provide guidance to staff
interested in carrying out evaluation-quality
measurement of their program’s contribution to the
value-added effects of schools.

Harvesting Data From Legacy Sources
“   We do so much testing and surveys, plus filling
out tons of data forms; how come we don’t have any
data for evaluating this program, that initiative or
these schools?”    With respect to research, the choice
of data to analyze, debugging and preparation
methods, management and storage procedures, and
data layout is an act of theoretical preference
(Davidson, 1996).  A scientifically rigorous approach
for research, evaluation and accountability has
inherent data handling standards which sometimes
render locally developed and administered data
gathering information inadequate for evaluation
purposes.  Still, a database support system which can
transform much of a school district’s operational
system data (e.g., course schedules, grades, tests,
attendance, teacher service years, etc.) into a database
system which meets the structural and statistical
evaluation data standards for multilevel school and
program evaluation studies is an indispensable tool
for school district evaluation.  In response to this
vital need for pro-actively prepared evaluation-quality
extant data on students, teachers, program/school
participation measures, and resources the Research,
Evaluation and Accountability staff of the PGCPS
system has developed the Research and Evaluation
Assimilation Database (READ) warehouse support
system (Adcock, Haseltine, & Winkler, 1997).  This
comprehensive relational school district data
warehouse model, READ, provides detailed
achievement data together with contextual and process

information at the various levels of students,
classroom, teacher and schools.  READ is well-suited
for supporting scientifically rigorous multilevel HLM
evaluation studies of student and school correlates
with student achievement.  

   The READ data collection scheme focuses on
collecting data for the following five core
database entities: student, teacher, school,
program and instructional finance.  The READ
warehouse sequential data processing procedures
require data “scrubbing” for all incoming data.
Scrubbing is a data warehouse term that includes the
integration of legacy data from multiple sources and
reformatting as necessary to ensure completeness,
consistency, and accuracy.  In addition, scrubbing data
to evaluation requirement specifications often
involves enhancement or derivation processing,
partitioning and summarization of newly acquired
legacy data.  Transforming legacy data into
evaluation-quality data is given such importance that
the READ data warehousing pipeline has dedicated
substantial resources to data verification,
documentation, scrubbing and enhancement activities.

   The design of the READ data warehouse follows
logical relational database design with subject areas
and their relationships.  Figure 1 shows the
Entity/Relationship Diagram (ERD) for the READ
System’s data warehouse.  

   In READ all input data is initially kept at the
individual student (or teacher) level, and then
aggregated at higher levels to meet complex
evaluation data needs of multilevel analysis.  Two-
level HLM analysis, for example, may require the
extraction of READ student level data for
achievement, socio-economic status, ethnicity, etc.,
and school level data on teacher academic training,
cost per student, mobility of student population, etc.
The READ warehouse method of collecting,
managing and extracting data permit this type of
evaluation of the real-life multi-level nature of school
district structure to be conducted.  The next section
describes some of the fundamental issues associated
with modeling HLM analysis.

SECTION 2
   This section is intended to provide researchers with
the basic understanding of several statistical
fundamentals of  hierarchical linear models (HLM).
We will introduce the HLM model, discuss centering,
the estimation of school effects, and the empirical
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Bayes estimation procedure. Along the way we will
provide some practical advice in several other areas.

Simple versions of the HLM  

   To facilitate understanding we will illustrate all
points with a simple 2-level HLM model with only
one independent variable at both the student and
school levels. We will also adopt the widely used
notation provided by Bryk and Raudenbush (1992). At
level I the dependent variable, Yij, will be math

achievement and the independent variable, Xij , will

be socio-economic status (SES). At level II the
independent variable will be the mean SES for school
j, Wj.  

Level I
         

Yij = ß0j + ß1j (Xij ) + rij,                     (1)

where                                  ( 1 ) 

           Yij = math achievement for student i in

school j,

           ß0j = expected math achievement. ß0j is an

adjusted mean for school j such that
                   ß0j = µy j - ß1j (Xij ),

           ß2j = expected change in math achievement a

unit change in X, and

           rij = residual for student i in school j.

Level II
                       

ß0j = γ00 + γ01 (Wj ) + µ0j,                   (2)

where  

           γ00 = predicted grand mean for math

achievement for all schools based on W,

           γ01 = change in expected school mean

achievement ( ß0j ) for a unit change in W,

           µoj = unique effect of school j on the

expected school achievement after controlling for W.              

ß1j = γ10 + γ11 (Wj ) + µ1j,                   (3)

where                                                  
           γ10 = SES slope for all schools.

           γ11 = change in SES slope (ß1j ) for a unit

change in W,
          

µ1j = unique effect of school j on the SES

slope after controlling for W.

At level I we make the assumptions that E(rij) = 0,

and Var(rij) = σ2. At level II we assume

E(µ0j) = E(µ1j) = 0, Var(µ0j) = τ00, Var(µ1j) = τ11,

Cov(µ0j,µ1j) = τ01, and Cov(µ1j, µ0j) = τ10.

   There are two important statistics that are based on
these variances and covariances. The first is the intra-
class correlation coefficient, p, (which indicates the
overall degree of clustering within schools)

p =  τ00/(τ00 + σ2), (4)

and the second is the reliability with which µ0j is

etimated by the ordinary least-squares estimate (OLS)
Y.j - ß1j (X.j) within each school

λj = τ00/(τ00 + σ2/nj). (5)

   The above first three equations can be expressed as
a single level I model
by substituting equations 2 and 3 into 1. This yields
the reduced form of the HLM model as follows

Yij = [γ00 + γ01 (Wj ) + µ0j ] + [γ10 + γ11 (Wj )

+ µ1j ] (Xij ) + rij.          ( 6 )

   As a general rule the coefficients of the level I
model are treated as random while the level II  (or the
highest level in the model) are treated as fixed.
Treating a level I coefficient as random indicates that
the coefficient varies across schools (or level II units).
One good way to better understand the HLM is to
contrast it with other simpler models frequently used
by education researchers. A number of commonly
used simpler models can be obtained from equations
1-3 by fixing the level I parameters. For example, if
there are no level I or level II independent variables
then equation 1 becomes
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Yij = ß0j + rij, ( 7 )

and equation 2 becomes

ß0j = γ00 + µ0j. ( 8 )

Substituting equation 8 into 7 yields

Yij = γ00 + µ0j + rij, ( 9 )

which is the one way analysis of variance (ANOVA)
model. Another often used model can be derived from
equations 1-3 by assuming no level II independent
variable, and assuming that the ß0j  at level I are

fixed. When this is the case then equation 1 becomes

Yij = ß0j + ß1j (Xij - X..) + rij, (10)

equation 2 becomes

ß0j = γ00 + µ0j, (11)

and equation 3 becomes

ß1j = γ10, (12)

which is the pooled within-school regression
coefficient. Substituting equation 11 and 12 into 10
yields

Yij = [γ00] + [γ10 ](Xij - X..) + µ0j + rij. (13)

which is the analysis of covariance (ANCOVA)
model (except for the fact that µ0j is random instead

of fixed).

Centering

   Notice that in equation 8,  Xij was centered around

the grand mean. In fact it is important to spend some
time to be sure that the centering (especially at level
I) is done in such a way that the interpretations of ß0j
and γ00 are meaningful. There are essentially three

ways to center at level I (uncentering, grand mean
centering, and group mean centering) and two ways to
center at level II (uncentering and grand mean
centering). At level II, group mean centering and
grand mean centering are really the same thing.
Centering at level I determines the meaning of the
Level I intercept and centering at level II determines

the meaning of the level II intercept. In all cases the
interpretation of the intercept is that it is the value of
the dependent variable when the independent variable
equals zero. In the following section we will only
discuss centering at level I since the same
interpretations apply to level II.

Uncentering

   When Xij is uncentered it means we wish to use

the zero point in the original metric of Xij as the

defining point for ß0j. In many areas of science the

natural zero of Xij has a practical interpretation. For

example, if Xij is the Celsius scale and Yij is the

barometric pressure, then ß0j equals the barometric

pressure when water freezes. In most situations in the
social sciences there is not a natural zero point for
Xij. One notable exception to this is when dummy

variable coding is used. For example, if Xij = 1 for

minority students and Xij = 0 for non-minority

students, then, ß0j equals the mean of Yij for non-

minority students. If another dummy variable, Zij, is

added to the level I equation, such as gender (where
Zij = 1 for females and Zij = 0 for males), then ß0j
equals the mean of Yij for non-minority males.

Group Mean Centering

   In the social sciences the group mean of Xij is

often used as the zero point for Xij. In group mean

centering, ß0j equals the student’s math achievement

when (Xij - X.j) equals zero(which is at the group

mean of Xij). For example if Xij is the SES of

students, and Yij is the student’s math achievement,

then, ß0j equals the student’s math achievement at the

mean of SES. Another characteristic of group mean
centering is that ß0j is always equal to the mean of

Yij, or µYj. Therefore, group mean centering is often

used as the method of choice when the researcher is
primarily interested in studying the variation in
school means.

Grand Mean Centering

   In the social sciences it is also common practice to
center around the grand mean. An example of this was
used in the above ANCOVA equation 13. In grand
mean centering, ß0j equals the student’s math
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achievement when (Xij - X..) equals zero (which is at

the grand mean of Xij). ß0j has a different

interpretation in grand mean centering than it does in
centering within groups. In grand mean centering ß0j
is an adjusted mean such that  ß0j = µYj + ß1j (Xij -

X..). Grand mean centering is often used when the
researcher is interested in estimating school effects.

Estimating School Effects

   One of the main uses of HLM is to provide an
index of school effectiveness. Once the school effects
have been estimated then the researcher can rank
schools on their effectiveness or use the effectiveness
index as a dependent variable to investigate school
factors that are related to effectiveness. A good
example of school effects can be derived from the
simple HLM model provided in equations 1-3. We
rewrite these equations under the assumption that we
use grand mean centering and for level I the intercept
is random but the slope is fixed (i.e., constant across
schools). Under these assumptions, equations 1-3
become

Yij = ß0j + ß1j (Xij ) + rij, (14)

ß0j = γ00 + γ01 (Wj ) + µ0j, (15)

ß1j = γ10. (16)

   Equations 14-16 are similar to the ANCOVA
model except we have added Wj at level II.

Substituting equations 15 and 16 into 14 yields the
following reduced form

Yij = [γ00 + γ01 (Wj ) + µ0j ]

        + [γ10 ](Xij - X..) + rij.

Rearranging terms provides

µ0j = Yij - [γ00 + γ01 (Wj ) + γ10 (Xij - X..)

          +  rij].

Averaging over student i within school j gives the
estimate of school effects

µ0j = Y.j - [γ00 + γ01 (Wj )+γ10 (X.j - X..)]. (17)

Empirical Bayes Estimation

   In HLM the level I coefficients are usually
estimated with an empirical Bayes procedure (Lindley
and Smith, 1972). This procedure is different from the
OLS used in most multiple regression procedures in
that the level I estimates are weighted by the
collateral estimates in level II. An example of this is
found by inspecting more closely equations 1 and 2.
We see that ß0j in equations 1 and 2 has two different

OLS estimates, ß*
0j

ß*
0j = Y.j - ß

*
1j (X.j) , and

ß*
0j = γ*

00 + γ*
01 (Wj ).

   The empirical Bayes estimate combines these two
OLS estimates by weighting them according to the

reliability,λj, of [Y.j - ß
*

1j (X.j)] as an estimate of

ß0j. The empirical Bayes estimate, ß**
0j, is found by

ß**
0j = λj[Y.j - ß

*
1j (X.j)] + (1-λj)[γ

*
00 + γ*

01
(Wj )]. (18)

   This approach was first introduced within the
context of psychometrics by Kelley (1927). The
weight λ j is found by equation 5, and understanding

this weight is key to appreciating the usefulness of
the empirical Bayes estimation in HLM. As the
reliability of the OLS estimate at level I approches
unity, the best estimate of the within-school is from
the data collected from within the school. However,
as the reliability approaches zero (as when the number
of students within the school is very low), then the
best estimate of the within-school regression
parameter is based on the regression parameters of
similar schools within the system. The logic of this
approach is identical to imputation in a survey
sampling context. When data elements are missing
for a school, a common practice is to substitute (or
impute) data elements from similar schools to replace
the missing value. Even treating the data as missing
is the same as assuming that the missing data
element is equal to the mean of the population.  
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   The empirical Bayes estimate is an optimal
estimate of ß0j  in the sense that it has the smallest

mean-squared error even though it is biased toward

γ*
00 + γ*

01 (Wj ). The amount of bias is inversely

related toλj. As a general rule the bias is negligible in

schools with large sample sizes.

   The empirical Bayes residual, µ**
0j, is usually

used by HLM researchers as the estimate of the
school effect. Like the empirical Bayes estimate,

µ**
0j, is particulary biased in small schools. The

relationship between the empirical Bayes residual and
the OLS residual is as follows

 µ**
0j = λj µ

*
0j. (19)

   As λj approaches zero,  µ**
0j also approaches

zero. Even though the empirical Bayes residual is
biased it is still considered by most educational
researchers to be a better estimate than the OLS
residual. This is because when the sample sizes are
small the OLS residual will be unstable resulting in

more chance occurences of extreme valus of µ*
0j.

Selecting out such extreme values of µ*
0j for praise

or blame will result in more false-positives and false-
negatives than the empirical Bayes  residual.

Authors' Note:
The discussion in this paper represents the views of
the authors and does not represent those of the U.S.
Department of Education.
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Examples of Easily Explainable Suppressor Variables in 
Multiple Regression Research 

Franklin T. Thompson and Daniel U. Levine 
University of Nebraska at Omaha 

Multiple regression techniques _are a valuable tool in conducting ecological studies, especially when provisions are made to 
control for problems dealing w1U1 tile mteraction of vana_bles. One problem in multiple regn::ssiun research, the presence of 
suppressor vanables, has the potential to senously limit fmdmg s that can be reported , and in some cases may cause a 
researcher to pass over a usefu_l data set. Researchers have long been aware of the presence of suppressors in multiple 
regresswn research, but there 1s little agreement as to why 1t exists or what to do about it. Several considerations in 
employmg methods to "unsuppress" several data sets are discussed. 

S uppressor variables have been defined as 
variables that substantially improve the 
prediction of a criterion through the addition of 

a variable which is uncorrelated or relatively little 
correlated with the criterion but is related to another 
predictor or set of predictors. When suppression 
occurs, addition of the suppressor to the regression 
equation frequently is associated with a sizable 
increase in the beta weight(s) of the previously 
suppressed predictor(s), and, in a forward stepwise 
analysis, an increase in R-square nearly as large or 
larger than that contributed by the previously
suppressed predictor. Given this pattern, one might 
well refer to the variable that thus "kicks up" the 
prediction as an "unsuppressor". 

Although we have been exarrumng and 
consuming research based on multiple regression for 
many years, we seldom have encountered studies 
incorporating or reporting clear (and valid) 
suppression effects . Analysis of the functioning of 
suppressor variables and their dynamics is still less 
frequent, even in research that could be clearly 
improved by devoting explicit attention to the effects 
and meaning of suppressor relationships.To illustrate 
the functioning of suppressors in actual studies, and 
ways in which analysis of their effects can enhance 
understanding of relationships in a data set, we will 
portray and summarize three examples of suppressor 
variables in multiple regression analysis. We will 
conclude with suggestions regarding procedures that 
can help researchers in determining how to proceed in 
multiple regression studies that examine or should 
include examination of suppressor relationships. 

11. Education and Military Spending in 78 
Nations 

Our first example of suppression occurs in a 
data set that examines the relationships between 
spending for education and for the military (both 

assessed as percentage of gross national product) and 
average life expectancy in a diverse group of 78 
nations. Using the 2 expenditure variables in a 
fmward stepwise regression analysis to predict life 
expectancy, education enters first with a standardized 
coefficient of .3602 and an adjusted r square of. I 18. 
Military spending then enters with a standardized 
coefficient of -.364, the adjusted R square increases to 
.231 , and the coefficient for education spending 
increases to .462. Thus education now has a stronger 
relationship with life expectancy than was true before 
controlling for military spending, and the explained 
variance has increased by . 113 even though the zero
order correlation between military spending and life 
expectancy is only -.238.The addition of military 
spending to the analysis has unsuppressed the 
underlying pattern wherein education spending now is 
more strongly related to life expectancy than before, 
and the two predictors together explain more of the 
criterion variance than might have been expected from 
an examination of zero-order relationships. 

Having noticed the appearance of suppressor 
dynamics, we examined what was taking place by 
calculating correlations between education spending 
and life expectancy in countries high and low in 
military spending, and by plotting this relationship 
while portraying the high/low level of military 
spending (Figure 1). The correlation analysis showed 
that among 42 nations with military spending below 
3 .5 percent of GNP, the correlation between education 
spending and life expectancy was .62; among 36 
nations with military spending at or above 3 .5 of 
GNP, the correlation was virtually non-existent at 
.02. Thus education spending is highly related to life 
expectancy in countries with relatively low spending 
devoted to military purposes, but not at all related to 
life expectancy in countries that have relatively high 
military expenditures.Given this pattern, it is 
intuitively easy to understand why taking account of 
military spending clarifies and enhances the effect of 
education spending in the regression analysis. 

11 
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Examination of Figure 1 (which shows only 
a random .5 sub sample of the nations in the data set) 
further points to what may be happening. As shown 
in the plot, few countries that are high in military 
spending are very low in life expectancy, thus 
restricting possibilities for a high correlation between 
expectancy and other variables. Having identified 
these patterns, we can proceed to try to detennine 
(not discussed in this paper) why nations that are high 
in military spending as a percent of GNP generally 
are not low in life expectancy, and how this situation 
may involve relationships between these and other 
variables. 

111. Family Income and Academic Achievement 
in Two School Districts 

Our second example involves analysis of 
relationships between a measure assessing family 
income (i.e., percent of students from low-income 
families) and average sixth-grade mathematics scores 
at 55 elementary schools in 2 school districts. The 
first variable to enter in predicting achievement in a 
forward stepwise regression analysis was the family 
income measure, which correlated at -.574 with 
achievement and accounted for an r square of .329 in 
the latter criterion. This correlation was not nearly as 
high as we generally have found in other analyses of 
achievement in large school districts. 

The major reason for this relatively poor 
prediction became quickly apparent when a dummy 
variable portraying the 2 districts in the data set 
entered the multiple regression analysis, and when we 
plotted family income against achievement taking 
account of djstrict (Figure 2) . Although its :zero-0rder 
correlation with achievement was only -.242, the 
dummy variable increased the R square to .625 and 
pushed up the regression coefficient for family 
income to -.874. As shown in Figure 2, family 
income is highly correlated with achievement in both 
districts but achievement in district I is generally 
higher than achievement in district 2. 

Results were even more clear and dramatic 
when we combined total student achievement scores 
(combined math, reading, and language sub test 
scores) of 52 schools from the two districts and 
plotted them (Figure 3) against a poverty indicator we 
referred to as "school SES" (i.e ., a factor analysis 
score made up of percent mobility, percent minority, 
and percent poor students). The zero-order relationship 
between achievement and school SES was .520, with 
an adjusted r square of .25. After once again 
controlling for district differences, the dummy 
variable increased the R square to .882 with 77% of 
the variance explained; a dramatic .52 increase in the 
adjusted r square at the .000 significance level (fable 
I). In addition to achievement being generally higher 
in district I than achievement in district 2, we are left 
to speculate that there may be additional influences 
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(not discussed in this paper) differentiating the 
districts which help to further suppress the 
relationship between total achievement and our 
socioeconomic poverty variable. 

When district-level achievement and other 
possible district differences are controlled through 
multiple regression analysis, the effects of family 
poverty and socioeconomic status are "W1Suppressed", 
and we can proceed to additional analysis (not 
discussed in this paper) and research examining 
reasons for the high correlation with achievement, 
substantive possibilities for overcoming this 
association through improved instruction, and causes 
of differential achievement in the 2 districts. 

IV. Percentage of Students Residing Nearby md 
Math Achievement at 25 Schools in I School 
District 

Various considerations led us to expect that 
schools which mostly enrolled students resident in 
their respective attendance areas in a school district 
we were studying would have proportionately lower 
achievement than schools which enroll higher 
proportions of students from distant neighborhoods. 
However, the correlation between · percentage of 
resident students and average sixth-grade mathematics 
achievement was only -.023. Examination of the plot 
(Figure 4) suggested that a small group of 3 higher
than-predicted schools ( i.e., box symbols with an x 
in Figure 4) was detracting from a clear relationship. 
We knew that reading scores accounted for more than 
80 percent of the variance in math scores in this data 
set (as in many others) , so we re-examined the 
relationship controlling for reading, and found that the 
standardized coefficient for percentage of resident 
students was now -.148. Inspection of the partial plot 
(Figure 5) indicated that increase in the size of the 
relationship between residency and math achievement 
was due to a reduction in the effects exercised by the 
three higher-than-predicted schools. Equally or more 
important, we were now in a better position to 
proceed with meaningful theoretical and quantitative 
exploration (not discussed in this paper) of 
relationships among variables in the analysis. 

V. Discussion and Conclusions 
The effects of a variable are "unsuppressed" 

when controlling for another variable indicates an 
increase in its relationship with the dependent 
variable. In the example involving family income and 
achievement described above and portrayed in Figure 
2, the influence of poverty on achievement is 
increased to a multiple regression coefficient of -.874 
from a zero-order correlation of -.574 because the 
latter relationship in a sense is a spuriously-low 
result of failure to control for district differences. As 
shown below, taking account of district in a path 
model helps the analyst understand underlying 

12 
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relationships and computations. Let "D" stand for 
district, "P" for the poverty/family income measure, 
and "A" for achievement: 

D 

-.669 

-.448 

A 

p 

-.874 

In this example, the z.ero-order correlation 
between P and A is the sum of the direct effect of P 
on A controlling for D and its indirect path through 
D. The calculations are as follows: 

r pa = B pa.ct + (r pd X B da.p) 
-.574 = -.874 + (-.448 X -.669) 
-.574 = -.874 + .300. 
-.574 = -.574. 

It is important to examine underlying 
interrelationships and even check out the calculations 
(as illustrated above) when one encounters regression 
data .indicating that suppression effects are present. 
For one thing, the data produced by the computer may 
be invalid: If there is high multicollinearity among 
predictors or if there are too few cases to sustain valid 
computations given the number of predictors, 
multiple correlations and regression coefficients may 
invalidly indicate whopping increases as new 

Table 1 
* 
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relatively-poorly correlated variables are ak:h'.I to a 
stepwise multiple regression. 

In addition, examining the model and/or the 
calculations can help the analyst understand the 
dynamics of forces at work in the data set. For 
example, examination of the model shown above 
underlines the fact that on the average, schools in 
District I (coded as I) have higher poverty am 
achievement scores than schools in District 2 (coded 
as 2), even though the "normal" strong relationships 
between poverty and achievement are apparent within 
each district. Furthermore, these relationships are 
clearly visible in and, indeed, clearly suggested by the 
plot portrayed in Figure 2. These considerations help 
lead us to the following general conclusions: 

1. Plotting relationships can be vel)' helpful 
in understanding the dynamics of a data set including 
suppressors, and also in verifying that suppressor 
relationships actually are present. In some cases, 
plots can call attention to analytic possibilities not 
previously apparent that are worth further exploration. 

2. Investigation of suppressor variables an1 
relationships can greatly enhance analysis am 
understanding of what is occurring or may be implied 
in a researcher's data set. However, researchers should 
be cautious in identifying suppressors, because 
statistics pointing toward the presence of suppressors 
frequently are invalid indicators produced by a sample 
that is too small or by highly correlated predictors . 

Multiple Regression Analysis of School Inputs Using Dependent Variable Achievement: Observing the Effects of a 
Suppressor Variable for Combined District Data 

Step number Independent variable N MR Adj. R2 Standard Beta T score p 
error 

School SES 52 .52 .25 .86 .52 - 4.27 .000 

2 School SES -.97 -12 .29 000 
District 52 .88 .77 .48 -.85 -10.74 .000 

* Probabilities of F for entry= .05 , and for removal= . 10 
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The Use of the Johnson-Neyman Confidence Bands and
Multiple Regression Models to Investigate Interaction Effects:
Important Tools for Educational Researchers and Program
Evaluators

John W. Fraas, Ashland University
Isadore Newman, The University of Akron

When investigating the impact of predictor variables on an outcome variable or measuring the effectiveness of an
educational program, educational researchers and program evaluators cannot ignore the possible influences of
interaction effects.  The purpose of this paper is to present a procedure that educational researchers can follow in order
to increase their understanding of the nature of the interaction effect between a dichotomous treatment variable and a
continuous independent variable.  This technique involves the use of three separate analytical techniques implemented
in three steps.  First, the interaction effect is statistically tested using a multiple regression model.  Second, the
interaction effect is plotted, and if the interaction effect is disordinal, the intersection point of the regression lines is
calculated.  Third, the Johnson-Neyman confidence limits are calculated.  A list of the computer commands that can

be used in conjunction with the SPSS/PC+ StatisticsTM and the SPSS® for WindowsTM  computer software to
calculate the Johnson-Neyman confidence limits is provided.  In addition, this three-step analytical procedure is
applied to a set of efficacy data that was collected in a study of the FOCUS instructional model in order to illustrate
how it can be used by researchers and program evaluators.

ost educational researchers and program
evaluators are aware of the need to
investigate the possible existence of

interaction effects.  When an interaction effect is
being examined, a researcher or an evaluator must
answer two questions.  First, what analytical
technique can be used to test for the presence of an
interaction effect?  Second, what analytical technique
can provide the maximum amount of information
regarding the interaction effect when, in fact, it
exists?  Researchers and evaluators often consider the
first question.  The second question, however, appears
to be a consideration less often.  To obtain an in-
depth understanding of the interaction effect, the
researcher or evaluator must utilize an analytical
technique that can provide such information.  That is,
the researcher must avoid a Type VI error (Newman,
Deitchman, Burkholder, Sanders, & Ervin, 1976),
which occurs when the analytical technique does not
provide the appropriate or necessary information.
   In this paper, we present a three-step analytical
procedure for examining a linear interaction effect
between a dichotomous treatment variable and a
continuous independent variable.  The first step in
this analytical procedure, which was discussed in

detail by  McNeil, Newman, and Kelly (1996, pp.
127-140), requires the researcher to design models that
are capable of statistically testing the interaction
effect.  The technique used in the second step, which
was previously presented by Fraas and Newman
(1977), Newman and Fraas (1979) and Pedhazur
(1982, pp. 468-469), requires the researcher or
program evaluator to calculate the point of
intersection between the two regression lines.  The
third step requires that the Johnson-Neyman
confidence bands be calculated.  This technique has
been discussed by Johnson and Neyman (1936),
Rogosa (1980, 1981), Chou and Huberty (1992), and
Chou and Wang (1992).  
   In this paper, we are stressing the importance of
using these techniques together in a three-step
analytical procedure.  The use of this analytical
procedure will provide  researchers and program
evaluators with the type of information that will
increase their understanding of the nature of the
interaction effect being examined.  To illustrate the
type of information that is produced by this three-step
analytical procedure, we have analyzed the personal
and teaching efficacy levels of teachers who were
exposed to an instructional model developed by
Russell (1992), which is referred to as FOCUS.            

M
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Analytical Technique Applied to Efficacy Scores
   Even though Russell (1992) believed that the
exposure to the FOCUS model would increase the
participants’ levels of personal and teaching efficacy,
he was not willing to assume  that those increases
would be constant across the participants’ pre-term
efficacy levels.  That is, when comparing the post-
treatment personal efficacy and teaching efficacy
scores of the teachers who were exposed to the
FOCUS model to teachers who were not exposed to
the model, the differences may not be consistent
across the ranges of the pre-term efficacy scores.
Thus, to understand the possible influence of the
FOCUS model on the personal efficacy and teaching
efficacy scores of teachers, it was essential, not only
to test for the existence of pre-term efficacy scores by
group interaction effects, but also to gain insight into
the nature of these interaction effects, if in fact, they
did exist.

Subjects
   Sixty-eight teachers who were enrolled in graduate
level classes offered by the Education Department of
Ashland University were included in the evaluation of
the FOCUS model.  Ashland University is located in
north-central Ohio, which contains rural, suburban,
and urban school systems.  The courses, which
required 36 hours of instruction, were offered during a
summer term.  Twenty-nine of the 68 teachers  were
not exposed to the FOCUS model.  These 29
teachers, who taught in grade levels that ranged from
kindergarten to the twelfth grade, served as the
Control Group.  The other 39 teachers were exposed
to the FOCUS model during the same academic
summer term.  These 39 teachers, who also taught in
grade levels that ranged form kindergarten through the
twelfth grade, were designated as the treatment group.
This treatment group was referred to as the FOCUS
Group.

Instruments
   Various instruments are used to measure the level
of a teacher’s sense of efficacy.  In this evaluation
project, the Teacher Efficacy Scale, which was devised
by Gibson and Dembo (1984), was used.  This
selection was consistent with the view expressed by
Ross (1994) who stated in his extensive review of the
teacher-efficacy research that:

Future researchers should treat the [teacher
efficacy] construct as a multi-dimensional
entity rather than a singular trait, examining
personal and general teaching efficacy

separately rather than aggregating them [and
they] should measure teacher efficacy with
the most frequently used instruments to
facilitate comparisons between studies (p.
27).

   Each educator who participated in this study
completed the Teacher Efficacy Scale at the beginning
and end of the summer academic term.  This
instrument required each participant to rate each of 16
statements on a 1 (strong disagree) to 6 (strongly
agree) scale.  The ratings obtained from the first nine
statements were summed to obtain a personal efficacy
score for each teacher.  A high score on these nine
statements was interpreted to mean that the teacher
had a high level of personal efficacy.  And a low score
would indicate that the teacher had a low level of
personal efficacy.  The other seven statements were
used to measure a teacher’s teaching efficacy score.
The total score on these seven statements for each
teacher was subtracted from 42.  This procedure
produced a teaching efficacy score that would be high
for a teacher who had a high level of teaching
efficacy.  The score would be low for a teacher who
had a low level of teaching efficacy.

Gibson and Dembo (1984) reported in their
study that an analysis of internal consistency
reliability values produced Cronbach’s alpha
coefficient values of .78 and .75 for the
personal efficacy scores and teaching efficacy scores,
respectively.  In addition, Gibson and Dembo stated
that a multitrait-multimethod analysis supported both
convergent and discriminant validity of the
instrument.

Hypotheses
    Two null hypotheses were statistically tested in
the efficacy study.  These null hypotheses were as
follows:

1H0: The interaction effect between the

pre-term personal efficacy scores and
group membership does not account
for some of the variation in the post-
term personal efficacy scores.

2H0:  The interaction effect between the pre-

term teaching efficacy scores and group membership
does not account for some of the variation in the
post-term teaching efficacy scores.
   Each of these null hypotheses were statistically
tested through the three step procedure presented in
the following sections.
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Step 1: Statistical Tests of the Interaction Effects
   Step 1 of the three-step analytic procedure was
implemented for the efficacy data by statistically
testing multiple linear regression models that were
designed to measure the linear interaction effects.  As
part of this hypothesis testing procedure, the data
utilized in each model were tested for possible outlier
values with tests of Cook’s distance measures (Neter,
Wasserman, & Kutner, 1985).  Any person who had a
value that would distort the regression analysis was
reviewed to determine whether the data for that person
should be eliminated.  The test results of Cook’s
distance measures indicated that the data recorded for
one teacher may distort the results obtained from the
regression analysis of the teaching efficacy scores.
After reviewing that teacher’s data, the data were
deleted from the regression analyses. Thus, a total of
68 teachers and 67 teachers were included in the
regression analyses of the personal efficacy scores and
teaching efficacy scores, repectively.
   The model that was designed to test 1Ho, which
dealt with the teachers’ personal efficacy scores,
contained three independent variables.  The teachers’
post-term personal efficacy scores served as the
dependent variable for this model.  One of the
independent variables included in this model consisted
of the teachers’ pre-term personal efficacy scores.
This variable was labeled Pre-Term PE.  The second
independent variable included in this model  was the
Group variable.  This Group variable consisted of the
values of zero and one.  A value of one indicated that

the teacher was in the FOCUS Group, and a zero
value meant that the teacher was in the Control
Group.  The third variable included in this model was
formed by multiplying the Pre-Term PE variable by
the Group variable.  The inclusion of this variable,
which was labeled (Pre-Term PE)*(Group), allowed
us to use the regression model to calculate the
difference between the slopes of the Control and
FOCUS groups’ regression lines.
   The t-test value of the regression coefficient for the
(Pre-Term PE)*(Group) variable was used to test
1H0.  Since this study involved two dependent

variables, i.e., the personal efficacy and teaching
efficacy variables,  the alpha level for the   t   test of this
regression coefficient value was set at .025, which is
equal to .05 divided by 2.  The chance of committing
a type I error was reduced by using this alpha value
(Newman & Fry, 1972).
   The results obtained from the analysis of the
regression model are contained in Table 1.  The   t   test
of regression coefficient for the (Pre-Term
PE)*(Group) variable (t = -2.44,   p   = .0175) indicated
that the difference between the slopes of the
regression lines of the FOCUS and Control groups
was statistically significant at the .025 level, that is,
1H0 was rejected.  Thus, the differences between the

post-term personal efficacy scores of the FOCUS and
Control groups were not constant across the range of
pre-term personal efficacy scores.

Table 1
Regression Results for the Post-Term Personal Efficacy Scores

Regression Model
Regression

Variable Coefficient t Value p Value

(Pre-Term PE)*(Group) -0.538 -2.44 0.018
Pre-Term PE 0.852 5.17 <.000
Group 25.124 2.87 0.006
Constant 6.362 0.97 0.338
R2 = .370
Adjusted R2 = .341
N = 68

   Residual Sum of Squares = 2495.58

   Note  . The values for the Group variable are zero and one for teachers in the Control and FOCUS groups,
respectively.
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Table 2
Regression Results for the Post-Term Teaching Efficacy Scores

Regression Model

Variable Regression t Test
Coefficient  Value p Value

(Pre-Term TE)*(Group) 0.703 2.742 0.008
Pre-Term TE 0.153 0.79 0.433
Group -14.569 -2.339 0.023
Constant 19.8 4.331 <.000
R2 = .347
Adjusted R2 = .316
N = 67
Residual Sum of Squares = 1334.318

   Note  . The values for the Group variable are zero and one for teachers in the Control and FOCUS groups,
respectively.

   The teaching efficacy scores served as the dependent
variable in the regression model that was used to test
2Ho.  Similar to the previous regression model, this
model included three independent variables.  One of
these independent variables was composed of the
teachers’ pre-term teaching efficacy scores.  This
variable was labeled Pre-Term TE.  A second
independent variable included in the model was the
Group variable.  The third independent variable
included in the model was generated by multiplying
the Pre-Term TE variable by the Group variable.
This variable, which was labeled (Pre-Term
TE)*(Group), was used to estimate the difference
between the slopes of the regression lines for the
Control and FOCUS groups.
   The values generated by the analysis of the
regression model used to test 2H0 are listed in Table

2. The   t   test of the regression coefficient for the (Pre-
Term TE)*(Group) variable  
(t = 2.742,   p   = .008) indicated that the interaction
effect was statistically significant at the .025 level.
Thus, the differences between the post-treatment
teaching efficacy scores of the FOCUS and Control
groups were not constant across the range of pre-term
teaching efficacy scores.

Step 2: Calculation of the Point of Intersection
   The second step of the three-step analytical
procedure was implemented by, first, graphing each of
the interaction effects.  If a given the interaction effect
is disordinal, the point of intersection between the
two regression lines would be calculated.  If the
interaction effect is ordinal, that is, the regression

lines do not intersect in the relevant range,  the
researcher would proceed to Step 3.   

The interaction effect between the Pre-Term
PE variable and the Group variable is diagramed in
Figure 1.  Since the interaction effect was disordinal,
the point at which the two regression lines intersected
was calculated as follows:

1.  The value of zero was substituted for the
Group variable in the regression equation contained in
Table 1 to obtain the regression line for the Control
Group.

Y =  6.362 - .538*(Pre-Term PE)*(Group) +
.852*(Pre-Term PE) + 25.124*(Group)

Y =  6.362 - .538*(Pre-Term PE)*(0) +
.852*(Pre-Term PE) + 25.124*(0)

Y =  6.362 + .852*(Pre-Term PE)
2.  The value of one was substituted for the

Group variable in the regression equation contained in
Table 1 to obtain the regression line for the FOCUS
Group.   

Y =  6.362 - .538*(Pre-Term PE)*(Group) +
.852*(Pre-Term PE) + 25.124*(Group)

Y =  6.362 - .538*(Pre-Term PE)*(1) +
.852*(Pre-Term PE) + 25.124*(1)

Y = 31.486 + .314*(Pre-Term PE)
3.  The two regression lines were set equal

to each other and the researcher solved the equation for
Pre-Term PE.

6.362 + .852*(Pre-Term PE) = 31.486 +
.314*(Pre-Term PE)

             .538*(Pre-Term PE) = 25.124
              Pre-Term PE = 46.7
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   As indicated by the results of this calculation and
the graph of the disordinal interaction effect contained
in Figure 1, the post-term personal efficacy scores of
the teachers in the FOCUS Group were higher than
the post-term personal efficacy scores of the teachers
in the Control Group when their pre-term personal
efficacy scores were less than 47.  The post-term
personal efficacy scores of the teachers in the Control
Group, however, were higher than the post-term
personal efficacy scores of the teachers in the FOCUS
Group when their pre-term personal efficacy scores
were greater than or equal to 47.
   The interaction effect between the Pre-Term TE
variable and the Group variable, which is diagramed
in Figure 2, was also disordinal.  Using the values
produced by the regression analysis contained in Table
2, the point at which the two regression lines for the
post-term teaching efficacy scores intersected was
calculated in the same manner as was the intersection
point for the personal efficacy scores.  The
calculations were as follows:
   1.  The value of zero was substituted for the Group
variable in the regression equation contained in Table
2 to obtain the regression line for the Control Group.

Y = 19.800 + .703*(Pre-Term TE)*(Group)
+ .153*(Pre-Term TE) - 14.569*(Group)

Y = 19.800 + .703*(Pre-Term TE)*(0) +
.153*(Pre-Term TE) - 14.569*(0)

Y = 19.800 + .153*(Pre-Term TE)
   2.  The value of one was substituted for the Group
variable in the regression equation contained in Table
2 to obtain the regression line for the FOCUS Group.   

Y = 19.800 + .703*(Pre-Term TE)*(Group)
+ .153*(Pre-Term TE) - 14.569*(Group)

Y = 19.800 + .703*(Pre-Term TE)*(1) +
.153*(Pre-Term TE) - 14.569*(1)

Y = 5.231 + .856*(Pre-Term TE)
   3.  The two regression lines were set equal to each
other and the researcher solved the equation for Pre-
Term TE.

19.800 + .153*(Pre-Term TE) = 5.231 +
.856*(Pre-Term TE)

               .703*(Pre-Term TE) = 14.569
              Pre-Term TE = 20.7   

Figure 1.  Pre-Term Personal Efficacy Scores by Group Interaction.
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Figure 2.  Preterm Teaching Efficacy Scores by Group Interaction

Table 3
Percentage of Teachers with Pre-Term Efficacy Scores Located In Various Regions Above and Below the Points of
Intersection Between the Two Pairs of Regression Lines


Post-Term                    Post-Term
   Personal Efficacy Scores Teaching Efficacy Scores
                                                FOCUS > Control      FOCUS < Control

                                                                                                                                                                                                                                                                                                                                                                                                                                                                
      FOCUS > Control                                           72%                        19%                         
      FOCUS < Control                              6%                          3%                         



   The post-term teaching efficacy scores of the
teachers in the Control Group were greater than the
post-term teaching efficacy scores of the teachers in
the FOCUS Group when their pre-term teaching
efficacy scores were below 21.  In addition, the post-
term teaching efficacy scores of the teachers in the
FOCUS Group were greater than the post-term
teaching efficacy scores of the teachers in the Control

Group when their pre-term teaching efficacy scores
were greater than or equal to 21.
   After the intersection point is calculated in a study
that investigates an interaction effect between a
continuous independent variable and a treatment
variable, it is important to note the percentage of the
study’s participants who have scores above and below
the intersection point.  For the efficacy data of the 67
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teachers who were included in both analyses, the
percentages are listed in Table 3.  As indicated in
Table 3, 72% of the teachers had pre-term efficacy
scores that corresponded to points on the regression
lines where the teachers had higher post-term personal
efficacy scores and higher post-term teaching efficacy
scores when exposed to the FOCUS model.  Only 3%
of the teachers had pre-term efficacy scores that
corresponded to points on the regression lines where
the teachers had lower post-term personal efficacy
scores and lower post-term teaching efficacy scores
when exposed to the FOCUS model.  Nineteen
percent of the teachers had pre-term efficacy scores
that corresponded to points on the regression lines
where the teachers had higher post-term personal
efficacy scores and lower post-term teaching efficacy
scores when exposed to the FOCUS model.  And 6%
of the teachers had pre-term efficacy scores that
corresponded to points on the regression lines where
the teachers had lower post-term personal efficacy
scores and higher post-term teaching efficacy scores
when exposed to the FOCUS model.

   With respect to these percentages, It is important to
realize that the differences between the post-term
efficacy scores of the FOCUS and Control groups
may be statistically significant only for certain ranges
of the pre-term efficacy scores.  Thus, before
conclusions are drawn with respect to who benefits
and who does not benefit from being exposed to the
FOCUS model, it is essential to determine the ranges
of pre-term efficacy scores in which the differences
between the post-term efficacy of the teachers in the
FOCUS Group and the teachers in the Control Group
are statistically significant.  Step 3 of this three-step
analytical procedure is designed to determine these
statistically significant ranges.   

Step 3: Calculation of the Johnson-Neyman
Confidence Bands
   The third step of the three-step analytical procedure
requires that the Johnson-Neyman confidence limits
be calculated for each statistically significant
interaction effect.  It should be noted that some
researchers have argued that the Johnson-Neyman
regions of significance are  non simultaneous ones
(Potthoff, 1964 and Rogosa, 1980, 1981).  Based on
empirical results by Chou and Huberty (1992) and
Chou and Wang (1992), it appears that the Johnson-
Neyman technique can be used to make simultaneous
inferences provided that  the slope homogeneity
assumption is statistically tested and rejected.  Since
1H0 and 2H0 were rejected, it was appropriate to

calculate Johnson-Neyman (1936) confidence bands
for the nonsignificance regions for the efficacy scores.  
   The program that was used to calculate the
Johnson-Neyman confidence bands, which can be used

in conjunction with the SPSS/PC+ StatisticsTM

software (SPSS Inc., 1990) and the SPSS® Base 7.0

for WindowsTM  (SPSS Inc., 1996), is listed in the
Appendix.  The program, which calculates the
Johnson-Neyman significance bands as suggested by
Pedhazur (1982, pp. 169-171), requires that 12 values
be provided.  A description of the required values, as
well as their labels, are as follows:
   1.  The symbol   ss1   represents the pre-term sum of
squares value for the Control Group.

2.  The symbol   ss2   represents the pre-term
sum of squares value for the FOCUS Group.

3.  The symbol   n1   represents the sample
size of the Control Group.

4.  The symbol   n2   represents the sample
size of the FOCUS Group.

5.  The symbol   sumresid   represents the
residual sum of squares value of the regression model.

6.  The symbol    mean1   represents the mean
of the pre-term scores of the Control Group.

7.  The symbol    mean2   represents the mean
of the pre-term scores of the FOCUS Group.

8.  The symbol   slope1   represents the slope
of the regression line for the Control Group.

9.  The symbol   slope2   represents the slope
of the regression line for the FOCUS Group.

          10.  The symbol   int1   represents the intercept
point of the regression line for the Control Group.
          11.  The symbol   int2   represents the intercept
point of the regression line for the FOCUS Group.
          12.  The symbol fcrit represents the critical F
value with 1 and N - 4 degrees of freedom.
   The sum of squares values, the sample sizes, and
the mean values can be obtained from the printout
generated by the DESCRIPTIVE subprogram of the

SPSS/PC+ STATISTICSTM software (SPSS Inc.,
1990) or the SUMMARIZE subprogram of the

SPSS® Base 7.0 for WindowsTM software (SPSS
Inc., 1996), with each of the two groups being
analyzed separately.  The residual sum of squares
value, the slope values, and the intercept-point values
can be obtained from the printouts generated by the
REGRESSION subprogram of either the SPSS/PC+

STATISTICSTM software or the SPSS® Base 7.0

for WindowsTM software.  The critical F value can
be obtained from an F-Distribution Table.
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   The data line of the program listed in the Appendix,
which utilized the freefield format, contains the data
used to generate the Johnson-Neyman confidence
limits for the personal efficacy scores.  The data line
used for the analysis of the teaching efficacy scores
was as follows:  567.30   745.82   29   38   1334.32  
23.24   24.71   .15   .86   19.80   5.23   4.00.   
Note that the numerator degrees of freedom (dfn ) and

the denominator degrees of freedom (dfd ) values were

1 and 64 (68-4), respectively, for the analysis of the
post-term personal efficacy scores.  For the analysis
of the post-term teaching efficacy scores, the values
for dfn  and the dfd were 1 and 63 (67-4), respectively.  

In addition, the confidence level was set at .95 for
each set of limits.
   The upper limit for the 95% confidence bands for
the personal efficacy scores was 81.8, which was
above the maximum score of 54 points on the
personal efficacy section of the Teacher Efficacy
Scale.  The lower limit was 40.7.  Based on these
limits, which are included in Figure 1, it can be
concluded that the post-term personal efficacy scores
for the teachers in the FOCUS and Control groups
were not statistically significantly different when their
scores were greater than or equal to 41.  The post-
term personal efficacy scores of the teachers in the
Focus Group were statistically significantly higher
than the corresponding scores of the teachers in the
Control Group, however, when their pre-term scores
were less than 41.
   The lower limit of the 95% Johnson-Neyman
confidence limits for the regression lines diagramed in
Figure 2 was equal to 9.97, which was less than three
points above the minimum score of 7 that a teacher
could receive on the teaching efficacy section of the
Teacher Efficacy Scale.  It should be noted, however,
that none of the teachers included in this analysis had
a pre-term teaching efficacy score below 13.  Thus,
none of the teachers included in this study had a score

below the lower limit of the nonsignificance region.
The upper limit of the nonsignificance region of the
Johnson-Neyman 95% confidence limits for the pre-
term teaching efficacy scores was 23.8.  Thus, the
post-term teaching efficacy scores of the teachers in
the FOCUS and Control groups were not statistically
significantly different when their pre-term teaching
efficacy scores were less than 24.  The post-term
teaching efficacy scores of the teachers in the FOCUS
Group, however, were statistically significantly
higher than the post-term teaching efficacy scores of
the teachers in the Control Group when their pre-term
teaching efficacy scores were equal to or greater than
24.
   To understand the implications of the
nonsignificant regions as well as the significant
regions for the two sets of regression lines, it is
important to note the location of the teachers’ pre-
term efficacy scores along the two sets of regression
lines.  As indicated by the percentages contained in
Table 4, 31% of the teachers who were included in
both regression analyses had pre-term efficacy scores
that corresponded to points on the regression lines
where the post-term efficacy scores of the teachers in
the FOCUS Group were statistically significantly
higher than the scores of the teachers in the Control
Group on both efficacy scales.  In addition, 42% of
the teachers had  pre-term efficacy scores that
corresponded to points on the regression lines where
the post-term efficacy scores of the teachers in the
FOCUS Group were statistically significantly higher
than the scores of the teachers in the Control Group
on one of the two efficacy scales. The remaining 27%
of the teachers had pre-term efficacy scores that
corresponded to points on the regression lines where
the post-term efficacy scores of the two groups were
not statistically significantly different on either
efficacy scale.    

Table 4
Percentage of Teachers with Pre-Term Efficacy Scores Located in the Various Significant and Nonsignificant
Regions

Post-Term                    Post-Term
   Personal Efficacy Scores Teaching Efficacy Scores
                                                FOCUS > Control    FOCUS = Control   FOCUS < Control


FOCUS > Control                                    31%                        21%                          0%
FOCUS = Control                                    21%                        27%                          0%
FOCUS < Control                0%                          0%                          0%
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   Thus, a total of 73% had pre-term efficacy scores
that were located at points on the regression lines
where the post-term efficacy scores of the teachers in
the FOCUS Group were statistically significantly
higher than the post-term efficacy scores of the
teachers in the Control Group on at least one of the
two efficacy scales.  None of the teachers (0%) had
pre-term efficacy scores that were located at points on
the regression lines where the post-term efficacy
scores of the teachers in the Control Group were
statistically significantly higher than the post-term
efficacy scores of the teachers in the FOCUS Group
on either of the two efficacy scales.

Implications Based on the Results of the Three-Step
Analytical Procedure.
   It is important to understand what each step in this
three-step analytical procedure reveals about the linear
interaction effects.  The results of Step1 indicate that
both interaction effects were statistically significant.
A more in-depth understanding of these interaction
effects, however, is
obtained by reviewing the information generated by
Steps 2 and 3 of this three-step analytical procedure.  
   The graphs containing the interaction effects and
the points of intersection between the regression lines
for the personal efficacy scores and the teaching
efficacy scores, which were completed in Step 2,
revealed that both interaction effects were disordinal
and the regression lines for the personal efficacy
scores and the teaching efficacy scores intersected at
46.7 and 20.7, respectively.  These graphs and the
intersection points appear to suggest that, with
respect to their post-term efficacy scores, certain
teachers would benefit from being exposed to the
FOCUS model, while exposure to the FOCUS model
would be detrimental to other teachers.  In addition,
these points of intersection could possibly be used to
identify which teachers would and would not benefit
from exposure to the FOCUS model.  Before such a
conclusion is reached, however, it is important to
realize that the differences between the post-term
efficacy scores of the teachers in the FOCUS and
Control groups, who have pre-term scores near the
intersection points, could simply be due to noise or
random variation.  That is, the post-term scores of the
students in the two groups are statistically
significantly different only for pre-term scores that are
located some distance above and below the
intersection points.  Thus, before one should draw a
conclusion with respect to the nature of these
interaction effects, it is essential to review the
information provided by the Johnson-Neyman
confidence limits calculated in Step 3.

   The significance region between the two regression
lines that were designed to analyze the
post-term personal efficacy scores included only the
pre-term personal efficacy scores that were less than
41.  In addition, the significance region between the
two regression lines that were designed to analyze the
post-term teaching efficacy scores included only the
pre-term teaching efficacy scores that were greater
than or equal to 24.  Thus, as indicated by the
interaction effects contained in Figures 1 and 2,
whenever the post-term efficacy scores of the two
groups were statistically sigficantly differerent, the
post-term efficacy scores of the Focus Group
exceeded the post-term efficacy scores of the  Control
Group.
   Thus, a majority of teachers (73%) had pre-term
efficacy scores that placed them in  ranges along the
regression lines that indicated that the post-term
efficacy scores of the teachers in the Focus Group, on
at least one of the efficacy scales, were statistically
significantly higher than the post-term efficacy scores
of the teachers in the Control Group.  It is important
to also note that in spite of the fact that the
interaction effects were disordinal, the reverse
statement is not true.  That is, none of the teachers
had pre-term efficacy scores in the ranges along the
regression lines that indicated that the post-term
efficacy scores of the Focus Group were statistically
significantly lower than the post-term efficacy scores
of the Control Group on either of the two efficacy
scales.  The remaining 27% of the teachers had pre-
term efficacy scores in the ranges
along the regression lines that indicated that the post-
term efficacy scores of the FOCUS and Control
groups were not statistically significantly different on
either of the two efficacy scales.
   Based on this information, one would not use the
intersection points between the regression lines to
determine who would and who would not benefit from
being exposed to the FOCUS model.  Rather, it
would be more appropriate, keeping in mind research
design limitations, to suggest that, based on pre-term
efficacy levels,  exposing the teachers to the FOCUS
model would be beneficial to the majority of teachers
and it would not be detrimental to any one group of
teachers.  Educational researchers and program
evaluators would reach this conclusion only by using
this three-step analytical procedure.

Summary
   It is important for educational researchers and
program evaluators to increase their understanding of
the interaction effects that may be present in their
data.  We believe that a more in-depth understanding
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of a linear interaction effect between a continuous
independent variable and a dichotomous treatment
variable can be obtained if the educational researcher
or program evaluator follows the three-step analytical
procedure that was presented in this paper.  
   Two points should be noted regarding this three-
step analytical procedure.  First, the use of a multiple
regression model to statistically test the interaction
effect, which is undertaken in Step 1, is an essential
analytical procedure to consider when investigating
the difference between the scores of two groups.  This
test of the homogeneity of the slopes of the
regression lines allows the researcher to not only to
determining if the interaction effect is statistically
significant, but it also permits simultaneous
inferences to be made from the Johnson-Neyman
confidence bands, which are calculated in the third
step of this analytical procedure.  
   Second, the calculation of the intersection point
between the two regression lines in Step 2 could
posssibly provide a researcher or program evaluator
with information that could be used to identify groups
of people who would benefit from being exposed to
the treatment being investigated.   It is important to
realize, however, that the difference between the post-
term scores of the students in the two groups who
have pre-term scores that are located near this
intersection point could be simply due to noise or
random variation.  That is, the post-term scores of the
students in the two groups are statistically
significantly different only for pre-term scores that are
located some distance above and below that
intersection point. The calculation the Johnson-
Neyman confidence limits in Step 3 allows the
researcher or program evaluator to determine the pre-
term scores at which the post-term scores of the two
groups are statistically significantly different.  This
information may lead the researchers or program
evaluators to modify conclusions that were based
solely on information provided by the analytical
techniques contained in the first two steps of this
process.
   As was demonstrated by the analyses of the
personal efficacy and teaching efficacy scores that
were presented in this paper, following the three-step
analytical procedure can provide essential information
not only regarding whether an interaction effect does,
in fact, exist but also with respect to the nature of the
interaction effect.  Such information can be
invaluable to educational researchers and program
evaluators.   
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Appendix
Computer Program for the Calculation of the Johnson-Neyman Confidence Limits.

Data list free/
  ss1  ss2  n1  n2  sumresid  mean1  mean2  slope1  slope2  int1
int2  fcrit
Begin data.
1434.21  1821.59  29  39  2495.58  39.31  38.50  .85  .31  6.36
31.49  3.99
End data.
Compute term1 = (fcrit/(n1+n2-4))*sumresid.
Compute terma = term1*(-1).
Compute a = ((terma)*((1/ss1)+(1/ss2)))+(slope1-slope2)**2.
Compute  b = (term1*((mean1/ss1)+(mean2/ss2)))+((int1-
int2)*(slope1-slope2)).
Compute c = (terma)*(((n1+n2)/(n1*n2))+((mean1**2)/ss1)+
                     ((mean2**2)/ss2))+((int1-int2)**2).
Compute RegionU = ((b*(-1))+(sqrt((b**2)-(a*c))))/a.
Compute RegionL =  ((b*(-1))-(sqrt((b**2)-(a*c))))/a.
List RegionU RegionL.
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Using the World Wide Web: Suggested Applications and
Precautions for Teaching Multiple Linear Regression

Lynne M. Pachnowski and Isadore Newman
University of Akron

The World Wide Web provides an excellent resource of real data that can be used by research methods instructors.  Using this
data in class allows more time for students to spend learning how to write appropriate statistical equations.  This paper
provides two ezamples of multiple linear regression equations that  were written based on data available on the World Wide
Web.  It also provides a number of Internet references for instructors that would be helpful for obtaining real data that can be
applied in a statistics course.

ne of the most important processes  a research
methods instructor can help his/her students
acquire  is the ability to write a good research

question.  It is always beneficial for the instructor to
have real data to use in formulating a question, since
these questions are more likely to be perceived by the
students as practical and applicable.  The World Wide
Web acts as a wonderful source of real data that
instructors and students may access in a quick and
convenient manner.
    Once an instructor and the students have identified
research questions using this data and the instructor
feels that the students are competent in formulating
questions, then the next step is to apply appropriate
statistical models to test these questions.
Implementing this instructional technique reduces the
chance of committing a Type VI error which occurs
when there is inconsistency between the research
question being asked and the research model used to
test it.  (Newman & Newman, 1994).  When the
World Wide Web data is so readily available for
demonstration, the instructor and students are able to
spend far more class time discussing the analytical
questions of which statistical models are appropriate
to apply to the research questions developed.
Therefore,  the students benefit since they are more
likely to be engaged in higher-order problem-solving
activities.
    The following are examples of research questions
derived from World Wide Web data and multiple linear
regression equations  that can be  applied to them.

Examples of Sites and Their Multiple Regression
Applications

•  The Wilmington Institute:  Trial and Settlement
Sciences

http://www.wilmington-institute.com/

    The home page of this web site states that the
institute was established in order to "help trial
lawyers, corporate counsels and governmental
agencies forecast the probable outcome of their
litigation and trials."  By choosing "Jury Talk
Survey", the user is able to select a number of on-line
survey of recent, well-publicized court cases, such as
the O.J. Simpson case or the Timothy McVeigh case.
The survey inquires what the visitor's opinion is
regarding the nature of the case and requests some
demographic information about the visitor.  For
instance the McVeigh questions are:  "Do you believe
Timothy McVeigh was involved in the planning
and/or execution of the Oklahoma City federal
building bombing? and If you answered yes to (1), do
you believe Timothy McVeigh was part of a well
organized and financed, geographically dispersed anti-
government conspiracy?"  The participant is then
asked to identify his/her age group, gender, ethnicity,
and area of residence from a list of possibilities.
Once the results are submitted, updated overall results
in terms of percentages appear on the screen.
    With a data source such as this site, students could
look at the results of a survey (guilty, not guilty,
etc.) and the demographic information of the
respondents to the survey and be encouraged to write
sample research questions.  For example, are there
differences in age, ethnicity, gender, and geographic
region and the verdict given?  Such a question and the
model for it might look like the following:

Is there a profile using age, ethnicity (Black,
Hispanic, Asian, and other), gender and geographic
region (Georeg1, ... , Georeg5) that differentiates
those respondents who respond "guilty" and those
who respond "not guilty"?

O
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Model 1:  y = a0u + a1Age + a2Sex + a3Black +

a4Hisp + a5Asian + other + a7Georeg1 + a8Georeg2

+ a9Georeg3 + a10Georeg4 + a11Georeg5 + a12E1

Model 99:     y = a0u + E2

All the independent variables in Model 1 are binary-
coded (1, 0).
    Looking at the same data, another question that
could be raised could be whether ethnicity accounts
for a significant amount of variance in their
perception of guilt/no guilt over and above age,
gender, and geographic region.  This would be done
by testing Model 1 against Model 2 given below:

Model 2:  y = a0u + a1Age + a2Sex + a3Georeg1 +

a4Georeg2 + a5Georeg3 + a6Georeg4 + a7Georeg5 +

aE3
    One can also test for interaction between pairs of
variables such as age and ethnicity, age and gender, or
gender and ethnicity since examples of addition
models could not be tested.

•  U.S. Census Bureau
http://www.census.gov

    This site is provided by the U.S. Department of
Commerce, Bureau of the Census.  It contains a
wealth of U.S. statistics, state and county statistics,
and links to international census-related databases.
The home page contains, among other items, links to
the current U.S. and world approximated population
counts, current economic indicators, and census
documents.  

   A powerful link for researchers is the "International
Data Base", which can be obtained by clicking
through the path:  "Current U.S. Population Count",
"World", and finally "International Data Base".  The
visitor is then offered three links which offer three
different ways of accessing the data provided.  The
visitor may either look at the data on the screen, load
the data on a spreadsheet, or choose to configure
appearance of the output.  Once the output manner is
selected, the user is then asked to select a statistically-
related table (for instance, "life table values, by sex"),
to select one or more countries from a table, and to
select one or more years or to accept the latest
available year as a default.  The database will return
the requested data or a message stating that the data
was not available if it applies.

    In one instance, we obtained a table containing the
population of Canada by ethnic group and sex and
also the U.S. population by ethnic group and sex.
(After requesting the latest available year for each, the
Canadian data provided was from 1991 and the U.S.
data was from 1980.  Since significant population

changes probably occurred during those years, another
search may want to be done to obtain 1980 data from
Canada or similar data from another country from a
year closer to 1991.)  Data such as this would be
helpful in teaching students how to write regression
equations to test Chi Squares.  A question derived
from the data may be:
    Proportionally, are there more men than women in
the U.S. or Canada?

Model 3 y = a0u + a1Males + E4

Model 99a y = a0u + E5

    In the models above, y = 1 if male, and 0
otherwise.  Also 1 = "from Canada" and 0 otherwise.
By testing Model 3 against Model 99a, we can see if
there is a significant difference in the proportion of
males and females in the U.S. and Canada.  The
student would have to take the data given from the
screen or spreadsheet and recode it in a manner
("zeroes" and "ones") that would be most effective for
the statistical analysis.  Since the data are presented in
aggregated form, the student will have to learn how to
put in the data in individual form from the aggregate.
Also, the student will consequently learn how handle
data that is provided in different formats.  This could
be part of the instructional process.  

    The above examples are only two of the many
World Wide Web sites that can be used to obtain data
that could be used to make examples more realistic.
Many other sites are also available with similar or
even more extensive data than the sites mentioned.
One excellent archive of links to "data and depiction’s
of data from throughout the world" is "Dr. B's Wide
World of Web Data" found at
http://seamonkey.ed.asu.edu/~behrens/siip/webdata
(then choose "Wide World of Web Data) and created
by Dr. John Behrens of Arizona State University.
This site contains thirty-one links to sites that
contain data sets or data-related information.  The data
sets are separated into sixteen categories, including
"Children and Youth", "Demographics", "Education",
and "Social Science -- General".  The page encourages
instructors to use the data for examples in class and to
encourage students to find data that they find
interesting.

Instructional Precautions
    An instructor that chooses to integrate information
of the World Wide Web into a course needs to be
aware of the advantages and disadvantages of using
such a medium.  Because of all the attention the
Internet has received in the media, the advantages --
accessibility of data, student convenience -- may seem
more evident than the disadvantages.  Instructors and
students both must be aware of some of the following
cautions:
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•  Each server hosting a web site only has the
capability of hosting a finite number of users.
Therefore, some sites may not have the capability of
hosting a class of twenty students each attempting to
visit the site at one time.  Therefore, in-class lab time
experiences should be planned so that students have a
variety of sites from which to choose.  If a visit to a
particular site is required, instructors should assume
that the average student may need to make two to
three attempts on different occasions in order to make
a connection.
• While new sites are appearing on the Web
every day, old ones are often neglected.  Sometimes, a
promising link title or URL address may, in fact,
have no file at the end of it.  Furthermore, many sites
containing data may left to become obsolete.  A user
should look for a notation on the page as to when the
page was last updated.
• One of the most important cautions to
students and instructors of research is the format that
"data" can take on the Web.  Although the census site
has data sets that may be downloaded and the
Wilmington site is both interactive and provides
overall results, some sites have a much more limited
interface.  A site that is promoted as a "database" may
only have a search engine interface which keeps the
entire database hidden from the user.  A user may
only view pieces of the database based on the
parameters of the search he/she submits.

    Although these precautions may seem daunting to
some new users, a reasonably proficient Web user can
address these precautions by simply testing each Web
source before a classroom application and creatively
designing classroom assignments involving the Web.

    Despite the precautions of using the Web within a
statistics course, it is still difficult to deny the long-
term advantages of using the Internet data as both a
teaching and research tool.   Among these advantages
is that students are able to gain experiences in
working with a medium that is increasingly more
likely to be a primary source of data in the student's
home and workplace.

    A paper presented at the 1997 Eastern Educational
Research Association's National Meeting related to
this topic can be found at:
  http://junior.apk.net/~jurczyk/eera.html.  
The paper contains links to the sites mentioned above
as well as the following other related sites:

   Government      Resources  :
U.S. Census Bureau

http://www.census.gov
Census reports and links to other federal
government and international agencies offering
statistical reports.

Fedworld
http://www.fedworld.gov
Central location and starting point for finding
U.S. government information.

Government Statistics on the Internet (paper)
http://www.stats.gov.nt.ca/Bureau/General/WW
WPaper.html
Survey of government statistics (Canada, U.S.,
U.K.) available on the Internet.

SEC (Securities and Exchange Commission)
http://www.sec.gov
U.S. government site includes filings by public
companies.

Stat-USA
http://www.stats-usa.gov
Department of Commerce service offering
detailed government statistics-based reports.

   Other      Resources  :
Facts on File

http://www.facts.com
Producer of comprehensive studies of modern
issues.  Reports include some survey results with
statistics.

The Gallup Organization
http://www.gallup.com
Provider of public opinion poll data.

The Harris Poll
http://techsetter.com/harris/html/home.html
Contains the latest Harris poll and comparisons
of the previous poll's telephone responses with
Internet responses.

CollegeNet
http://www.collegenet.com/
A directory of colleges and universities divided
into various categories and search parameters.

Texas Lotto
http://crashdummy.iglobal.net/lotto
The results of the latest Texas Lotto drawing and
the results of the drawing over several years.

References

Braun, E.  (1994).  The Internet Directory.  New
York:  Ballantine Books.

Ellsworth, Jill H.  (1994).  Education on the Internet:
A Hands-On Book of Ideas, Resources, Projects,
and Advice.  Indianapolis, IN:  Sams Publishing.

Hahn, H. and Stout, R.  (1994).  The Internet Yellow
Pages.  New York:  Osborne McGraw-Hill.

Newman, I. and Newman, C.  (1994).  Conceptual
Statistics for Beginners.  Lanham, Maryland:
University Press of America.

Place, R. Dimmler, K. Powell, T.  (1996).
Educator's Internet Yellow Pages.  Englewood
Cliffs, N.J.:  Prentice-Hall.



Webster, et al.                                                                              -28-                 Multiple Linear Regression Viewpoints, Volume 24

Calculating Missing Student Data in Hierarchical Linear
Modeling:  Uses and Their Effects on School Rankings

Timothy H. Orsak     Robert L. Mendro     Dash Weerasinghe
Dallas Public Schools

In the age of student accountability, public school systems must find procedures for identifying effective schools,
classrooms and teachers that help students continue to excel academically.  As a result, researchers have been
modeling schools to calculate achievement indicators that will withstand not only statistical review but political
criticism.  One of the numerous issues encountered in modeling is the management of missing student data.  This
paper addresses three techniques that elucidate the effects of absent data and highlight consequences on school
achievement indicators.  The outcomes of each technique are estimated data and School Effectiveness Indices (SEIs).
A set of criteria is established from an original data set to determine a baseline to which the analyses will be
compared in determining the most appropriate approach in estimating missing data..

ompleteness of any data base should be
considered a rarity when managing educational
data.  Numerous factors, not limited to student

lack of attendance, data misinterpretation, and
mistakes in data entry, all affect the accuracy of any
educational database.  While incorrect data scores are
difficult, if not impossible, to detect, missing scores
are readily identifiable.  Effective schools within the
Dallas Public Schools have been identified by
statistical methodologies for several years.  Many
years of analyses have deduced the accuracy of
statistical methods’ rankings of schools within the
district.  Yet these analyses utilized only student data
that was complete for both post-test and pre-test
years.  On average, between 8% and 12% of student
data cannot be included in yearly calculations due to at
least one year of missing test scores.  However,
attempts to use all available data while not
introducing extraneous trends could more accurately
help identify effective schools.  In this paper, the
question of best estimation of absent post-test data is
addressed.

The current problem faced in the
computation of school effectiveness rankings relates
to missing student test data.  How could we
effectively rank the school of interest without
complete data for its constituents?  Several
publications have addressed treatment of missing
scores in data sets through the use of inference,
replacement of missing values with probable values,
etc.  One example is Sanders, et.al. (1993), which
implemented a sparse matrix mixed modeling
program to predict missing student values.  Yet with
the typical school district not having the resources to
implement such a program, what would be the most
effective and efficient method for school analysis?
Dallas Public Schools has addressed the missing data

issue by not including it in any analysis, thus
eliminating possible influences.

The analysis comprised of 5197 6th grade
students who had complete raw data scores for the
Iowa Test of Basic Skills mathematics and reading
tests for years 1995 and 1996 and student
characteristics of ethnicity, English proficiency
status, census poverty data, census college data, and
gender.  To analyze the effects of missing data,
specific percentages of the post-test scores from the
original data set were randomly deleted which
produced reduced data sets.  The percentages of data
deleted in this study were 1%, 2%, 5%, 10%, and
20%.  The reduced data sets were then evaluated by
Scientific Software’s    HLM2L    hierarchical linear
modeling software and by MicroSofts’ Excel’s
Ordinary Least Squares software program to produce
regression coefficients for each school.  The deleted
post-test scores were then estimated by HLM, by
OLS and by the average post-test score per school.
The three new data sets composed of HLM estimates
of missing data, OLS estimates of missing data, and
average post-test data per school and the original data
set (non-deleted scores), were then reprocessed by
HLM and school effectiveness indices (SEIs)
generated.  The SEIs were calculated from HLM as
the estimated Bayesian (EB) residuals for the school
level intercept rescaled to a mean of 50 and standard
deviation of 10.  The EB residual reflects the overall
achievement of the students within a school.  The
SEIs from the new data sets were compared to the
original data set’s SEI scores whereas the estimated
post-test scores were compared to the actual scores
that were deleted.  This process was carried out for
three models of varying complexity.

C
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Investigation and Procedure

This study expands previous studies of HLM to
investigate the effects of missing data through the use
of HLM models in ranking 118 elementary schools
from the Dallas Public Schools at the sixth grade
(Webster, et. al., 1994, 1995; Mendro, et. al., 1994,
1995; Orsak, et. al., 1996).  Ten school
characteristics variables were available for each
school.  To eliminate undue influences from varying
school sizes, the original 5197 student data set was

randomly reduced such that exactly 30 students were
included per school.  This created a new, reduced data
file which contained 2610 students within 87 schools.
Initial analyses for this reduced data set explored OLS
and HLM estimates from three models, each more
complex than the previous.  Then all 5197 students
were used in a fourth analysis.  The initial
exploratory analysis involved simple data analysis for
the reduced data set.     ****

Table 1.  Student Characteristic Correlations

GEN LUN BLK HIS LEP INC POV COL R-95 M-95 M-96
GEN 1.000
LUN -.0122 1.000
BLK .0138 .1112 1.000
HIS -.0278 .0827 -.6043 1.000
LEP .0193 .1390 -.3049 -.1806 1.000
INC -.0090 .3407 .2046 .0418 .0215 1.000
POV -.0253 .2903 .1530 .0236 .0634 .5804 1.000
COL -.0172 .3461 -.0143 .2433 .1412 .6135 .3453 1.000
R-95 .0951 .2282 .1992 -.0997 .1086 .1863 .1369 .2061 1.000
M-95 .0169 .1747 .1451 -.0750 .0907 .1682 .1220 .1761 .6112 1.000
M-96 .0354 .1763 .1303 -.0522 .0966 .1566 .1131 .1901 .5605 .7857 1.000

** GEN is Gender, LUN is Free Lunch Status, BLK represents Black, HIS represents Hispanic, LEP is Limited
English Proficient, INC is average block income, POV is percent block poverty, COL is percent block college, R-
95 is ITBS Reading for 1995, M-95 is ITBS Mathematics for 1995, M-96 is ITBS Mathematics for 1996.

Table 2.  Student Characteristic Summary
N MEAN SD MIN MAX

GEN 2610 1.54 .50 1 2
LUN 2610 1.28 .45 1 2
BLK 2610 1.50 .5 1 2
HIS 2610 1.74 .44 1 2
LEP 2610 1.92 .28 1 2
INC 2610 28139.44 14488.61 1290 185017.00
POV 2610 74.73 20.88 0 100
COL 2610 9.15 13.12 0 100
R-95 2610 11.91 4.42 1 22
M-95 2610 34.95 8.66 11 54
M-96 2610 37.83 9.23 9 59

**  See Table 1 Legend

The models used for the prediction of deleted post-test
data are as follows.  Analyses began with a basic
model for prediction and increased in complexity.

The models with no student level variables and no
school level variables:

Model 1A (HLM):
Level 1:

MATH96 ik k k= +β β0 1 MATH95 ik + rik

Level 2:

β0k   =  γ 00   +  u k0

β1k   =  γ 10   +  u k1
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1. It must be value-added.

2. It must include multiple outcome variables.

3. Schools must only be held accountable for
students who have been exposed to their
instructional program (continuously enrolled
students).

4. It must be fair.  Schools must derive no
particular advantage by starting with high-
scoring or low-scoring students, minority or
white students, high or low socioeconomic
level students, or limited English proficient or
non-limited English proficient students.  In
addition such factors as student mobility,
school overcrowding, and staffing patterns over
which the schools have no control must be
taken into consideration.

5. It must be based on cohorts of students, not
cross-sectional data.

Within the five aforementioned parameters, a
number of statistical models are possible.  The two
most widely cited approaches in the literature involve
various uses of basic ordinary least squares regression
techniques (OLS regression) (Aiken and West, 1991;
Bano, 1985; Felter and Carlson, 1985; Kirst, 1986;
Klitgard and Hall, 1973; McKenzie, 1983; Millman,
1981; Saka, 1984) or the use of a variety of
hierarchical linear models (HLM) (Bryk, et.al., 1988;
Bryk and Raudenbush, 1992; Bryk and Thum, 1996;
Dempster, Rubin and Tsutakawa, 1981; Elston and
Grizzle, 1962; Goldstein, 1987; Henderson, 1984;
Laird and Ware, 1982; Mason, Wong, and Entwistle,
1984; Rosenberg, 1973).

This study is the sixth in a series of studies
conducted in the Dallas Independent School District
over a period of eight years.  All models addressed in
these studies have been designed to isolate the effect
of a given school’s or teacher’s practices on important
student outcomes.  The school effect is conceptualized
as the difference between a given student’s
performance in a particular school and the
performance that would have been expected if that
student had attended a school with similar context but
with practice of average effectiveness.  The teacher
effect is conceptualized similarly at the teacher level.
The results of previous studies have suggested:

• Utilizing basic OLS regression models
with individual student growth curves and
no demographic variables produced results

that were uncorrelated with student level
demographic variables and slightly
correlated with school level demographic
variables but not with pretest levels
(Webster and Olson, 1988).

• Utilizing basic OLS regression models
with school level variables produced
results that were unreliable and that were
correlated with student level demographic
variables and student level pretest scores.
Too much important information is lost
in this process (Mendro and Webster,
1993).

• Utilizing two stage OLS regression
models, the first stage removing the
effects of student demographic variables
from both the pretest and posttest
measures, produced results that were
uncorrelated with student pretest scores and
student level demographic variables and
only minimally correlated with school
level demographic variables (Webster,
Mendro, and Almaguer, 1994).  These
models are discussed later in this paper.

• Utilizing student based two-stage OLS
regression models that accounted for first
and second order interactions among basic
demographic variables produced results at
the school level that were very reliable,
that correlated very highly with those
produced by two-stage, two level-HLM
(≥.97), and that were uncorrelated with
student and school level demographic
variables and pretest scores.  It was noted,
however, that adding school level variables
as conditioning variables in HLM drove
the correlations with school level variables
to absolute zero (Webster, Mendro,
Bembry, and Orsak, 1995).

• Utilizing basic unadjusted gain scores to
rank schools produced results that were not
highly correlated with results produced by
either OLS student-level regression models
or two-level HLM (<.75).  Further, gain
models produced results that were
correlated with some student and school
level demographic variables and with
pretest score.  Using straight NCE scores
to rank schools produced results that
correlated poorly with the results obtained
from the OLS and HLM models (<.55)
and were highly correlated with both
student level and school level demographic
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variables as well as pretest score (Webster,
Mendro, Bembry, and Orsak, 1995).

• Utilizing student based two-stage OLS
regression models that accounted for first
and second order interactions among basic
demographic variables produced results
that were very close to those produced by
two-stage, two-level HLM at the school
level and, when adjusted for shrinkage,
produced results at the teacher level that
correlated very highly with the results of
two-level and three-level HLM models
(≥.90).  Most models accounted for more
than seventy percent of the variance in
student achievement in reading and
mathematics and produced extremely
consistent results.  Correlations of results
with important school, teacher, and
student level contextual variables and with
pre-score characteristics were negligible for
all models (Webster, Mendro, Orsak, and
Weerasinghe, 1996).

In a recent thought-provoking critique of the Dallas
models, Thum and Bryk (1997) raised some questions
that were responded to in a response to Thum and
Bryk that will be published in an upcoming book on
teacher evaluation that is edited by Jason Millman
(1997).  This study further addresses the points raised
by Thum and Bryk as well as consolidates previous
research by using only the best models from OLS
regression and HLM for comparison purposes.  The
major objective of this study is to determine the most
reliable and efficient methodology for identifying
effective schools and teachers.

Except for the original Webster and Olson (1988)
study, all other Dallas studies have used only
elementary grades as their samples.  There are a large
number of elementary schools in the Dallas Public
Schools (≥125, depending on the grade studied).  This
study utilizes sixth and eighth grades in an effort to
ensure that the number of schools does not
significantly effect the results.  (There are 127
schools with sixth grades and only 26 with eighth
grades.)  In order to keep the study simple, the only
outcome variable used is 1996 Iowa Tests of Basic
Skills Reading (ITBS) and the only cognitive
measures predictor variables are ITBS Reading and
ITBS Mathematics tests.  The actual system for
which these equations are used includes multiple
outcome and predictor variables and is described in
detail in a companion paper by Webster, Mendro,
Bembry, and Bearden (1997).

This study investigates a number of methodological
issues related to the use of various mathematical

models for estimating school and teacher effect.  The
Thum and Bryk (1997) concerns are addressed as well
as a number of other issues related to the effectiveness
of various models.  The major areas of investigation
include:

1. Is there any significant difference between results
produced by a two-stage model as opposed to
including all relevant demographic and cognitive
measures in a one-stage equation?  The authors
have always believed that there is no practical
difference.  Thum and Bryk suggested that the
two stage process may be less reliable because
residuals from a set of residuals are unreliable.

2. Is there a significant difference between results
produced by assuming random slopes versus fixed
slopes at the second and third levels in HLM?
This question is also related to the two-stage
questions since with complex data sets one
generally cannot solve many one-stage HLM
models assuming random slopes.  If one assumes
fixed slopes, the HLM algorithms generally will
solve the equations.

3. Does a three-level HLM that uses student gain
scores as the outcome variable with no school
level conditioning variables and limited student
level conditioning variables, similar to that
proposed by Bryk and Thum (1996), produce
results that are comparable to those produced by
similar status-based models?  Status-based
models are models that do not utilize gain scores
as the basic unit of analysis and include all other
models discussed in this paper.

4. How free from bias are the estimates relative to
important school, teacher, and student contextual
variables?

5. How free from bias are the estimates relative to
pretest scores?

6. Given the complexity of the three-level HLM
model in estimating teacher effect, particularly in
terms of data requirements, can the results
produced by a three-level HLM model be validly
approximated through the use of a two-level
HLM-model with a shrinkage adjustment?

7. Can a longitudinal student growth curve approach
to predicting school and teacher effect produce
bias free results without specifically addressing
student, teacher, and school contextual variables?

Method

Sample
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The samples used in this study consisted of all
students who were enrolled and tested in the Dallas
Public Schools in grade 5 in 1995 and grade 6 in
1996; in grade 7 in 1995 and grade 8 in 1996; and, in
the multi-year longitudinal studies, students who were
enrolled and tested in the Dallas Public Schools in
grade 2 in 1992, grade 3 in 1993, grade 4 in 1994,
grade 5 in 1995, and grade 6 in 1996; and in grade 4
in 1992, grade 5 in 1993, grade 6 in 1994, grade 7 in
1995, and grade 8 in 1996.  All samples represent
longitudinal cohorts of real students.

Instrumentation

The instrumentation used for the study was the
Iowa Test of Basic Skills Reading and Mathematics
subtests.  Raw scores were the unit of analysis.
Reading was the only criterion variable used.

School Effect

Fifteen different OLS regression and HLM models
were investigated to determine their reliability and
appropriateness for measuring school effect.  Figure 1
contains descriptions of these models.  The numbers
used to describe the models in this section are from
the numbers associated with each model in Figure 1.
Model 1, for example, is Basic OLS regression as
described in Figure 1.  Each model was investigated
in terms of its efficiency of prediction; the reliability
of school ranks produced; the amount of variance
accounted for; the amount of bias relative to
important school, classroom and students contextual
variables; and, the amount of bias relative to pretest
scores.  All comparisons are in terms of the
effectiveness indices produced by each of the models.
Correlations that appear in later comparisons in the
results section are correlations between the various
estimates of effect produced by the various models.

   Student level variables included in a number of the
OLS regression and HLM models were:

Yij = Outcome variable of interest for each student i
in school j.
X1ij= Black English Proficient Status (1 if black, 0
otherwise).
X2ij= Hispanic English Proficient Status (1 if
Hispanic, 0 otherwise).
X3ij= Limited English Proficient Status (1 if LEP, 0
otherwise).
X4ij= Gender (1 if male, 0 if female).
X5ij= Free or Reduced Lunch Status (1 if subsidized,
0 otherwise).

X6ij= Block Average Family Income.
X7ij= Block Average Family Education.
X8ij= Block Average Family Poverty Level.
Xkij= Indicates the variable k of i-th student in school
j for i = 1,2, ..., Ij and j = 1, 

2, ..., J.

Classroom level variables included in a number
of the HLM models were:

T1j= Classroom Mobility.
T2j= Classroom Overcrowdedness.
T3j= Classroom Average Family Education.
T4j= Classroom Average Family Education.
T5j= Classroom Average Family Poverty Index.
T6j = Classroom Percentage on Free or
Reduced Lunch.
T7j= Classroom Percentage Minority.
T8j= Classroom Percentage Black.
T9j= Classroom Percentage Hispanic.
T10j= Classroom Percentage Limited English
Proficient.

School level variables included in a number of
the HLM models were:

W1j= School Mobility.
W2j= School Overcrowdedness.
W3j= School Average Family Education.
W4j= School Average Family Education.
W5j= School Average Family Poverty Index.
W6j= School Percentage on Free or Reduced Lunch.
W7j= School Percentage Minority.
W8j= School Percentage Black.
W9j= School Percentage Hispanic.
W10j= School Percentage Limited English Proficient.

Predictor and Criterion variables included in various
models were:

   Criterion      Variables  

ITBS_RES_R_96ij =1996 ITBS Residual Reading score from
fairness stage calculated as an OLS
residual for student i in school j.

ITBS_R_96 ij    =1996 ITBS Reading Score.

ITBS_GAIN_R96_R95 ij = ITBS Gain Score

for 1995 to 1996.
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  Predictor      Variable  

ITBS_RES_R_95ij  = 1995 ITBS Residual Reading score
from fairness stage calculated as an OLS residual for
student i in school j.

ITBS_RES_M_95ij  = 1995 ITBS Residual Mathematics
score from fairness stage calculated as an OLS
residual for student i in school j.

ITBS_RES_R_94ij  = 1994 ITBS Residual Reading score
from fairness stage calculated as an OLS residual for
student i in school j.

ITBS_RES_M_94ij  = 1994 ITBS Residual Mathematics
score from fairness stage calculated as an OLS
residual for student i in school j.

ITBS_RES_R_93ij  = 1993 ITBS Residual Reading score
from fairness stage calculated as an OLS residual for
student i in school j.

ITBS_RES_M_93ij  = 1993 ITBS Residual Mathematics
score from fairness stage calculated as an OLS
residual for student i in school j.

ITBS_RES_R_92ij  = 1992 ITBS Residual Reading score
from fairness stage calculated as an OLS residual for
student i in school j.

ITBS_RES_M_92ij  = 1992 ITBS Residual Mathematics
score from fairness stage calculated as an OLS
residual for student i in school j.

ITBS_R_95ij            = 1995 ITBS Reading Score for
student i in school j.

ITBS_M_95ij           = 1995 ITBS Mathematics Score for
student i in school j.

ITBS_R_94ij            = 1994 ITBS Reading Score for
student i in school j.ITBS_M_94ij           = 1994
ITBS Mathematics Score for student i in school j.

ITBS_R_93ij            = 1993 ITBS Reading Score for
student i in school j.

ITBS_M_93ij           = 1993 ITBS Mathematics Score for
student i in school j.

ITBS_R_92ij            = 1992 ITBS Reading Score for
student i in school j.

ITBS_M_92ij           = 1992 ITBS Mathematics Score for
student i in school j.

The comparisons of results produced by
Models 1 and 2 address whether or not there are

differences between the effectiveness statistics
produced by basic OLS Regression and basic two-
level HLM.  The HLM Model assumes fixed slopes
at the conditioning level since the HLM algorithms
could not solve these equations if random slopes were
assumed.  Appropriate equations for Model 1 and 2
follow:

   Model     1  

ITBS_R_96ij = Λ0 + Λ1X1ij + Λ2X2ij + Λ3X3ij +
Λ4X4ij + Λ5X5ij + Λ6X6ij + Λ7X7ij +
Λ8X8ij + Λ9(X1ijX4ij) + Λ10(X2ijX4ij) +
Λ11(X3ijX4ij) + Λ12(X1ijX5ij) +
Λ13(X2ijX5ij) + Λ14(X3ijX5ij) +
Λ15(X4ijX5ij) + Λ16(X1ijX4ijX5ij) +
Λ17(X2ijX4ijX5ij) + Λ18(X3ijX4ijX5ij) +
Λ19ITBS_R_95ij + Λ20ITBS_M_95ij + εij

SEIj  =  

ε ij
i

N

j

j

N
=
∑

1

   Model 2

Level 1:

ITBS_R_96ij = β0j + β1jX1ij + β2jX2ij + β3jX3ij +
β4jX4ij + β5jX5ij + β6jX6ij + β7jX7ij +
β8jX8ij + β9j(X1ijX4ij) + β10j(X2ijX4ij) +
β11j(X3ijX4ij) + β12j(X1ijX5ij) +
β13j(X2ijX5ij) + β14j(X3ijX5ij) +
β15j(X4ijX5ij) + β16j(X1ijX4ijX5ij) +
β17j(X2ijX4ijX5ij) + β18j(X3ijX4ijX5ij) +
β19jITBS_R_95ij + β20jITBS_M_95ij +
δij

where

δij ~
iid

 N(0,σ2
).

Level 2:

β0j = γ00 + u0j
βkj = γk0for k = 1, 2, ..., 20

E[u0j] = 0, Var[u0j] = τ2
, and u0j ⊥  δij

SEIj
*

  =  u0j
*
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Models 3, 4, and 5 address a number of issues.
First, the comparison of the results obtained from
Models 1 and 3, as well as Models 2 and 4, will
begin to address the one-stage versus two-stage issue.
(This issue will be further addressed when the indices
produced by Models 7 and 8 as well as Models 11 and
12 are compared.)  The comparison of the results
produced by Models 4 and 5 will address the fixed
versus random slopes issue.  Appropriate equations
for Models 3, 4, and 5 are as follows:

   Model 3

STAGE 1:

Yij = Λ0 + Λ1X1ij + Λ2X2ij + Λ3X3ij +
Λ4X4ij + Λ5X5ij + Λ6X6ij + Λ7X7ij +
Λ8X8ij + Λ9(X1ijX4ij) + Λ10(X2ijX4ij) +
Λ11(X3ijX4ij) + Λ12(X1ijX5ij) +
Λ13(X2ijX5ij) + Λ14(X3ijX5ij) +
Λ15(X4ijX5ij) + Λ16(X1ijX4ijX5ij) +
Λ17(X2ijX4ijX5ij) + Λ18(X3ijX4ijX5ij) +
rij

where Yij is ITBS_R_96ij, ITBS_R_95ij, and
ITBS_M_95ij.  These will produce
ITBS_RES_R_96ij, ITBS_RES_R_95ij, and
ITBS_RES_M_95ij, respectively.

STAGE 2:

ITBS_RES_R_96ij = β0 +
β1ITBS_RES_R_95ij +
β2ITBS_RES_M_95ij + εij

SEIj  =  

ε ij
i

N

j

j

N
=
∑

1

   Model 4  

STAGE 1:

Yij =Λ0 + Λ1X1ij + Λ2X2ij + Λ3X3ij +
Λ4X4ij + Λ5X5ij + Λ6X6ij + Λ7X7ij +
Λ8X8ij + Λ9(X1ijX4ij) + Λ10(X2ijX4ij) +
Λ11(X3ijX4ij) + Λ12(X1ijX5ij) +
Λ13(X2ijX5ij) + Λ14(X3ijX5ij) +
Λ15(X4ijX5ij) + Λ16(X1ijX4ijX5ij) +

Λ17(X2ijX4ijX5ij) + Λ18(X3ijX4ijX5ij) +
rij

STAGE 2:

Level 1:

ITBS_RES_R_96ij = β0j +
β1jITBS_RES_R_95ij +
β2jITBS_RES_M_95ij + δij

where

δij ~
iid

 N(0,σ2
).

Level 2:

βkj = γk0 + ukj for k = 0, 1, 2,

where E[ukj] = 0, Var-Cov[ukj] = T, and ukj ⊥  δij.

SEIj
*

  =  u0j
*

   Model 5  

STAGE 1:

Yij = Λ0 + Λ1X1ij + Λ2X2ij + Λ3X3ij + Λ4X4ij +
Λ5X5ij + Λ6X6ij + Λ7X7ij + Λ8X8ij +
Λ9(X1ijX4ij) + Λ10(X2ijX4ij) +
Λ11(X3ijX4ij) + Λ12(X1ijX5ij) +
Λ13(X2ijX5ij) + Λ14(X3ijX5ij) +
Λ15(X4ijX5ij) + Λ16(X1ijX4ijX5ij) +
Λ17(X2ijX4ijX5ij) + Λ18(X3ijX4ijX5ij) +
rij

STAGE 2:

Level 1:

ITBS_RES_R_96ij = β0j + β1jITBS_RES_R_95ij +
β2jITBS_RES_M_95ij + δij

Level 2:

β0j = γ00 + u0j
βkj = γk0 for k = 1, 2.

E[u0j] = 0, Var[u0j] = τ2
, and u0j ⊥  δij

SEIj
*

  =  u0j
*
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Models 6, 7, and 8 move the comparisons to a
higher level of sophistication.  Utilizing full models
proven in previous studies, the Model 6 versus Model
7 comparison again addresses the fixed versus random
slopes issue.  The choice of fixed versus random
slopes depends on the investigators’ beliefs about the
sources of variation in the slopes.  The slopes are
modeled using a number of school parameters at the
second level.  In the full model these include the
school level variables listed under the conditioning
variables column in Figure 1.  To the extent that
slopes vary as a result of these factors, their use
adjusts the differences.  Under these circumstances, a
random model would control for the effects of
possible interactions of concomitant variables in
specific school settings.  If there was evidence of an
interaction of school effect with the conditioning
variables, the fixed model would be preferable since
the use of a random model would mask these effects.
The Model 8 comparison with the results of Model 7
addresses the one versus two-stage issue.  Appropriate
equations for Models 6, 7 and 8 are as follows:

   Model 6  

STAGE 1:

Yij = Λ0 + Λ1X1ij + Λ2X2ij + Λ3X3ij + Λ4X4ij +
Λ5X5ij + Λ6X6ij + Λ7X7ij + Λ8X8ij +
Λ9(X1ijX4ij) + Λ10(X2ijX4ij) + Λ11(X3ijX4ij)
+ Λ12(X1ijX5ij) + Λ13(X2ijX5ij) +
Λ14(X3ijX5ij) + Λ15(X4ijX5ij) +
Λ16(X1ijX4ijX5ij) + Λ17(X2ijX4ijX5ij) +
Λ18(X3ijX4ijX5ij) + rij

STAGE 2:

Level 1:

ITBS_RES_R_96ij = β0j + β1jITBS_RES_R_95ij +
β2jITBS_RES_M_95ij + δij

Level 2:

βkj = γk0 + γk1W1j + γk2W2j + . . . + γk10W10j
+ ukj

for k = 0, 1, 2.

E[ukj] = 0, Var-Cov[ukj] = T, and ukj ⊥  δij

SEIj
*

  =  u0j
*

   Model 7
STAGE 1:

Yij = Λ0 + Λ1X1ij + Λ2X2ij + Λ3X3ij + Λ4X4ij +
Λ5X5ij + Λ6X6ij + Λ7X7ij + Λ8X8ij +
Λ9(X1ijX4ij) + Λ10(X2ijX4ij) + Λ11(X3ijX4ij)
+ Λ12(X1ijX5ij) + Λ13(X2ijX5ij) +
Λ14(X3ijX5ij) + Λ15(X4ijX5ij) +
Λ16(X1ijX4ijX5ij) + Λ17(X2ijX4ijX5ij) +
Λ18(X3ijX4ijX5ij) + rij

STAGE 2:

Level 1:

ITBS_RES_R_96ij = β0j +
β1jITBS_RES_R_95ij + β2jITBS_RES_M_95ij
+ δij

Level 2:

β0j γ00 + γ01W1j + γ02W2j + . . . + γ010W10j +
u0j

βkj = γk0 + γk1W1j + γk2W2j + . . . + γk10W10j
for k = 1, 2.

E[u0j] = 0, Var[u0j] = τ2
, and u0j ⊥  δij

SEIj
*

  =  u0j
*

   Model 8

Level 1:

ITBS_R_96ij = β0j + β1jX1ij + β2jX2ij + β3jX3ij +
β4jX4ij + β5jX5ij + β6jX6ij + β7jX7ij +
β8jX8ij + β9j(X1ijX4ij) + β10j(X2ijX4ij) +
β11j(X3ijX4ij) + β12j(X1ijX5ij) +
β13j(X2ijX5ij) + β14j(X3ijX5ij) +
β15j(X4ijX5ij) + β16j(X1ijX4ijX5ij) +
β17j(X2ijX4ijX5ij) + β18j(X3ijX4ijX5ij) +
β19jITBS_R_95ij + β20jITBS_M_95ij + δij

where

δij ~
iid

 N(0,σ2
).

Level 2:

β0j = γ00 + γ01W1j + γ02W2j + . . . + γ010W10j
+ u0j

βkj = γk0 + γk1W1j + γk2W2j + . . . + γk10W10j
for k = 1, 2, ..., 20.
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E[u0j] = 0, Var[u0j] = τ2
, and u0j ⊥  δij

SEIj
*

  =  u0j
*

Models 9, 10, 11, and 12 utilize three years of data
to predict a fourth.  They were designed to compare
the results of these analyses with the results of
Models 1 through 8 that use only one year of
prediction in conjunction with a wealth of contextual
variables.  Models 9 and 10 do not utilize any
contextual variables but rather depend on individual
student growth histories to account for the variance
normally associated with contextual variables.
Models 11 and 12 add contextual variables to the
equations, Model 11 at the conditioning level and
Model 12 at both the student and conditioning levels.
Appropriate equations for Models 9 through 12
follow:

   Model 9

ITBS_R_96ij = Λ0 + Λ1ITBS_R_95ij +
Λ2ITBS_M_95ij +
Λ3ITBS_R_94ij +
Λ4ITBS_M_94ij +
Λ5ITBS_R_93ij +
Λ6ITBS_M_93ij + εij

SEIj = 

ε ij
i

N

j

j

N
=
∑

1

   Model 10  

Level 1:

ITBS_R_96ij = β0 + β1ITBS_R_95ij +
β2ITBS_M_95ij +
β3ITBS_R_94ij +
β4ITBS_M_94ij +
β5ITBS_R_93ij +
β6ITBS_M_93ij + δij

Level 2:

β0j = γ00 + u0j
βkj = γk0

for k = 1, 2, ..., 6.

E[u0j] = 0, Var[u0j] = τ2
, and u0j ⊥  δij

SEIj
*

  =  u0j
*

   Model 11  

Level 1:

ITBS_R_96ij = β0j + β1jX1ij + β2jX2ij +
β3jX3ij + β4jX4ij + β5jX5ij +
β6jX6ij + β7jX7ij + β8jX8ij +
β9j(X1ijX4ij) +
β10j(X2ijX4ij) +
β11j(X3ijX4ij) +
β12j(X1ijX5ij) +
β13j(X2ijX5ij) +
β14j(X3ijX5ij) +
β15j(X4ijX5ij) +
β16j(X1ijX4ijX5ij) +
β17j(X2ijX4ijX5ij) +
β18j(X3ijX4ijX5ij) +
β19jITBS_R_95ij +
β20jITBS_M_95ij +
β21ITBS_R_94ij +
β22ITBS_M_94ij +
β23ITBS_R_93ij +
β24ITBS_M_93ij + δij

where

δij ~
iid

 N(0,σ2
).

Level 2:

β0j = γ00 + γ01W1j + γ02W2j + .
. . + γ010W10j + u0j

βkj = γk0 + γk1W1j + γk2W2j + .
. . + γk10W10j

for k = 1, 2, ..., 24.

E[u0j] = 0, Var[u0j] = τ2
, and u0j ⊥  δij

SEIj
*

  =  u0j
*

   Model 12  

STAGE 1:
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Yij = Λ0 + Λ1X1ij + Λ2X2ij + Λ3X3ij + Λ4X4ij +
Λ5X5ij + Λ6X6ij + Λ7X7ij + Λ8X8ij +
Λ9(X1ijX4ij) + Λ10(X2ijX4ij) + Λ11(X3ijX4ij)
+ Λ12(X1ijX5ij) + Λ13(X2ijX5ij) +
Λ14(X3ijX5ij) + Λ15(X4ijX5ij) +
Λ16(X1ijX4ijX5ij) + Λ17(X2ijX4ijX5ij) +
Λ18(X3ijX4ijX5ij) + rij

where Yij is ITBS_R_96ij, ITBS_R_95ij,
ITBS_M_95ij, ITBS_R_94ij, ITBS_M_94ij,
ITBS_R_93ij, ITBS_M_93ij, ITBS_R_92ij, and
ITBS_M_92ij.  These will produce
ITBS_RES_R_96ij, ITBS_RES_R_95ij,
ITBS_RES_M_95ij, ITBS_RES_R_94ij,
ITBS_RES_M_94ij, ITBS_RES_R_93ij and
ITBS_RES_M_93ij, respectively.

STAGE 2:

Level 1:

ITBS_RES_R_96ij = β0j +
β1jITBS_RES_R_95ij + β2jITBS_RES_M_95ij
+ β3jITBS_RES_R_94ij +
β4jITBS_RES_M_94ij + β5jITBS_RES_R_93ij
+ β6jITBS_RES_M_93ij +δij

where

δij ~
iid

 N(0,σ2
).

Level 2:

β0j = γ00 + γ01W1j + γ02W2j + . . . + γ010W10j
+ u0j

βkj = γk0 + γk1W1j + γk2W2j + . . . + γk10W10j

for k = 1, 2, ..., 6.

E[u0j] = 0, Var[u0j] = τ2
, and u0j ⊥  δij

SEIj
*

  =  u0j
*

Model 13 is a three level HLM gain model
similar to the model proposed by Bryk and Thum
(1996).  It is compared to Models 14 and 15, models
that are comparable to Model 13 except that they are
status models, not gain score models.  (A status
model is a model that uses actual test scores or
residuals of actual test scores rather than gain scores
as the basic unit of analysis.  All Models in this
paper except Model 13 are status models.)
Appropriate equations for Models 13, 14, and 15
follows:

   Model 13  

Level 1:

ITBS_GAIN_R95_R96ijk = π0jk +
π1jkITBS_R_95ijk + π2jkITBS_M_95ijk +
π3jkITBS_R_94ijk + π4jkITBS_M_94ijk +
π5jkITBS_R_93ijk + π6jkITBS_M_93ijk+ εijk

where εijk ~
iid

 N(0, 1) and i, j both refer to the same
student in school k.

Level 2:

πpjk = βp0k + βp1kBLACKjk + βp2kHISPANICjk
+ βp3kGENDERjk + rpjk

where rpjk ~
iid

 N(0,T) and rpjk ⊥  εijk.

Level 3:

βp0k = γ00k + up0k
βpqk = γp0k for q = 1, 2, 3

E[up0k] = 0, Var[up0k] = ∆2
, up0k ⊥  rpjk and up0k

⊥  εijk.

SEIk
*

  =  u00k
*

   Model 14  

STAGE 1:

Yij = Λ0 + Λ1BLACKij + Λ2HISPANICij +
Λ3GEND Rij + εij

where Yij is ITBS_R_96ij, ITBS_R_95ij,
ITBS_M_95ij, ITBS_R_94ij, ITBS_M_94ij,
ITBS_R_93ij and ITBS_M_93ij..

STAGE 2:

Level 1:

ITBS_RES_R_96ij = β0j + β1j
ITBS_RES_R_95ij + β2jITBS_RES_M_95ij +
β3jITBS_R S_R_94ij + β4jITBS_RES_M_94ij
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+ β5jITBS_RES_R_93ij +
β6jITBS_RES_M_93ij +δij

Level 2:
β0j = γ00 + u0j
βkj = γk0 for k = 1, 2, ..., 6.

where E[uij] = 0, Var[u0j] = τ2
, and u0j ⊥  δij

SEIk
*

  =  u00k
*

   Model 15  

Level 1:

ITBS_R_96ij = β0j + β1jBLACKij +
β2jHISPANICij + β3jGENDERij +
β4jITBS_R_95ij + β5jITBS_M_95ij +
β6jITBS_R_94ij + β7jITBS_M_94ij +
β8jITBS_R_93ij + β9jITBS_M_93ij + δij

where

δij ~
iid

 N(0, σ2
).

Level 2:

β0j = γ00 + u0j
βkj = γk0 for k = 1, 2, ..., 9.

E[u0j] = 0, Var[u0j] = τ2
, and u0j ⊥  δij

SEIj
*

  =  u0j
*

The results produced by the OLS regression models
(Models 1, 3, 9) were adjusted for shrinkage by the
following procedure:
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The shrinkage coefficient is,

λ σ
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σj

j

jN

=
+

2

2
2

then the shrinkage adjusted SEI is

SEI
*

  =  λjµj + (1-λj)µ

SEI’s produced by HLM are already adjusted for
shrinkage.

Teacher Effect

Seventeen different OLS regression and HLM
models were investigated to determine their reliability
and appropriateness for measuring teacher effect.
Figure 2 contains descriptions of these models.  The
first twelve models use the same equations to generate
the residuals that were used in the school level
models.  The results are then adjusted for shrinkage
through the use of the following formulas:

   CEIs  

   Models 1 - 12

CEImj = m
th

 classroom in school j.

CEImj is obtained by aggregating the student
residuals by classroom

The shrinkage adjustment is as follows:
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for the residuals εimj or δimj for i
th

 student in
classroom m in school j, calculated
with respect to the district
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Insert Figure 2 (cont.)
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The shrinkage coefficient is

λ τ
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+
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Hence, the shrinkage adjusted CEIs for models 1 to
12 are

CEI*mj = λmjνmj + (1-λmj) ν

Models 13, 14, and 15 are two-level HLM models
with classroom as the conditioning level instead of
school.  These models produce empirical Bayes
estimates around the District mean and thus produce

systemwide teacher effectiveness indices.  The results
of these models can be directly compared to the
results of Models 1-12.  Model 13 is a one-stage,
two-level HLM while Models 14 and 15 are two-
stage, two-level models.  Model 14 assumes fixed
slopes while Model 15 assumes random slopes.

   Model 13  

Level 1:

ITBS_R_96ij = β0j + β1jITBS_R_95ij +
β2jITBS_M_95ij + δij

where δij ~
iid

 N(0,σ2
)

Level 2:

β0j = γ00 + γ01T1j + γ02T2j + . .
. + γ010T10j + u0j

βkj = γk0 + γk1T1j + γk2T2j + . .
. + γk10T10j
for k = 1, 2.

E[u0j] = 0, Var[u0j] = τ2
, and u0j ⊥  δij

CEIj
*

  =  u0j
*

   Model 14  

Level 1:

ITBS_RES_R_96ij = β0j + β1jITBS_RES_R_95ij +
β2jITBS_RES_M_95ij + δij

where δij ~
iid

 N(0,σ2
)

Level 2:

β0j = γ00 + γ01T1j + γ02T2j + . . . + γ010T10j +
u0j

βkj = γk0 + γk1T1j + γk2T2j + . . . + γk10T10j
for k = 1, 2.

E[u0j] = 0, Var[u0j] = τ2
, and u0j ⊥  δij

CEIj
*

  =  u0j
*
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   Model 15  

Level 1:

ITBS_RES_R_96ij = β0j +
β1jITBS_RES_R_95ij + β2jITBS_RES_M_95ij
+ δij

where δij ~
iid

 N(0,σ2
)

Level 2:

βkj = γk0 + γk1T1j + γk2T2j + . . . + γk10T10j +
ukj

for k = 0, 1, 2.

E[u0j] = 0, Var[u0j] = τ2
, and u0j ⊥  δij

CEIj
*

  =  u0j
*

Model 16 is a three-level HLM model that produces
empirical Bayes estimates around the school mean for
each teacher.  The results produced by this model are
compared to Model 17.  Model 17 is identical to
Model 7 except that the teacher level residuals are
calculated about the school means rather than about
the district mean.  This should enable a direct
comparison with the results produced by Model 16.
Appropriate equations follow:

   Model 16  

Level 1:

ITBS_R_96ijk = π0jk + π1jkITBS_R_95ijk +
π2jkITBS_M_95ijk + εijk

where εijk ~
iid

 N(0,σ2
).

Level 2:

πpjk = βp0k + 
q=
∑

1

10

βpqkTqjk + δpjk

where δpjk ~
iid

 N(0,T) and δpjk ⊥  εijk.

Level 3:

β00k = γ000 + u00k
βpqk = γpq0 for all

other p and q.

CEI jk
*

  =  γ0jk
*

   Model 17  

STAGE 1:

Yij = Λ0 + Λ1X1ij + Λ2X2ij + Λ3X3ij + Λ4X4ij +
Λ5X5ij + Λ6X6ij + Λ7X7ij + Λ8X8ij +
Λ9(X1ijX4ij) + Λ10(X2ijX4ij) + Λ11(X3ijX4ij)
+ Λ12(X1ijX5ij) + Λ13(X2ijX5ij) +
Λ14(X3ijX5ij) + Λ15(X4ijX5ij) +
Λ16(X1ijX4ijX5ij) + Λ17(X2ijX4ijX5ij) +
Λ18(X3ijX4ijX5ij) + rij

STAGE 2:

Level 1:

ITBS_RES_R_96ij = β0j + β1jITBS_RES_R_95ij +
β2jITBS_RES_M_95ij + δij

Level 2:

β0j = γ00 + u0j
βkj = γk0  for k = 1, 2.

E[u0j] = 0, Var[u0j] = τ2
, and u0j ⊥  δij

The student residuals, δijs, are calculated with respect
to each school and shrinkage adjusted to obtain

CEIj
*

.

Results

School Effectiveness Indices

The most efficient way to discuss results is
to present all data and then discuss all results
simultaneously.  With that end in mind, the
following tables are presented:

Table 1  Correlations Between and Among The
School Effectiveness Indices Produced By
Each of the Models, Grade 6

Table 2  Correlations Between and Among The
School Effectiveness Indices Produced By
Each of the Models, Grade 8
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Table 3  Correlations of The School Effectivenss
Indices with Important Student Contextual
Variables, Grade 6

Table 4  Correlations of The School Effectivenss
Indices with Important Student Contextual
Variables, Grade 8

Table 5  Correlations of The School Effectivenss
Indices with Important School Contextual
Variables, Grade 6

Table 6  Correlations of the School Effectivenss
Indices with Important School Contextual
Variables, Grade 8

As mentioned previously the major difference
between the grade six and grade eight samples is that
the sixth grade represents 127 relatively homogeneous
schools while the eighth grade consists of only 26
relatively heterogeneous schools.  Put another way,
there is far more within school variance relative to
between school variance at the eighth grade level than
there is at the sixth grade level.  The eighth grade was
included in this study to insure that results were not
situation specific, i.e., did not only apply to
situations where there were large numbers of
relatively homogeneous schools.

The reader will recall that, at the school level, we
are investigating six questions.  First, is there any
practical difference between effectiveness indices
produced by two-stage versus one-stage models?
Second, is there any difference between effectiveness
indices produced by HLM models assuming fixed
versus random slopes?  Third, does a three-level HLM
model that uses student gain scores as the outcome
variable produce results that are similar to those
produced by status-based models?  Fourth, how free
from bias relative to important student and school
level contextual variables and pretest scores are the
various models?  Fifth, can a longitudinal student
growth curve approach to predicting school effect
produce bias free results?  Finally, although not
explicitly stated, is there a best model for estimating
school effect?

In examining the School Effectiveness Indices one-
stage versus two-stage models, one generally finds
little difference between the two.  Correlations,
between the products of Models 1 and 3 (OLS
Regression) were .9595 at grade 6 and .9403 at grade
8; between Models 2 and 5 (HLM-no school level
variables) were .9545 and .9415, respectively; and
between Models 7 and 8 were .9153 and .5306.  The
relatively low correlations between Models 7 and 8
were primarily due to the fact that no three-way
interactions, no math predictor, and no census data
could be included in the one-stage eighth grade HLM
model.  In addition, the correlations of residuals
produced by the one-stage HLM models with student

level contextual variables suggest that HLM one-
stage models carry suppresser effects that are not
found in OLS regression models or two-stage HLM
models.  When this occurrence is coupled with the
inability to include important school level contextual
variable in the one-stage HLM models, resulting in
unsatisfactory correlations between the results
produced by the one-stage HLM full model and those
important school level contextual variables, it is
concluded that two-stage HLM models are more
appropriate for use in estimating school effect.  

In investigating the fixed versus random slopes
issues, School Effectiveness Indices produced by the
two types of models were highly correlated when
working with a large number of schools (grade 6
correlations between Models 4 and 5 and Models 6
and 7 were .9810 and .9867, respectively) and
moderately correlated when working with a smaller
number of schools at grade 8 (.9377 and .8126,
respectively).  These comparisons were all computed
with two-stage models, since one-stage HLM full
models assuming random slopes could not be solved.
These models produced low correlations with student
level variable and, when school level conditioning
variables were added, zero correlations with school
level variables.  The authors believe that the
differences at grade 8 occurred because the fixed
models do not account for the larger variation present
in the slopes of a small number of schools.  Given
these slight differences, the authors suggest the use of
random models in estimating school effect.

With regard to the issue of the gain score model
with limited conditioning variables producing results
similar to those produced by similar status-based
models, there are two answers.  An earlier paper by
Weerasinghe, et. al, (1997) arrived at the conclusion
that, if the same predictor variables are used in the
two models, the results are very similar.  This
conclusion is supported by the relatively high
correlations between the School Effectiveness Indices
produced by Model 13 and Model 14 (.9535).
However, Weerasinghe, et.al., (1997) found that two
level HLM status-models are far more convenient,
efficient, and less fragile than the three level gain
model.  In the two-level models, far more Level 1 and
Level 2 variables can be introduced to obtain complex
models without any biases to the conditioning
variables.  The three level model is also very
sensitive to multicolinearity and low variances in
conditioning variables.

Returning to this analysis, it is clear that the
School Effectiveness Indices produced by Models 13
and 14 are different from those produced by other
models utilized in this study.  Much, but not all of
this difference is due to the lack of conditioning
variables included in Models 13 and 14.  Correlations
of results produced by these models with important
school contextual variable are sufficiently high as to
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suggest a major bias in the indices produced.  This
finding demands that one either add additional school
level conditioning variable to these models, or failing
that, go to less complex models that will allow more
conditioning variables.  The remaining difference is
due to missing data deriving from the use of three
years of student score for prediction versus one year of
student score in concert with a rich array of contextual
information.  Since the authors are charged with the
responsibility of determining school effect over a one
year period, we believe that the one year approach
maximizes available information and is more
appropriate to the task.

Most of the measures produced by the various
models are free from significant bias at the student
level.  Bias enters in at the school level unless
important contextual variables are included as
conditioning variables in an HLM model.  None of
the indices produced by the various models correlate
significantly with pretest scores.

With regard to longitudinal models, it is clear that
longitudinal models produce results that are very
similar to one-year models with identical conditioning
variables (Models 8 vs. 11, .9626 grade 6, .9580
grade 8; Models 7 vs. 12, .9547 grade 6, .9162 grade
8).  These small differences can easily be attributed to
missing data that occurs in the longitudinal analyses.
It is also clear that without the inclusion of school
level conditioning variables, longitudinal models
produce results that carry severe biases against
schools serving minority and poor students.  These
biases are far more pronounced than even the OLS
regression models and HLM models that utilized one
year of prediction and did not control for school level
contextual variables (Models 1 through 5).  It is also
interesting to note that the correlation between
Models 10A and 10, one with three years of
prediction, the other with four is .9992.  Thus the
additional year provides no additional information  and
costs about 5% of the population.

Conclusions on SEI

Based on the analyses conducted through this study, the
authors believe that HLM two-stage, two-level, random
models with a full range of student and school level contextual
variables produce the most bias free estimates of school effect.
The model of choice is Model 6.

Teacher Effectiveness Indices

The following Tables present results relative to the
teacher effectiveness indices:

Table 7  Correlations Between and Among The
Teacher Effectiveness Indices Produced By
Each of the Models, Grade 6

Table 8  Correlations Between and Among The
Teacher Effectiveness Indices Produced By
Each of the Models, Grade 8

Table 9  Correlations of The Teacher Effectiveness
Indices with Important Teacher Contextual
Variables, Grade 6

Table 10 Correlations of The Teacher Effectiveness
Indices with Important Teacher Contextual
Variables, Grade 8

Table 11 Correlations of The Teacher Effectiveness
Indices with Important Student Contextual
Variables, Grade 6

Table 12 Correlations of The Teacher Effectiveness
Indices with Important Student Contextual
Variables, Grade 8

Note that results for Model 16 are not included in
any of the teacher tables.  Model 16 (three-level
HLM, random slopes at level 2, fixed slopes at level
3) was designed to allow the inclusion of classroom
level conditioning variables at level 2.  It was
calculated in the form specified by Model 16 and in
every other conceivable combination including two-
stage models.  These models would not run with a
full array of conditioning variables at the teacher and
school levels.  The best we could do was enter four
conditioning variables at each level.  The computed
effectiveness indices were dependent upon the
conditioning variables included in the equations.
Since all conditioning variables are included in the
equations for specific reasons, it is repugnant not to
use all available relevant information and thus three-
level models proved too fragile to run and had to be
abandoned.

In examining the other models, note first that the
correlations between the various combinations of
models (Tables 7 and 8) show little difference among
the first eight models.  One-stage OLS regression
(Model 1) and one-stage HLM (Model 8) are the only
models that differ slightly and systematically from the
others with correlations ranging from .9363 to .9919
at grade 6 and .8543 to .9680 at grade 8.  The
remaining model intercorrelations range from .9506
to .9999 at grade 6 and .9317 to .9999 at grade 8.  In
particular, the two stage HLM models, 4 through 7,
have intercorrelations at or above .9997.  (The last is
not particularly surprising since the models are
computed from extremely closely related sets of
student residuals.)

The longitudinal models, 9 and 12, show mostly
moderate intercorrelations with the other longitudinal
models and themselves at grade 6 (.8709 to .9396)
and grade 8 (.8421 to .9132) while the longitudinal
one-stage HLM models show higher intercorrelations
at both  grades (.9929 to .9993 at grade 6 and .9427
to .9853 at grade 8).  In general, the correlations of
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the longitudinal models with the other models are
lower at both grades (generally about .8800 at grade 6
and .8300 at grade 8 with several exceptions that are
somewhat higher.)  The two-level student-teacher
HLM models, Models 13, 14 and 15, show high
intercorrelations at both grade 6 and 8 (>.90).
Nothing correlates very highly with Model 17.

The discussion of the intercorrelations of the
teacher indices models is intentionally terse, because
the important information about these models comes
from the examination of their relationship to the
classroom level conditioning variables in Tables 9
and 10.  All of the models, with the exception of
Models 13, 14, and 15, show unacceptably high
correlations with SES variables at the classroom level
(free lunch and the census variables).  Correlations
with free lunch at grade 6 range from -.1073 to -.3153
and correlations with census income at grade 8 range
from .1710 to .4314.  In plain words, with the
exception of Models 13, 14, 15, all of the models are
biased against classrooms with higher percentages of
low SES students.  Where the classroom level
conditioning variables are included in the second stage
of a two level HLM model, all intercorrelations
disappear.

The degree of bias in the other models varies.  The
one-stage OLS model (Model 1) is the least biased at
grade 6 while the one stage fixed slopes HLM model
and the longitudinal two-level HLM with fixed slopes
(Models 8, 10 and 10A) are the most biased at grade
6.  At grade 8, longitudinal Model 12 is the least
biased and Models 8, 10 and 10A are the most biased.
Of the least biased models, the OLS model at grade 6
comes close to being acceptable as a usable model
without the addition of classroom variables.

Conclusions on TEI

Now, considering the questions posed at the
beginning of the paper, the responses are immediate.
All models estimating classroom effects are biased
unless classroom level variables are included as
conditioning variables.  Thus questions of OLS
versus HLM, one-stage versus two-stage, fixed versus
random, and one-year versus longitudinal all are
insignificant without the elimination of bias in
classroom level SES-related variables.  Models 13,
14, and 15, all two-level student-teacher HLM
models, produce acceptable results.  However, because
one-stage HLM models often carry suppressor effects
and fixed models do not account for large variations in
teacher slopes, it is recommended that a two-stage,
two-level random model be employed with a full
range of student and classroom level contextual
variables.  Thus, the model of choice is Model 15.

Discussion

The information in these investigations has
brought several issues into sharp focus for the
authors.  The original foray into identifying effective
schools conducted in Dallas in the 1980s (Webster
and Olson, 1988) resulted in a method that was fair at
the student level, but less so at the school level.  The
current set of research studies begun in the early
1990s (Mendro and Webster, 1993; Webster, Mendro,
and Almaguer, 1994) solved the problems identified at
the school level first through an OLS model that
included interactions among the student level
variables and then refined the model with the HLM
model including school variables explicitly at the
second level.

In designing this study, the authors had the naive
expectation that they would be able to complete a set
of analyses that would give us a set of answers to
guide future analyses and efforts in our own attempts
to determine effective schools and teachers and that
extensive future research of this type would not be
necessary.  We were wrong.  The results at 8th grade
which show unexpected problems with models
containing few level two data points (number of
schools)  and the results for the teacher indices which
showed the correlations with classroom variables
indicate that further research on both fronts will have
to continue for the foreseeable future.

Also, the authors had once speculated, given the
similarities among our previous sets of results, that
any carefully thought out regression approach, OLS
or HLM would produce acceptable results (Webster et.
al. 1995).  The cumulative effect of our prior research
and these studies now indicates that our speculation
was premature and probably wrong as well.

It is becoming clear to us that no assertions about
models and their efficacy can be taken at face value
without extensive trials of the models and careful
comparisons of their output.  We suspect that there
may be ways to adapt OLS models to include second
level conditioning variables (for Teacher or School
Effectiveness Indices) that may produce more
acceptable results than a number of the models tested
here.  Further, for our own effectiveness programs in
our District, we need to carefully compare teacher
models that employ classroom-level conditioning
variables.  However, the critical point is that we are
no longer willing to make assumptions about models
without careful examinations of the practical results.

This does not say that our research has failed to
result in some general conclusions about models for
identifying effective teachers and schools.  Until we
arrive at a model with better characteristics, we note
that school models that are two-stage HLM models,
that eliminate student level characteristics at the first
stage and employ relevant conditioning variables at
the second stage with random effects present the best
choice for a school effects model.  The choice of one-
versus two-stage is clear because of suppresser effects.
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The school conditioning variables are necessary to
control these variables.  Finally, the choice of a
random model seems to offer the best method of
controlling variables which have not been explicitly
controlled in the model.

For teacher models, clearly this study has shown
the need to control classroom level conditioning
variables.  Future models will have to take that as a
given element or will have to show that they do so
intrinsically to be seriously considered as acceptable
models.  At this point, however, the authors intend to
apply a two-stage, two-level student-classroom HLM
model that eliminates student level characteristics at
the first stage and employs relevant conditioning
variables at the second stage with random effects to
estimate teacher effect.
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MINUTES 
OF THE 

ANNUAL MEETING 
OF THE 

MULTIPLE LINEAR REGRESSION: GENERAL LINEAR MODEL/ SIG 
(Chicago, IL) 

MARCH 27, 1997 

Professor Randy Schumacker (University ofNorth Texas), SIG Chair, opened the business 
meeting. The first order of business was approval of the April 11, 1996 SIG MLR:GLM meeting 
minutes as distributed in the Multiple Linear Regression Viewpoints (Spaner, MLRV, 23(1), 
p. 35). No corrections or changes were offered and the minutes were approved as distributed . 

Schumacker reported on the success of the SI Gs sessions at this year's AERA conference: the 
HLM session attendance was 117 and the GLM session attendance was 25 . Schumacker 
suggested that the SIG sponsor a theme session at the 1998 AERA conference on longitudinal 
analysis. Schumacker also indicated that he intended to vigorously pursue this year's presenters at 
the SIG sessions to urge their submission of their papers to the MLRV for publication. 
Schumacker volunteered to prepare a SIG MLR:GLM newsletter for distribution before the 1998 
AERA conference outlining the SIG's conference activities. 

The Chair then called upon the SIG Executive Secretary, Steve Spaner, to give his report. Spaner 
presented the budget report that was being submitted to AERA headquarters for the 1996-97 
year. The SIG treasury was $2263 . 07 on 4-1-96, the SIG account has earned $51 . 83 interest 
over the year and received $925 .55 in member dues for a total assets of $3240.45 on 3-1-97. The 
SIG incurred expenses of$227.43 since 4-1-96 leaving the SIG with a $3013.02 balance on 3-1-
97. Spaner reported that the current paid membership was N=70 on 3-1-97. Spaner indicated 
that the SIG decline in membership has been correlated with the reduced number of issues of and 
irregular schedule for the Multiple Linear Regression Viewpoints (MLR V), the MLR:GLM/SIG's 
journal. Journal editor John Pohlmann urged members to submit articles and comments for 
consideration in MLR V. It was suggested, once again, that persons making presentations under 
the MLR:GLM/ SIG sponsorship at the AERA conference should be required to submit their 
papers to the MLRV. No motion to that effect was made. Schumacker informed the members 
that the AERA SIG Committee had announced a new formula for the assignment of SIG sessions: 
one session for every 43 AERA members. Schumacker stressed the importance of not only 
recruiting SIG members but members who also held AERA membership . 

Schumacker moved to the New Business part of the meeting and election of officers. Executive 
Secretary, Steve Spaner (University of Missouri - St. Louis), explained that the MLR:GLM/SIG 
election procedures call for the election to be held by mail ballot and the business meeting to be a 
nominating meeting only. As there were no prior nominations in response to the call in the 
MLRV ( 1997, 23( 1 )), the chair opened the floor for nominations. It was moved and passed by 
the members attending to suspend the election by mail ballot rule and to hold the election at the 
business meeting. The first call was for Chair-elect nominations. Isadore Newman (The 
University of Akron) was the sole nomination. Therefore, it was moved and seconded that Dr. 
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Newman be elected by acclamation. Motion passed. The next set of positions to be elected were 
two replacement Executive Board/Editorial Board members. Again, as there were no prior 
nominations in response to the call in the W..,RV (1997, 23(1)), the chair opened the floor for 
nominations. The nominated Executive Board/Editorial Board replacements were Professor John 
Dixon (University of Florida) and Dr. Werner Wothke (Smal!Waters Corporation, Chicago). 
With no additional nominations made, it was moved and seconded that Professor Dixon and Dr. 
Wothke be elected by acclamation. Motion passed. Drs. Dixon and Wothke replace Drs. 
Gregory Marchan (Ball State University) and John Williams (University of North Dakota) and 
assume the four year terms from 1997-2001. 

Respectfully submitted, 

Steven D. Spaner, 
Executive Secretary 
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SPECIAL NOTICE 

TO: LIBRARIES AND INSTITUTIONS (and MLR:GLM/SIG members) 

RE: VOLUMES 18 - 24 (1991 - 97) of Multiple Linear Regression Viewpoints 

The EBSCO and FAXON subscription services have been notified in each of the years 
listed above that the MLR Viewpoints has reduced its publication frequency to 
"occasional." While we strive to put out two issues per year (i.e., two issues per 
volume), for the past seven years (7 volumes) we have had insufficient submissions to 
make a second volume economical. We still hold to our goal of two issues a year, but 
do not guarantee two issues per year and do not honor claims for a second issue (i.e., 
the succeeding years' issue) in years when no second issue was published. We hope 
this clears up a number of outstanding claims notices. We thank you for your support 
of and interest in our journal and our .Special Interest Group. 

Sincerely, 

John Pohlmann, PhD 
Editor, MLR Viewpoints 
Department of Educational Psychology 
Southern Illinois University-Carbondale 
Carbondale, IL 62901 
e-mail: johnp@siu.edu 

Steven Spaner, PhD 
MLR:GLM/SIG Executive Secretary 
Division of Educational Psychology 
University of Missouri-St. Louis 
St. Louis, MO 63121-4499 
e-mai I: sspaner@umslvma. umsl. edu 

(Secretary's note: 1998 membership payment is due at the beginning of the 
1998 calendar year. If the first line of your mailing label ends in 97, you now 
owe for the 1998 MLR:GLM/ SIG membership year. If your mailing label has 
96 or earlier at the end of the first line, you are unpaid for the past 1997 
MLR:GLM/SIG membership year as well as owe 1998 MLR:GLM/SIG 
membership dues) 
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APPLICATION FORM 
FOR 

NEW MEMBERS/ RENEWAL MEMBERS 

Membership in the Multiple Linear Regression: the General Linear Model Special Interest Group 
(MLR:GLM/SIG) of AERA entitles the member to participate in all the activities of the MLR:GLM/SIG. 
These activities include: participation in the MLR:GLM/ SIG annual meeting and social gathering, 
voting for MLR:GLM/SIG officers and Multiple Linear Regression Viewpoints (MLRV) editors, and 
the right to contribute articles and papers to the MLRV ( a periodic publication of referred articles, 
invited topic papers, issues and news items, and other communications to the MLR:GLM/SIG 
membership) . Membership includes a 1 year subscription to the MLRV. 

There are three forms of membership in the MLR:GLM/SIG: individual, student and 
library/institutional: Individual membership dues are $10.00 per year (or $18 for two years}, student 
membership dues are $5.00 per year, and library/ institutional fees are $20.00 per year. Dues and 
fees for each year are due January 1 of the year, but, payable NO LATER THAN the annual business 
meeting of the MLR:GLM/SIG. The business meeting is held during the annual AERA Convention 
which meets within the week prior to or following Easter Sunday of each year. 

COMPLETE this bottom SECTION and SEND it with your PAYMENT. 
PLEASE PRINT: MEMBERSHIP TYPE: 

NAME: _______ ___________ _ 

MAILING _______ _ _ _ _ ______ _ 
ADDRESS 

city state 

post code (zip) country 

E-MAIL ADDRESS ____ _______ _ 

(Check one in each set) 
Individual: 1 Year ($10) __ 

Student: 
Library: 

2 Years($18) __ 
($ 5) __ 

($20) __ 

New Member 
Renewal Member 

Member of AERA? 
Yes _ _ No __ 

Membership dues and MLRV subscription fees should be made payable to: 
Multiple Linear Regression SIG 

and sent to: Steven Spaner [e-mail: sspaner@umslvma.umsl.edu] 
MLR:GLM/SIG Executive Secretary 
Division of Educational Psychology 
UM-St. Louis, 8001 Natural Bridge Road 
St. Louis, MO 63121-4499 USA 

(10Jan98) 
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SPECIAL INTEREST GROUP 

OFFICER NOMINATION FORM 

Chair-elect (1999 Chair) 
[ one year term] 
Name(s) and Affiliation(s): __________________ _ 

Executive Secretary ( 1998-2001) 
[three year term] 
Name(s) and Affiliation(s): __________________ _ 

MLRV Editor (1998- TOOR) 
[term open] 
Name(s) and Affiliation(s): __________________ _ 

Two (2) Editorial/Executive Board Members (1998-2002) 
[six year term] 
Name(s) and Affiliation(s): __________________ _ 

Name(s) and Affiliation(s): __________________ _ 

Please send form to (due by April 3, 1998): 
Steven Spaner [e-mail: sspaner@umslvma.umsl.edu] 
MLR:GLM/SIG Executive Secretary 
Division of Educational Psychology 
UM-St. Louis, 8001 Natural Bridge Road 
St. Louis, MO 63121-4499 USA 

Or fax to 314-516-5784 (10Jan98) 




