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I Don’t Like My Data
Note from the Guest Editor about the Special Issue of MLRV

T. Mark Beasley, Guest Editor
St. John’s University

This Special Issue of MLRV was conceived during the 1998 AERA meeting in San Diego, CA.  Isadore Newman
and Keith McNeil approached me about guest editing this issue after I had served as the Discussant for a paper
session sponsored by the MLR: GLM SIG.  The original idea was to include the four papers from that session with
my discussion notes as editorial commentary.  After accepting this challenge I contacted each of those authors and
invited two other papers that I felt would help complete two coherent themes: (1) Analysis of Missing Values and
(2) Alternative Regression Procedures.  I think you will find the articles enlightening at both the applied and
theoretical levels.  I can only hope that my comments are equally insightful.

y first general point is that it seems that all
data sets have problems, hence the title.
“What can be done when these problems
arise?” is the central theme to all the articles

in this special issue. One problem in particular is that
researchers often encounter missing data.  In my
discussion with many data analysts, the norm seems
to be discarding the missing cases.  This of course is
a loss of information which may bias the results.
Another approach involves estimating what the
missing value would have been if the subject had
actually responded.  Of course, the estimation of this
replacement value can be biased by many factors.
How much bias is created by these two general
approaches (i.e., discarding data and imputing missing
values) is the underlying theme for the first three
articles (Orsak et al.; Mundfrom & Whitcomb;
Brockmeier et al.).  

The other general problem is that many data sets
do not seem to conform to the assumptions of
Ordinary Least Squares Regression.  Alternative
approaches include: (a) transforming the data in some
manner or (b) computing parameter estimates in an
entirely different manner (i.e., Long; Nevitt & Tam).
Some robust methods such as “Trimming” suggest
discarding (or downweighting) outliers that may result
from a nonnormal error distribution (Nevitt & Tam).
It is ironic that purposely deleting values is suggested
when assumptions are not met while other researchers
are trying to find a way to replace data that is
missing.  

In this vein of alternative analytic strategies,
Kromrey and Hogarty investigate different statistical
tests for analyzing the same data without
transformation.  Thus, even a simple research
situation can be approached from several perspectives.
The major issue is that different approaches tend to
give different interpretations and possibly that is why
they remain “alternatives.”  This is not to say that
alternative methods are somehow inferior, but as
researchers we have a tendency to rely on more
established methods with which we are familiar.

Concerning the reliance on familiar methods, I
feel it necessary to comment on the “controversy”

surrounding statistical significance testing.  I agree
with Joel Levin (e.g., 1993) in that until a better
alternative to significance testing is developed
researchers should continue its use.  In the
interpretation of results, however, researchers should
also understand and state explicitly the precise
meaning and limitations of significance testing.  To
revamp statistical significance testing, researchers and
statisticians alike might benefit from using a
confidence interval approach.  Moreover, the social
science research community should consider the
perspective of Ron Serlin (1993) and employ a “range
null hypothesis.”  Subscribing to the confidence
interval approach has particular implications for
investigations that compare methodologies and
simulation studies.  One issue is that methodological
researchers should consider is the accuracy of
parameter estimates rather than simply investigate
Type I error rate and subsequently power.  This
concern for accuracy is evident in several of the
studies in this issue.  Yet, one should not overlook
Cliff’s (1993) perspective that social science data is
typically ordinal in nature and that exact parameter
estimates may not be extremely meaningful. One
reason that statistical significance testing has been so
prevalent in the social sciences has been the scales of
measurement issue.  To elaborate, when constructing
a confidence interval for a parameter estimate for
variable measured on an arbitrary scale sometimes the
only meaningful value covered (or not covered) by the
interval is the null value.

In terms of Monte Carlo studies, statistical
hypothesis testing, and therefore investigating
whether Type I error rates remain near an expected
nominal alpha level, has been the bread-and-butter of
simulation researchers.  Furthermore, given that
statistical hypothesis testing is not going away any
time soon, coverage probabilities for confidence
intervals should be reported.  To elaborate, if a 95%
confidence interval is constructed in multiple
replications, the confidence interval should cover the
population parameter 95% of the time regardless of
its value (i.e., whether it is a null or non-null
structure).  By taking this approach, one can examine
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the potential biases in: (a) coverage probabilities (i.e.,
Does the confidence interval cover the population
parameter at the specified level?); (b) power (i.e.,
How often does the confidence interval cover 0 with a
non-null structure?); and (c) Type I error rate (i.e.,
How often does the confidence interval cover 0 with a
null structure?).

In summary, as the popular adage goes,
“Necessity is the mother of invention.”  Two notable
trends have led to inventions that have increased
statistical sophistication among social science
researchers but have also resulted in more problematic
data sets for most research projects.  First of all,
research problems, policy analyses, and educational
evaluations have increasingly employed a quantitative
perspective.  This has resulted in more quantitative
analyses of “real-life” data.  Anyone who has collected
their own data in an experiment, but especially those
who have collected their own survey data, and those
who have analyzed a national data base (e.g., NAEP,
NELS) knows that real data have real problems.
Secondly, technology has allowed researchers to
handle these real data problems but also to view
research issues in a more complex manner and
subsequently to employ more complex and
sophisticated methods.  

From my experience in the graduate education of
statistics and data analysis, the analogy, “You don’t
have to be a mechanic to drive a car,” has been used
to sickening extent.  To expand this analogy,
researchers are “driving” some very technologically
sophisticated machines these days.  What happens
when there are problems?  Today’s automobiles are
becoming so sophisticated that the “average driver”

cannot work on them. (By the way that is not just a
coincidence of technology, it is purposeful goal of car
manufacturers). Likewise with sophisticated statistical
software, the problem is that they will run any data
you put in to them and do it very quickly. You will
get results; they may just be meaningless.
Furthermore, the speed of statistical software has
perpetuated a certain level of sloppiness in dealing
with quantitative analysis.  So the purpose of this
special issue is to “look under the hood” of these
machines and see what happens if we throw a wrench
into it.  Sometimes we find that this new machine
(i.e., methodology) is just a “souped-up” version of
an older model and that it has the same basic
problems.  Occasionally, we will find that these new
machines are true innovations and that either: (a) they
have superior performance or (b) they operate in an
entirely different manner.  Most of all what should be
taken from these articles is, “How do these
approaches and techniques integrate with what is
already known about statistics and data analysis?”  
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is the oldest AERA SIG sponsored journal. It has been both a challenge and a
pleasure, but I could not have done this alone.  First of all, I want to thank former
MLRV editor Isadore Newman (University of Akron) and current MLRV  co-editor

Keith McNeil (New Mexico State University) for allowing me this opportunity.  I also thank the authors for their
quick response time in getting their manuscripts to me and their availability when last minute changes were
necessary. I also sincerely appreciate the efforts of  the most recent former editor (and the person who taught me
more about regression than my students care to know), John Pohlmann (Southern Illinois University-Carbondale).
His insight in constructing, formatting, and completing this issue was invaluable.  I also want to thank the other
current co-editor Randall Schumacker (University of North Texas) for his continued support in the area of research in
statistics.  Special thanks go to former Executive Secretary, Steven Spaner (University of Missouri-St. Louis), and
current Executive Secretary, Susan Tracz (California State University-Fresno), for their assistance and guidance in the
reproduction and distribution of this Special Issue.

I would like to remind you that I will be the MLR: GLM SIG Program Chair for the 2000 AERA meeting in New
Orleans.  START GETTING YOUR PROPOSAL IDEAS TOGETHER NOW.  RECRUIT YOUR
COLLEAGUES AND STUDENTS.  There is an application form in the back of this issue.  I want a BIG SIG
in the BIG EASY.  I look forward to seeing you in Montreal.

Happy Reading and Regressing,

T. Mark Beasley
St. John’s University, New York

MLRV



Orsak, Mendro, & Weerasinghe                                                                           Multiple Linear Regression Viewpoints, Volume 25

Multiple Linear Regression Viewpoints, 1998, Vol. 25 3

Calculating Missing Student Data in Hierarchical Linear
Modeling:  Uses and Their Effects on School Rankings

Timothy H. Orsak     Robert L. Mendro     Dash Weerasinghe
Dallas Public Schools

In the age of student accountability, public school systems must find procedures for identifying effective schools,
classrooms and teachers that help students continue to excel academically.  As a result, researchers have been
modeling schools to calculate achievement indicators that will withstand not only statistical review but political
criticism.  One of the numerous issues encountered in statistical modeling is the management of missing student
data.  This paper addresses three techniques that elucidate the effects of absent data and highlight consequences on
school achievement indicators.  The outcomes of each technique are estimated data and School Effectiveness Indices
(SEIs).  A set of criteria is established from an original data set to determine a baseline to which the analyses will be
compared in determining the most appropriate approach in estimating missing data.

ompleteness of any data base should be
considered a rarity when managing educational
data.  Numerous factors, not limited to lack of

student attendance, data misinterpretation, and
mistakes in data entry, all affect the accuracy of any
educational database.  While incorrect data scores are
difficult, if not impossible, to detect, missing scores
are readily identifiable.  Effective schools within the
Dallas Public Schools have been identified by
statistical methodologies for several years.  Many
years of analyses have deduced the accuracy of
statistical methods’ rankings of schools within the
district.  Yet these analyses utilized only student data
that was complete for both post-test and pre-test
years.  On average, between 8% and 12% of student
data cannot be included in yearly calculations due to at
least one year of missing test scores.  However,
attempts to use all available data while not
introducing extraneous trends could more accurately
help identify effective schools.  In this paper, the
question of best estimation of absent post-test data is
addressed.

The current problem faced in the computation of
school effectiveness rankings relates to missing
student test data.  How could we effectively rank the
school of interest without complete data for its
constituents?  Several publications have addressed
treatment of missing scores in data sets through the
use of inference, replacement of missing values with
probable values, etc.  One example is Sanders and
Horn (1993), which implemented a sparse matrix
mixed modeling program to predict missing student
values.  Yet with the typical school district not
having the resources to implement such a program,
what would be the most effective and efficient method
for school analysis?  Dallas Public Schools has

addressed the missing data issue by not including it in
any analysis, thus eliminating possible influences.

The analysis comprised of 5,197 6th grade
students who had complete raw data scores for the
Iowa Test of Basic Skills mathematics and reading
tests for years 1995 and 1996 and student
characteristics of ethnicity, English proficiency
status, census poverty data, census college data, and
gender.  To analyze the effects of missing data,
specific percentages of the post-test scores from the
original data set were randomly deleted which
produced reduced data sets.  The percentages of data
deleted in this study were 1%, 2%, 5%, 10%, and
20%.  The reduced data sets were then evaluated by
Scientific Software’s    HLM2L    hierarchical linear
modeling software and by Microsoft Excel’s Ordinary
Least Squares (OLS) software program to produce
regression coefficients for each school.  The deleted
post-test scores were then estimated by HLM (see
Bryk & Raudenbush, 1993), by OLS, and by the
average post-test score per school.  The three new data
sets composed of HLM estimates of missing data,
OLS estimates of missing data, and average post-test
data per school and the original data set (non-deleted
scores), were then reprocessed by HLM and school
effectiveness indices (SEIs) generated.  The SEIs were
calculated from HLM as the estimated Bayesian (EB)
residuals for the school level intercept rescaled to a
mean of 50 and standard deviation of 10.  The EB
residual reflects the overall achievement of the
students within a school.  The SEIs from the new
data sets were compared to the original data set’s SEI
scores whereas the estimated post-test scores were
compared to the actual scores that were deleted.  This
process was carried out for three models of varying
complexity.
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Table 1.  Student Characteristic Correlations

GEN LUN BLK HIS LEP INC POV COL R-95 M-95 M-96
GEN 1.000
LUN -.0122 1.000
BLK .0138 .1112 1.000
HIS -.0278 .0827 -.6043 1.000
LEP .0193 .1390 -.3049 -.1806 1.000
INC -.0090 .3407 .2046 .0418 .0215 1.000
POV -.0253 .2903 .1530 .0236 .0634 .5804 1.000
COL -.0172 .3461 -.0143 .2433 .1412 .6135 .3453 1.000
R-95 .0951 .2282 .1992 -.0997 .1086 .1863 .1369 .2061 1.000
M-95 .0169 .1747 .1451 -.0750 .0907 .1682 .1220 .1761 .6112 1.000
M-96 .0354 .1763 .1303 -.0522 .0966 .1566 .1131 .1901 .5605 .7857 1.000
** GEN is Gender, LUN is Free Lunch Status, BLK represents Black, HIS represents Hispanic, LEP is Limited
English Proficient, INC is average block income, POV is percent block poverty, COL is percent block college, R-
95 is ITBS Reading for 1995, M-95 is ITBS Mathematics for 1995, M-96 is ITBS Mathematics for 1996.

Table 2.  Student Characteristic Summary
N MEAN SD MIN MAX

GEN 2610 1.54 .50 1 2
LUN 2610 1.28 .45 1 2
BLK 2610 1.50 .5 1 2
HIS 2610 1.74 .44 1 2
LEP 2610 1.92 .28 1 2
INC 2610 28139.44 14488.61 1290 185017.00
POV 2610 74.73 20.88 0 100
COL 2610 9.15 13.12 0 100
R-95 2610 11.91 4.42 1 22
M-95 2610 34.95 8.66 11 54
M-96 2610 37.83 9.23 9 59

**  See Table 1 Legend

Investigation and Procedure

This study expands previous studies of HLM to
investigate the effects of missing data through the use
of HLM models in ranking 118 elementary schools
from the Dallas Public Schools at the sixth grade
(Webster et al., 1994, 1995; Mendro et al., 1994,
1995; Orsak et al., 1996).  Ten school characteristics
variables were available for each school. To eliminate
undue influences from varying school sizes, the
original 5,197 student data set was randomly reduced
such that exactly 30 students were included per
school.  This created a new, reduced data file which
contained 2,610 students within 87 schools.  Initial
analyses for this reduced data set explored OLS and
HLM estimates from three models, each more
complex than the previous.  Then all 5,197 students
were used in a fourth analysis.  The initial
exploratory analysis involved simple data analysis for
the reduced data set.   

The models used for the prediction of deleted post-test
data are as follows.  Analyses began with a basic
model for prediction and increased in complexity.

The models with no student level variables and no
school level variables:
Model 1A (HLM):
Level 1:

MATH96 ik k k= +β β0 1 MATH95 ik + rik

Level 2:

β0k   =  γ 00   +  u k0

β1k   =  γ 10   +  u k1

Model 1B (OLS):

MATH96 ik k k= +β β0 1 MATH95 ik + rik
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The models with two student level variables and no
school level variables:
Model 2A (HLM):
Level 1:

MATH96 ik k k= +β β0 1 CEN-POV ik

+ β2k CEN-COL ik  + β3k MATH95 ik  + rik

Level 2:

β0k   =  γ 00   +  u k0

β1k   =  γ 10   +  u k1

β2k   =  γ 20   +  u k2

β3k   =  γ 30   +  u k3

Model 2B (OLS):

MATH96 ik k k= +β β0 1 CEN-POV ik

+ β2k CEN-COL ik + β3k MATH95 ik  + rik

The basic models with five student level variables and
ten school level variables:
Model 3A (HLM):
Level 1:

 MATH96 ik k k= +β β0 1 CEN-POV ik   

  + β2k CEN-COL ik + β3k HISPANIC ik

  + β4k BLACK ik  + β5k GENDER ik

  + β6k MATH95 ik  + rik

Level 2:

β pk   =  γ γp pk kj
k

pkW u0
1

10

+ +
=
∑

        p = 0, 1, 2, ..., 6.
where

W1k = School Mobility
W2k = School Overcrowdedness
W3k = School Average Family Income
W4k = School Average Family Education
W5k = School Average Family Poverty Index
W6k = School Percentage on Free or Reduced Lunch
W7k = School Percentage Minority
W8k = School Percentage Black
W9k = School Percentage Hispanic
W10k = School Percentage Limited English Proficient

γ
00, . . ., γ011 = level-2 intercept/slopes to model all β0ks,

γ
10,  . . ., γ111 = level-2 intercept/slopes to model all β1ks,

γ
20,  . . ., γ211 = level-2 intercept/slopes to model all β2ks,

u0k, u1k, u2k = level-2 random effects for school k.

Model 3B (OLS):

MATH96 ik = +β β0 1 CEN-POV ik

  + β2 CEN-COL ik + β3 HISPANIC ik

  + β4 BLACK ik  + β5 GENDER ik

  + β6 MATH95 ik + rik

For this study, the SEIs were calculated only
from HLM, two level models.  The models used for
the calculations were as follows:

Model 1 (HLM):
Level 1:

MATH96 ik k k= +β β0 1 MATH95 ik + rik

Level 2:

β0k   =  γ 00   +  u k0

β1k   =  γ 10   +  u k1

Model 2 (HLM):
Level 1:

MATH96 ik k k= +β β0 1 CEN-POV ik

+ β2k CEN-COL ik  + β3k MATH95 ik  + rik

Level 2:

β0k   =  γ 00   +  u k0

β1k   =  γ 10   +  u k1

β2k   =  γ 20   +  u k2

β3k   =  γ 30   +  u k3

Model 3 (HLM):
Level 1:

MATH96 ik k k= +β β0 1 CEN-POV ik

  + β2k CEN-COL ik  + β3k HISPANIC ik

  + β4k BLACK ik  + β5k GENDER ik

  + β6k MATH95 ik + rik

Level 2:

β pk   =  γ γp pk kj
k

pkW u0
1

10

+ +
=
∑

      p = 0, 1, 2, ..., 6.

The SEI is given by

SEI* = γ 00 .
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Results

The main objective of this study was to
determine an acceptable methodology for estimating
missing student post-test scores within a school
effectiveness analysis. In pursuing the main
objective, it was also possible to determine the
variability of school ranking based on estimated data.
Missing data were estimated by either using HLM
estimated values for each school or by OLS
estimation within each school for the first two
models.  Thus, predicted values were not across
district but within school. OLS criteria forced district-
wide calculations in Model 3B when schools were
encountered that where composed of one ethnic group.
Correlations were calculated among the actual scores,
the two estimated scores, and the average post-test
scores per school for each percentage of data
estimated.  Correlations were also computed among
the SEIs for each percentage of data estimated.

Model 1A & 1B
The following tables display the correlations

among the original data scores, HLM estimated
scores, OLS estimated scores and the school average
post-test score, each table reflecting a different
percentage of the original data deleted.  Also displayed
are the correlations among the original SEIs and the
SEIs calculated with each of the three estimated data.

Model 1A (HLM):
Level 1:

MATH96 ik k k= +β β0 1 MATH95 ik + rik

Level 2:

β0k   =  γ 00   +  u k0

β1k   = γ 10   +  u k1

Model 1B (OLS):

MATH96 ik k k= +β β0 1 MATH95 ik + rik

Model 1 (HLM): SEI CALCULATION
Level 1:

MATH96 ik k k= +β β0 1 MATH95 ik + rik

Level 2:

β0k   =  γ 00   +  u k0

β1k   =  γ 10   +  u k1

Table 3.  1% Predicted Data Correlations
ACTUAL HLM OLS

ACTUAL 1.0000

HLM 0.8132 1.0000

OLS 0.8132 0.9949 1.0000

AVG 0.5224 0.6406 0.6463

Table 4.  1% SEI Correlations
ACT--SEI HLM--SEI OLS--SEI

ACT--SEI 1.0000

HLM--SEI 0.9994 1.0000

OLS--SEI 0.9994 1.0000 1.0000

AVG-SEI 0.9986 0.9988 0.9986

Table 5.  2% Predicted Data Correlations
ACTUAL HLM OLS

ACTUAL 1.0000

HLM 0.7844 1.0000

OLS 0.7802 0.9955 1.0000

AVG 0.4673 0.5551 0.5518

Table 6.  2%  SEI Correlations
ACT--SEI HLM--SEI OLS--SEI

ACT--SEI 1.0000

HLM--SEI 0.9981 1.0000

OLS--SEI 0.9981 0.9999 1.0000

AVG-SEI 0.9962 0.9974 0.9986

Table 7.  5% Predicted Data Correlations
ACTUAL HLM OLS

ACTUAL 1.0000

HLM 0.8158 1.0000

OLS 0.8167 0.9941 1.0000

AVG 0.3710 0.4713 0.4623
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Table 8.  5%  SEI Correlations
ACT--SEI HLM--SEI OLS--SEI

ACT--SEI 1.0000

HLM--SEI 0.9952 1.0000

OLS--SEI 0.9953 0.9997 1.0000

AVG-SEI 0.9862 0.9927 0.9908

Table 9.  10% Predicted Data Correlations
ACTUAL HLM OLS

ACTUAL 1.0000

HLM 0.8343 1.0000

OLS 0.8350 0.9917 1.0000

AVG 0.3893 0.5101 0.4855

Table 10.  10%  SEI Correlations
ACT--SEI HLM--SEI OLS--SEI

ACT--SEI 1.0000

HLM--SEI 0.9911 1.0000

OLS--SEI 0.9915 0.9987 1.0000

AVG-SEI 0.9730 0.9875 0.9808

Table 11.  20% Predicted Data Correlations
ACTUAL HLM OLS

ACTUAL 1.0000

HLM 0.7934 1.0000

OLS 0.7956 0.9842 1.0000

AVG 0.3452 0.5152 0.4241

Table 12.  20%  SEI Correlations
ACT--SEI HLM-SEI OLS--SEI

ACT--SEI 1.0000

HLM--SEI 0.9794 1.0000

OLS--SEI 0.9812 0.9928 1.0000

AVG-SEI 0.9405 0.9755 0.9480

The first HLM model examined, Model 1A, used
MATH95 to predict MATH96 at the first level with
no school-level conditioning variables.  Tables 3, 5,
7, 9, and 11 show the correlations among the actual,
HLM estimated, OLS estimated and average post-test
scores which were 1%, 2%, 5%, 10% and 20%
deleted.  Note that as the percentage of data deleted
increased, the correlation between the actual scores

and HLM estimated scores ranged from 0.7844 to
0.8343 whereas the correlation between the actual
scores and OLS estimated scores ranged from 0.7802
to 0.8350.  The weakest correlations existed between
the actual scores and the average school post-test
values with a range of 0.3452 to 0.5224. No
noticeable pattern existed between the HLM and OLS
estimated score correlations to the percentage of data
estimated.  It was obvious that the HLM and OLS
models produced nearly identical results as their
estimated values were correlated at a minimal value of
0.9917.  Also note that as the percentage of data
estimated increased, HLM estimated values were more
highly correlated to the average post-test score than
the OLS estimated scores, an indication of HLMs
shrinkage to the overall mean.

Tables 4, 6, 8, 10, and 12 indicate correlations of
SEIs using data from the three estimation sources.
As the percentage of estimated data increased, all
correlations decreased.  In this basic model, it was
interesting to note OLS estimated data results had
slightly higher correlations with the original SEIs in
comparison to HLM estimated data, with the greatest
difference at the 20% level (0.9812 versus 0.9794).
Note that even the average school value produced
correlations within the range of 0.9405 to 0.9986
depending on percentage of missing data.

Now the question of “which is best” in terms of
prediction must be decided.  Clearly, HLM produced
estimates more closely related to the original data
than OLS, but not so clear was why the SEIs of OLS
were more closely related to the original data than
HLM.  Light will hopefully be shed on this situation
as models become more complex.

Model 2
This next analysis introduced CEN-COL and

CEN-POV into the previous model for the prediction
of MATH96.  CEN-COL represents the percentage of
households within the student’s block who attended
college.  CEN-POV represents the percentage of
households who fall below the poverty level.

Model 2A (HLM):
Level 1:

MATH96 ik k k= +β β0 1 CEN-POV ik

    + β2k CEN-COL ik  + β3k MATH95 ik  + rik

Level 2:

β0k   =  γ 00   +  u k0

β1k   =  γ 10   +  u k1

β2k   =  γ 20   +  u k2

β3k   =  γ 30   +  u k3



Orsak, Mendro, & Weerasinghe

Multiple Linear Regression Viewpoints, 1998, Vol. 258

Model 2B (OLS):

MATH96 ik k k= +β β0 1 CEN-POV ik

+ β2k CEN-COL ik + β3k MATH95 ik  + rik

Model 2 (HLM): SEI CALCULATIONS
Level 1:

MATH96 ik k k= +β β0 1 CEN-POV ik

+ β2k CEN-COL ik  + β3k MATH95 ik  + rik

Level 2:

β0k   =  γ 00   +  u k0

β1k   =  γ 10   +  u k1

β2k   =  γ 20   +  u k2

β3k   =  γ 30   +  u k3

Table 13.  1% Predicted Data Correlations.
ACTUAL HLM OLS

ACTUAL 1.0000

HLM 0.8195 1.0000

OLS 0.8079 0.9653 1.0000

AVG 0.5224 0.6392 0.5804

Table 14.  1%  SEI Correlations
ACT--SEI HLM--SEI OLS--SEI

ACT--SEI 1.0000

HLM--SEI 0.9985 1.0000

OLS--SEI 0.9992 0.9977 1.0000

AVG-SEI 0.9984 1.0000 0.9976

Table 15.   2% Predicted Data Correlations
ACTUAL HLM OLS

ACTUAL 1.0000

HLM 0.7845 1.0000

OLS 0.7771 0.9702 1.0000

AVG 0.4673 0.5536 0.5259

Table 16.  2%  SEI Correlations
ACT--SEI HLM--SEI OLS--SEI

ACT--SEI 1.0000

HLM--SEI 0.9980 1.0000

OLS--SEI 0.9977 0.9995 1.0000

AVG-SEI 0.9958 0.9967 0.9957

Table 17.  5% Predicted Data Correlations
ACTUAL HLM OLS

ACTUAL 1.0000

HLM 0.8076 1.0000

OLS 0.8058 0.9669 1.0000

AVG 0.3710 0.4763 0.4537

Table 18.  5%  SEI Correlations
ACT--SEI HLM--SEI OLS--SEI

ACT--SEI 1.0000

HLM--SEI 0.9948 1.0000

OLS--SEI 0.9946 0.9988 1.0000

AVG-SEI 0.9843 0.9915 0.9887

Table 19.  10% Predicted Data Correlations
ACTUAL HLM OLS

ACTUAL 1.0000

HLM 0.8267 1.0000

OLS 0.8140 0.9274 1.0000

AVG 0.3893 0.5186 0.4474

Table 20.  10%  SEI Correlations
ACT--SEI HLM--SEI OLS--SEI

ACT--SEI 1.0000

HLM--SEI 0.9894 1.0000

OLS--SEI 0.9854 0.9902 1.0000

AVG-SEI 0.9708 0.9866 0.9692
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Table 21.  20% Predicted Data Correlations
ACTUAL HLM OLS

ACTUAL 1.0000

HLM 0.7872 1.0000

OLS 0.7540 0.9172 1.0000

AVG 0.3452 0.5169 0.3969

Table 22.  20%  SEI Correlations
ACT--SEI HLM--SEI OLS--SEI

ACT--SEI 1.0000

HLM--SEI 0.9748 1.0000

OLS--SEI 0.9185 0.9447 1.0000

AVG-SEI 0.9343 0.9703 0.8906

Tables 13, 15, 17, 19, and 21 include
correlations between the actual, HLM estimated, OLS
estimated and average post-test scores for the indicated
percentage of data estimated.  As the percentage of
estimated data increased, the correlations range from
0.7845 to 0.8267 for HLM estimates and 0.7540 to
0.8140 for OLS estimates.  In all percentages, HLM
estimates were more correlated with the actual data
than the OLS estimates, although the differences were
extremely slight in one case (0.0018 difference).
Again the weakest correlations were between the
actual score and the average school post-test value
with a range of 0.3452 to 0.5224.  It can be noted
that as the percentage of estimated data increases, the
difference in correlations between HLM and OLS also
increased.

Tables 14, 16, 18, 20, and 22 reflect the
correlations of SEIs.  Once more, as the percentage of
estimated data increased, the correlations of SEIs
decreased.  HLM generated SEIs more correlated with
the original SEIs than did OLS, which is in contrast
to the first model.  The greatest divergence occurred at
the 20% level with a difference of 0.0563 while all
others were of smaller deviations.  Over more, the
SEIs from average post-test scores correlated much
lower than the estimates within a range of 0.9984 to
0.9343.

The “which is best” decision leans more clearly
toward HLM in this particular model.

The third model analyzed included MATH95,
CEN-COL, CEN-POV with the new variables of
GEN, HIS, BLK, (where GEN represents student
gender, HIS represents a Hispanic student and BLK
represents a black student) to model MATH96.  Ten
school conditioning variables were also included in
the HLM analysis at the school level.  At this point
difficulties were encountered in the OLS program in
that numerous schools had populations of strictly one

ethnic composition; thus it failed to generate
estimates.  HLM circumvented this predicament by
generating estimates for all schools.  OLS estimates
were now generated across all schools, thus
eliminating the problems encountered within schools.

Model 3
Model 3A denotes a true, two-level, hierarchical

model with conditioning variables at the second level.
This model was compared to the OLS Model 3B
where OLS did not adjust for conditioning variables.

Model 3A (HLM):

Level 1:

MATH96 ik k k= +β β0 1  CEN-POV ik

   + β2k CEN-COL ik  + β3k HISPANIC ik

   + β4k BLACK ik  + β5k GENDER ik

   + β6k MATH95 ik + rik

Level 2:

β pk   =  γ γp pk kj
k

pkW u0
1

10

+ +
=
∑

p = 0, 1, 2, . . . , 6.

Model 3B (OLS):

MATH96 ik = +β β0 1 CEN-POV ik

  + β2 CEN-COL ik + β3 HISPANIC ik

  + β4 BLACK ik + β5 GENDER ik

  + β6 MATH95 ik + rik

Model 3 (HLM): SEI CALCULATION

Level 1:

MATH96 ik k k= +β β0 1 CEN-POV ik

  + β2k CEN-COL ik + β3k HISPANIC ik

  + β4k BLACK ik + β5k GENDER ik

  + β6k MATH95 ik + rik

Level 2:

β pk   =  γ γp pk kj
k

pkW u0
1

10

+ +
=
∑

p  = 0, 1, 2, . . . , 6.
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Table 23.  1% Predicted Data Correlations
ACTUAL HLM OLS

ACTUAL 1.0000

HLM 0.7731 1.0000

OLS 0.7573 0.9683 1.0000

AVG 0.5224 0.5959 0.4746

Table 24.  1%  SEI Correlations
ACT--SEI HLM--SEI OLS--SEI

ACT--SEI 1.0000

HLM--SEI 0.9903 1.0000

OLS--SEI 0.9915 0.9470 1.0000

AVG-SEI 0.9842 0.9873 0.9883

Table 25.  2% Predicted Data Correlations
ACTUAL HLM OLS

ACTUAL 1.0000

HLM 0.7466 1.0000

OLS 0.7108 0.9613 1.0000

AVG 0.4673 0.5352 0.3865

Table 26.  2%  SEI Correlations
ACT--SEI HLM--SEI OLS--SEI

ACT--SEI 1.0000

HLM--SEI 0.9832 1.0000

OLS--SEI 0.9818 0.9802 1.0000

AVG-SEI 0.9720 0.9709 0.9701

Table 27.  5% Predicted Data Correlations
ACTUAL HLM OLS

ACTUAL 1.0000

HLM 0.7811 1.0000

OLS 0.7619 0.9548 1.0000

AVG 0.3710 0.4595 0.3068

Table 28.  5%  SEI Correlations
ACT--SEI HLM--SEI OLS--SEI

ACT--SEI 1.0000

HLM--SEI 0.9818 1.0000

OLS--SEI 0.9767 0.9812 1.0000

AVG-SEI 0.9731 0.9915 0.9887

Table 29.  10% Predicted Data Correlations
ACTUAL HLM OLS

ACTUAL 1.0000

HLM 0.8182 1.0000

OLS 0.8075 0.9455 1.0000

AVG 0.3893 0.5064 0.3818

Table 30.  10%  SEI Correlations
ACT--SEI HLM--SEI OLS--SEI

ACT--SEI 1.0000

HLM--SEI 0.9776 1.0000

OLS--SEI 0.9710 0.9718 1.0000

AVG-SEI 0.9620 0.9648 0.9592

Table 31.  20% Predicted Data Correlations
ACTUAL HLM OLS

ACTUAL 1.0000

HLM 0.7779 1.0000

OLS 0.7684 0.9316 1.0000

AVG 0.3452 0.5018 0.3190

Table 32.  20%  SEI Correlations
ACT--SEI HLM--SEI OLS--SEI

ACT--SEI 1.0000

HLM--SEI 0.9503 1.0000

OLS--SEI 0.9114 0.9447 1.0000

AVG-SEI 0.9175 0.9532 0.9154
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Tables 23, 25, 27, 29, and 31 show correlations
between the actual, HLM estimated, OLS estimated
and average post-test scores for the indicated
percentage of data estimated.  As the percentage of
estimated data increased, the correlations range from
0.7466 to 0.8182 for HLM estimates and 0.7108 to
0.8075 for OLS estimates.  In all percentages, HLM
estimates were more correlated with the actual data
than the OLS estimates.  Note again that as the
model increased in complexity with the inclusion of
more student variables and the addition of school level
variables, the correlations decreased in comparison to
previous models for the identical level of data
estimated.

Tables 24, 26, 28, 30, and 32 reflect the
correlations of SEIs.  For the most part, as the
percentage of estimated data increased, the correlations
of SEIs decreased.  HLM generated SEIs more
correlated with the original SEIs than did OLS.  The
greatest divergence occurred at the 20% level with a
difference of 0.0389 while all others were of smaller
deviations.  Moreover, the SEIs from average post-
test scores correlated much lower than the estimates
within a range of 0.9842 to 0.9175.  Tests of
correlations indicate all were significant.

These three models indicate that HLM is more
suitable for estimating missing data than OLS or the
average school score.  This advantage must be gained
by HLM’s adjustments for school trends in
comparison to overall trends for student scores.
Investigations into HLM’s ability to predict
continued with repeated deletion estimations on the
original data set.

The next phase of the investigation focused on
twenty-five repeated deletion trials for each percentage
of estimated data.  The original 5,197 students were
used in the computation of SEIs using only HLM
estimates of the missing data.  The SEIs generated by
the twenty-five trials were compared individually to
the original SEI and then the average of the twenty-
five trials was compared to the original SEI for the
complete data set.  The model for this comparison
was:

Model 4 (HLM):
Level 1:

MATH96 ik k k= +β β0 1 LEP ik

  + β2k HISPANIC ik + β3k BLACK ik    

  + β4k GENDER ik  + β5k MATH95 ik + rik

Level 2:

β pk  =  γ γp pk kj
k

pkW u0
1

10

+ +
=
∑

p = 0, 1, 2, ..., 5

Table 33.  SEI Correlations with Actual SEI
AVG(25) vs.

ACTUAL

MAX Corr. MIN Corr.

1 % 0.9998 0.9989 0.9978

2 % 0.9998 0.9985 0.9977

5 % 0.9996 0.9966 0.9936

10 % 0.9994 0.9937 0.9867

20 % 0.9983 0.9837 0.9735

Table 33 denotes the correlations between the
original SEI for the complete data set and the average
of the SEIs for twenty-five trials, the maximum
correlation between the original SEI and the
individual trials as well as the minimum correlation
between the individual trials and the original SEIs.
The obvious main observation was as the percentage
of data increases, the correlation between the actual
SEI and estimated data SEI also decreased.  Although
the correlations remain quite high, an analysis of the
ranks of the SEIs revealed changes of up to ten places
in rank.

Conclusions
Several observations appear relevant based on

this study.  First, and perhaps most important, HLM
estimates and OLS estimates are both similar to the
original data up to approximately the 10% level
whereas HLM estimates are more accurate to the
original for greater percentages.  This highlights the
advantage of implementing HLM in educational data
analysis when a greater percentage of data is missing.
Second, SEIs with HLM estimates of missing data
and OLS estimates of missing data are highly
correlated when up to 10% of data is estimated for a
relatively simple model without school level
conditioning variables.  This allows a choice of
which method to choose for estimating missing data.
Differences emerge as estimation models became
more complex.  The contradicting observation to the
previous point is that HLM was able to generate
estimates when full rank was not achieved within
schools.  For example, when students were all of one
ethnicity within a school, OLS estimations failed for
within school estimation.  The alternative was to
carry out OLS estimations across schools but it
sacrifices potentially useful within-school
information.

Future analyses are planned to formulate a test
statistic that determines when the deviations of
estimated scores from the actual scores are significant,
and the deviations of school ranks from actual ranks
are significant, along with investigations into the
rank changes about their respective quartiles.
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Imputing Missing Values:
The Effect on the Accuracy of Classification

Daniel J. Mundfrom, University of Northern Colorado
Alan Whitcomb, Inver Hills Community College

Data from patient records were used to classify cardiac patients as to whether they are likely or unlikely to experience
a subsequent morbid event after admission to a hospital.  Both a linear discriminant function and a logistic regression
equation were developed using a set of nine predictor variables which were chosen on the basis of their correlations
with the likelihood of a subsequent morbid event.  Once the models were obtained, artificially-generated missing
values were replaced with imputed values using mean substitution, regression imputation and hot-deck imputation
techniques.  The effect on the accuracy of the predictions using models with imputed values was determined by
comparing the re-classifications using imputed data with the actual occurrence or non-occurrence of a subsequent
morbid event.  Mean substitution and hot-deck imputation performed slightly better than regression imputation in
this application regardless of whether or not the predictor variable whose values were being imputed was categorical

or numerical.

tatistical modeling techniques have been widely
used for many years to predict a particular
outcome using information from a group of

variables which are related to the outcome of interest.
That outcome could be a continuous variable such as
an achievement test score or a categorical variable
such as whether or not an individual graduated from a
particular graduate program.  When the outcome of
interest is continuous, the appropriate statistical
procedures would generally be a multiple regression
analysis or an analysis of variance.  When the
outcome of interest is dichotomous, the analysis
reduces to classifying an individual into one of two or
more groups depending on the observed values of a
set of predictor variables, and the appropriate
procedure to use is either a discriminant analysis or
logistic regression.  
 One situation in which statistical modeling, with
a dichotomous outcome variable, could be used for
classification involves the decision that rural
hospitals must make when a cardiac patient arrives at
the hospital.  Rural hospitals frequently cannot afford
all the latest technological equipment that their larger
urban counterparts have available. One possible
decision would be to automatically send all cardiac
patients on to the urban hospital.  This decision has
obvious benefits, but also has at least two drawbacks.
One drawback is that some patients will be sent who
could have been cared for sufficiently in the local
hospital.  This decision requires needless expense for
the patient that could have been avoided.  A second
drawback is that every patient transported away from
the local hospital takes with him/her revenue that
could have been spent locally that would help the
local hospital maintain economic viability.  

Another decision that could be made is to keep
all patients and care for them locally.  While this
decision keeps the revenue “at home,” it may not be
in the best interest of every patient in terms of
providing them with the necessary care.  The desire to
balance the patients’ needs for having the best
possible care and the hospitals’ needs to maintain
their economic vitality forms the framework for this
research.  

One way to try and balance these needs is to
reduce the number of unnecessary patient
transportations from rural hospitals to tertiary care
facilities.  Technology to assist the rural physician in
more accurately predicting which cardiac patients are
likely to experience a morbid event and which are not
can reduce the number of patient transportations.
Since cardiovascular disease is the leading cause of
death in the United States, and its prevalence is
highest in rural areas where the latest advancements in
providing necessary care may not be available,
predicting likely candidates for a subsequent morbid
event would be a valuable asset for the rural
physician.  Coronary Care Units (CCUs) have proven
to be extremely effective in preventing death from
certain cardiac events, but the cost of these units
normally limits their presence to tertiary care
facilities.  Moreover, predicting which cardiac patients
are likely to experience a serious morbid event has
proven difficult, with only about 25% of patients in a
CCU suffering life-threatening events during their
stay. The ability to make an accurate prediction would
increase the economic viability of the rural hospital
and also reduce the financial burden for the patient,
without having a negative impact on the adequacy of
the care the patient received.

S
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Statistical models, based on patient data collected
at the time of the initial hospital visit, could be
useful for making cardiac morbidity predictions.
However, it is not always possible to obtain a
measurement on every variable of interest in real data
situations.  Missing data values have plagued
statisticians for years in their attempts to obtain
useful, accurate summaries and predictions.  Missing
data is an even greater concern when decisions must
be made about the appropriateness of the care a
patient should receive.  From a methodological
perspective, missing values either reduce the number
of available cases for analysis or introduce bias into
the estimation and/or prediction process.  Neither
scenario is desirable.

The purpose of this research was twofold.  The
first objective was to develop a statistical model that
could be used to predict which cardiac patients are
likely to experience a subsequent morbid event.  The
model that was developed was based upon the
complete-case data of actual cardiac patients.  

The second objective was to examine the effects
on the accuracy of the model’s predictions when
imputed values from three different imputation
techniques were substituted for artificially-generated
missing data.  Of particular interest was determining
which of the techniques would have the smallest
detrimental effect on the accuracy of predictions when
using imputed values.

Background
The initial phase of this research was to select a

suitable model for predicting a morbid event in cardiac
patients.  Five morbid events were identified and
defined as follows: development of sustained
ventricular tachycardia (a very rapid heartbeat),
ventricular fibrillation (a rapid, quiver-like heartbeat
that is incapable of producing a pulse), cardiogenic
shock (essentially pump failure--inability of the heart
to move blood), development of myocardial infarction
or extension of infarction (commonly referred to as a
heart attack), and bradycardia of less than 45 beats per
minute (a very slow heartbeat).  Identifying potential
predictor variables that may be indicators of one or
more of these events was the next step.  

Although prevention of fibrillation has long been
recognized as desirable (Lown, Fakhro, Hood, &
Thorn, 1967), defining specific electrical parameters
heralding fibrillation has not been easy (Campbell,
Murray, & Julian, 1981).  Like ventricular
fibrillation, predicting the development or worsening
of pump failure has also been difficult.  Nonetheless,
numerous studies now exist that have attempted to
accurately define the clinical predictors associated with
a poor prognosis in CCU patients.  Parameters as
varied as age, hypertension, diabetes, length of stay in
the CCU (Gheorghiade, et al., 1987), ST and T wave
changes (Severi, et al., 1988; Bell, Montarello, &

Steele, 1990), sex, anterior infarction, hypotension at
admission, ventricular tachyarrhythmias, diabetes,
Killip class III and IV (De Martini, et al., 1990),
previous myocardial infarction (Nishi, et al., 1992),
and serum urea (Marik, Lipman, Eidelman, &
Erskine, 1990) have all been shown to have short-
term prognostic significance.

Assuming that a set of suitable variables for
predicting a morbid event can be identified, the
problem of missing data must still be addressed.  In
many real-life situations, one or more of the
individual cases will have incomplete data.  In this
application, one or more of the signs necessary for
optimally predicting a morbid event may be
unavailable.  Perhaps a measurement goes unrecorded,
a test is not available to be run, or the results of a
test are inadvertently lost.  Most standard statistical
techniques build their models using only those cases
which have a complete set of data values.  If the value
for even one variable is missing, the entire set of
measurements for that individual is excluded from the
model-building process.  Complete-case analyses are
often used because of simplicity of analysis and for
comparability resulting from using a common sample
for all calculations (Little & Rubin, 1987).
However, the loss of potentially useful information
in the data which is discarded is undesirable.

Another problem occurs if, after the model has
been obtained, one or more of the values required to
use the model are unavailable.  The optimal model is
constructed based on the assumption that data will be
available for each variable included in the model.  A
regression coefficient is calculated for each variable,
so its contribution to the prediction of the outcome
variable is appropriately weighted.  If even one value
is missing for an individual, the optimal model
cannot be used appropriately and if it is used anyway,
the resulting prediction may be suspect.  The problem
of missing data can be overcome by deleting cases
with missing values or by replacing missing values
with an imputed value.  Imputed values are generally
obtained from the existing data and there are a variety
of techniques available for imputation, each having
different properties that make them more or less
useful in any particular situation (see Buck, 1960;
Affifi & Elasahoff, 1966, Haitovsky, 1968; Hartley
& Hocking, 1971; Chan & Dunn, 1972; Rubin,
1976; Little & Rubin, 1987; Rubin, 1991;
Rindskopf, 1992; van Buuren & van Ruckevorsel,
1992; Kromrey & Hines, 1994; Roth & Switzer,
1995).  

Among the most commonly recommended
missing data treatments are listwise and pairwise
deletion, mean substitution, regression imputation,
hot-deck imputation, and the EM algorithm (Little &
Rubin, 1987).  The selection of which of these
procedures to examine in this research involves
several considerations.  First of all, the deletion
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techniques were deemed inappropriate, since in this
phase of this research, a model is not being
constructed, but rather a previously built model will
be used to classify an individual.  Deleting the case
would result in the lack of such classification for that
individual, an outcome that is unacceptable in this
situation.  Hence, only the imputation techniques
received further consideration.  Accuracy of
classification is the primary issue, but the principal
purpose of this research is to compare accuracy rates,
so this characteristic was not used to select techniques
for consideration.  Ease of use is also a primary
factor.  In the context of predicting a morbid event,
the desire was to use an imputation technique that
would not require the physician to perform a
complicated or time-consuming task in order to make
a decision regarding a particular patient.  The need to
keep this part of the process simple therefore became
the primary criteria for selecting an imputation
technique.  

Another consideration was the task at hand.  The
value being predicted was the likelihood of a morbid
event.  Because this is basically a classification
problem (classifying an individual into one of two
groups; likely to have a subsequent morbid event or
unlikely to have one), an imputation technique with
optimal properties in discrimination was desired.
Chan and Dunn (1972) reported that mean
substitution and the principal components method
outperformed other techniques for classification. Kim
and Curry (1977) and Raymond and Roberts (1987)
report that regression imputation has the desirable
property of minimizing the variability in the imputed
values.  Hot-deck imputation is frequently used in
practice because of its intuitive appeal (Roth &
Switzer, 1995), but little research regarding its
accuracy has been done.  Rubin (1991) lists several
desirable properties of the EM algorithm that seem to
indicate it as the procedure of choice in many
situations, especially with large samples.  All four of
these imputation techniques have desirable
characteristics.

From this list of four techniques, the EM
algorithm, although highly regarded for many
reasons, was deemed to be too complex to have a
reasonable expectation of use by a physician in
practice.  Consequently, the techniques chosen to be
examined in this research were mean substitution,
regression imputation, and hot-deck imputation.
Recognizing that this decision is subjective and may
not necessarily be optimal, it still seemed reasonable
that due to the relative simplicity of using these
procedures, that if any were found to be sufficiently
accurate, it would have a high expectation for use in
practice.

Method
The archival data used in this research were

obtained from patient records for a sample of 99
cardiac patients who had been admitted over a three-
year period to a Cardiac Care Unit or a Cardiac
Monitored Care Unit (MCU) in an urban University-
affiliated hospital after suffering a morbid event for
which data existed on a list of 29 variables which had
been identified as potential predictors of a subsequent
morbid event after suffering an initial such event.
Patients who had undergone surgery in the six month
period prior to admittance to the CCU/MCU or who
were on mechanical breathing support were excluded
from the sample.  In this sample, 38 individuals
experienced at least one subsequent morbid event in
the hospital after being admitted.  

This list of variables included the continuous
variables: height, weight, age, systolic blood
pressure, diastolic blood pressure, hematocrit, serum
potassium level, serum creatine level, white blood
cell count, respiration rate, and heart rate, and the
categorical variables: sex, current myocardial
infarction, evidence of anterior infarction, atrial
arrhythmia, ventricular arrhythmia, S-T depression,
diabetes, previous infarction, smoking, rales greater
than 1/3 up, presence of heart sound S3, syncope,
ventricular ectopics, use of aspirin in treatment, and
use of Class I, II, III, or IV drugs.  This initial list of
potential predictors was reduced from 29 to 9 based
upon their correlations with the occurrence or non-
occurrence of one or more of the five morbid events
(|r| > .1643).  The final group of nine predictors
included sex, age, weight, systolic blood pressure,
white blood cell count, ventricular arrhythmia (an
indicator of abnormal heart rhythm; measured as
present or absent), syncope (an indicator of poorly
oxygenated blood; measured as poor or not poor),
heart sound S3 (an indicator of heart valve
insufficiency; measured as sufficient or not), and use
of aspirin (measured as used in treatment or not).

Once these predictors were identified, a linear
discriminant function, based on those nine predictors,
was created for classifying patients as likely to
experience a subsequent morbid event or not likely to
experience such an event.  Similarly, a logistic
regression equation using the same set of nine
predictors was generated for the same classification
purpose.  The coefficients for both the linear
discriminant functions and the logistic regression
analysis are presented in Table 1. The number of
correct classifications for each model was determined
by comparing classifications resulting from use of the
statistical model with the actual occurrence or non-
occurrence of subsequent morbid events.
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Table 1.  Coefficients of Predictor Variables in Linear Discriminant Functions and Logistic Regression Analysis
   Coefficients                                LDF for Group 1                 LDF for Group 2                  Logistic Regression Analysis
Constant -31.4430 -32.2958 0.6513
Sex 2.1466 0.8996 1.4111
Age 0.2862 0.3154 -0.0288
Weight 0.2306 0.2119 0.0204
SBP 0.1435 0.1387 0.0043
WBCC 0.4197 0.5052 -0.0877
VA 1.6556 2.3389 -0.7457
Syncope 0.9860 1.2777 -0.1887
S3 3.8438 4.7070 -0.7198
   Aspirin                                            2.6690                               1.7695                                         1.1287                 
Note: LDF = linear discriminant function; Group 1 contains individuals who did not have a subsequent morbid

event; Group 2 contains individuals who did have a subsequent morbid event; SBP = systolic blood
pressure; WBCC = white blood cell count; VA = ventricular arrhythmia.

To investigate the effect of different techniques for
imputing missing values, values for one predictor at a
time were deleted for each of the 99 patients and
replaced with an imputed value.  After replacing the
original value with an imputed value, the number of
correct re-classifications using the original
discriminant function and the logistic regression
model were calculated.  In turn, this process was
repeated for each of the three imputation techniques
and for eight of the nine predictor variables.  (It was
decided that the variable sex is unlikely to ever be
unknown in this context, so replacing the actual
value of the sex variable with an imputed value
seemed unnecessary.)  The number of correct re-
classifications, using imputed values in both the
discriminant analysis and the logistic regression
analysis, were then compared to the number of correct
classifications using the original data.

For the mean imputation technique, imputed
values for a particular variable were obtained by
calculating the mean value for that predictor using all
99 patients’ records.  Using a single variable at a time
for imputation, the original values of that variable
were replaced with the mean value of that variable in
each of the individuals’ records.  The other eight
predictors were left unchanged and the individual was
re-classified into one of the two groups.  The value
for each of the other predictors, excluding sex, was
replaced with its mean value in the same way, each
time using the original data values for the other
predictors, and each individual was re-classified.

Using the regression imputation technique,
imputed values for each predictor were calculated for
the patients by building a regression equation
involving the other eight predictors.  Imputed values
for the variables which were measured on a
continuous scale (e.g., age) were determined using
multiple linear regression analysis.  For the
dichotomous predictors (e.g., ventricular arrhythmia),
a logistic regression analysis was used to build the
model for prediction.  The coefficients used to

generate the imputed values for each of the eight
predictors (again, excluding sex) are presented in
Table 2.

Using the hot-deck imputation technique, an
imputed value for one predictor was obtained for each
patient by randomly selecting (with replacement) a
value from that variable’s original set of 99 values.
However, since the randomly selected values would
vary from one selection to another, so would the
number of correct re-classifications.  Consequently,
the estimate of the accuracy of prediction would be
too reliant on the particular value selected.  To ensure
that this estimate was less dependent upon the
particular value that was randomly selected to be used
as the imputed value, 1000 repetitions were run for
each variable to obtain an average number of correct
re-classifications for each of the eight predictors in
both the discriminant analysis and the logistic

regression analysis.

Results
Using the linear discriminant function with nine

predictor variables, 78 of the 99 individuals in the
sample were correctly classified into the two groups:
likely to experience a subsequent morbid event and
unlikely to experience such an event.  With the
logistic regression analysis, 80 of the 99 individuals
were correctly classified.  

Overall, the results obtained by using the
imputation techniques and comparing the re-
classifications, as determined by the discriminant
function and the logistic regression equation, with the
actual group membership was encouraging.  In
general some, but not much, accuracy is lost when an
original data value is replaced by an imputed value.
The re-classification results are presented in Table 3.
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  Table 2.  Coefficients of Predictor Variables Used in Regression Imputation
                                                                     Response Variable                                                        

 Age   Weight   SBP     WBCC  VA    Syncope   S3  Aspirin
   Coefficients       (MLR)          (MLR)           (MLR)              (MLR)         (LR)               (LR)              (LR)             (LR)     
Constant 56.005 82.124 105.324 8.302 0.334 2.463 -1.523 0.062
Sex -0.481 -7.363 9.060 0.975 -0.247 0.820 1.330 0.407
Age -0.404 0.417 0.030 -0.016 -0.037 -0.008 -0.020
Weight -0.209 0.262 0.038 -0.001 -0.001 0.019 -0.011
SBP 0.106 0.129 -0.029 0.013 0.008 0.014 0.012
WBCC 0.311 0.759 -1.165 0.018 -0.004 -0.074 0.127
VA 2.853 0.164 -8.705 -0.289 -0.473 -1.291 -0.454
Syncope 6.973 -0.100 -7.218 -0.061 -0.445 2.298 0.585
S3 1.057 -5.948 -9.849 1.732 -1.036 2.151 1.869
   Aspirin                  3.589            3.131            -9.036              -1.181         -0.322             0.528             2.260                   
Note: SBP = systolic blood pressure; WBCC = white blood cell count; VA = ventricular arrhythmia;

MLR = multiple linear regression; LR = logistic regression

For the discriminant analysis, the variable syncope
was least affected by imputation, with 77, 78, and
76.7 individuals being correctly re-classified using
mean, regression, and hot-deck techniques,
respectively.  (Recall, that the number of correct re-
classifications using the hot-deck technique are
averages of 1000 replications.)  Mean substitution
appeared to do slightly better than the other two
techniques on most variables, particularly ventricular
arrhythmia and heart sound S3.  Overall, the average
number of correctly re-classified individuals,
averaging over all eight variables, was very similar
for the three imputation techniques with mean
substitution having an average number of correct re-
classifications of 74.4, only slightly better than hot-
deck imputation (73.1) and the regression method
(72.0).  

For the logistic regression analysis, the variable
syncope was again the least affected by the
imputation with numbers of correctly re-classified
individuals of 78, 77, and 77.7, and systolic blood
pressure, which correctly classified 77, 77, and 75.4
individuals also relatively unaffected by imputation.
Overall, for the logistic regression analysis, mean
substitution was again fairly consistent from variable
to variable, although the hot-deck technique, with an
average number of correct re-classifications of 73.9,
was slightly better than mean substitution (73.5), and
regression imputation (72.3).

Discussion
The first phase of this research produced a linear

discriminant function and a logistic regression model
for classifying individuals as either likely or unlikely
to have a subsequent morbid cardiac event after having
first experienced an initial such event.  Using a set of

nine predictor variables, the discriminant function
correctly classified 78 of the 99 individuals in the
sample, while the logistic regression model classified
80 of the 99 individuals correctly.  These numbers are
not as high as we would have liked.  However, given
the relatively small sample size and the large number
of variables that needed to be reduced to a manageable
size, these results were the best that could be
achieved.  Given the results of previous research that
identified potential predictors and the large number
and variety of variables identified in that literature, it
should not be surprising, perhaps, that any particular
group of variables does not perform exceptionally
well in predicting the outcome of interest. Using
either the discriminant function or the logistic
regression model described above, the three
imputation techniques, mean substitution, regression
imputation, and hot-deck imputation, were compared
to determine the extent to which replacing original
data values with imputed values affected the number
of correctly classified individuals.  Overall, using an
imputation technique to replace missing values in
this application appeared to produce results which are
comparable to those obtained using the actual data.
Mean substitution was comparable to the hot-deck
technique in the logistic regression analysis and
slightly better than the other two techniques in the
discriminant analysis.  This result was somewhat
surprising because of the general lack of trust that
researchers appear to have in mean substitution for
imputation. It was also somewhat satisfying, since
mean substitution is a relatively easy technique to use
and does not require sophisticated calculations, thus
increasing the probability that it might actually be
used in practice.  
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Table 3. Numbers Of Correct Re-Classifications For Each Predictor Variable And Each
Imputation Technique For Discriminant Analysis and Logistic Regression (n=99)

Discriminant Analysis Logistic Regression
                                                  Imputation Technique                                   Imputation Technique                     
   Variable Imputed                       Mean              Regression           Hot-Deck*              Mean             Regression           Hot-Deck*     
Age 74 76 72.4 75 77 72.4
Weight 74 72 72.4 73 73 71.4
Systolic Blood Pressure 74 74 73.8 77 77 75.4
White Blood Cell Count 71 71 70.2 72 70 70.1
Ventricular Arrhythmia 74 65 69.9 68 63 70.6
Syncope 77 78 76.7 78 77 77.7
Heart Sound S3 78 67 74.1 73 69 76.6
Aspirin 73 73 75.5 72 72 76.8
Mean of all predictors       74.4   72.0           73.1       73.5   72.3          73.9
*  Values in this column represent the average number of correctly re-classified individuals for 1000 repetitions of a
hot-deck imputation.

Perhaps it should not have been that surprising
as well, since over 25 years ago, Chan and Dunn
(1972) identified mean substitution as a preferred
technique for imputation with discriminant analysis.
One of the main criticisms of mean substitution is
the fact that its use underestimates the variability in
the variable being imputed.  Regression imputation,
on the other hand, does not have this same limitation,
but these results indicate that regression imputation
did not perform as well as either of the other two
techniques in either the discriminant analysis or the
logistic regression analysis, although the differences
were not large.  It was also a little surprising to
observe that the regression technique did not perform
better than the other two techniques, since this
method is generally considered to be somewhat better
in the sense that it incorporates other information
about the individual in calculating the imputed value.
This discrepancy might be explained by the fact that
in classification, we are less concerned with predicting
a specific value for an individual than we are with
predicting that individual’s group membership.
Within each group are a variety of individuals who
may possess a wide range of actual values on the
criterion variable, which is much different from
attempting to predict a specific outcome value (as is
the case in multiple regression).  Overall, it would
appear that either mean substitution or hot-deck
imputation would perform credibly in this
application.  Because mean substitution is easier to
use than the hot-deck procedure, it would appear to be
the better choice for practice.

There are, of course, limitations to this research.
First, our sample was relatively small for the number
of predictors used.  Larger samples with different
predictors would likely produce at least a somewhat
different discriminant function and/or logistic
regression model.  With different models, and different
data, it is very likely that the number of correctly re-
classified individuals would vary somewhat.  With the
relatively small differences among the imputation

techniques, and between the two classification
procedures, even slight differences in the re-
classification results could lead to different
conclusions than these.  Second, not all, nor
necessarily even the best, imputation procedures were
examined in this research.  Choosing different
techniques to investigate may also lead to different
conclusions.  Third, we only imputed a single
variable at a time.  If two or more variables had been
imputed for a single individual the effect on
classification may have been different.  Fourth, it is
possible that interactions among the predictor
variables could be important as well, and how
imputation may alter those interactions is not
addressed here.  Finally, it is uncertain how much our
results are a function of the particular context, i.e.,
morbid cardiac events, within which we conducted
this research, and how much would generally apply to
other research scenarios.  A different situation in
which the predictor variables are very highly related to
the outcomes of interest, resulting in extremely high
numbers of correctly classified individuals in the
original data, may be affected differently by
imputation than was the case here.

At any rate, these results seem to indicate
that using imputed values to replace missing values
in classification models which have been previously
derived from complete-case data can be a useful
technique for making predictions we would otherwise
be unable to make without re-calculating the models
by leaving out the variables on which no data is
available or having a series of models for use, each
with a different combination of observed variables
used as predictors.  The ability to make such
classifications with comparable accuracy, using a
simple imputation technique such as mean
substitution, would appear to be quite useful.  By
replacing missing values with the mean, thus being
able to classify individuals who were previously
unclassifiable using the  same model, and to do so
with a  level of accuracy that is comparable to what
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would have been obtained had the values not been
missing is a valuable tool.  Furthermore the results
were comparable regardless of whether the predictor
variable being imputed was numerical or categorical.
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Systematically Missing Data and Multiple Regression Analysis:
An Empirical Comparison of Deletion

and Imputation Techniques

Lantry L. Brockmeier, Florida Department of Education
Jeffrey D. Kromrey, University of South Florida
Constance V. Hines, University of South Florida

The purpose of this study was to investigate, within the context of a two-predictor multiple regression analysis with
systematically missing data, the effectiveness of eight missing data treatments on the sample estimate of R2 and each
standardized regression coefficient.  Furthermore, the study investigated whether sample size, proportion of
systematically missing data above the mean of the regressor, and the percentage of missing data affected the
effectiveness of the eight missing data treatments.  One thousand samples of size 50, 100, and 200 were generated
per data set.  The percentages of missing data were 0%, 10%, 20%, 30%, 40%, 50%, and 60%, occurring either on
one regressor or across both regressors.  The proportions of missing data that were above the mean value of the
regressors were 0.60, 0.70, 0.80, or 0.90. The data were analyzed by computing effect sizes obtained from the
missing data treatment conditions relative to the complete sample condition (i.e., 0% missing data).  The results
suggest that the stochastic multiple regression imputation technique was the most effective treatment of the missing
data.  Listwise and pairwise deletion approaches were less effective than stochastic multiple regression imputation
but were superior to the other techniques examined.

mpirical investigations frequently have
missing data on one or more variables.
Researchers have long recognized that

missing data within a study may be detrimental to
any subsequent data analyses, interpretations, and
conclusions. Unfortunately, researchers’
recommendations (Guertin, 1968; Beale & Little,
1975; Gleason & Staelin, 1975; Frane, 1976; Kim &
Curry, 1977; Santos 1981; Basilevsky et al., 1985;
Raymond & Roberts, 1987) for managing missing
data are not in complete agreement.  Anderson,
Basilevsky, and Hum (cited in Rossi, Wright, &
Anderson, 1983) observed that the results of many
research studies on missing data treatments are not
comparable due to the method used, stratification
categories (number of variables, sample size,
proportion of missing data, and degree of
multicollinearity), and the criteria that measure
effectiveness.  Kromrey and Hines (1991) stated that
in the multiple regression context, the criteria should
be the accuracy of the sample estimate of R2

(coefficient of determination) and the regression
coefficients.

While numerous missing data treatments are
available for use by the applied researcher to manage
missing data, researchers have characteristically
utilized only two classes of procedures.  Applied
researchers typically employ the deletion procedures
or the deterministic imputation procedures.  The
deletion procedures only utilize cases with complete
data (Glasser, 1964; Haitovsky, 1968).  Listwise
deletion discards all cases with incomplete

information, whereas pairwise deletion constructs a
correlation matrix utilizing all pairs of complete data.
With the deterministic imputation procedures (Santos,
1981; Kalton & Kasprzyk, 1982), the applied
researcher employs a statistical procedure (e.g., mean
substitution, simple regression, or multiple
regression) to estimate the missing values.  The
residual (error) term in the equation for this
estimation is set to zero.

Stochastic imputation is not typically utilized by
applied researchers.  However, evidence suggests that
stochastic imputation procedures might be a viable
alternative in the treatment of missing data (Santos,
1981; Kalton & Kasprzyk, 1982; Jinn & Sedransk,
1989; Keawkungal & Benson, 1989; Brockmeier,
Hines, & Kromrey, 1993; Brockmeier, Kromrey, &
Hines, 1994, 1995, and 1996). As with the
deterministic imputation procedures, a statistical
procedure is employed to estimate the missing values.
The residual term when employing stochastic
imputation is a randomly appended value in the
estimation equation instead of zero as occurs with
deterministic imputation (an example of SAS code
that provides stochastic imputation is included in
Appendix A).

Applied researchers also do not usually employ
maximum likelihood estimation and multiple
imputation for managing missing data.  Scholarly
work on maximum likelihood estimation and
multiple imputation are found in the technical
statistical journals, not usually in the journals of
applied researchers (Kromrey, 1989; Brockmeier,

E



Systematically Missing Values

Multiple Linear Regression Viewpoints, 1998, Vol. 25 21

1992). Maximum likelihood estimation is
infrequently utilized due to the lack of software and
mathematical complexity (Little, 1992).

In most of the previously conducted research, the
key assumption is that data are missing at random.
Researchers are often advised that if data are randomly
missing, and the percentage of missing data is not too
large, then any missing data treatment is effective.
This assumption of randomly missing data is tenuous
in many cases.  Cohen and Cohen (1975, 1983) and
Tabachnick and Fidell (1983) describe procedures to
test the assumption of randomly missing data.
Kromrey and Hines (1994) elucidate that the
assumption of randomly missing data is rarely tested
and that the applied researcher is hard pressed to find
guidance if data are missing systematically.

Kromrey and Hines (1994) examined the
effectiveness of the deletion procedures and
deterministic imputation procedures with
systematically missing data in the context of missing
data on one of two predictor variables.  The authors
stated that with moderate amounts of missing data,
the deletion procedures yielded results similar to those
results obtained without missing data.  Kromrey and
Hines indicated that the deterministic imputation
procedures generally did not work well when
compared to the results obtained with complete data.

Brockmeier, Kromrey, and Hines (1996)
investigated, within the context of a two-predictor
multiple regression analysis with systematically
missing data, the effectiveness of eight missing data
treatments on the sample estimate of R2 and each
standardized regression coefficient. The stochastic
multiple regression imputation technique was
effective with as much as 60% of the data missing.
With smaller proportions of missing data, both the
listwise and pairwise deletion approaches were also
effective in estimating R2 and the regression weights.

The present study extends the previous work of
Kromrey and Hines (1994) and Brockmeier et al.
(1996).  First, the study continues to investigate the

effectiveness of the stochastic and deterministic
imputation procedures and the deletion procedures
with systematically missing data in data sets with
different correlations between variables.  Second, the
number of levels of systematically missing data was
increased to be more representative of authentic data
sets.

Purpose
The purpose of this study was to investigate,

within the context of a two-predictor multiple
regression analysis with systematically missing data,
the effectiveness of eight missing data treatments on
the sample estimate of R2 and each standardized
regression coefficient.  The study also examined
whether the proportion of systematically missing data
above the mean of each independent variable affected
the effectiveness of the eight missing data treatments.
Three types of missing data treatments were
examined: deletion, deterministic imputation, and
stochastic imputation.  The missing data treatments
examined in this study were: (a) listwise deletion, (b)
pairwise deletion, (c) deterministic mean substitution,
(d) deterministic simple regression, (e) deterministic
multiple regression, (f) stochastic mean substitution,
(g) stochastic simple regression, and (h) stochastic
multiple regression.

Method
Data Source

Data selected for this investigation were chosen
from the work of Skaalvik and Rankin (1995).
Skaalvik and Rankin examined the relationship
between math and verbal achievement and measures of
motivation.  One data set consisted of correlations
between the measures of mathematics achievement,
self-perceived ability to learn mathematics, and
mathematics intrinsic motivation for grade six
students.  The second data set consisted of correlations
between the same three measures, but for grade nine
students.  In the data obtained from the older students,
the correlations between variables were higher.

Table 1. Summary Descriptive Statistics for the Population on the Grade Six Data
                                                                                                                                    

            Correlations            
                                                                      Mean                   SD                   (X       1      )                 (X       2      )         

 (Y) Mathematics Achievement 12.2672   4.6380 0.33 0.25
(X1)Mathematics Self-perceived Ability 13.1075   2.1900  - - 0.58
  (X       2      )       Mathematics Intrinsic Motivation             50.3355           14.5836                                             

Table 2.  Summary Descriptive Statistics for the Population on the Grade Nine Data
                                                                                                                                    

            Correlations            
                                                                      Mean                   SD                   (X       1      )                 (X       2      )         

 (Y) Mathematics Achievement   9.3039   4.4363 0.58 0.59
(X1)Mathematics Self-perceived Ability 12.2064   2.7616  - - 0.70
  (X       2      )       Mathematics Intrinsic Motivation             45.0580           17.5328                                             
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Table 3. Regression Models in the Study as
Computed on the Population.

                                                                        
Dependent  Independent

         Data set           Variable       Variables          Beta                R   2     

Grade Six     Y X1 0.2779 0.1152
      Data                               X      2              0.0917                

Grade Nine     Y X1 0.3239 0.4027
      Data                               X      2              0.3638                 

SAS/IML was employed to generate multivariate
normal random variables given the correlation
between variables and the mean and standard deviation
of each variable. Tables 1 and 2 present the means and
standard deviations of each variable and the correlation
between variables by data set.  Table 3 presents the
regression model for each data set.

Experimental Design
The study employed a 2 x 3 x 4 x 13 x 8

experimental design.  The design included two
between-subjects variables (pseudopopulation and
sample size) and three within-subjects variables
(proportion of missing data above the mean,
percentage of missing data, and missing data
treatment).  One thousand samples of size 50, 100,
and 200 were generated per data set.  The four
proportions of systematically missing data above the
mean of each independent variable were 0.60, 0.70,
0.80, and 0.90.  The 13 percentages of missing data
generated by predictor variable (X1,X2) were (0%,0%),
(10%,0%), (20%,0%), (30%,0%), (40%,0%),
(50%,0%), (60%,0%), (10%,10%), (20%,10%),
(20%,20%), (30%,20%), (40%,20%), and
(30%,30%).  The eight missing data treatments
examined were listwise deletion, pairwise deletion,
deterministic mean substitution, deterministic simple
regression, deterministic multiple regression,
stochastic mean substitution, stochastic simple
regression, and stochastic multiple regression.

The pseudopopulations were not manipulated
within the experiment, but were generated to obtain
the desired correlational differences between variables
in each data set.  The sample sizes and missing data
treatments were chosen to replicate the earlier work of
Kromrey and Hines (1994) and Brockmeier et al.
(1996).  The percentages of missing data were chosen
to be representative of the research of Kromrey and
Hines (1994) and Brockmeier et al. (1993, 1994,
1995, and 1996).  The proportion of systematically
missing data above the mean of the regressors was
altered to create increasing degrees of distortion in the
observed data.  The probability of a missing value
was established as proportional to the value of the
variable.  Kromrey and Hines (1994) indicated that
this process reduces the variance and exaggerates the
skewness in the observed distribution, and that the

value of the observed mean is altered by the
asymmetry.

Statistical Analysis
The dependent variables analyzed were the sample

estimate of R2 and the standardized regression
coefficients.  The data were analyzed by computing
the effect sizes obtained from the missing data
treatment conditions relative to the complete sample
condition (i.e., 0% missing data).

Results
To conserve space, the results are presented as

effect sizes representing the difference between the
mean value of the sample statistic (R2 or standardized
regression weight) and the mean value obtained from
the complete data condition.  This difference in means
was then divided by the standard deviation of the
statistic obtained in the complete data condition.  For
more complete results, the raw means and standard
deviations are available from the first author.

Sample estimates were considered to be
reasonably unbiased and to present few practical
problems to applied researchers if the absolute value
of the effect size was less than 0.3 (Kromrey &
Hines, 1991).  The criterion of 0.3 was chosen
because the regression coefficients and the sample
estimate of R2 are both subject to substantive
interpretation and tests of statistical significance.

Effects of Missing Data on Sample Estimate of R2

Effect sizes for the estimation of R2 are presented
in Tables 4 and 5.  These data reveal that stochastic
multiple regression generated fewer effect sizes greater
than the criterion of 0.3 than any other missing data
treatment.  Stochastic multiple regression generated
effect sizes greater than the criterion 4.3% (12 of 280
effect sizes) of the time.  Of the 12 effect sizes greater
than the criterion, 11 effect sizes occurred when the
percentage of missing data was 60%.  Ten of the
twelve effect sizes greater than the criterion occurred
for the grade six data set and the sample size of 50.
Two other cases occurred with the sample size of 200
when the proportion of missing data above the mean
was 0.90 and the proportion of missing data was
60%.  

Pairwise deletion produced effect sizes greater
than the criterion 8.9% (25 of 280 effect sizes) of the
time, more than twice as frequently as that provided
by stochastic multiple regression.  Effect sizes greater
than 0.3 occurred 19 of 25 times when the proportion
of missing data above the mean was 0.80 or 0.90 and
22 of 25 times when the percentage of missing data
was 50% or 60%.  Listwise deletion yielded effect
sizes greater than the criterion 22.5% (63 of 280
effect sizes) of the time.  Across both data sets and
sample sizes, 58 of 63 effect sizes greater than the
criterion occurred when the percentage of missing data
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was 50% or 60%.  The other five effect sizes greater
than the criterion occurred when the percentage of
missing data was 40%.  

Notably worse performance was observed for the
other missing data treatments. Deterministic simple
regression, deterministic mean substitution,
deterministic multiple regression, stochastic simple
regression, and stochastic mean substitution yielded
effect sizes greater than the criterion from 45.7% (128
of 280 effect sizes) to 89.6% (251 of 280 effect sizes)
of the time.  For each of these missing data
treatments, effect sizes greater than the criterion
occurred about equally across the two data sets.

Effects of Missing Data on the First Standardized
Regression Coefficient (X1)

Tables 6 and 7 report the effect sizes for the first
standardized regression coefficient.  Stochastic
multiple regression, listwise deletion, and pairwise
deletion yielded the fewest effects sizes greater than
the criterion for this coefficient.  Stochastic multiple
regression generated effect sizes greater than the
criterion 9.6% (27 of 280 effect sizes) of the time.
Eighteen of these 27 conditions occurred when the
percentage of missing data was 60%, and 24 of the 27
conditions were when the proportion of missing data
above the mean was 0.80 or 0.90.  Listwise deletion
generated effects sizes greater than the criterion 11.4%
(32 of 280 effect sizes) of the time, only slightly
more frequently than that of stochastic multiple
regression.  Twenty of the 32 conditions were those
with 60% missing data, and 28 of the 32 conditions
were those in which the proportion of missing data
above the mean was 0.80 or 0.90.  Pairwise deletion
produced effect sizes greater than the criterion 18.2%
(51 of 280 effect sizes) of the time.  

As with the estimation of R2, the effectiveness of
deterministic simple regression, deterministic
multiple regression, deterministic mean substitution,
stochastic simple regression, and stochastic mean
substitution were notably lower than that of
stochastic multiple regression and the two deletion
procedure.  These techniques produced effect sizes
greater than the criterion from 40.4% (113 of 280
effect sizes) to 85.7% (240 of 280 effect sizes) of the
time.

Effects of Missing Data on the Second Standardized
Regression Coefficient (X2)

Examination of Tables 8 and 9 reveals that
listwise deletion yielded no effect sizes greater than
the criterion of 0.3 with the lower correlated data set
(i.e., grade six data) and only six effect sizes (2.1%)
greater than the criterion with the higher correlated
data set (i.e., grade nine data).  Five of these six effect
sizes occurred when the proportion of missing data
above the mean was 0.80, or 0.90 and the percentage
of missing data was 50% or 60%.  Stochastic

multiple regression yielded effect sizes greater than
the criterion 9.3% (26 of 280 effect sizes) of the time.
These effect sizes occurred 23 of 26 times when the
proportion of missing data above the mean was 0.80
or 0.90, and 18 of 26 times when the percentage of
missing data was 60%.  Deterministic simple
regression yielded effect sizes greater than the criterion
16.4% (46 of 280 effect sizes) of the time and
pairwise deletion yielded effect sizes greater than the
criterion 22.1% (62 of 280 effect sizes) of the time.  

Deterministic multiple regression, stochastic
simple regression, deterministic mean substitution,
and stochastic mean substitution yielded effect sizes
greater than the criterion from 52.5% (147 of 280
effect sizes) to 78.9% (221 of 280 effect sizes) of the
time.  

Discussion
In the context of the current study, a two-

predictor multiple regression analysis with
systematically missing data, the results suggest large
differences in the effectiveness of the eight missing
data treatments. Stochastic multiple regression
performed the best of the missing data treatments in
yielding fewer sample estimates of R2 that differed
from the complete sample condition.  Pairwise
deletion, the second best performer of the missing
data treatments, produced biased sample estimates of
R2 more than twice as frequently as stochastic
multiple regression. The effect sizes greater than 0.3
that were generated by pairwise deletion occurred
when the percentage of missing data was 50% or
60%.  Listwise deletion yielded five times more effect
sizes greater than the criterion when compared to
stochastic multiple regression.  Deterministic simple
regression was the next most effective missing data
treatment, but its performance was notably worse
than those of the three best treatments.  Deterministic
mean substitution, deterministic multiple regression,
stochastic simple regression, and stochastic mean
substitution produced sample estimates of R2 that
differed from the complete sample condition at least
45.7% of the time.  These four missing data
treatments were simply ineffective in producing
unbiased sample estimates of R2.

Similar results were obtained for the estimation
of regression weights in the presence of missing data.
Stochastic multiple regression was the most effective
at producing unbiased estimates of the first
standardized regression coefficient but listwise
deletion was more effective at generating unbiased
estimates of the second.  The conditions under which
the estimates of the standardized regression
coefficients differed from the complete sample
condition, were the most extreme conditions
examined (i.e., when the proportion of missing data
above the mean was 0.80 or 0.90 and the percentage
of missing data was 50% or 60%).
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Table 4. Effect Sizes of the Sample Estimate of R-Square for the Grade Six Data by Sample Size, Proportion of
Missing Data High, Percentage of Missing Data, and Missing Data Treatment

Sample Proportion Percentage of
         Size                High              Missing Data                   L                  P                M S              S R                 M R              S M S            S S R             S M R           

   .60    10%,0%  0.0316  0.0208 -0.0907 -0.0589  0.0983 -0.1480 -0.0947  0.0396
   .60    20%,0%  0.0783  0.0621 -0.1671 -0.1264  0.2198 -0.2556 -0.2054  0.0859
   .60    30%,0% -0.1561  0.1199 -0.2322 -0.1832  0.3925 -0.3452 -0.2935  0.1189
   .60    40%,0% -0.2511  0.1898 -0.2929 -0.2453  0.6098 -0.4063 -0.3719  0.1968
   .60    50%,0% -0.4747  0.4125 -0.2998 -0.2634  1.0192 -0.4466 -0.3964  0.3747

           .60                  60%,0%               -0.4832       0.3935      -0.4123      -0.3612       1.3667      -0.500    1      -0.4876       0.4105          
   .70    10%,0%  0.0000a

   .70    20%,0%  0.0784  0.0668 -0.1600 -0.1170  0.2249 -0.2446 -0.1997  0.0777
   .70    30%,0%  0.1236  0.0823 -0.2546 -0.1935  0.3641 -0.3703 -0.3092  0.1337
   .70    40%,0%  0.1661  0.1353 -0.3076 -0.2492  0.5669 -0.4037 -0.3723  0.1773
   .70    50%,0%  0.2621  0.2209 -0.3693 -0.3023  0.8991 -0.4738 -0.4355  0.2724

  50                    .70                          60%,0%                0.3924       0.3424      -0.4257      -0.3704       1.3806      -0.5150      -0.4813       0.3850          
   .80    10%,0%  0.0371  0.0265 -0.0887 -0.0623  0.0992 -0.1429 -0.1134  0.0259
   .80    20%,0%  0.0883  0.0735 -0.1570 -0.1262  0.2187 -0.2491 -0.2075  0.0918
   .80    30%,0%  0.1338  0.1102 -0.2311 -0.1854  0.3775 -0.3595 -0.3102  0.1176
   .80    40%,0%  0.1881  0.1584 -0.2976 -0.2389  0.6096 -0.4139 -0.3694  0.2013
   .80    50%,0%  0.1121  0.0933 -0.4178 -0.3574  0.7386 -0.4775 -0.4638  0.1630

                   .80                          60%,0%                0.0386       0.0647      -0.4949      -0.4464       1.0187      -0.5253      -0.4954       0.2159          
   .90    10%,0%  0.0000a

   .90    20%,0%  0.0660  0.0516 -0.1835 -0.1292  0.2271 -0.2854 -0.2069  0.0662
   .90    30%,0%  0.0687  0.0655 -0.2598 -0.1997  0.3557 -0.3791 -0.2914  0.1200
   .90    40%,0%  0.0784  0.0699 -0.3426 -0.2674  0.5478 -0.4427 -0.3767  0.1917
   .90    50%,0% -0.0758  0.0095 -0.4391 -0.3913  0.6428 -0.4879 -0.4804  0.1107

                         .90                          60%,0%               -0.1736     -0.0573     -0.5101     -0.4648      0.7441     -0.5477     -0.5358      0.1111          

   .60   10%,10%  0.0668  0.0642 -0.1032 -0.0696  0.1614 -0.1823 -0.1231  0.0835
   .60   20%,10%  0.1825  0.1211 -0.1579 -0.1188  0.3004 -0.3043 -0.2057  0.1367
   .60   20%,20%  0.2525  0.1839 -0.1693 -0.1282  0.4036 -0.3397 -0.2312  0.2196
   .60   30%,20%  0.3912  0.2644 -0.2219 -0.1551  0.6706 -0.4229 -0.3362  0.2982
   .60   40%,20%  0.5757  0.3297 -0.3145 -0.2581  0.9462 -0.5471 -0.4105  0.4146

               .60                     30%,30%                   0.5596       0.3378      -0.2431      -0.1908       0.8362      -0.4589      -0.3260       0.4152          
   .70   10%,10%  0.0000 a

   .70   20%,10%  0.1397  0.0870 -0.1857 -0.1337  0.2858 -0.3247 -0.2365  0.1523
   .70   20%,20%  0.2503  0.1796 -0.1624 -0.1311  0.3908 -0.3195 -0.2189  0.1999
   .70   30%,20%  0.2837  0.2257 -0.2306 -0.1848  0.5699 -0.4496 -0.3327  0.2444
   .70   40%,20%  0.4986  0.2942 -0.3018 -0.2588  0.8634 -0.5471 -0.3759  0.3573

  50                .70                     30%,30%                   0.4928       0.3182      -0.2355      -0.1877       0.8204      -0.4691      -0.3174       0.4053          
   .80   10%,10%  0.0784  0.0695 -0.0902 -0.0653  0.1530 -0.1703 -0.1163  0.0852
   .80   20%,10%  0.1690  0.1218 -0.1598 -0.1303  0.2893 -0.2934 -0.2253  0.1338
   .80   20%,20%  0.2363  0.1857 -0.1555 -0.1145  0.4178 -0.3264 -0.2300  0.2212
   .80   30%,20%  0.2973  0.2596 -0.2221 -0.1983  0.5685 -0.4153 -0.3207  0.2411
   .80   40%,20%  0.3558  0.2919 -0.2950 -0.2453  0.8117 -0.4976 -0.3692  0.3531

               .80                     30%,30%                   0.3642       0.3446      -0.2068      -0.1789       0.7251      -0.4288      -0.3142       0.3056          
   .90   10%,10%  0.0000 a

   .90   20%,10%  0.1532  0.0992 -0.1730 -0.1274  0.2958 -0.3016 -0.2181  0.1364
   .90   20%,20%  0.1790  0.1734 -0.1590 -0.1323  0.3715 -0.3300 -0.2472  0.1918
   .90   30%,20%  0.1710  0.1761 -0.2527 -0.2224  0.5001 -0.4448 -0.3353  0.2168
   .90   40%,20%  0.2523  0.2907 -0.2792 -0.2577  0.7274 -0.4997 -0.4064  0.3049

                         .90                         30%,30%                   0.1893      0.3533     -0.2068     -0.2088      0.5802     -0.4602     -0.3393      0.2635          

(Table continues)
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Table 4 (continued).

Sample Proportion Percentage of
         Size                High              Missing Data                   L                  P                M S              S R                 M R              S M S            S S R             S M R           

   .60    10%,0%  0.0122  0.0076 -0.1719 -0.1177  0.1385 -0.3146 -0.2137  0.0106
   .60    20%,0%  0.0311  0.0208 -0.3309 -0.2425  0.3107 -0.5390 -0.4345  0.0510
   .60    30%,0%  0.0535  0.0449 -0.4685 -0.3578  0.5391 -0.7191 -0.6083  0.0404
   .60    40%,0%  0.0854  0.0675 -0.6004 -0.4819  0.8254 -0.8479 -0.7762  0.0852
   .60    50%,0%  0.1278  0.0915 -0.7154 -0.5910  1.2319 -0.9612 -0.8658  0.1529

           .60                      60%,0%                0.2099       0.1652      -0.8206      -0.7157       1.8387      -1.0430      -0.9857       0.1984          
   .70    10%,0%  0.0217  0.0177 -0.1676 -0.1148  0.1492 -0.3077 -0.2213  0.0290
   .70    20%,0%  0.0205  0.0131 -0.3309 -0.2410  0.3044 -0.5452 -0.4208  0.0136
   .70    30%,0%  0.0162  0.0145 -0.4806 -0.3733  0.5032 -0.7247 -0.6202  0.0464
   .70    40%,0%  0.0313  0.0242 -0.6153 -0.4833  0.8179 -0.8423 -0.7503  0.0797
   .70    50%,0% -0.0770 -0.0329 -0.7593 -0.6325  1.1078 -0.9856 -0.8926  0.0664

200            .70                          60%,0%               -0.2324      -0.1434      -0.8993      -0.7893       1.4826      -1.0682      -1.0277       0.0194          
   .80    10%,0%  0.0096  0.0105 -0.1719 -0.1204  0.1405 -0.3063 -0.2187  0.0194
   .80    20%,0%  0.0080  0.0015 -0.3437 -0.2508  0.2952 -0.5598 -0.4387  0.0160
   .80    30%,0% -0.0028  0.0025 -0.4917 -0.3764  0.5189 -0.7447 -0.6108  0.0545
   .80    40%,0% -0.1251 -0.0911 -0.6667 -0.5236  0.7137 -0.8937 -0.7924  0.0294
   .80    50%,0% -0.3413 -0.2211 -0.8305 -0.6904  0.9385 -0.9975 -0.9341 -0.0146

           .80                          60%,0%               -0.9049      -0.5265      -1.0072      -0.9076       0.8731      -1.1066      -1.0576      -0.2344          
   .90    10%,0%  0.0007 -0.0017 -0.1834 -0.1292  0.1301 -0.2913 -0.2390 -0.0043
   .90    20%,0% -0.0107 -0.0127 -0.3565 -0.2580  0.2983 -0.5573 -0.4564  0.0230
   .90    30%,0% -0.1395 -0.0984 -0.5468 -0.4031  0.4478 -0.7640 -0.6320  0.0022
   .90    40%,0% -0.3295 -0.2164 -0.7229 -0.5716  0.6058 -0.9102 -0.7991 -0.0423
   .90    50%,0% -0.7429 -0.4629 -0.9122 -0.7765  0.6343 -1.0366 -0.9678 -0.2109

           .90                          60%,0%               -1.2608     -0.7036     -1.0424     -0.9421      0.4194     -1.1131     -1.0620     -0.4166          

   .60   10%,10%  0.0611  0.0371 -0.1853 -0.1331  0.1785 -0.3434 -0.2513  0.0329
   .60   20%,10%  0.0328  0.0243 -0.3686 -0.2744  0.3197 -0.6670 -0.4680  0.0377
   .60   20%,20%  0.1028  0.0841 -0.3538 -0.2689  0.3921 -0.6758 -0.4771  0.0719
   .60   30%,20%  0.2269  0.1357 -0.4737 -0.3677  0.6743 -0.9117 -0.6555  0.1561
   .60   40%,20%  0.2765  0.1301 -0.6176 -0.5077  0.9548 -1.1043 -0.8155  0.1773

           .60                     30%,30%                   0.1862       0.1358      -0.5197      -0.4165       0.7010      -1.0358      -0.7265       0.1476          
   .70   10%,10%  0.0055  0.0256 -0.1961 -0.1302  0.1784 -0.3738 -0.2467  0.0367
   .70   20%,10%  0.0667  0.0494 -0.3443 -0.2614  0.3434 -0.6321 -0.4696  0.0545
   .70   20%,20%  0.0820  0.0872 -0.3432 -0.2720  0.3748 -0.7092 -0.4867  0.0772
   .70   30%,20%  0.0697  0.0769 -0.5058 -0.3863  0.6182 -0.9386 -0.6511  0.1252
   .70   40%,20% -0.0032  0.1072 -0.6300 -0.5120  0.8961 -1.1317 -0.8237  0.1396

200            .70                     30%,30%                   0.1016       0.1564      -0.4803      -0.3931       0.7031      -1.0259      -0.6758       0.1637          
   .80   10%,10%  0.0220  0.0297 -0.1884 -0.1304  0.1771 -0.3683 -0.2478  0.0358
   .80   20%,10%  0.0245  0.0504 -0.3382 -0.2447  0.3537 -0.6297 -0.4484  0.0542
   .80   20%,20%  0.0220  0.0646 -0.3642 -0.2751  0.3878 -0.7061 -0.4768  0.1053
   .80   30%,20% -0.0646  0.0892 -0.4791 -0.3778  0.5804 -0.8920 -0.6548  0.1042
   .80   40%,20% -0.1855  0.0639 -0.6158 -0.5293  0.7564 -1.1101 -0.8279  0.0724

           .80                     30%,30%              -0.1998       0.1923      -0.4574      -0.3909       0.6485      -0.9951      -0.6928       0.1460          
   .90   10%,10%  0.0331  0.0450 -0.1746 -0.1235  0.1853 -0.3604 -0.2477  0.0462
   .90   20%,10% -0.0064  0.0525 -0.3296 -0.2340  0.3582 -0.6149 -0.4397  0.0710
   .90   20%,20% -0.1236  0.0321 -0.3820 -0.2909  0.3498 -0.7376 -0.5033  0.0500
   .90   30%,20% -0.2198  0.0610 -0.4850 -0.3993  0.5346 -0.9192 -0.6615  0.0620
   .90   40%,20% -0.5107  0.1100 -0.5785 -0.5146  0.7081 -1.0827 -0.8029  0.0728

                 .90                 30%,30%              -0.5501      0.2709     -0.4148     -0.3865      0.5613     -0.9770     -0.6972      0.1042          

Note.  L: listwise deletion, P: pairwise deletion, MS: mean substitution, SR: simple regression, MR: multiple
regression, SMS: stochastic mean substitution, SSR: stochastic simple regression, SMR: stochastic multiple
regression.  a Data were not computed for this combination of sample size, proportion of missing data high, and
percentage of missing data.
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Table 5.  Effect Sizes of the Sample Estimate of R-Square for the Grade Nine Data by Sample Size, Proportion of
Missing Data High, Percentage of Missing Data, and Missing Data Treatment

Sample Proportion Percentage of
         Size                High              Missing Data                   L                  P                M S              S R                 M R              S M S            S S R             S M R           

   .60    10%,0%  0.0225  0.0251 -0.0867 -0.0461  0.0853 -0.1487 -0.1048  0.0342
   .60    20%,0%  0.0311  0.0392 -0.1723 -0.1075  0.1765 -0.2539 -0.1796  0.0516
   .60    30%,0%  0.0409  0.0611 -0.2397 -0.1681  0.2707 -0.3402 -0.2793  0.0759
   .60    40%,0%  0.0902  0.1202 -0.2979 -0.2228  0.4520 -0.3884 -0.3377  0.1198
   .60    50%,0%  0.1163  0.1573 -0.3452 -0.2735  0.6156 -0.4425 -0.3922  0.1396

           .60                  60%,0%                    0.1533           0.2641      -0.3889      -0.3278       0.9518      -0.4677      -0.4338       0.2299          
   .70    10%,0%  0.0000a

   .70    20%,0%  0.0491  0.0536 -0.1556 -0.0942  0.1860 -0.2470 -0.1734  0.0680
   .70    30%,0%  0.0073  0.0573 -0.2565 -0.1666  0.2877 -0.3525 -0.2797  0.0700
   .70    40%,0%  0.0201  0.0847 -0.3104 -0.2167  0.4530 -0.4112 -0.3285  0.1248
   .70    50%,0% -0.1186  0.0684 -0.3800 -0.2913  0.6189 -0.4453 -0.4065  0.1581

50                    .70                          60%,0%               -0.2708           0.1164      -0.4250      -0.3486       0.8867      -0    .4721      -0.4497       0.2016          
   .80    10%,0%  0.0214  0.0153 -0.0943 -0.0557  0.0741 -0.1616 -0.1069  0.0204
   .80    20%,0%  0.0275  0.0364 -0.1701 -0.1155  0.1630 -0.2574 -0.1880  0.0406
   .80    30%,0% -0.0367  0.0396 -0.2602 -0.1695  0.2874 -0.3340 -0.2730  0.0777
   .80    40%,0% -0.0753  0.0540 -0.3180 -0.2291  0.4322 -0.4130 -0.3257  0.0982
   .80    50%,0% -0.3059  0.0200 -0.3943 -0.3083  0.5711 -0.4511 -0.4013  0.1279

                   .80                          60%,0%               -0.7960      -0.0397      -0.4639      -0.3988       0.6800      -0.4945      -0.4799       0.1295          
   .90    10%,0%  0.0000a

   .90    20%,0% -0.0216  0.0147 -0.1856 -0.1184  0.1515 -0.2670 -0.1921  0.0231
   .90    30%,0% -0.0858  0.0330 -0.2579 -0.1572  0.3041 -0.3371 -0.2515  0.0931
   .90    40%,0% -0.2914 -0.0302 -0.3506 -0.2535  0.3725 -0.4294 -0.3481  0.0777
   .90    50%,0% -0.8275 -0.1089 -0.4434 -0.3601  0.4342 -0.4771 -0.4249  0.0116

                         .90                          60%,0%               -1.1856     -0.1301     -0.4798     -0.4160      0.4876     -0.5019     -0.4587      0.0060          

   .60   10%,10%  0.0700  0.0448 -0.2013 -0.1172  0.1554 -0.4308 -0.2247  0.0462
   .60   20%,10%  0.0496  0.0735 -0.3044 -0.1697  0.2504 -0.6226 -0.3165  0.0819
   .60   20%,20%  0.1256  0.1120 -0.3882 -0.2450  0.3524 -0.8244 -0.4480  0.1249
   .60   30%,20%  0.1449  0.1592 -0.4423 -0.2709  0.4822 -0.9791 -0.5223  0.1756
   .60   40%,20%  0.1463  0.2344 -0.5050 -0.3232  0.6690 -1.1814 -0.5983  0.2030

               .60                     30%,30%               0.1251           0.2282      -0.5653      -0.3628       0.6297      -1.2934      -0.6529       0.1897          
   .70   10%,10%  0.0000 a

   .70   20%,10%  0.0273  0.0617 -0.3027 -0.1696  0.2483 -0.6288 -0.3257  0.0763
   .70   20%,20%  0.0084  0.0933 -0.4020 -0.2569  0.3142 -0.8763 -0.4526  0.0916
   .70   30%,20%  0.0209  0.1798 -0.4328 -0.2825  0.4748 -1.0079 -0.5355  0.1528
   .70   40%,20% -0.0484  0.2653 -0.4817 -0.3476  0.6329 -1.1538 -0.6445  0.1784

  50                .70                     30%,30%              -0.1473           0.2947      -0.5058      -0.3842       0.5906      -1.2845      -0.6659       0.1824          
   .80   10%,10%  0.0284  0.0566 -0.1967 -0.1096  0.1696 -0.3867 -0.2047  0.0642
   .80   20%,10% -0.0058  0.0724 -0.2800 -0.1613  0.2547 -0.5874 -0.3124  0.0821
   .80   20%,20% -0.0316  0.1193 -0.3727 -0.2447  0.3329 -0.7880 -0.4605  0.1053
   .80   30%,20% -0.1470  0.1989 -0.4295 -0.2992  0.4689 -0.9975 -0.5439  0.1307
   .80   40%,20% -0.4512  0.2800 -0.4574 -0.3741  0.5466 -1.1321 -0.6342  0.1260

               .80                     30%,30%              -0.3978           0.3997      -0.4380      -0.3653       0.5564      -1.2396      -0.6626       0.1472          
   .90   10%,10%  0.0000 a

   .90   20%,10%  0.0186  0.0817 -0.2877 -0.1684  0.2684 -0.5675 -0.2973  0.0994
   .90   20%,20% -0.2366  0.1093 -0.3848 -0.2596  0.3070 -0.8182 -0.4560  0.0650
   .90   30%,20% -0.4642  0.2436 -0.3805 -0.3183  0.4009 -1.0173 -0.5446  0.0867
   .90   40%,20% -0.8097  0.4404 -0.3643 -0.3655  0.5384 -1.0630 -0.6417  0.1400

                         .90                         30%,30%              -1.1361           0.5863     -0.3586     -0.4131      0.4015      -1    .1560     -0.6953      0.0379              

(Table continues)
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Table 5.  (continued)

Sample Proportion Percentage of
         Size                High              Missing Data                   L                  P                M S              S R                 M R              S M S            S S R             S M R           

   .60    10%,0%  0.0088  0.0048 -0.1783 -0.1012  0.1045 -0.3026 -0.1862  0.0052
   .60    20%,0%  0.0002  0.0103 -0.3282 -0.1957  0.2402 -0.5146 -0.3456  0.0177
   .60    30%,0%  0.0097  0.0239 -0.4479 -0.2919  0.4056 -0.6369 -0.4907  0.0380
   .60    40%,0%  0.0186  0.0436 -0.5449 -0.3828  0.6306 -0.7417 -0.6105  0.0566
   .60    50%,0% -0.0320  0.0282 -0.6507 -0.4940  0.8763 -0.8155 -0.7259  0.0587

           .60                      60%,0%               -0.1513      -0.0102      -0.7457      -0.6056           1.1857      -0.8851      -0.8131       0.0477          
   .70    10%,0%  0.0019  0.0056 -0.1749 -0.0973  0.1081 -0.3034 -0.1865  0.0196
   .70    20%,0% -0.0124  0.0109 -0.3253 -0.1934  0.2427 -0.4975 -0.3404  0.0404
   .70    30%,0% -0.0251  0.0092 -0.4496 -0.2940  0.3976 -0.6545 -0.5041  0.0210
   .70    40%,0% -0.0733 -0.0052 -0.5608 -0.4005  0.5881 -0.7467 -0.6275  0.0429
   .70    50%,0% -0.3215 -0.0582 -0.6721 -0.4968  0.8593 -0.8279 -0.7227  0.0349

200            .70                  60%,0%               -0.8557      -0.2373      -0.7895      -0.6454       1.0227      -0.8982      -0.8270      -0.0467          
   .80    10%,0%  0.0039  0.0106 -0.1668 -0.0932  0.1096 -0.2970 -0.1729  0.0134
   .80    20%,0% -0.0349 -0.0092 -0.3392 -0.2080  0.2237 -0.5224 -0.3620  0.0053
   .80    30%,0% -0.1256 -0.0395 -0.4774 -0.3124  0.3670 -0.6779 -0.5095  0.0061
   .80    40%,0% -0.3246 -0.1024 -0.6094 -0.4343  0.5377 -0.7736 -0.6435 -0.0098
   .80    50%,0% -0.8434 -0.2470 -0.7304 -0.5588  0.6957 -0.8526 -0.7613 -0.0601

           .80                  60%,0%               -2.0911      -0    .5009      -0.8518      -0.7193       0.6845      -0.9211      -0.8607      -0.2185          
   .90    10%,0% -0.0289 -0.0073 -0.1865 -0.1018  0.0997 -0.3090 -0.1918 -0.0056
   .90    20%,0% -0.1028 -0.0308 -0.3538 -0.2023  0.2222 -0.5253 -0.3524  0.0112
   .90    30%,0% -0.2402 -0.0737 -0.4972 -0.3155  0.3668 -0.6818 -0.5065 -0.0135
   .90    40%,0% -0.6653 -0.2103 -0.6480 -0.4472  0.4927 -0.7823 -0.6499 -0.0238
   .90    50%,0% -1.6310 -0.4491 -0.7934 -0.6178  0.5080 -0.8865 -0.7948 -0.1651

               .90                  60%,0%               -2.7342      -0    .6396     -0.8767     -0.7458      0.3644     -0.9206     -0.8572     -0.3129          

   .60   10%,10%  0.0187  0.0128 -0.4179 -0.2292  0.2164 -0.8489 -0.4477  0.0163
   .60   20%,10%  0.0020  0.0179 -0.5787 -0.3259  0.3239 -1.1697 -0.6206  0.0095
   .60   20%,20%  0.0358  0.0486 -0.7713 -0.4349  0.4769 -1.6598 -0.8437  0.0446
   .60   30%,20%  0.0030  0.0558 -0.9093 -0.5542  0.5719 -2.0329 -1.0384  0.0427
   .60   40%,20% -0.0592  0.0870 -1.0251 -0.6417  0.7648 -2.3233 -1.1413  0.0669

           .60                     30%,30%                  -0.0962       0    .0888      -1.0873      -0.6697       0.7398      -2.5399      -1.2424       0.0702          
   .70   10%,10% -0.0213  0.0060 -0.4260 -0.2272  0.2181 -0.8397 -0.4321  0.0285
   .70   20%,10% -0.0475  0.0182 -0.5691 -0.3189  0.3272 -1.1807 -0.5993  0.0191
   .70   20%,20% -0.0619  0.0536 -0.7487 -0.4352  0.4585 -1.6632 -0.8401  0.0390
   .70   30%,20% -0.1976  0.0770 -0.8965 -0.5570  0.5701 -2.0138 -1.0381  0.0432
   .70   40%,20% -0.4626  0.1337 -0.9598 -0.6517  0.7462 -2.2493 -1.1657  0.0460

200            .70                     30%,30%             -0.5203       0    .1825      -1.0096      -0.6996       0.6919      -2.4983      -1.2857       0.0315            
   .80   10%,10%  0.0059  0.0247 -0.3989 -0.2235  0.2207 -0.8156 -0.4411  0.0215
   .80   20%,10% -0.0921  0.0230 -0.5512 -0.3223  0.3234 -1.1501 -0.6135  0.0142
   .80   20%,20% -0.2632  0.0396 -0.7615 -0.4726  0.4187 -1.6917 -0.8555  0.0175
   .80   30%,20% -0.5341  0.1117 -0.8442 -0.5744  0.5377 -1.9998 -1.0314  0.0033
   .80   40%,20% -1.1578  0.2250 -0.8749 -0.6776  0.6482 -2.2202 -1.1802 -0.0127

               .80                     30%,30%             -1.2698       0    .3677      -0.8887      -0.7154       0.6104      -2.4096      -1.2646      -0.0324          
   .90   10%,10% -0.0501  0.0226 -0.3953 -0.2185  0.2207 -0.8145 -0.4262  0.0125
   .90   20%,10% -0.1844  0.0225 -0.5542 -0.3351  0.3148 -1.1721 -0.6347  0.0088
   .90   20%,20% -0.4234  0.1062 -0.6870 -0.4523  0.4384 -1.6081 -0.8709  0.0212
   .90   30%,20% -0.9301  0.2304 -0.7203 -0.5570  0.5346 -1.9020 -1.0174  0.0190
   .90   40%,20% -2.2154  0.4767 -0.7293 -0.6999  0.5528 -2.0722 -1.2006 -0.0876

                         .90                         30%,30%             -2.4545       0    .7049     -0.7391     -0.7797      0.4242     -2.3257     -1.3174     -0.2027          

Note.  L: listwise deletion, P: pairwise deletion, MS: mean substitution, SR: simple regression, MR: multiple
regression, SMS: stochastic mean substitution, SSR: stochastic simple regression, SMR: stochastic multiple
regression.  a Data were not computed for this combination of sample size, proportion of missing data high, and
percentage of missing data.
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Table 6.  Effect Sizes of the First Standardized Regression Coefficient (X1) for the Grade Six Data by Sample Size,
Proportion of Missing Data High, Percentage of Missing Data, and Missing Data Treatment

Sample Proportion Percentage of
         Size                High              Missing Data                   L                  P                M S              S R                 M R              S M S            S S R             S M R           

   .60    10%,0%  0.0012 -0.0044 -0.1720 -0.0568  0.1136 -0.2985 -0.1595 -0.0102
   .60    20%,0% -0.0267 -0.0149 -0.3430 -0.1404  0.2216 -0.5528 -0.3496 -0.0176
   .60    30%,0%  0.0005  0.0145 -0.4704 -0.1749  0.4172 -0.7577 -0.5079 -0.0180
   .60    40%,0% -0.0223 -0.0044 -0.6214 -0.2630  0.5878 -0.9338 -0.6869 -0.0272
   .60    50%,0%  0.0313  0.1356 -0.6839 -0.2745  0.8829 -1.0613 -0.8026  0.0260

           .60                              60%,0%               -0.0985      -0.1456      -0.9517      -0.4406       0.9745      -1.2245      -1.0789      -0.0852          
   .70    10%,0%  0.0000a

   .70    20%,0% -0.0080 -0.0131 -0.3377 -0.1233  0.2387 -0.5294 -0.3496 -0.0316
   .70    30%,0% -0.0070 -0.0228 -0.4929 -0.1791  0.4096 -0.7757 -0.5105  0.0232
   .70    40%,0% -0.0431 -0.0885 -0.6643 -0.2723  0.5596 -0.9277 -0.6781 -0.0416
   .70    50%,0% -0.1064 -0.1629 -0.8285 -0.3909  0.7015 -1.1133 -0.9174 -0.1010

  50            .70                          60%,0%               -0.2444      -0.3544      -1.0307      -0.5754       0.7853      -1.2830      -1.0695      -0.2024          
   .80    10%,0%  0.0026  0.0065 -0.1661 -0.0545  0.1169 -0.2899 -0.1781 -0.0106
   .80    20%,0%  0.0059  0.0251 -0.3120 -0.1082  0.2638 -0.5291 -0.3140  0.0419
   .80    30%,0% -0.0341 -0.0443 -0.5007 -0.2031  0.3717 -0.7903 -0.5333 -0.0391
   .80    40%,0% -0.0509 -0.1029 -0.6720 -0.2792  0.5582 -0.9583 -0.6945 -0.0547
   .80    50%,0% -0.2707 -0.4184 -0.9573 -0.5299  0.4825 -1.1988 -0.9860 -0.2289

           .80                          60%,0%               -0.5365      -0.7498      -1.1769      -0.8084       0.3357      -1.3907      -1.2023      -0.4654          
   .90    10%,0%  0.0000a

   .90    20%,0% -0.0162 -0.0300 -0.3642 -0.1277  0.2514 -0.5852 -0.3245 -0.0211
   .90    30%,0% -0.0779 -0.1114 -0.5571 -0.2397  0.3422 -0.8213 -0.5237 -0.0284
   .90    40%,0% -0.1450 -0.2564 -0.7552 -0.3605  0.4262 -0.9872 -0.7263 -0.0849
   .90    50%,0% -0.4779 -0.7050 -1.0750 -0.7049  0.1883 -1.2344 -1.0965 -0.4430

           .90                          60%,0%               -0.6693     -0.9448     -1.2350     -0.9045      0.0246     -1.4042     -1.2092     -0.5652          

   .60   10%,10% -0.0276 -0.0010 -0.1257 -0.0715  0.0688 -0.2054 -0.1498 -0.0097
   .60   20%,10%  0.0102  0.0056 -0.2540 -0.1134  0.2180 -0.4110 -0.3006 -0.0391
   .60   20%,20%  0.0192  0.0263 -0.2022 -0.1054  0.2110 -0.3688 -0.2482  0.0421
   .60   30%,20%  0.0759  0.0563 -0.3260 -0.1090  0.4804 -0.5101 -0.4405  0.0496
   .60   40%,20% -0.1082 -0.0058 -0.5047 -0.3017  0.4553 -0.7507 -0.6444 -0.0749

           .60                     30%,30%              -0.0195       0.0131      -0.2916      -0.1518       0.4147      -0.4324      -0.4033       0.0317          
   .70   10%,10%  0.0000 a

   .70   20%,10% -0.0196 -0.0098 -0.2780 -0.1164  0.2270 -0.4556 -0.3081  0.0424
   .70   20%,20% -0.0441 -0.0424 -0.2440 -0.1665  0.1239 -0.3977 -0.3140 -0.0433
   .70   30%,20% -0.0452 -0.0672 -0.3814 -0.2144  0.3148 -0.5753 -0.4739 -0.0351
   .70   40%,20% -0.0484 -0.0747 -0.5118 -0.2800  0.5424 -0.7560 -0.5953 -0.0352

  50            .70                     30%,30%              -0.1038      -0.0965      -0.3326      -0.2185       0.2554      -0.5031      -0.4090      -0.0422          
   .80   10%,10%  0.0004  0.0096 -0.1103 -0.0521  0.0907 -0.1795 -0.1526  0.0066
   .80   20%,10% -0.0332 -0.0097 -0.2773 -0.1524  0.1745 -0.4397 -0.3415 -0.0467
   .80   20%,20% -0.0051 -0.0107 -0.2182 -0.1177  0.1943 -0.3601 -0.2807  0.0000
   .80   30%,20% -0.0707 -0.0772 -0.3910 -0.2375  0.2887 -0.5579 -0.4493 -0.0633
   .80   40%,20% -0.0808 -0.1362 -0.5433 -0.3263  0.4422 -0.7481 -0.6321 -0.0250

           .80                     30%,30%              -0.0406      -0.1167      -0.3296      -0.1932       0.3173      -0.4785      -0.3871      -0.0252          
   .90   10%,10%  0.0000 a

   .90   20%,10% -0.0147 -0.0541 -0.3141 -0.1434  0.1980 -0.4698 -0.3287 -0.0263
   .90   20%,20% -0.0304 -0.0590 -0.2548 -0.1452  0.1665 -0.3917 -0.2802 -0.0052
   .90   30%,20% -0.1275 -0.2289 -0.4788 -0.3416  0.1706 -0.6425 -0.5376 -0.1246
   .90   40%,20% -0.1347 -0.2766 -0.6011 -0.4046  0.3446 -0.8020 -0.7091 -0.1223

                 .90                 30%,30%              -0.1005     -0.2021     -0.3868     -0.2528      0.2170     -0.5601     -0.4502     -0.0826          

(Table continues)
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Table 6 (continued).

Sample Proportion Percentage of
         Size                High              Missing Data                   L                  P                M S              S R                 M R              S M S            S S R             S M R           

   .60    10%,0% -0.0024 -0.0079 -0.3493 -0.1208  0.2364 -0.6485 -0.3426 -0.0118
   .60    20%,0% -0.0150 -0.0178 -0.6859 -0.2554  0.5237 -1.1479 -0.7291  0.0159
   .60    30%,0% -0.0060 -0.0103 -0.9836 -0.3761  0.8989 -1.5784 -1.0902 -0.0142
   .60    40%,0% -0.0386 -0.0511 -1.3066 -0.5348  1.3247 -1.9465 -1.4660 -0.0244
   .60    50%,0% -0.0449 -0.0861 -1.5866 -0.6788  1.8978 -2.2854 -1.7637 -0.0132

           .60                      60%,0%               -0.0667      -0.1007      -1.8626      -0.8456       2.6981      -2.5775      -2.1450      -0.0451          
   .70    10%,0%  0.0082  0.0090 -0.3416 -0.1105  0.2580 -0.6381 -0.3466  0.0181
   .70    20%,0% -0.0168 -0.0356 -0.6924 -0.2575  0.5126 -1.1663 -0.7034 -0.0366
   .70    30%,0% -0.0532 -0.0742 -1.0205 -0.4155  0.8363 -1.5909 -1.1172 -0.0291
   .70    40%,0% -0.0691 -0.1241 -1.3360 -0.5598  1.2866 -1.9270 -1.4423 -0.0455
   .70    50%,0% -0.2148 -0.3498 -1.7047 -0.8221  1.6594 -2.3532 -1.8427 -0.1771

200            .70                          60%,0%               -0.4562      -0.6802      -2.0781      -1.1678       2.0551      -2.6978      -2.3204      -0.3695          
   .80    10%,0% -0.0081 -0.0141 -0.3592 -0.1268  0.2372 -0.6448 -0.3481  0.0021
   .80    20%,0% -0.0295 -0.0465 -0.7059 -0.2692  0.5049 -1.1889 -0.7335 -0.0327
   .80    30%,0% -0.0651 -0.1095 -1.0481 -0.4266  0.8465 -1.6300 -1.1141 -0.0289
   .80    40%,0% -0.1934 -0.3260 -1.4417 -0.6676  1.1220 -2.0502 -1.5470 -0.1539
   .80    50%,0% -0.4498 -0.7127 -1.8801 -1.0156  1.3559 -2.4127 -1.9950 -0.3324

           .80                          60%,0%               -1.1026      -1.5660      -2.4345      -1.7067       0.9128      -2.8839      -2.5623      -0.9232          
   .90    10%,0% -0.0239 -0.0309 -0.3753 -0.1414  0.2202 -0.6274 -0.3832 -0.0369
   .90    20%,0% -0.0533 -0.0810 -0.7399 -0.2892  0.4990 -1.2032 -0.7708 -0.0346
   .90    30%,0% -0.1399 -0.2739 -1.1567 -0.4894  0.7471 -1.7049 -1.1481 -0.1237
   .90    40%,0% -0.3769 -0.6126 -1.6041 -0.8239  0.9016 -2.1277 -1.5764 -0.2992
   .90    50%,0% -0.8213 -1.2375 -2.1183 -1.3391  0.7883 -2.5702 -2.1538 -0.7129

           .90                          60%,0%               -1.4187     -1.9514     -2.5564     -1.9316      0.1251     -2.9109     -2.5651     -1.2907          

   .60   10%,10% -0.0076 -0.0273 -0.2662 -0.1427  0.1588 -0.4268 -0.2954 -0.0461
   .60   20%,10% -0.0691 -0.0201 -0.5707 -0.2865  0.4356 -0.9292 -0.6667 -0.0334
   .60   20%,20% -0.0401  0.0107 -0.4282 -0.2612  0.3935 -0.6895 -0.5788 -0.0324
   .60   30%,20% -0.1472 -0.3800 -0.8904 -0.5913  0.5228 -1.2245 -1.0570 -0.1864
   .60   40%,20% -0.0463 -0.0871 -0.9904 -0.5830  1.2253 -1.5132 -1.3127 -0.0534

           .60                     30%,30%              -0.0350      -0.0326      -0.6026      -0.3983       0.7406      -0.9836      -0.8860       0.0107          
   .70   10%,10% -0.0116  0.0104 -0.2291 -0.1095  0.1907 -0.4174 -0.2824 -0.0011
   .70   20%,10% -0.0254 -0.0340 -0.5706 -0.2732  0.4555 -0.9354 -0.6628 -0.0285
   .70   20%,20% -0.0398 -0.0449 -0.4555 -0.2900  0.3424 -0.7431 -0.6232 -0.0591
   .70   30%,20% -0.0242 -0.0973 -0.7573 -0.4103  0.7805 -1.1709 -0.9298 -0.0051
   .70   40%,20% -0.1286 -0.1618 -1.0144 -0.6027  1.1845 -1.5522 -1.2859 -0.0497

200            .70                     30%,30%              -0.0376      -0.1142      -0.6147      -0.4193       0.6948      -0.9938      -0.8498      -0.0062          
   .80   10%,10% -0.0045 -0.0089 -0.2493 -0.1222  0.1807 -0.4264 -0.2956  0.0201
   .80   20%,10% -0.0173 -0.0393 -0.5732 -0.2610  0.4621 -0.9272 -0.6617 -0.0262
   .80   20%,20% -0.0648 -0.0647 -0.4747 -0.2986  0.3614 -0.7499 -0.5965 -0.0215
   .80   30%,20% -0.1105 -0.1964 -0.7899 -0.5016  0.6142 -1.1580 -0.9883 -0.1073
   .80   40%,20% -0.2315 -0.4575 -1.1488 -0.8111  0.8179 -1.6120 -1.4101 -0.2634

           .80                     30%,30%              -0.1317      -0.2697      -0.6731      -0.4963       0.5411      -1.0438      -0.9152      -0.0878          
   .90   10%,10% -0.0099 -0.0201 -0.2517 -0.1332  0.1634 -0.4268 -0.3138 -0.0124
   .90   20%,10% -0.0178 -0.0709 -0.5915 -0.2690  0.4517 -0.9443 -0.6785 -0.0211
   .90   20%,20% -0.1087 -0.1995 -0.5628 -0.3578  0.2949 -0.8185 -0.6421 -0.0986
   .90   30%,20% -0.1472 -0.3800 -0.8904 -0.5913  0.5228 -1.2245 -1.0570 -0.1864
   .90   40%,20% -0.3494 -0.6288 -1.2274 -0.8975  0.6420 -1.6996 -1.4292 -0.3022

                 .90                 30%,30%              -0.2251     -0.3989     -0.7368     -0.5438      0.3995     -1.0763     -0.9203     -0.1514          

Note.  L: listwise deletion, P: pairwise deletion, MS: mean substitution, SR: simple regression, MR: multiple
regression, SMS: stochastic mean substitution, SSR: stochastic simple regression, SMR: stochastic multiple
regression.  a Data were not computed for this combination of sample size, proportion of missing data high, and
percentage of missing data.
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Table 7.  Effect Sizes of the First Standardized Regression Coefficient (X1) for the Grade Nine Data by Sample
Size, Proportion of Missing Data High, Percentage of Missing Data, and Missing Data Treatment

Sample Proportion Percentage of
         Size                High              Missing Data                   L                  P                M S              S R                 M R              S M S            S S R             S M R          

   .60    10%,0%  0.0131  0.0138 -0.2761 -0.0435  0.1677 -0.4660 -0.2285  0.0260
   .60    20%,0% -0.0069 -0.0002 -0.5497 -0.1125  0.3482 -0.8228 -0.4123 -0.0031
   .60    30%,0% -0.0266 -0.0102 -0.7773 -0.1911  0.5422 -1.1236 -0.6547 -0.0279
   .60    40%,0% -0.0239  0.0465 -0.9492 -0.2495  0.8340 -1.3272 -0.8824  0.0273
   .60    50%,0% -0.0388 -0.0085 -1.1361 -0.3244  1.1149 -1.4995 -1.0769 -0.0604

           .60                      60%,0%               -0.0723      -0.0380      -1.3218      -0.4155       1.5024      -1.6637      -1.2814      -0.0526          
   .70    10%,0%  0.0000a

   .70    20%,0%  0.0284  0.0304 -0.5080 -0.0831  0.3717 -0.8079 -0.4053  0.0392
   .70    30%,0% -0.0196 -0.0188 -0.7966 -0.1900  0.5558 -1.1378 -0.6636 -0.0034
   .70    40%,0% -0.0446 -0.0553 -1.0025 -0.2595  0.8175 -1.3677 -0.8424 -0.0025
   .70    50%,0% -0.1664 -0.2596 -1.2420 -0.4201  1.0326 -1.5566 -1.1250 -0.0438

  50            .70                          60%,0%               -0.3181      -0.5020      -1.4609      -0.6084       1.1746      -1.7353      -1.3966      -0.1958          
   .80    10%,0% -0.0061 -0.0009 -0.2921 -0.0618  0.1515 -0.5015 -0.2177  0.0050
   .80    20%,0% -0.0220  0.0004 -0.5428 -0.1302  0.3285 -0.8282 -0.4162 -0.0089
   .80    30%,0% -0.0564 -0.0927 -0.8301 -0.2136  0.5299 -1.1139 -0.6663 -0.0264
   .80    40%,0% -0.1076 -0.1508 -1.0368 -0.3080  0.7639 -1.3904 -0.8640 -0.0654
   .80    50%,0% -0.2864 -0.4574 -1.3029 -0.5171  0.8512 -1.5948 -1.1485 -0.1718

           .80                          60%,0%               -0.6482      -1.0008      -1.5957      -0.8856       0.6884      -1.7984      -1.5403      -0.4545          
   .90    10%,0%  0.0000a

   .90    20%,0% -0.0391 -0.0525 -0.5862 -0.1436  0.3034 -0.8684 -0.4290 -0.0420
   .90    30%,0% -0.0843 -0.1549 -0.8566 -0.2322  0.5082 -1.1624 -0.6265 -0.0387
   .90    40%,0% -0.2574 -0.4258 -1.1611 -0.4290  0.5785 -1.4491 -0.9656 -0.1694
   .90    50%,0% -0.6277 -0.9750 -1.5154 -0.8141  0.4012 -1.7413 -1.3351 -0.5021

           .90                          60%,0%               -0.9072     -1.3876     -1.7052     -1.0967      0.1642     -1.8526     -1.5675     -0.7215          

   .60   10%,10% -0.0167 -0.0111  0.0071 -0.0830 -0.0321 -0.0368 -0.0657 -0.0329
   .60   20%,10% -0.0585 -0.0176 -0.2451 -0.1419  0.1405 -0.4377 -0.2721 -0.0332
   .60   20%,20%  0.0263  0.0393  0.0736 -0.0937 -0.0012  0.0328 -0.0739  0.0004
   .60   30%,20%  0.0056 -0.0501 -0.1705 -0.1944  0.1610 -0.3495 -0.3575  0.0008
   .60   40%,20%  0.0014 -0.0246 -0.3223 -0.2321  0.4735 -0.6160 -0.5426  0.0020

           .60                     30%,30%              -0.0209      -0.0561       0.0781      -0.1236       0.0127      -0.0960      -0.1276       0.0276          
   .70   10%,10%  0.0000 a

   .70   20%,10%  0.0142  0.0119 -0.2160 -0.0875  0.2001 -0.3841 -0.2726  0.0106
   .70   20%,20% -0.0096  0.0018  0.0312 -0.0960  0.0115 -0.0434 -0.1024  0.0099
   .70   30%,20%  0.0104 -0.0478 -0.1809 -0.1724  0.2233 -0.3746 -0.3020  0.0210
   .70   40%,20% -0.0260 -0.0540 -0.3364 -0.2202  0.4652 -0.6414 -0.5655  0.0335

  50            .70                     30%,30%              -0.0120       0.0145       0.1166      -0.0389       0.1088      -0.0751      -0.0763       0.0631          
   .80   10%,10% -0.0182 -0.0037  0.0118 -0.0627 -0.0109  0.0019 -0.0481  0.0107
   .80   20%,10% -0.0018 -0.0455 -0.2525 -0.1097  0.1746 -0.3834 -0.2408  0.0205
   .80   20%,20% -0.0245 -0.0246  0.0214 -0.1025  0.0049 -0.0211 -0.1372  0.0168
   .80   30%,20% -0.0696 -0.0678 -0.1855 -0.1777  0.2010 -0.3594 -0.3051  0.0040
   .80   40%,20% -0.2091 -0.2155 -0.4195 -0.2713  0.3371 -0.7196 -0.5772 -0.1347

           .80                     30%,30%               0    .0052       0.0504       0.1140       0.0963       0.2580      -0.0983      -0.0281       0.1995          
   .90   10%,10%  0.0000 a

   .90   20%,10% -0.0293 -0.0121 -0.2421 -0.1208  0.1769 -0.4030 -0.2358  0.0065
   .90   20%,20% -0.0740 -0.0548  0.0054 -0.1116 -0.0186 -0.0571 -0.1310 -0.0056
   .90   30%,20% -0.1215 -0.1658 -0.2454 -0.1790  0.2026 -0.4005 -0.3605 -0.0507
   .90   40%,20% -0.2424 -0.2973 -0.5198 -0.2412  0.3572 -0.7747 -0.5342 -0.0876

                 .90                 30%,30%              -0.1600      0.0632      0.0476      0.2112      0.4088     -0.1360      0.0208      0.2139          

(Table continues)
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Table 7 (continued).

Sample Proportion Percentage of
         Size                High              Missing Data                   L                  P                M S              S R                 M R              S M S            S S R             S M R           

   .60    10%,0% -0.0059  0.0058 -0.5746 -0.1129  0.3145 -0.9948 -0.4220 -0.0079
   .60    20%,0% -0.0050 -0.0077 -1.0785 -0.2210  0.6971 -1.7258 -0.8331 -0.0077
   .60    30%,0% -0.0014  0.0017 -1.4967 -0.3332  1.1722 -2.1964 -1.2497  0.0141
   .60    40%,0% -0.0025 -0.0054 -1.8614 -0.4439  1.7640 -2.6200 -1.6561 -0.0088
   .60    50%,0% -0.0570 -0.0904 -2.2536 -0.6120  2.4624 -2.9886 -2.1129 -0.0478

           .60                      60%,0%               -0.1967      -0.2914      -2.6257      -0.8497       3.2920      -3.3139      -2.5705      -0.1423          
   .70    10%,0% -0.0085 -0.0073 -0.5847 -0.1126  0.3132 -1.0183 -0.4299  0.0184
   .70    20%,0% -0.0104 -0.0209 -1.0906 -0.2245  0.6951 -1.7000 -0.8298  0.0310
   .70    30%,0% -0.0392 -0.0592 -1.5230 -0.3612  1.1261 -2.2686 -1.3120 -0.0329
   .70    40%,0% -0.0872 -0.1358 -1.9199 -0.5111  1.6731 -2.6624 -1.7214 -0.0254
   .70    50%,0% -0.1748 -0.3873 -2.3535 -0.6947  2.3401 -3.0534 -2.1461 -0.1409

200            .70                          60%,0%               -0.6356      -1.0727      -2.8479      -1.1908       2.6882      -3.4274      -2.6916      -0.4917          
   .80    10%,0%  0.0007 -0.0031 -0.5689 -0.1066  0.3104 -0.9997 -0.3974  0.0024
   .80    20%,0% -0.0531 -0.0663 -1.1196 -0.2635  0.6511 -1.7626 -0.8812 -0.0332
   .80    30%,0% -0.1036 -0.1754 -1.5988 -0.4110  1.0708 -2.3388 -1.3308 -0.0744
   .80    40%,0% -0.2615 -0.4227 -2.0909 -0.6512  1.5276 -2.7648 -1.8055 -0.1649
   .80    50%,0% -0.5722 -0.9932 -2.5808 -1.0196  1.8545 -3.1429 -2.3695 -0.4254

           .80                          60%,0%               -1.3159      -2.1213      -3.1616      -1.7865       1.5394      -3.5579      -2.9700      -1.1140          
   .90    10%,0% -0.0192 -0.0389 -0.6123 -0.1235  0.2950 -1.0266 -0.4517 -0.0291
   .90    20%,0% -0.0558 -0.1307 -1.1708 -0.2622  0.6396 -1.7808 -0.8723 -0.0313
   .90    30%,0% -0.1541 -0.3028 -1.6812 -0.4483  1.0310 -2.3726 -1.3366 -0.1400
   .90    40%,0% -0.4150 -0.7812 -2.2408 -0.7720  1.3360 -2.8235 -1.8840 -0.2634
   .90    50%,0% -1.0185 -1.7119 -2.8500 -1.4062  1.2405 -3.3215 -2.5826 -0.7847

           .90                          60%,0%               -1.6916     -2.5967     -3.2668     -2.0845      0.6154     -3.6220     -3.0131     -1.3553          

   .60   10%,10% -0.0153 -0.0192  0.0140 -0.1286 -0.0303 -0.0150 -0.1199 -0.0088
   .60   20%,10% -0.0062 -0.0183 -0.4451 -0.2292  0.3439 -0.7511 -0.5325 -0.0276
   .60   20%,20%  0.0450  0.0401  0.1221 -0.1779  0.0079 -0.0008 -0.1831  0.0672
   .60   30%,20% -0.0303 -0.0489 -0.3077 -0.3702  0.3935 -0.7175 -0.6172 -0.0498
   .60   40%,20% -0.0317 -0.0111 -0.5894 -0.4639  1.0407 -1.1742 -0.9943  0.0050

           .60                     30%,30%              -0.0600       0.0352       0.2277      -0.2829      -0.0416      -0.0990      -0.3074       0.0165          
   .70   10%,10% -0.0267  0.0099  0.0568 -0.1101 -0.0225  0.0097 -0.0922 -0.0136
   .70   20%,10% -0.0655 -0.0593 -0.4760 -0.2643  0.3126 -0.7974 -0.5326 -0.0478
   .70   20%,20%  0.0127 -0.0364  0.0758 -0.2150 -0.0361 -0.0562 -0.1661  0.0105
   .70   30%,20% -0.0727 -0.1136 -0.3258 -0.3511  0.3846 -0.7030 -0.5781 -0.0514
   .70   40%,20% -0.0533 -0.2082 -0.6500 -0.4562  0.9607 -1.2431 -1.0012 -0.0477

200            .70                     30%,30%              -0.0469      -0.0687       0.1982      -0.2206       0.0112      -0.1498      -0.2307       0.0293          
   .80   10%,10% -0.0195 -0.0077  0.0368 -0.1232 -0.0316  0.0223 -0.1156  0.0090
   .80   20%,10% -0.0304 -0.1077 -0.5108 -0.2581  0.3194 -0.8438 -0.5193 -0.0096
   .80   20%,20% -0.0510 -0.0602  0.0617 -0.2113 -0.0326 -0.0721 -0.1423  0.0122
   .80   30%,20% -0.1112 -0.2063 -0.3669 -0.3324  0.3808 -0.7406 -0.6186 -0.0639
   .80   40%,20% -0.2377 -0.3691 -0.7356 -0.4675  0.8549 -1.3129 -1.0400 -0.0818

           .80                     30%,30%              -0.1329      -0.0045       0.2236       0.0361       0.2921      -0.1193      -0.1260       0.1663          
   .90   10%,10% -0.0213 -0.0384  0.0092 -0.1194 -0.0329 -0.0180 -0.0835 -0.0058
   .90   20%,10% -0.0778 -0.1175 -0.5054 -0.2746  0.2986 -0.8310 -0.5356 -0.0591
   .90   20%,20% -0.0382 -0.0888  0.0582 -0.1679  0.0074 -0.0578 -0.1896  0.0381
   .90   30%,20% -0.1486 -0.2569 -0.3614 -0.2784  0.3943 -0.7047 -0.6067 -0.0091
   .90   40%,20% -0.4503 -0.4708 -0.8584 -0.4037  0.7856 -1.3911 -0.9864 -0.1467

                 .90                 30%,30%              -0.1995      0.1407      0.2294      0.4789      0.8062     -0.1592      0.1240      0.4457          

Note.  L: listwise deletion, P: pairwise deletion, MS: mean substitution, SR: simple regression, MR: multiple
regression, SMS: stochastic mean substitution, SSR: stochastic simple regression, SMR: stochastic multiple
regression.  a Data were not computed for this combination of sample size, proportion of missing data high, and
percentage of missing data.
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Table 8.  Effect Sizes of the Second Standardized Regression Coefficient (X2) for the Grade Six Data by Sample
Size, Proportion of Missing Data High, Percentage of Missing Data, and Missing Data Treatment

Sample Proportion Percentage of
         Size                High              Missing Data                   L                  P                M S              S R                 M R              S M S            S S R             S M R           

   .60    10%,0% -0.0139  0.0017  0.1389  0.0020 -0.0924  0.2376  0.0862  0.0042
   .60    20%,0%  0.0091  0.0024  0.2698  0.0125 -0.1937  0.4280  0.1902  0.0114
   .60    30%,0% -0.0059 -0.0212  0.3694 -0.0090 -0.3561  0.5677  0.2726  0.0079
   .60    40%,0%  0.0105 -0.0035  0.4800  0.0172 -0.4947  0.6770  0.3788  0.0348
   .60    50%,0%  0.0471 -0.0904  0.5504 -0.0213 -0.7293  0.7632  0.4405 -0.0038

           .60                              60%,0%               -0.0507       0.0758       0.6927       0.0485      -0.8601       0.8292       0.5919       0.0451          
   .70    10%,0%  0.0000a

   .70    20%,0% -0.0088  0.0045  0.2687  0.0038 -0.2021  0.4175  0.1898  0.0152
   .70    30%,0% -0.0340  0.0059  0.3859 -0.0030 -0.3524  0.5842  0.2797 -0.0204
   .70    40%,0% -0.0263  0.0583  0.5147  0.0266 -0.4751  0.6878  0.3795  0.0352
   .70    50%,0% -0.0484  0.1251  0.6321  0.0848 -0.5864  0.7874  0.5304  0.0880

  50            .70                          60%,0%               -0.0501       0.2589       0.7420       0.1897      -0.6592       0.8533       0.6117       0.1746          
   .80    10%,0% -0.0078 -0.0081  0.1344 -0.0042 -0.0984  0.2389  0.0955  0.0020
   .80    20%,0%  0.0049 -0.0196  0.2571 -0.0076 -0.2187  0.4168  0.1664 -0.0263
   .80    30%,0%  0.0054  0.0264  0.3977  0.0178 -0.3194  0.5909  0.2901  0.0234
   .80    40%,0% -0.0399  0.0708  0.5208  0.0352 -0.4686  0.7045  0.3900  0.0450
   .80    50%,0% -0.0317  0.2851  0.6885  0.1891 -0.4293  0.8092  0.5714  0.1674

           .80                          60%,0%               -0.0419       0.5436       0.8148       0.3989      -0.2797       0.8846       0.7168       0.3616          
   .90    10%,0%  0.0000a

   .90    20%,0% -0.0215  0.0134  0.2845  0.0013 -0.2156  0.4408  0.1699  0.0011
   .90    30%,0% -0.0137  0.0797  0.4377  0.0511 -0.2892  0.6114  0.2960  0.0242
   .90    40%,0% -0.0518  0.1852  0.5749  0.1078 -0.3594  0.7208  0.4136  0.0786
   .90    50%,0% -0.0414  0.4991  0.7591  0.3482 -0.1705  0.8405  0.6465  0.3243

           .90                          60%,0%               -0.0178      0.6760      0.8450      0.4993     -0.0250      0.8909      0.7314      0.4388          

   .60   10%,10%  0.0063 -0.0057  0.0924 -0.0071 -0.0509  0.1207  0.0553  0.0042
   .60   20%,10% -0.0067 -0.0061  0.2052 -0.0225 -0.1777  0.2791  0.1318  0.0231
   .60   20%,20% -0.0022 -0.0102  0.1756 -0.0366 -0.1567  0.2245  0.0612 -0.0290
   .60   30%,20% -0.0968 -0.0466  0.2779 -0.0928 -0.4033  0.3109  0.1596 -0.0547
   .60   40%,20%  0.0452  0.0210  0.4346  0.0296 -0.3726  0.4698  0.2932  0.0628

           .60                     30%,30%              -0.0715       0.0208       0.2786      -0.0608      -0.3405       0.2387       0.1258      -0.0199          
   .70   10%,10%  0.0000 a

   .70   20%,10% -0.0267 -0.0016  0.2179 -0.0197 -0.1930  0.3086  0.1312 -0.0307
   .70   20%,20%  0.0557  0.0558  0.2177  0.0188 -0.0735  0.2744  0.1299  0.0510
   .70   30%,20% -0.0281  0.0800  0.3423  0.0154 -0.2480  0.3549  0.2085  0.0395
   .70   40%,20%  0.0131  0.1266  0.4754  0.0308 -0.4221  0.4777  0.2893  0.0616

  50            .70                     30%,30%               0.0405       0.1809       0.3519       0.0259      -0.1465       0.2947       0.1626       0.0706          
   .80   10%,10% -0.0183 -0.0190  0.0747 -0.0284 -0.0809  0.1129  0.0546 -0.0166
   .80   20%,10%  0.0559  0.0224  0.2386  0.0198 -0.1301  0.3313  0.1735  0.0539
   .80   20%,20%  0.0003  0.0413  0.2106 -0.0082 -0.1246  0.2443  0.1027  0.0219
   .80   30%,20%  0.0226  0.1217  0.3707  0.0461 -0.2087  0.4052  0.2033  0.0670
   .80   40%,20% -0.0400  0.2192  0.5177  0.1006 -0.3357  0.5238  0.3402  0.0631

           .80                     30%,30%              -0.0713       0.2523       0.3741       0.0302      -0.1940       0.3293       0.1506       0.0543          
   .90   10%,10%  0.0000 a

   .90   20%,10% -0.0109  0.0578  0.2689  0.0117 -0.1549  0.3491  0.1642  0.0228
   .90   20%,20%  0.0068  0.0839  0.2430  0.0018 -0.1252  0.2691  0.0987  0.0025
   .90   30%,20%  0.0536  0.2924  0.4704  0.1596 -0.0854  0.4643  0.2868  0.1406
   .90   40%,20% -0.0325  0.4460  0.6205  0.2296 -0.1736  0.5922  0.4434  0.1641

                 .90                 30%,30%              -0.0160      0.4876      0.4949      0.1568     -0.0452      0.4475      0.2599      0.1542          

(Table continues)
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Table 8 (continued).

Sample Proportion Percentage of
         Size                High              Missing Data                   L                  P                M S              S R                 M R              S M S            S S R             S M R           

   .60    10%,0% -0.0028  0.0046  0.2971  0.0007 -0.2066  0.5362  0.1954  0.0067
   .60    20%,0% -0.0052  0.0070  0.5678  0.0050 -0.4635  0.9275  0.4176 -0.0106
   .60    30%,0% -0.0115  0.0059  0.8084  0.0044 -0.7889  1.2448  0.6226  0.0019
   .60    40%,0% -0.0091  0.0300  1.0467  0.0189 -1.1847  1.4824  0.8335  0.0184
   .60    50%,0% -0.0078  0.0698  1.2588  0.0343 -1.6969  1.6760  1.0200  0.0188

           .60                      60%,0%                    0.0013       0.0938       1.4472       0.0602      -2.4132       1.8178       1.2420       0.0667          
   .70    10%,0% -0.0114 -0.0056  0.2923 -0.0055 -0.2195  0.5364  0.1988 -0.0116
   .70    20%,0% -0.0027  0.0257  0.5784  0.0129 -0.4488  0.9440  0.4052  0.0237
   .70    30%,0%  0.0159  0.0544  0.8387  0.0355 -0.7412  1.2591  0.6467  0.0224
   .70    40%,0% -0.0244  0.0986  1.0792  0.0533 -1.1363  1.4888  0.8392  0.0458
   .70    50%,0% -0.0002  0.2752  1.3371  0.1671 -1.4808  1.7161  1.0843  0.1586

200            .70                          60%,0%                    0.0289       0.5387       1.5737       0.3601      -1.8281       1.8576       1.3785       0.3252          
   .80    10%,0% -0.0039  0.0085  0.3019  0.0048 -0.2058  0.5323  0.1973 -0.0002
   .80    20%,0% -0.0033  0.0291  0.5831  0.0180 -0.4472  0.9576  0.4199  0.0191
   .80    30%,0% -0.0030  0.0943  0.8666  0.0569 -0.7286  1.2774  0.6556  0.0433
   .80    40%,0% -0.0054  0.2540  1.1536  0.1508 -0.9928  1.5423  0.9177  0.1348
   .80    50%,0% -0.0067  0.5399  1.4415  0.3360 -1.2168  1.7501  1.1931  0.2804

           .80                          60%,0%                    0.0183       1.1692       1.7557       0.8534      -0.8070       1.9244       1.5678       0.7728          
   .90    10%,0%  0.0060  0.0196  0.3131  0.0139 -0.1958  0.5278  0.2180  0.0199
   .90    20%,0%  0.0011  0.0646  0.6169  0.0407 -0.4314  0.9768  0.4507  0.0332
   .90    30%,0% -0.0523  0.2013  0.9323  0.1029 -0.6638  1.3189  0.6814  0.0989
   .90    40%,0% -0.0034  0.4658  1.2585  0.2846 -0.8040  1.5911  0.9534  0.2516
   .90    50%,0%  0.0013  0.9400  1.5926  0.6396 -0.6905  1.8147  1.3333  0.5924

           .90                          60%,0%              -0.0053      1.4292      1.8129      1.0991     -0.1098      1.9343      1.6115      1.0380          

   .60   10%,10%  0.0240  0.0363  0.2214 -0.0134 -0.1127  0.3119  0.0934  0.0496
   .60   20%,10%  0.0369  0.0041  0.4605 -0.0114 -0.3777  0.6491  0.3036  0.0179
   .60   20%,20%  0.0270 -0.0152  0.3501 -0.0684 -0.3185  0.4139  0.1773  0.0215
   .60   30%,20%  0.0234  0.0224  0.6316 -0.0647 -0.6901  0.7296  0.3816  0.0335
   .60   40%,20%  0.0770  0.1036  0.8961  0.0012 -1.0638  0.9816  0.6257  0.0605

           .60                     30%,30%              -0.0051       0.0406       0.5648      -0.1027      -0.6371       0.5013       0.2709      -0.0231          
   .70   10%,10% -0.0233 -0.0180  0.1681 -0.0497 -0.1506  0.2663  0.0881 -0.0008
   .70   20%,10%  0.0146  0.0366  0.4772 -0.0142 -0.3812  0.6705  0.3065  0.0263
   .70   20%,20%  0.0500  0.0631  0.4074 -0.0332 -0.2642  0.4553  0.2353  0.0618
   .70   30%,20% -0.0505  0.1075  0.6758 -0.0392 -0.6798  0.7631  0.3959 -0.0001
   .70   40%,20% -0.0493  0.2037  0.9315  0.0348 -1.0381  0.9864  0.6108  0.0322

200            .70                     30%,30%               0.0123       0.2103       0.6536      -0.0440      -0.5581       0.5467       0.2868       0.0328          
   .80   10%,10% -0.0116  0.0103  0.2009 -0.0331 -0.1386  0.2943  0.1004 -0.0245
   .80   20%,10% -0.0038  0.0524  0.4978 -0.0093 -0.3773  0.6942  0.3241  0.0313
   .80   20%,20%  0.0393  0.1005  0.4409 -0.0165 -0.2745  0.4890  0.2116  0.0424
   .80   30%,20%  0.0433  0.2726  0.7761  0.0899 -0.4809  0.8178  0.4760  0.1319
   .80   40%,20%  0.0884  0.5830  1.1276  0.2856 -0.6430  1.1165  0.7532  0.2661

           .80                     30%,30%               0.0201       0.5173       0.8051       0.0986      -0.3557       0.6931       0.4006       0.1534          
   .90   10%,10%  0.0067  0.0337  0.2162 -0.0184 -0.1151  0.2998  0.1203  0.0143
   .90   20%,10% -0.0186  0.0949  0.5313  0.0093 -0.3598  0.7144  0.3503  0.0371
   .90   20%,20% -0.0399  0.2331  0.5309  0.0394 -0.2268  0.5420  0.2459  0.0832
   .90   30%,20% -0.0064  0.5093  0.9166  0.2011 -0.3722  0.9053  0.5646  0.2111
   .90   40%,20%  0.0128  0.9071  1.2911  0.4507 -0.4007  1.2430  0.8498  0.3781

                 .90                 30%,30%              -0.0405      0.8685      0.9817      0.2386     -0.1616      0.7968      0.4493      0.2552          

Note.  L: listwise deletion, P: pairwise deletion, MS: mean substitution, SR: simple regression, MR: multiple
regression, SMS: stochastic mean substitution, SSR: stochastic simple regression, SMR: stochastic multiple
regression.  a Data were not computed for this combination of sample size, proportion of missing data high, and
percentage of missing data.



Brockmeier, Kromrey, & Hines

Multiple Linear Regression Viewpoints, 1998, Vol. 2534

Table 9.  Effect Sizes of the Second Standardized Regression Coefficient (X2) for the Grade Nine Data by Sample
Size, Proportion of Missing Data High, Percentage of Missing Data, and Missing Data Treatment

Sample Proportion Percentage of
         Size                High              Missing Data                   L                  P                M S              S R                 M R              S M S            S S R             S M R           

   .60    10%,0% -0.0102 -0.0109  0.2560 -0.0081 -0.1518  0.4244  0.1564 -0.0170
   .60    20%,0% -0.0046 -0.0029  0.5015 -0.0036 -0.3235  0.7445  0.2811 -0.0001
   .60    30%,0%  0.0093  0.0039  0.6975  0.0138 -0.5094  0.9792  0.4478  0.0209
   .60    40%,0%  0.0122 -0.0446  0.8459  0.0153 -0.7739  1.1385  0.6058 -0.0124
   .60    50%,0%  0.0162 -0.0072  0.9927  0.0249 -1.0548  1.2406  0.7405  0.0389

           .60                      60%,0%                    0.0095       0.0210       1.1344       0.0558      -1.4003       1.3468       0.8791       0.0613          
   .70    10%,0%  0.0000a

   .70    20%,0% -0.0152 -0.0230  0.4730 -0.0224 -0.3374  0.7366  0.2783 -0.0264
   .70    30%,0% -0.0320  0.0104  0.7058  0.0179 -0.5155  0.9848  0.4565  0.0010
   .70    40%,0% -0.0448  0.0473  0.8866  0.0279 -0.7585  1.1552  0.5805  0.0145
   .70    50%,0% -0.0257  0.2213  1.0749  0.1233 -0.9571  1.2768  0.7852  0.0714

  50            .70                          60%,0%               -0.0555       0.4345       1.2301       0.2503      -1.0851       1.3780       0.9843       0.2012          
   .80    10%,0%  0.0038 -0.0011  0.2666  0.0040 -0.1408  0.4531  0.1468 -0.0049
   .80    20%,0%  0.0263  0.0029  0.5022  0.0175 -0.3002  0.7523  0.2875  0.0110
   .80    30%,0% -0.0017  0.0850  0.7486  0.0448 -0.4822  0.9885  0.4642  0.0306
   .80    40%,0% -0.0041  0.1322  0.9227  0.0741 -0.7058  1.1752  0.6053  0.0596
   .80    50%,0%  0.0088  0.3904  1.1232  0.2164 -0.7886  1.3087  0.8088  0.1736

           .80                          60%,0%               -0.0147       0.8394       1.3081       0.5185      -0.6355       1.4013       1.1093       0.4172          
   .90    10%,0%  0.0000a

   .90    20%,0%  0.0031  0.0403  0.5292  0.0261 -0.2857  0.7767  0.2961  0.0318
   .90    30%,0% -0.0124  0.1487  0.7818  0.0710 -0.4527  1.0299  0.4460  0.0547
   .90    40%,0%  0.0040  0.3548  1.0091  0.1819 -0.5471  1.2124  0.6851  0.1501
   .90    50%,0% -0.0048  0.8044  1.2515  0.4952 -0.3803  1.3649  0.9722  0.4345

           .90                          60%,0%                    0.0178      1.1298      1.3618      0.7310     -0.1692      1.4149      1.1406      0.6196          

   .60   10%,10%  0.0346  0.0143 -0.0246 -0.0363  0.0483 -0.0481 -0.0769  0.0310
   .60   20%,10%  0.0220  0.0172  0.2056 -0.0317 -0.1093  0.2673  0.0707  0.0358
   .60   20%,20% -0.0151 -0.0270 -0.0735 -0.1452  0.0410 -0.1932 -0.1992  0.0050
   .60   30%,20%  0.0232  0.0721  0.2156 -0.0910 -0.1092  0.1526  0.0295  0.0149
   .60   40%,20% -0.0249  0.0740  0.4108 -0.0985 -0.3910  0.3248  0.1587  0.0184

           .60                     30%,30%              -0.0786       0.0878       0.0050      -0.2333       0.0325      -0.2048      -0.2826      -0.0337          
   .70   10%,10%  0.0000 a

   .70   20%,10% -0.0422 -0.0104  0.1876 -0.0835 -0.1681  0.2354  0.0639 -0.0074
   .70   20%,20% -0.0154  0.0043 -0.0258 -0.1455  0.0162 -0.1406 -0.1743 -0.0119
   .70   30%,20% -0.0254  0.0877  0.2441 -0.1154 -0.1753  0.1605 -0.0353 -0.0044
   .70   40%,20% -0.0093  0.1543  0.4558 -0.1055 -0.3841  0.3615  0.1710 -0.0216

  50            .70                     30%,30%              -0.0420       0.1554       0.0704      -0.2799      -0.0285      -0.1726      -0.2933      -0.0404          
   .80   10%,10%  0.0085  0.0104 -0.0278 -0.0501  0.0348 -0.0711 -0.0774 -0.0012
   .80   20%,10% -0.0205  0.0550  0.2432 -0.0559 -0.1371  0.2617  0.0415 -0.0108
   .80   20%,20% -0.0026  0.0563  0.0128 -0.1300  0.0317 -0.1114 -0.1463 -0.0068
   .80   30%,20%  0.0069  0.1437  0.2730 -0.1008 -0.1446  0.1752 -0.0228 -0.0057
   .80   40%,20%  0.0570  0.3941  0.5727 -0.0330 -0.2679  0.4610  0.2017  0.1275

           .80                     30%,30%              -0.0576       0.2376       0.1389      -0.3629      -0.1545      -0.0977      -0.3082      -0.1621          
   .90   10%,10%  0.0000 a

   .90   20%,10%  0.0070  0.0381  0.2371 -0.0415 -0.1275  0.2947  0.0607  0.0164
   .90   20%,20% -0.0190  0.1084  0.0515 -0.1151  0.0494 -0.0628 -0.1364 -0.0073
   .90   30%,20%  0.0135  0.3288  0.4028 -0.0737 -0.1394  0.2432  0.0596  0.0542
   .90   40%,20%  0.0800  0.6490  0.7457  0.0215 -0.2071  0.5936  0.2276  0.1504

                 .90                 30%,30%              -0.0161      0.4937      0.3155     -0.3691     -0.2361      0.0613     -0.2707     -0.1300          

(Table continues)
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Table 9 (continued).

Sample Proportion Percentage of
         Size                High              Missing Data                   L                  P                M S              S R                 M R              S M S            S S R             S M R           

   .60    10%,0% -0.0024 -0.0079 -0.3493 -0.1208  0.2364 -0.6485 -0.3426 -0.0118
   .60    20%,0% -0.0150 -0.0178 -0.6859 -0.2554  0.5237 -1.1479 -0.7291  0.0159
   .60    30%,0% -0.0060 -0.0103 -0.9836 -0.3761  0.8989 -1.5784 -1.0902 -0.0142
   .60    40%,0% -0.0386 -0.0511 -1.3066 -0.5348  1.3247 -1.9465 -1.4660 -0.0244
   .60    50%,0% -0.0449 -0.0861 -1.5866 -0.6788  1.8978 -2.2854 -1.7637 -0.0132

           .60                      60%,0%               -0.0667      -0.1007      -1.8626      -0.8456       2.6981      -2.5775      -2.1450      -0.0451          
   .70    10%,0%  0.0082  0.0090 -0.3416 -0.1105  0.2580 -0.6381 -0.3466  0.0181
   .70    20%,0% -0.0168 -0.0356 -0.6924 -0.2575  0.5126 -1.1663 -0.7034 -0.0366
   .70    30%,0% -0.0532 -0.0742 -1.0205 -0.4155  0.8363 -1.5909 -1.1172 -0.0291
   .70    40%,0% -0.0691 -0.1241 -1.3360 -0.5598  1.2866 -1.9270 -1.4423 -0.0455
   .70    50%,0% -0.2148 -0.3498 -1.7047 -0.8221  1.6594 -2.3532 -1.8427 -0.1771

200            .70                          60%,0%               -0.4562      -0.6802      -2.0781      -1.1678       2.0551      -2.6978      -2.3204      -0.3695          
   .80    10%,0% -0.0081 -0.0141 -0.3592 -0.1268  0.2372 -0.6448 -0.3481  0.0021
   .80    20%,0% -0.0295 -0.0465 -0.7059 -0.2692  0.5049 -1.1889 -0.7335 -0.0327
   .80    30%,0% -0.0651 -0.1095 -1.0481 -0.4266  0.8465 -1.6300 -1.1141 -0.0289
   .80    40%,0% -0.1934 -0.3260 -1.4417 -0.6676  1.1220 -2.0502 -1.5470 -0.1539
   .80    50%,0% -0.4498 -0.7127 -1.8801 -1.0156  1.3559 -2.4127 -1.9950 -0.3324

           .80                          60%,0%               -1.1026      -1.5660      -2.4345      -1.7067       0.9128      -2.8839      -2.5623      -0.9232          
   .90    10%,0% -0.0239 -0.0309 -0.3753 -0.1414  0.2202 -0.6274 -0.3832 -0.0369
   .90    20%,0% -0.0533 -0.0810 -0.7399 -0.2892  0.4990 -1.2032 -0.7708 -0.0346
   .90    30%,0% -0.1399 -0.2739 -1.1567 -0.4894  0.7471 -1.7049 -1.1481 -0.1237
   .90    40%,0% -0.3769 -0.6126 -1.6041 -0.8239  0.9016 -2.1277 -1.5764 -0.2992
   .90    50%,0% -0.8213 -1.2375 -2.1183 -1.3391  0.7883 -2.5702 -2.1538 -0.7129

           .90                          60%,0%               -1.4187     -1.9514     -2.5564     -1.9316      0.1251     -2.9109     -2.5651     -1.2907          

   .60   10%,10%  0.0133  0.0175 -0.0709 -0.1096  0.0631 -0.1591 -0.1607  0.0090
   .60   20%,10% -0.0045  0.0073  0.3931 -0.1224 -0.3153  0.5089  0.1294  0.0106
   .60   20%,20% -0.0333 -0.0289 -0.1298 -0.2920  0.0644 -0.3571 -0.3576 -0.0701
   .60   30%,20%  0.0373  0.0562  0.3626 -0.2232 -0.3344  0.2393 -0.0582  0.0489
   .60   40%,20% -0.0176  0.0275  0.7287 -0.2418 -0.9908  0.5868  0.2374 -0.0199

           .60                     30%,30%              -0.0313      -0.0069      -0.0605      -0.4376       0.1228      -0.5388      -0.5061      -0.0285          
   .70   10%,10%  0.0054 -0.0107 -0.1086 -0.1249  0.0583 -0.1767 -0.1793  0.0240
   .70   20%,10%  0.0454  0.0597  0.4441 -0.0790 -0.2769  0.5523  0.1508  0.0373
   .70   20%,20% -0.0016  0.0640 -0.0517 -0.2487  0.1044 -0.2829 -0.3695 -0.0104
   .70   30%,20%  0.0176  0.1579  0.4193 -0.2353 -0.3238  0.2648 -0.0869  0.0486
   .70   40%,20% -0.0220  0.3173  0.8853 -0.2271 -0.8923  0.7274  0.2561  0.0404

200            .70                     30%,30%              -0.0283       0.2274       0.0963      -0.4826       0.0825      -0.3996      -0.5788      -0.0307          
   .80   10%,10%  0.0260  0.0154 -0.0754 -0.1125  0.0666 -0.1681 -0.1647 -0.0073
   .80   20%,10%  0.0187  0.1182  0.5010 -0.0840 -0.2827  0.6158  0.1320 -0.0002
   .80   20%,20% -0.0131  0.0991 -0.0159 -0.2654  0.0865 -0.2617 -0.3938 -0.0143
   .80   30%,20% -0.0023  0.3146  0.5455 -0.2465 -0.3268  0.3502 -0.0262  0.0445
   .80   40%,20%  0.0268  0.6331  1.0894 -0.1832 -0.7925  0.8487  0.3169  0.0704

           .80                     30%,30%               0.0422       0.4105       0.2529      -0.6799      -0.1822      -0.2856      -0.6122      -0.1551          
   .90   10%,10%  0.0102  0.0506 -0.0350 -0.1108  0.0696 -0.1260 -0.1817 -0.0004
   .90   20%,10%  0.0188  0.1378  0.5098 -0.0721 -0.2642  0.6068  0.1357  0.0481
   .90   20%,20% -0.0196  0.1895  0.0761 -0.2913  0.0579 -0.1941 -0.3504 -0.0410
   .90   30%,20%  0.0647  0.5042  0.6985 -0.2582 -0.3129  0.4448 -0.0044  0.0151
   .90   40%,20%  0.1155  1.0825  1.3977 -0.1361 -0.6577  1.0901  0.3462  0.1869

                 .90                 30%,30%               0.0228      0.7197      0.4850     -1.0172     -0.6737     -0.1019     -0.7715     -0.4352          

Note. L: listwise deletion, P: pairwise deletion, MS: mean substitution, SR: simple regression, MR: multiple
regression, SMS: stochastic mean substitution, SSR: stochastic simple regression, SMR: stochastic multiple
regression.  a Data were not computed for this combination of sample size, proportion of missing data high, and
percentage of missing data.
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Pairwise deletion was the third most effective
missing data treatment estimating the regression
weights for the first data set, but was less effective
than deterministic simple regression for the second
data set (in which higher zero-order correlations were
present). Deterministic mean substitution,
deterministic multiple regression, stochastic simple
regression, and stochastic mean substitution were
generally ineffective in generating unbiased estimates
of the regression coefficients.

Overall, these results suggest that applied
researchers can be reasonably confident in utilizing
stochastic multiple regression and the deletion
procedures to generate unbiased parameter estimates of
the standardized regression coefficients even when the
proportion of missing data is as high as 50%.  As the
proportion of missing data increases, and as the
probability of missingness becomes more highly
related to the values of the regressors, however, we
can be more confident in employing the stochastic
multiple regression or listwise deletion procedures
than the pairwise deletion technique.

The relative effectiveness of the missing data
treatments in this study with systematically missing
data were similar to the results obtained with
randomly missing data in previous studies
(Brockmeier, Hines, & Kromrey, 1993; Brockmeier,
Kromrey, & Hines, 1994; Brockmeier, Kromrey, &
Hines, 1995).  Stochastic multiple regression and
pairwise deletion were the most effective procedures
in estimating the sample estimate of R2.  Listwise
deletion was the next closest procedure in yielding
parameter estimates that did not differ from the
complete sample condition.  The pattern of
effectiveness for the missing data treatments also was
similar for the standardized regression coefficients.
Across the studies, deterministic mean substitution,
deterministic simple regression, deterministic
multiple regression, and stochastic mean substitution
generally did not perform well in producing unbiased
estimates of the sample estimate of R2 and
standardized regression coefficients.

Similarly, the effectiveness of the missing data
treatments with systematically missing data in this
study and in Kromrey and Hines (1994) was
consistent.  The deletion procedures were more
effective than the deterministic imputation procedures
in generating unbiased estimates of the sample
estimate of R2 and standardized regression coefficients.
Pairwise deletion was more effective than listwise
deletion for the estimation of R2, but listwise deletion
was more effective than pairwise deletion in
estimating the regression weights.

Finally, the effectiveness of the missing data
treatments with systematically missing data in this
study and in Brockmeier et al. (1996) was also
congruent.  Stochastic multiple regression and
pairwise deletion were the most effective missing data

treatments for estimating R2, with listwise deletion
being the third most effective method.  Stochastic
multiple regression and listwise deletion were the
most effective missing data treatments for estimating
the regression weights in both studies, with pairwise
deletion being the third most effective.  Across the
studies, deterministic mean substitution, deterministic
multiple regression, and stochastic mean substitution
did not perform well in generating unbiased estimates
of the sample estimate of R2 and standardized
regression coefficients.

Three limitations should be considered when
interpreting the results of the present investigation.
First, generalizability of the results to other data sets
is a limitation.  The data sets were selected based on
the type of data and the correlational differences
between variables in each data set.  The data sets were
not randomly selected from all possible data sets.
Second, the outcomes are limited to a two-predictor
regression model.  The outcomes of regression
models with additional predictor variables require
examination.  Finally, variations in the missing data
mechanism need further investigation.

Given these limitations, however, the
consistency of the results across several years of
research suggest that the choice of a missing data
treatment is an important one for researchers. Many
of the procedures yield large degrees of bias in the
resulting sample estimates, even in the presence of
small proportions of missing data.  In contrast,
stochastic multiple regression and the deletion
procedures appear to maintain the integrity of the data
matrix and provide relatively unbiased estimates in
the presence of large proportions of missing data.
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Appendix A
Example SAS Code for Three Stochastic Imputation Procedures

*-------------------------------------------------------------*;
*  STOCHASTIC MEAN SUBSTITUTION*;
*------------------------------------------------------------*;;

PROC MEANS DATA=SAM50MD NOPRINT;
   VAR X1 X2;
   BY SAMPLE;
   OUTPUT OUT=SMS MEAN=MX1 MX2
                  STD=STDX1 STDX2;

DATA SMSUB; MERGE SAM50MD SMS;
   BY SAMPLE;
   IF X1=. OR X2=.  THEN DO;
      RX1=STDX1*RANNOR(0);
      RX2=STDX2*RANNOR(0);
      IF X1=. THEN X1=MX1+RX1;
      IF X2=. THEN X2=MX2+RX2;
      OUTPUT;
   END;
   ELSE OUTPUT;
   KEEP SAMPLE Y X1 X2;

PROC MEANS DATA=SMSUB NOPRINT;
   VAR Y X1 X2 ;
   BY SAMPLE;
  OUTPUT OUT=SMES STD=STDY STDX1 STDX2;

DATA SMSUBS; SET SMES;
   BY SAMPLE;
   KEEP SAMPLE STDY STDX1 STDX2;
PROC REG DATA=SMSUB OUTEST=SMEAS

NOPRINT;
  MODEL Y=X1 X2/SELECTION=RSQUARE

START=2 B;
  BY SAMPLE;

DATA SMEANSUB; MERGE SMSUBS SMEAS;
  BY SAMPLE;
  STBX1=X1*(STDX1/STDY);
  STBX2=X2*(STDX2/STDY);
  KEEP SAMPLE _RSQ_ STBX1 STBX2;
  RENAME _RSQ_=SMSRSQ STBX1=SMSX1

 STBX2=SMSX2;

*--------------------------------------------------------------*;
*  STOCHASTIC SIMPLE REGRESSION *;
*--------------------------------------------------------------*;
PROC REG DATA=SAM50MD OUTEST=A

NOPRINT;
   MODEL X1=X2/SELECTION=RSQUARE

START=1 B;
   BY SAMPLE;
   OUTPUT OUT=SSR1 P=X1PV1;
DATA A1; SET A;
   BY SAMPLE;
   KEEP SAMPLE _RMSE_;
   RENAME _RMSE_=RMSE1;
DATA SSIM;  MERGE SAM50MD A1 SSR1;

* B1 SSR2;
   BY SAMPLE;
   IF X1=. OR X2=. THEN DO;
      RX1=RMSE1*RANNOR(0);
*      RX2=RMSE2*RANNOR(0);
      IF X1=. AND X1PV1 NE . THEN
X1=X1PV1+RX1;
      OUTPUT;
      END;
   ELSE OUTPUT;
   KEEP SAMPLE Y X1 X2;
PROC MEANS DATA=SSIM NOPRINT;
   VAR Y X1 X2;
   BY SAMPLE;
   OUTPUT OUT=SSIMP

STD=STDY STDX1
STDX2;
DATA F2;  SET SSIMP;
  BY SAMPLE;
  KEEP SAMPLE STDY STDX1 STDX2;
PROC REG DATA=SSIM OUTEST=SSIMPL
NOPRINT;
  MODEL Y=X1 X2/SELECTION=RSQUARE
START=2 B;
  BY SAMPLE;
DATA SSIMR;  SET SSIMPL;
  BY SAMPLE;
  KEEP SAMPLE _RSQ_ X1 X2;
DATA SSIMREG;  MERGE F2 SSIMR;
  BY SAMPLE;
  STBX1=X1*(STDX1/STDY);
  STBX2=X2*(STDX2/STDY);
  KEEP SAMPLE _RSQ_ STBX1 STBX2;
  RENAME _RSQ_=SSRRSQ STBX1=SSRX1
STBX2=SSRX2;
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*------------------------------------------------------------------*;
* STOCHASTIC MULTIPLE REGRESSION *;
*------------------------------------------------------------------*;
PROC REG DATA=SAM50MD OUTEST=AB

NOPRINT;
   MODEL X1=Y X2/SELECTION=RSQUARE
START=2 B;
   BY SAMPLE;
   OUTPUT OUT=SMR1 P=X1PV1;
DATA AB1; SET AB;
   BY SAMPLE;
   KEEP SAMPLE _RMSE_;
   RENAME _RMSE_=RMSE1;
PROC REG DATA=SAM50MD OUTEST=AC
NOPRINT;
   MODEL X2=Y X1/SELECTION=RSQUARE
START=2 B;
   BY SAMPLE;
   OUTPUT OUT=SMR2 P=X2PV1;

DATA AC1; SET AC;
   BY SAMPLE;
   KEEP SAMPLE _RMSE_;
   RENAME _RMSE_=RMSE2;

DATA GR1A; MERGE SMR1 AB1 SMR2 AC1;
   BY SAMPLE;
DATA SMUL; MERGE SAM50MD GR1A;
    BY SAMPLE;
     IF X1=. OR X2=. THEN DO;
        RX1=RMSE1*RANNOR(0);
        RX2=RMSE2*RANNOR(0);

        IF X1=. AND X1PV1 NE .
THEN X1=X1PV1+RX1;

        IF X2=. AND X2PV1 NE . THEN
X2=X2PV1+RX2;

        OUTPUT;
        END;
   ELSE OUTPUT;
   KEEP SAMPLE Y X1 X2;

PROC MEANS DATA=SMUL NOPRINT;
   VAR Y X1 X2;
   BY SAMPLE;
   OUTPUT OUT=SMULT

STD=STDY STDX1 STDX2;
DATA F3;  SET SMULT;
  BY SAMPLE;
  KEEP SAMPLE STDY STDX1 STDX2;
PROC REG DATA=SMUL OUTEST=SMULTI
NOPRINT;
  MODEL Y=X1 X2/SELECTION=RSQUARE
START=2 B;
  BY SAMPLE;
DATA SMULTR;  SET SMULTI;
  BY SAMPLE;
  KEEP SAMPLE _RSQ_ X1 X2;
DATA SMREGRES;  MERGE F3 SMULTR;
  BY SAMPLE;
  STBX1=X1*(STDX1/STDY);
  STBX2=X2*(STDX2/STDY);
  KEEP SAMPLE _RSQ_ STBX1 STBX2;
  RENAME _RSQ_=SMRRSQ STBX1=SMRX1

STBX2=SMRX2;
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Comments on the Analysis of Data with Missing Values

T. Mark Beasley, Guest Editor
St. John’s University

n the Orsak, Mendro, and Weerasinghe
article (pp. 3-12), the authors search for an
acceptable methodology for estimating missing

student post-test scores within a school effectiveness
analysis.  It appears that the current methodology
involves Listwise Deletion of data which has notable
problems, especially when data are missing on a
systematic basis.  Thus, the authors attempt to
answer, “How could we effectively rank the school of
interest without complete data for its constituents?”
(p. 3).  More succinctly, this question could be posed
as, “Can we find a method better than Listwise
Deletion for calculating School Effectiveness Indices
(SEIs)?”  Thus, it would seem that Listwise Deletion
should have been included as a method for handling
missing data.  Listwise Deletion is noted for simply
reducing statistical power when data are missing
randomly (Hartley & Hocking, 1971).  In this case,
however, the statistical power of a test statistic is not
of interest.  Rather, the accuracy of predicted values
used to replace missing values is the central issue.
Thus, although the properties of Listwise Deletion
could be examined in terms of SEI accuracy, these
properties could not be investigated at the data level.
With multiple variables, Listwise Deletion may lead
to a severe loss of complete-case data.  Thus, one
may assume that any unbiased estimate would be
better than nothing at all (Frane, 1976).  When data
are missing systematically, however, serious biases
may occur (Little & Rubin, 1987).  Therefore, one
response to this article is another question:  “What if
missing data is correlated with the index of SEI?”
For example, “Do low performing schools have more
missing data?”  Or, “Is missing data correlated to
other factors such as SES?”

Another important issue involves whether more
complex imputation models provide better estimates
when higher percentages of data are missing.  The
authors conclude that the more complex models
(especially HLM) provide more accurate estimation of
the original data for greater percentages of missing
data (see p. 11).  Intuitively this seems reasonable;
however, despite these claims, this increased accuracy
does not manifest itself to an overwhelming extent in
the results.  Perhaps the similarities among these
regression-based approaches can potentially be
attributed to the replaced data being initially missing
on a random basis. Furthermore, concerning the SEI
correlations, it must be considered that the replaced
(missing) values are entered into a second linear
composite to compute SEIs.  In general, quantitative
estimates based on sums should be unbiased if data

are missing randomly.  Therefore, based on the
Central Limit Theorem, SEIs should be normally
distributed and unbiased asymptotically when data are
missing randomly.  This may also help explain the
similarity of OLS and HLM when the correlation of
their respective SEIs is examined.

Another point of contention is that a clear
distinction between statistical models and estimation
procedures is necessary.  Although not frequently
elaborated at the MLR: GLM SIG (except by Randy
Schumacker), HLM can be performed using GLM
interaction terms and Ordinary Least Squares (OLS)
solutions. Dayton’s (1970) excellent chapter on
nested designs elaborates this approach.  Therefore,
the distinction between a HLM and OLS regression
solution is, in many cases, the difference in what
algorithm is used to estimate parameters.  The
confusion arises because the most noted HLM
software uses Empirical Bayes (EB) estimation,
whereas most linear regression modules in other
statistical softwares provide an OLS estimation of
parameters.  The authors should consider this issue
when claiming that the “three models indicate that
HLM is more suitable for estimating missing data
than OLS or the average school score.  This
advantage must be gained by HLM’s adjustments for
school trends in comparison to overall trends for
student score” (p. 11).

First of all, regression procedures that include
interaction terms can make adjustments for school
(Level 2 or Outer Level) trends.  Furthermore, the
results for Models 1 (HLM) and 1A (OLS) are only
slightly different which can be attributed to the HLM
and OLS models being identical random effects
models.  Although fixed effects linear regression
models make no assumptions about the form of the
predictor variables, when predictor variables are treated
as random effects, as in this case, normality is
assumed and the distributional shape of the predictor
is critical in terms of the accuracy and efficiency of
the regression model.  Importantly, the predictor
variable in Models 1 and 1A (MATH95) is probably
close to being normally distributed.  Therefore, the
distinction between the EB and OLS estimators would
not be expected to be great.  

By contrast, the authors report that the “which is
best” decision leaned more clearly to HLM for the
Model 2 analysis.  However, this may not be
attributable to the HLM approach.  Rather it may be
due to EB estimation procedure.  That is, Models 2
and 2A do not have “nested” or hierarchical structures.
Thus, the difference in the results for these random

I
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effects models may be due to the superiority of the
EB estimators over OLS for the added predictor
variables (i.e., Percent block poverty (POV) and
Percent block college (COL)), both of which are
likely to be skewed.  Thus, only the Model 3 results
are convincing in demonstrating a definite advantage
of the HLM approach with EB estimation. The
possibility remains, however, that this advantage
could potentially dissipate if interaction terms are
created so that the OLS regression could model the
hierarchical structure of the data.  Therefore, OLS
regression should still be considered as a viable
method for estimating missing data.  Fortunately,
both Mundrom and Whitcomb (pp. 13-19) as well as
Brockmeier et al. (pp. 20-39) also investigate the
properties of regression-based imputation procedures.

Mundrom and Whitcomb (pp. 13-19) note
that physicians often use empirically derived
classification functions to make important decision
concerning the treatment or transport of the patient.
Unfortunately patient data is often missing.  In
situations where a classification function or prediction
equation is being estimated, missing data may lead to
less statistical power or biased estimates.  By
contrast, in the medical decision scenario, the
classification function has already been derived.
Therefore, missing data preempts the decision.  To
use the classification function for making a decision
about a patient’s status, the missing data MUST be
replaced.  This differs from the Orsak et al. article in
that SEIs could be estimated if missing data were
deleted.  Thus, Mundrom and Whitcomb examine
efficient ways to estimate a replacement value for a
classification function when a patient has missing
data.

Because of the practical nature of this problem,
parsimony is an issue.  That is, a physician who uses
the classification function wants the best prediction
with the least effort or complexity.  To examine the
problem, Mundfrom and Whitcomb systematically
deleted each value of an existent data set (N = 99) then
replaced each deleted value with one of three values
(Mean Substitution, Hot-Deck imputation, Multiple
Regression imputation).  Next, the data were
submitted to two different classification functions in
order to examine which missing data approach was
better in terms of making the “correct” decision.  This
procedure was completed for each variable in the
classification function. (see p. 15)  This problem in
missing value analysis, the methodology, and the
results lead to many speculations and comments.

In general, Mean Substitution is considered one
of the worst things to do when data are missing.
This distrust is based on the use of Mean
Substitution in developing statistical models not its
use as a decision making tool.  Typically, Mean
Substitution is criticized because it gives no leverage

to the replaced values (Frane, 1976).  When there is a
substantial number of missing values, mean
substitution reduces the average leverage (i.e.,
Pearson correlation).  Mean Substitution also reduces
the average squared deviation (i.e., variance) which
may create a restriction of range issue.  The Mean
Substitution method in this application, however, is
a ceteris paribus approach.  That is, all things being
equal, what is the decision?  This is because each
coefficient is partialled and the predicted value of any
score at the mean of a variable does not raise or lower
the predicted value (i.e., regression surfaces always
intersect the centroid).  Thus, the approach implies,
“If we do not know the information, let’s substitute
the mean because it will not influence the decision or
predicted value.”  

In practice, the Hot-Deck imputation procedure
involves randomly selecting a data value from the
existent distribution of the variable for replacement.
Therefore as the authors note, the results vary from
one selection to another.  This is the danger of using
the Hot-Deck procedure especially with variables with
large dispersion.  In terms of this study, one would
never know whether in practice a physician would
select the same value (in one replication) as did the
simulation researcher.  To address this issue, the
authors aggregated the results of the Hot-Deck
imputation over 1,000 replications.  However, the
average of 1,000 replication makes the results of the
Hot-Deck procedure identical to Mean Substitution
asymptotically.  That is, with 99 values and 1,000
replications, the average Hot-Deck imputed value
should be the expected value of the variable which IS
the Mean Substitution procedure.  Therefore,
investigating the properties of Hot-Deck imputation
is problematic given the authors’ simulation
methodology.  This issue could be addressed by
randomly generating multiple (e.g., 1,000) samples
of 99, rather than using one sample of 99 repeatedly.
Furthermore, because Hot-Deck imputation involves
replacing the missing datum with a randomly selected
value from the existent data set, it tends to rely on the
shape of the distribution.  If the variable is normally
distributed the randomly selected value is likely to be
near the mean and Hot-Deck imputation should
perform similarly to Mean Substitution.  When the
Hot-Deck results were aggregated over 1,000
replications the results tended to be similar to Mean
Substitution regardless of distributional shape because
of the Central Limit Theorem. The Multiple
Regression approach performed surprisingly poorly
relative to the other two procedures.  This truly
makes it unattractive given that it is the most
complicated of the three procedures.

From a realistic perspective, the relative costs of
making a Type I (sending the patient to a city
hospital)  or Type II (keeping the patient in the rural
hospital) should also be considered. It could be
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beneficial to replace the missing value with an
extremely low, but plausible value (i.e., best case
scenario) and then with an extremely high plausible
value (i.e., worst case scenario). Then the physician
could evaluate whether the decision changes based on
these extremities.  Similarly, one might investigate
that given all the existent data, at what point does the
decision change and how plausible is that replacement
value?  Of course this approach would be dependent
on the variability and predictive importance of the
variable.  However, all three of the imputation
procedures are dependent on these two factors. For
example, the authors note that the Syncope variable
was least affected by any imputation method. Perhaps
this was because it was the strongest partial predictor
or because it had the least variance.  Certainly, it
would seem that Mean Substitution and Hot-Deck
imputation may not work well with variables with a
great deal of dispersion.  However, it would seem that
some data may be so crucial (strong partial
correlation) that a valid or accurate decision can NOT
be made without it.  In such a case, classification
accuracy would be a function of the “importance” of
the predictor.  The performance of the imputation
procedures for missing data on these important or
crucial predictors should be investigated.  Also, the
variability of predictor variables should be examined
because Mean Substitution may not perform as well
with highly disperse predictors.   Thus in general one
must ask, “Would the imputation procedure perform
differently if the variables were of different importance
(had differing partial relationships)?”  As was also the
case with the Orsak et al. article, one must wonder
whether in reality the data would be missing on a
random basis.  For example, is the fact that the
patient has a missing Heart Sound Reading indicative
of some other factor (e.g., the type of insurance
coverage)?  From a practical perspective, it would be
important to examine whether there are “proxy”
variables that are not in the final regression solution
(or classification function) but could be used to
impute missing values.  Such variables do not
necessarily have to be related to the outcome (else
they would be in the regression solution), but they
should be related to the predictors so that they can
take their place and be used to impute missing values.
As was also the case with Orsak et al., the Mundfrom
and Whitcomb should certainly consider examining
how Mean Substitution and other imputation
procedures perform when data is missing
systematically.

Thus, before regression procedures can be applied
in practical decision-making situations, there is a need
for studies like the one conducted by Brockmeier,
Kromrey, and Hines (pp. 20-39) that address the
issue of systematically missing data.  However, the
issue of predictor variability and/or importance

becomes a concern when interpreting their findings.
As is often noted, if data are missing at random then
the reduced number of cases is simply a power issue
and most methods yield similar results (Little &
Rubin, 1987).  This again leads to the questions that
have been asked about the two previously reviewed
articles: “How do researchers know when data is
missing?” and “How can they be sure that the pattern
of missing data is random?”  

Most substantive researchers agree that data is
rarely missing on a random basis.  Despite this
consensus, however, the authors accurately eschew
the all too common avoidance of investigating the
extent and nature of missing data.  Rather, many
researchers choose to simply delete missing data
either purposely because it is convenient or
inadvertently because it is the default of most
statistical software.  As researchers and statistics
educators, we should reinforce that data screening is
not simply ritualistic behavior that we learned in
graduate school.  Rather, carefully examining the data
for outliers and missing data patterns is paramount in
terms of researchers becoming familiar with their data
and investigating whether any missing data may
create a bias in the interpretation of their results.
Specifically, one can determine whether the data is
missing systematically by examining whether a
dummy-coded variable (e.g., 1 = nonmissing, 0 =
missing) is related to other collected variables.  If it is
related to variables that will be potentially included in
the regression model then systematically missing data
may result in biased parameter estimates and
ultimately to a specification error.  If the dummy-code
is related to variables not in the model (e.g., SES),
external validity may be limited.  In either case, the
interpretation of the results is compromised.

After concluding that the missing data pattern is
systematic, one of many missing data approaches
may be selected.  Thus, the authors examine the
properties of several of these procedures.  As is the
case with most newer advances in statistical
methodology, however, multiple imputation and
maximum likelihood approach are not utilized
frequently due to lack of accessible software.
Likewise, stochastic imputation is not frequently used
either which may also be due to a lack of software
accessibility. Thus, it is important that the authors
included their algorithms in the Appendix (pp. 38-
39).  Possibly, the trend to ignore missing data will
reverse with new statistical modules such as SPSS
8.0 Missing Value Analysis.  Based on my
experience, however, such a convenient module is
alarming because of the potential for misuse.

In terms of their methodology, I must
sympathize with these researchers because there are so
many variables that can be manipulated when
simulating a regression model.  For preliminary
work, I agree with the author’s decision to investigate
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the standardized regression model.  If raw score
models were investigated then other variables such as
the variance of the predictors could be manipulated
thus increasing the number of simulation conditions
and in general making investigation and interpretation
more complicated.  Also, in educational research,
standardized models are more common; however, the
authors should consider that many researchers would
be interested in how these approaches to handling
missing data would affect the Y-intercept.  In any
case, the accuracy of estimating the standardized
regression parameters of β1, β2 and Population R2

(i.e., ρ2) in a two-predictor model was investigated.
In terms of Monte Carlo studies, statistical
hypothesis testing, and therefore investigating
whether Type I error rates remain near an expected
nominal alpha level, has been the bread-and-butter of
simulation researchers.  Furthermore, given that
statistical hypothesis testing is not going away any
time soon (see Robinson & Levin, 1997), I would
suggest that the authors consider simulating complete
and partial null structures and then investigating Type
I error rates for each parameter.  However, given the
task at hand (i.e., estimation accuracy) perhaps
coverage probabilities for confidence intervals
constructed for each parameter could suffice.  This
would allow an investigation of whether
systematically missing data biases the accuracy of
parameter estimates and the coverage probabilities of
their confidence intervals.  To elaborate, if a 95%
confidence interval is constructed in multiple
replications, the confidence interval should cover the
population parameter 95% of the time regardless of
its value (i.e., whether it is a null or non-null
structure).  By taking this approach, one could
examine the potential bias in: (a) coverage
probabilities (i.e., Does the confidence interval cover
the population parameter?); (b) power (i.e., Does the
confidence interval cover 0 with a non-null
structure?); and (c) Type I error rate (i.e., Does the
confidence interval cover 0 with a null structure?).

Despite the absence of a null structure, the
authors do present two interesting regression
structures.  For the 6th grade data, there is a
“dominant” predictor (see Table 1, p. 21).  By
contrast, both predictors are equally related to Y in
both a zero-order and partial sense for the 9th grade
data (see Table 2, p. 21).  Thus, the issue of predictor
variability and/or importance becomes a concern in
the interpretation of the results.  I have taken the
liberty of constructing a very simple summary table
of the results for estimating population R2.
Interestingly, Listwise Deletion tended to
underestimate ρ2 when the predictors were equally
related to Y .  Having a large percentage of data that
are missing above the mean for the predictor variables
created a more serious underestimation, possibly
because these missing values have the most influence

or leverage.  Furthermore, this situation creates a
restriction of range problem.  

When one predictor was “dominant,” one of the
predictors tended to “take over” in terms of estimating
ρ2 as a summary measure.  That is, there seems to
have been some compensatory process. Similarly, it
would seem that Pairwise Deletion would lead to a
compensation because the remaining X-Y coordinates
that are not affected by the missing data are still used.
The results, however, showed that Pairwise Deletion
typically underestimated ρ2.

Similar to many other studies, Mean
Substitution seemed to be the worst method for
estimating regression parameters.  Both Deterministic
and Stochastic Mean Substitution procedures tended
to underestimate ρ2 raising interpretative issues
similar to those concerning using Listwise Deletion.
As previously mentioned, replacing values with the
mean reduces the average leverage (i.e., correlation)
and the variance (i.e., average squared deviation) so
that less variance is available to be shared.  These
problems worsen as the percentage of data missing
above the mean increases.  

The results for the regression-based imputation
procedures create an unusual situation.  Both
Deterministic and Stochastic Simple Regression
imputation approaches typically resulted in the
underestimation of ρ2.  One may interpret this from
the perspective that since the relationship of Y  to the
missing data was not included in estimating a
replacement value, not all relevant information was
included.  By contrast, both Multiple Regression
approaches overestimated ρ2. One perspective on this
is that by including the Y relationship to the missing
data one increases the likelihood of capitalizing on
chance relationships.  Furthermore, Deterministic
Regression approaches have been reported to “overfit”
the data because missing scores are predicted without
error (Allison, 1987; Little, 1992).  Thus, it would
seem that Stochastic Multiple Regression would tend
to reduce the amount of overestimation.  Although
this is not always the case in these results, the
Stochastic Multiple Regression procedure performed
the best in terms of estimating ρ2.  

These “which is best” results carried over to the
estimation of standardized regression coefficients for
the most part.  In general, increasing amopunts of
missing data on X1 resulted in an increasing
underestimation of β1 for most methods.  Also for the
standardized regression coefficients, there seems to a
“compensatory” process for most of the missing data
approaches.  That is, where β1 was underestimated β2

tended to be overestimated and vice versa.  This
compensatory process should be used for aiding
interpretation.  That is, one should consider the degree
of over and under estimation in context with which
variables have missing data and with what other
variables the missing data is correlated.  
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Summary of Results for Estimating ρ2

from Brockmeier et al.
Method Estimation of ρ2

Listwise
Deletion

  Underestimates with
equivalent predictors (Table 4).
With a dominant predictor,
estimation is better (Table 5).

Pairwise
Deletion

  Underestimates

Deterministic
Mean Substitution

  Underestimates

Deterministic
Simple Regression

  Underestimates

Deterministic
Multiple Regression

  Overestimates

Stochastic
Mean Substitution

  Underestimates

Stochastic
Simple Regression

  Underestimates

Stochastic
Multiple Regression

  Overestimates

It is interesting that these researchers reported
that the relative effectiveness of the missing data
treatments in this study with systematically missing
data were similar to their results obtained with
randomly missing data (e.g., Brockmeier, Kromrey,
& Hines, 1995, 1996).  As they aptly note, however,
these results may be due to the particular covariance
structures used in this investigation (p. 34).  Thus,
deliberations over whether it is reasonable to assume
that data are missing at random may be
inconsequential in terms of estimating replacement
values.  However, I suspect that the efficacy of
procedures to handle missing data is complex and
depends on (a) the relationships among the criterion
variables and predictors, (b) the predictor
intercorrelation/covariance matrix, and (c) whether any
relationships to data being missing are strong.
Furthermore, these issues will become more
complicated with more than two predictors.
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Descriptive and Inferential Aspects of
Ordinal Multiple Regression

Jeffrey D. Long
St. John’s University

This paper discusses the ordinal multiple regression (OMR) method of Cliff (1994, 1996) and the development of a
confidence interval (CI) for population regression weights. First, the OMR methodology is presented along with a
discussion of the differences between OMR and least squares multiple regression (LSMR). Next, it is shown how a
confidence interval (CI) for a population predictor weight can be derived. The OMR CI is based on an estimated
standard deviation of a weight derived from a fixed effects model. Finally, the sampling properties of the OMR CI are
discussed. It is pointed out that the OMR CI is more robust than the LSMR CI to predictor correlations and
violations of assumptions. The OMR CI is recommended when a researcher wants to consider only ordinal
information in multivariate prediction, and/or when predictor correlations are moderate to high, and/or when the
assumptions of fixed effects LSMR are violated.

he first purpose of this paper is to introduce
applied researchers to a type of ordinal multiple
regression (OMR) due to Cliff (1994, 1996).

The method is analogous to least squares multiple
regression (LSMR) in that regression weights are
obtained that optimally combine information on the
predictors. OMR can be used as a descriptive method
to determine the ability of predictors to predict the
order on a criterion.

The second purpose of this paper is to move
beyond description and extend Cliff’s work to include
a confidence interval (CI) for the OMR weights. The
CI may be used to make inferences about the size of
the OMR weights in the population. To enhance
accessibility, examples of computational formulas are
provided throughout.

Ordinal Multiple Regression Methodology
There are a number of reasons why OMR might

be of interest to the applied researcher (for an extended
discussion, see Cliff, 1996). Briefly, (1) OMR is
based on operations appropriate for ordinal data, (2) it
is suitable for answering ordinal prediction questions,
(3) it is relatively unaffected by violations of
parametric assumptions, (4) it can accommodate non-
linear but monotonic relationships, (5) and its results
are invariant under monotonic transformation.

OMR is based on Kendall’s tau, tjk, an ordinal
correlation coefficient (Kendall, 1970). tjk is an index
of the amount of (dis)agreement between two sets of
rankings. This definition is best illustrated through
the use of dominance scores (Cliff, 1993; Kendall,
1970; Long, in press). A dominance score is an index
of the rank order of a pair of raw scores on a variable.
The dominance score is defined for observations i, h
on variable y, as,

dihy = sign(yi – yh) (1)

where dihy = +1 when yi > yh (the two scores are in
ascending rank order), dihy = -1 when yi < yh (the two
scores are in descending rank order), and dihy = 0 when
yi = yh (the scores are tied). Letting n represent the
number of subjects, there are n(n - 1) possible
pairings of yi and yh. The dominance scores for i < h
can be computed by multiplying the dominance
scores for i > h by (-1). Therefore, only n(n - 1)/2 of
the n(n - 1) dominance scores for each variable are
unique. Note that dominance scores are appropriate for
ordinal level data because they index the relations
<, >, = (Stevens, 1959).

To illustrate the computation of dominance
scores, consider two hypothetical variables, a criterion
variable, y, and a predictor x1 (both sorted on the
criterion),

y:    4,  6,  8,  9, 13
x1: 10.5, 11, 15, 11, 30

The dominance scores for these two variables are
obtained with equation (1). Starting with i = 1 and h
= 2, d12y = -1 because 4 < 6, and d121 = -1 because
10.5 < 11. Increasing to h = 3 we have d13y = -1
(because 4 < 8) and d131 = -1 (because 10.5 < 15), and
so on. The reader is invited to check that the
dominance scores for the two variables when i < h are

dihy: -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1   
dih1: -1,  -1,  -1,  -1,  -1,   0,  -1, +1,  -1,  -1  .

To obtain the dominance scores for i > h we simply
multiply these scores by (-1).

It is convenient to list the dominance scores in
matrices with rows representing the i index and
columns representing the h index. Table 1 shows the
dihy and dih1 matrices for the variables. The upper
triangle of these matrices represents the case when i <
h and the lower triangle the case when i > h. The
diagonals represent the case when i = h.

T
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   Table 1.  Dominance scores and tih1y matrix for two hypothetical variables, y and x1.

dihy dih1 tih1y

h h h

i 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 Σtih1y

1   0  -1  -1  -1 -1   0  -1  -1  -1 -1   0 +1 +1 +1 +1 4
2 +1   0  -1  -1 -1 +1   0  -1   0 -1 +1   0 +1   0 +1 3
3 +1 +1   0  -1 -1 +1 +1   0 +1 -1 +1 +1   0  -1 +1 2
4 +1 +1 +1   0 -1 +1   0  -1   0 -1 +1   0  -1   0 +1 1
5 +1 +1 +1 +1  0 +1 +1 +1 +1  0 +1 +1 +1 +1   0 4

tjk is the proportional agreement between the
dominance scores on variable j and k. The index of
dominance score agreement is tihjk, defined as the
product of the corresponding dominance scores on
variables j and k,

 tihjk = dihj dihk   (2)
where tihjk is +1 when dominance scores have the
same sign (the rank order of the pair is the same on
both variables), -1 when dominance scores have
different signs (rank order of the pair is different), and
0 when there is a tie on either variable.

The third matrix in Table 1, tih1y, contains the
tih1y computed with equation (2). The last column of

Table 1 contains the ∑
h

yiht 1 , which are the sum of

the elements in each row of tihxy. The ∑
h

yiht 1  are

used to calculate t1y and the estimated variance.
tjk is defined as the sum of the tihjk divided by

their total number, n(n – 1), or

)1( −
=
∑∑

nn

t

t i h

ihjk

jk .   (3)

Calculating t1y with our data,

∑∑
i h

yiht 1 = 4 + 3 +2 + 1 + 4 = 14

and ( )1
1

1 −
=
∑∑

nn

t

t i h

yih

y   = 14/20 = 0.70

Equation (3) shows that tjk is the proportion of
paired rank order agreement on variable j and variable
k. This form of tau is known as “tau-a” (Kendall &
Gibbons, 1991).

OMR deals with the case of one criterion
variable, y, and p predictor variables, x1,…, xp. Let us
define Tx as the p by p matrix of tau correlations
among the predictors, and ty as the p by 1 vector of
correlations between the predictors and y (the tau

validities). OMR weights are derived by using tau
correlations in place of Pearson correlations in the
familiar LSMR equation,

w = Tx
-1 ty    (4)

The w  vector contains the weights used to combine
the dominance scores of the predictors to predict the
dominance scores of the criterion.

Let us define dihy as the dominance scores on
the criterion and dihj as the dominance scores on

predictor xj. Then ihyd̂  is the predicted criterion

dominance scores obtained by solving

j
j

ihjihy wdd ∑=ˆ . It can be shown (see Cliff, 1994)

that equation (4) yields weights that optimize the
ordinal loss function,

Q = ( ) ,
nn

 d d

 i h

ihyihy

1

)]ˆ([sign 

−

∑∑
  (5)

where sign(⋅) is the same as equation (1), and takes on
the values, -1, 0, +1. Consistent with permissible
ordinal operations, Q indexes the agreement between
the criterion dominance scores and the sign of the
predicted dominance scores.

Differences Between OMR and LSMR
The loss function of OMR is markedly different

than the loss function of LSMR. Q defines optimal
prediction in terms of an ordinal criterion rather than a
least squares criterion. Because of this, there are some
important differences between OMR and LSMR.

Interpretation of the weights. An important issue
in multiple regression is the interpretation of the
weights. As in LSMR, the properties of the OMR
weights are most clear when the predictors are not
correlated. When the predictor correlations are zero and
there are no ties, Tx = Tx

-1 = I, and equation (4)
shows that the OMR weights are equal to the tau
validities.

When the predictor correlations are greater than
zero, the OMR weights have a more ambiguous
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interpretation. This is also true of LSMR weights
(see Cliff, 1987). However, there are a number of
reasons why LSMR weights are more interpretable
than OMR weights. One reason is that the LSMR
weights always have an explicit algebraic definition
in relation to the criterion. The LSMR function,
Y i = ΣjbjXji + b0 + ei, indicates that the LSMR
weights can always be interpreted as the constants
applied to the predictors to literally construct (or
deconstruct) the raw scores of the criterion (allowing
for error).

The OMR function is much more ambiguous in
its specification of the relationship between the
weights and the criterion. In fact, an algebraic formula
expressing the criterion in terms of the weighted
predictors is not possible. The reason is that the
ordinal loss function, Q, uses the sign of the

weighted predictor dominance scores, sign( ihyd̂ ).

Because the sign( ihyd̂ ) take only the values –1, 0,

+1, the criterion dominance scores can not be literally
decomposed into a weighted sum of predictor

dominance scores. This would be possible if ihyd̂

were used in the loss function, but doing so would
violate the logic of ordinal analysis. Therefore, we
must rely on a verbal description of the functional
relationship between the weights and the criterion: the
OMR weights are the constants that when applied to
the predictor dominance scores best predict order on
the criterion, “best” meaning that Q is optimal.

Another reason why LSMR weights may be
more interpretable is that OMR weights can not be
used to study partial relationships (also called
structural relationships). What is deceptive here is
that the mathematical equations of the OMR weights
seem to suggest ordinal counterparts of some
common LSMR coefficients used to examine partial
relationships. Consider the OMR case involving two
untied correlated predictors, x1 and x2. Solving
equation (4) for the first weight gives

2
1 2

1 221
1

1 t

ttt
w

yy

−

−
=   (6)

where the tky are the tau correlations between xk and
the criterion, y (the tau validity of xk and y), and t12 is
the tau correlation between x1 and x2. It is tempting
to call equation (6) the “partial OMR weight” because
it is identical in form to the partial LSMR weight. It
is even more tempting to take the square root of the
denominator and call this “semipartial tau,” or
multiply the denominator by (1 – t2y

2) and take the
square root and call this “partial tau.” However, these
terms are misleading because they do not necessarily
represent the same types of relationships as their
LSMR counterparts (Cliff, 1996).

Recall that least squares analysis of partial
relationships involves the analysis of residuals

(Cohen & Cohen, 1983). Residual analysis based on
dominance scores leads to interpretation problems.
When dominance scores are used with least squares
methods, their residuals can take on any real value.
This violates the very nature of dominance scores as
indices of the order relations <, >, =. Unlike
interval/ratio scale scores, it makes no sense to
express dominance scores as a function of a
predictable component and an error component. More
importantly, the residuals of dominance scores do not
behave like residuals of raw interval/ratio scores. The
value of the partial tau correlation for example, can be
different than the value of the partial Pearson
correlation in situations where they should be equal
(Cliff, 1996; Nelson & Yang, 1988; Somers, 1974).1

The same inconsistencies can occur in the values of
the OMR and LSMR weights (Kim, 1975; Reynolds,
1974).

The above discussion makes it clear that when
the predictor correlations are greater than zero, the
OMR weights should be interpreted only as practical
devices for predicting the order on the criterion. The
OMR weights cannot be interpreted in any causal or
explanatory sense. The size of an OMR weight
represents the relative importance of a predictor to the
overall prediction system. A variable with a large
weight has a relatively large influence in prediction,
and a variable with a small weight has a smaller
influence in prediction. Substantive interpretations
beyond this have little or no justification.

The limited interpretability of the OMR weights
should not be viewed as a flaw. The interpretation of
the OMR weights is true to the ambiguity of ordinal
data. Ordinal variables carry less information than
interval/ratio variables. Therefore, functional
relationships among ordinal variables cannot be as
precisely specified as among interval/ratio variables.
This fact is reflected in the narrower interpretation of
the OMR weights. LSMR holds a strong temptation
for over-interpretation when ordinal data are analyzed.
Numbers derived from ordinal-level variables do not
know they are only ordinal (see Lord, 1953), and
LSMR computer programs will always produce
estimates of partial coefficients. This does not mean
that structural interpretations are justified.

Relative magnitude of correlations and weights.
The relative sizes of the OMR and LSMR weights are
a result of the relative sizes of Pearson and tau
correlations. Pearson and tau correlations can be quite
different for the same data. It can be shown that under
bivariate normality (Kendall & Gibbons, 1991),

tau = 2
π

sin-1ρ.   (7)

This nonlinear relationship means that, over the range
of values 0 < |ρ| < 1, tau can be as much as two-
thirds the size of rho.2

When predictor intercorrelations are zero, the
standardized LSMR weights, b*

j, are equal to the
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Pearson validities, and the OMR weights, wj, are
equal to the tau validities. Assuming multivariate
normality, equation (7) indicates that |b*

j| > |wj|, as
long as the Pearson validities are not equal to zero or
unity. This relationship also holds for the wj and the
unstandardized LSMR weights, bj, as long as the
predictor variances are greater than unity. When
predictor variances are greater than unity, covariances
are greater in absolute value than Pearson
correlations. It follows that |bj| > |b*

j| and, by
transitivity, |bj| > |wj|. When predictor correlations
exit, the situation becomes much more complicated,
but the same relationships hold.

When some or all of the bivariate relationships
are not normal, the above relationships do not
necessarily hold. Under non-normality, tau
correlations can have absolute values greater than
Pearson correlations (Long & Cliff, 1997) and LSMR
weights can be smaller in absolute value than OMR
weights. Experience has shown that unless the
distributions are extremely non-normal the |bj| are
often larger than the |wj|. However, this inequality
appears to hold less frequently for the |b*

j| and the |wj|.

The indeterminacy of the OMR weights. Unlike
LSMR, the set of OMR weights obtained by equation
(4) are optimal in terms of predicting the order on the
criterion, but not unique. It is theoretically possible
to find another set of weights that produce an equal

number of signed agreements between dihy and ihyd̂ .

The reason is that equation (4) yields unique weights

only when the ihyd̂  are normally distributed.

Dominance scores almost always produce ihyd̂  values

that are non-normal because of the influence of
common patterns (see Cliff, 1994). Therefore, the
equation (4) weights are not the only coefficients that
optimize Q for a set of data.

In defense of the OMR weights, LSMR weights
can also be indeterminate in many applied situations.
Consider the two-group discriminant analysis, which
is equivalent to LSMR with a dichotomous criterion.
In this case, the LSMR weights maximize the
probability of correctly classifying subjects into
groups only when the assumptions of normality and
equal variances are met (Cliff, 1987). Since these
assumptions tend to be violated in applied research
(Hill & Dixon, 1982; Micceri, 1989; Pearson &
Please, 1975; Sawilowsky & Blair, 1992; Wilcox,
1990), it is often possible to find other sets of
weights that are equally effective in classifying
subjects for the data at hand.

Prediction and the number of predictors. In
contrast to LSMR, prediction does not necessarily
improve with additional variables in OMR. Because
dominance scores have only three possible values (-1,

0, +1), there are a finite number of possible patterns
of dominance relations across predictors. The result is
that Q is not necessarily more optimal with the
addition of more predictors. In fact, two predictors
predict no better than one in the sense of optimizing
Q. In the p = 2 case, the OMR weights will still
indicate the relative importance of the predictors but
Q will not be more optimal than in the p = 1 case.
With more than two predictors, the addition of
another does improve prediction (see Cliff, 1994).

Having discussed some of the differences between
the OMR and LSMR weights, we now move on to
the development of a CI for the OMR population
weights. The CI is based on a standard deviation (SD)
of an OMR weight derived under a fixed effects
regression model.

Confidence Interval for the OMR Weights
OMR was completely descriptive in its original

presentation (Cliff, 1994). Descriptive methods have
been very valuable to the field of psychology (e.g.
exploratory factor analysis). However, applied
researchers usually want to go beyond description and
make inferences about population parameters. In
multiple regression, it is often of interest to
determine the magnitude of a population regression
weight and whether its value is significantly different
than zero (Cohen & Cohen, 1983). For OMR, these
inferences can be achieved by computing a CI for the
OMR weights.

Let us start with the standard form of a CI for a
single population weight, πj. The CI is defined as

  z  w
jwj σα ˆ

2/±   (8)

where wj is a sample weight from equation (4), zα /2 is
the appropriate critical value from the standard normal
distribution (zα/2 = 1.96 for the 95% CI), and σ wj

  is
the estimated SD of wj (i.e. the standard error). Since
wj and zα /2 are readily available, constructing the CI
becomes the problem of computing σ wj

.

In order to compute σ wj
 we assume a fixed effects

regression model, in which values of the predictors
are determined or “fixed” by the researcher. The fixed
effects regression model is adopted for a number of
reasons. First, there are no known methods for
deriving an OMR CI under the random effects model.
Second, though random effects data are the most
common in psychology, fixed effects methods are
often used for analyses because they require fewer
assumptions. A number of textbooks for applied
researchers assume the fixed effects model in their
development of inferential methods (e.g. Cohen &
Cohen, 1983; Hays, 1988), and fixed effects
inferential methods are used in the multiple regression
modules of common computer programs like SPSS
(Norusis/SPSS, 1990). Third, the fixed effects model
seems most appropriate with OMR because the
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predictor values are “fixed” to –1, 0, or +1 by the
dominance score transformation.  The random effects
model is usually used only when the predictors take
on a wider range of values (Cliff, 1987).  Finally,
some applied research seems more amenable to the
fixed effects model. There are a number of instances
where predictor levels appear to be constructions of
the researcher rather than random samples from a
population of levels as implied by the random effects
model.

Under the fixed effects model in OMR the
elements of the matrix of predictor tau correlations,
Tx, are constants, and so are the elements of Tx

-1.
Under these assumptions, any sample weight, wj, can
be viewed as a linear combination,

 tt = w ky

p

k
jkj ∑

=1

*   (9)

where tjk* is an element from the Tx
-1 matrix (tjk is

the tau correlation between xj and xk), and tky is the
tau correlation between xk and the criterion, y (the tau
validity of xk and y).

When a sample weight is defined as a linear
combination, then the variance of the weight can be
obtained by computing the variance of a linear
combination (Hays, 1988). In this context, the
formula for the variance of a linear combination, say
wj, is

σ wj
  2 = (tjk

*)2 var(tky)∑
k

  + 2 tjk
*,∑

k < m

tjm
*  cov(tky,tmy)

. (10)

In this equation, var(tky) is the variance of the tau
validity between xk and y, and cov(tky,tmy) is the
covariance between the two respective tau validities.
The task here is to compute estimates of these two
quantities. Then the square root of equation (10) can
be used to construct the CI.

The estimated variance of tky. To estimate
the variance of a tau validity (tky), we will use a
biased but consistent estimate of the variance of
bivariate tau (Cliff & Charlin, 1991). Consider the
tau correlation between x1 and y, t1y. The consistent
estimate of the variance of t1y is

Est[var(t1y)] = 
4(n - 2)sti.1y

2  + 2stih1y
2

n(n - 1) . (11)

In this equation, 2
1. yit

s  is the variance of the ti.1y,

formally defined as 

st i.1y

2  = 
(ti.1y - t1y)

2∑
h

(n - 1)   . (12)

The ti.1y are the sum of the column elements of the
tih1y matrix divided by (n – 1)(see Table 1),

( )1

1

1. −
=
∑

n

t

t h
yih

yi   . (13)

    2
1yihts is the variance of the tih1y, formally defined as

st ih1y

2  = 
(tih1y

2  - n(n - 1)t1y
2 )∑

h
∑

i

n(n - 1) - 1  . (14)

The first term in the numerator of equation (14) is the
sum of the squared tih1y produced by equation (2). The
last term in the numerator of equation (14) is the
square of the tau validity between x1 and y. Long and
Cliff (1997) found that the CI for bivariate tau based
on this consistent estimate of the variance performed
well under a wide number of conditions.

To compute the estimated variance of ty1 for our
data, we must solve equation (11) which involves

computing 2
1. yit

s  and 2
1yihts . First let us consider

2
1. yit

s , the variance of the ti.1y. According to equation

(13), the ti.1y are computed by dividing each ∑
h

yiht 1

by (n – 1). Performing this operation on the last
column of Table 1 we obtain the elements of the t i.1y

vector,

ti.1y´ = 





4
4

4
1

4
2

4
3

4
4

 = [1  .75  .50  .25  1] .

Using the ti.1y and recalling that t1y = .7, equation (12)
yields

2
1. yit

s = [(1-.7)2+ (.75-.7)2+(.5-.7)2+(.25-.7)2+(1-.7)2]

4
 = .1188.

To derive 2
1yihts , equation (14) indicates that we

must compute ∑∑
i h

yiht 2
1 , the sum of the squared

elements of tih1y. The reader should verify that there
are 18 non-zero elements in tih1y. Therefore,

∑∑
i h

yiht 2
1  = 18 and equation (14) yields

( )( )( )
( )( ) 4316.

145
7.4518 2

2
1

=
−

−=
yihts  .

Finally, substituting all the elements in equation
(11), the estimated variance is

Est[var(t1y) = 
4(n - 2)st i.1y

2  + 2st ih1y

2

n(n - 1)

( )( ) ( )
( ) .1144
45

.43162.118834 =+=  .
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Covariance between two tky. To estimate the
covariance between two tau validities, the logic of the
variance is extended. Consider the case where we have
the tau correlation between x1 and y, t1y, and the tau
correlation between x2 and y, t2y. In this case there are
two sets of tihjk, tih1y and tih2y. The estimate of the
covariance between t1y and t2y is (Cliff & Charlin,
1991),

Est[cov(t1y,t2y)] = 
4(n - 2)sti.1y,ti.2y + 2stih1y,tih2y

n(n - 1)
 . (15)

yiyi tts
2.1. ,  is the covariance between the ti.1y and ti.2y,

formally defined as

sti.1y,ti.2y
 = 

(ti.1y - t1y)(ti.2y - t2y)∑
i

(n - 1)  .      (16)

yihyih tts
2,1

 is the covariance between the tih1y and tih2y,

formally defined as

stih1y,tih2y
 = 

(tih1y - t1y)(tih2y - t2y)∑
h    

∑
      i ≠

n(n - 1) -1 .   (17)
To illustrate the computation of the covariance

between two tau validities, consider the additional
variable, x2,

x2:  5,  2,  7,  8,  9

Computation of the dih2 matrix is left to the reader.

Table 2 shows the tih2y matrix and the ∑
h

yiht 2 . The

reader should verify that t2y = (16 / 20) = .80, and

ti.2y´ = 





4
4

4
4

4
4

4
2

4
2

 = [.50  .50  1  1  1].

To compute the covariance between t1y and t2y we
solve equation (15). 

yiyi tts
2.1. ,  is the covariance

between the ti.jk of both pairs of variables. Working
with the elements of the t i.1y and the t i.2y vectors and
recalling that t1y = .7 and t2y = .8, equation (16) yields

sti.1y,ti.2y =  
(1-.7)(.5-.8) + . . . + (1-.7)(1-.8)

4
 = -.0438

yihyih tts
21 ,  is the covariance between the tihjk of

both variables. Working with the elements of the tih1y

and tih2y matrices, we use equation (17) to compute

yihyih tts
21 ,  = 

(1-.7)(.5-.8) + . . . + (1-.7)(1-.8)

5(4) - 1
 .

 =   -.0632

Table 2.  The tih2y matrix for variables y and x2.

tih2y

h
i 1 2 3 4 5 Σtih2y

1   0  -1 +1 +1 +1 2
2  -1   0 +1 +1 +1 2
3 +1 +1   0 +1 +1 4
4 +1 +1 +1   0 +1 4
5 +1 +1 +1 +1   0 4

Finally, substituting all the elements into equation
(15), the estimated covariance between t1y and t2y is

Est[cov(t1y,t2y)] = 
4(n - 2)sti.1y,ti.2y + 2stih1y,tih2y

n(n - 1)
 

= 4(3)(-.0438)+2(-.0632)

5(4)
  = -.0326

To compute the estimated variance of an OMR
weight, σ w

 2
j
, the above equations for the variance and

covariance can be used in equation (10). The square
root, σ wj

, can then be used in the CI of equation (8).
A FORTRAN program for computing all equations
and performing OMR is available from the author.

Sampling Properties of the OMR CI
In a simulation study using multivariate normal

data, Long (1998) found the OMR CI performed well
in terms of Type I error and coverage, though
coverage became more conservative as effect size
increased. The results for power were mixed. The
LSMR CI had higher power for all of the conditions
in which the predictors were not correlated. However,
the OMR CI had higher power for almost all the
conditions in which the predictors where moderately
to highly correlated (r = .3, .5, respectively). This last
finding was especially favorable to the OMR CI
given that predictor correlations are almost always
non-zero and can be quite substantial in applied
research (Cohen, 1994; Meehl, 1997).

In addition to a simulation study, Long (1998)
analyzed a real data set with both the OMR CI and the
LSMR CI. The data set violated the assumptions of
the fixed effects LSMR. That is, the conditional
distributions of the criterion were not normal, the
conditional variances were not equal, and the
predictor-criterion relationships were non-linear but
monotonic. It was shown that the OMR CI had
higher power than the LSMR CI. This finding is
especially favorable to the OMR CI given that fixed
effects assumptions (e.g. conditional normality) are
violated in many applied situations (Hill & Dixon,
1982; Micceri, 1989; Pearson & Please, 1975;
Sawilowsky & Blair, 1992; Wilcox, 1990).
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Considering the results of the simulation and the real
data analysis, Long (1998) recommended the OMR CI
for use when predictor correlations are moderate to
high, and/or when fixed effects LSMR assumptions
are violated.3  Earlier it was mentioned that because
OMR uses only ordinal information, interpretations
tend to be narrower than with LSMR. The tradeoff is
that the OMR CI is more versatile than the LSMR
CI. We now turn to a more detailed discussion of this
versatility.

Outliers. The OMR CI can have higher power
than the LSMR CI when outliers are present because
the former method is more resistant to extreme
values. Recall that the OMR CI is based on
dominance scores that index rank order relations.
Because only rank order is considered, an outlying
observation will not unduly influence the OMR CI.
A very large outlier, for instance, is simply treated as
the largest value in computing the dominance scores
and ultimately, the OMR CI. It does not matter if the
largest value is close to the next smallest value, or
very far above it. In contrast, a single outlier can have
a strong adverse influence on the LSMR CI. Outliers
tend to inflate standard errors, causing the LSMR CI
to be wide and its power to be low (Birkes & Dodge,
1993).

Non-linearity. The OMR CI can have higher
power when predictors have a non-linear but
monotonic relationship with the criterion because it
is unaffected by such relationships. In both linear and
non-linear monotonic relationships, the rank order on
the criterion and the predictor is continuously
increasing or decreasing. Since rank order is
consistent, the dominance scores, and ultimately, the
OMR CI are the same for both types of relationships.
This means that power and coverage are the same as
well. This is not true for the LSMR CI. Non-linear
monotonic relationships inflate standard errors and
tend to lower the power of the LSMR CI (Birkes &
Dodge, 1993).

Parametric assumptions and monotonic
transformations. As in the case of outliers and
monotonic non-linearity, the OMR CI can have
higher power with non-normal conditional
distributions and unequal conditional variances. The
power superiority of the OMR CI is due again to its
use of only ordinal information. To understand this,
consider what can happen when normal variables are
monotonically transformed.

Assume we compute a LSMR CI on normal,
equal conditional variance data, and find the CI to
have good coverage and high power. Then we apply a
monotonic transformation, such as a power
transformation (e.g. f(x) = xb, b > 0), that causes the
data to be non-normal with unequal conditional

variances. These conditions are known to adversely
affect the LSMR CI, so we would expect it to have
lower power (and perhaps poorer coverage; Birkes &
Dodge, 1993; Duncan & Layard, 1973; Wilcox,
1996). Even if the transformation did not cause drastic
violations of assumptions, the LSMR CI could be
quite different because monotonic transformations
change the Pearson correlation structure (Cohen,
1978).

Tau correlations and the OMR CI are invariant
under monotonic transformation. In the above
situation, the tau correlations and the OMR CI would
be exactly the same for the normal data and the
transformed non-normal data. It follows that the
power (and coverage) of the OMR CI would also be
the same. The fact that the properties of the OMR CI
remain constant under any monotonic transformation
means that the OMR CI is applicable for a wider
class of distributions than the LSMR CI.

Monotonic transformations are especially
important in applied research because they are
commonly used to induce data to meet one or more
parametric assumptions, such as normality. The
supposition is that some natural process has
monotonically transformed the data, resulting in non-
normality (Tadikamalla, 1980). The applied researcher
attempts to find the transformation that will “undo”
the natural transformation and allow the data to meet
the desired assumption of normality.

One problem with this practice is that the
transformed metric may be difficult to interpret
(Salthouse, 1985; Emerson & Stoto, 1983). For
example, transforming reaction time data (in
milliseconds) by the equation f(ms) = ms(.835) might
induce normality. But it may be difficult to give a
substantive meaning to milliseconds raised to the
.835th power.

Another problem is that transforming solely to
meet parametric assumptions is driven by the sample
data. Sample-driven transformations may not be
replicable (Games, 1984). The transformation f(ms) =
ms(.835) may induce normality in one data set whereas
f(ms) = ms(-.5) may induce normality in another data
set. If parametric methods such as the LSMR CI are
used, the results based on different transformations
will not be comparable. Of course, these problems
can be avoided by using the OMR CI. Results
obtained with the initial data, whether normal or non-
normal, are invariant for any monotonic
transformation.

Latent Trait theory. Another reason why
monotonic transformations are of interest is that they
are basic elements in latent trait theory (Lord &
Novick, 1968). Latent trait theory specifies that latent
and manifest variables have a non-linear but
monotonic functional relationship. Manifest scores
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can be monotonically transformed to estimate latent
scores (e.g. true ability; see Suen, 1990).

Taken seriously, latent trait theory presents a
problem for LSMR. If raw scores are analyzed, then
LSMR tells us only about the relationships among
the manifest variables. The relationships among the
latent variables are still unknown and may be very
different.4 If monotonically transformed scores are
analyzed, the results will not be comparable to
analyses performed on the untransformed scores.

Latent trait theory does not pose the same
problem for OMR. Since the OMR CI is invariant
under monotonic transformation, it will yield the
same limits whether a variable is analyzed in its
latent or manifest form. This consistency seems
highly desirable because results from different studies
can be compared regardless of whether manifest or
latent scores were used.

Conclusion
This paper discussed the ordinal multiple

regression (OMR) method of Cliff (1994, 1996) and
the development of a confidence interval (CI) for
population regression weights. The OMR
methodology was presented along with a discussion
of differences between OMR and least-squares
multiple regression (LSMR). Then it was shown how
a confidence interval (CI) for a population predictor
weight could be derived. The CI is based on an
estimated SD of a weight derived from a fixed effects
model. Finally, it was pointed out that the OMR CI
has many favorable sampling properties. Especially
important is the fact that the OMR CI is more robust
than the LSMR CI to predictor correlations and
violations of assumptions. The OMR CI is
recommended when a researcher wants to consider
only ordinal information in multivariate prediction,
and/or when predictor correlations are moderate to
high, and/or when the assumptions of fixed effects
LSMR are violated.

Footnotes
1Alternative strategies for assessing partial

relationships with tau exist that avoid some of these
inconsistencies. For example, one might examine the
tau correlation between x2 and y while blocking on x1

(see Korn, 1984).
2Applied researchers may feel uncomfortable that

tau correlations can be smaller than Pearson
correlations for the same data. Some solace is
provided by the fact that tjk is more comparable to rjk

2

than rjk. Recall that tjk is a proportional measure of
paired rank order agreement. Therefore, tjk is closer in
meaning to rjk

2, another proportional measure
(proportion of variance).

3Note that if fixed effects assumptions are
violated, random effects assumptions must also be
violated. The random effects model is more stringent

requiring multivariate (not just criterion) normality
(Cliff, 1987).

4It should be noted that methods such as
structural equation modeling (SEM) do not solve the
dilemma. Though SEM allows latent variables to be
specified, the relationships with the manifest
variables are still assumed to be linear. See McDonald
(1985) for a discussion of non-linear models.
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A Comparison of Robust and Nonparametric Estimators
Under the Simple Linear Regression Model

Jonathan Nevitt, University of Maryland, College Park
Hak P. Tam, National Taiwan Normal University

The present study investigates parameter estimation under the simple linear regression model for situations in which
the underlying assumptions of ordinary least squares (OLS) estimation are untenable.  Classical nonparametric
estimation methods are directly compared against some robust estimation methods for conditions in which varying
degrees of outliers are present in the observed data.  Additionally, estimator performance is considered under
conditions in which the normality assumption regarding error distributions is violated.  The study addresses the
problem via computer simulation methods.  The study design includes three sample sizes (n = 10, 30, 50) crossed
with five types of error distributions (unit normal, 10% contaminated normal, 30% contaminated normal, lognormal,
t-5df).  Variance, bias, mean square error, and relative mean square error are used to evaluate estimator performance.
Recommendations to applied researchers and direction for further study are considered.

pplied statistics in the social sciences has
focused heavily on modeling data via a linear
model (Pedhazur, 1997).  Under this

framework, a model is posited in which it is assumed
that a linear combination of predictors is useful in
explaining or predicting some random outcome
variable of interest.  The most basic form of this
model, simple linear regression, is the situation in
which a single predictor is included in the explanatory
model.

The simple linear regression model, in terms of
the observed data, may be expressed by the equation:
yi = α  + βxi + ε i, in which yi is the score for the
response measure for the ith individual; xi is the value
of the explanatory variable for the ith individual; α  is
the Y-intercept, the mean of the population when the
value of X  is zero; β is the regression coefficient in
the population, the slope of the line; εi is a random
disturbance, or error, for individual i and is computed
as the discrepancy between the observed value of Y
for a given individual and the predicted value of Y  for
that subject).  Under this model, it is posited that the
score for an individual is partitioned into a structural

component, yi = (α  + β Xi), which is common to
all subjects at the same level of X , and a random
component (εi) which is unique to each individual.

In the simple linear regression model, the
population parameters α  and β are unknown
quantities which are estimated from the sample data.
The most widely employed method for estimating
these parameters is the method of ordinary least
squares (OLS).  Under OLS, sample estimates of α
and β (denoted α  and β , respectively) are chosen to
minimize the sum of the squared errors of prediction,

Σ ei
 2, where ei = yi - (α  + β Xi) is the sample

estimate of ε i.  OLS regression yields estimates for
the parameters that have the desirable property of
being minimum variance unbiased estimators
(Pedhazur, 1997).

Ordinary least squares estimation places certain
restrictive assumptions on the random component in
the model, the errors of prediction.  OLS estimation
assumes, among others, that the errors of prediction
are normally distributed, with a common error
variance at all levels of X  [ε ~ N(0,σ2)].  The
normality assumption is frequently untenable in
practice.  Violation of this assumption is often
manifested by the presence of outliers in the observed
data.  Thus data containing outlying values may
reflect nonnormal error distributions with heavy tails
or normal error distributions containing observations
atypical of the usual normal distribution with larger
variance than the assumed σ2 (Draper & Smith, 1981;
Hamilton, 1992).  It is well demonstrated that
outliers in the sample data heavily influence estimates
using OLS regression, sometimes even in the
presence of one outlier (e.g., Rousseeuw & Leroy,
1987).

It is also recognized that in the presence of
normally distributed errors and homoscedasticity,
OLS estimation is the method of choice.  For
situations in which the underlying assumptions of
OLS estimation are not tenable, the choice of method
for parameter estimation is not clearly defined.  Thus,
the choice of estimation method under non-ideal
conditions has been a long-standing problem for
methodological researchers.  The history of this
problem is lengthy with many alternative estimation
methods having been proposed and investigated

A
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(Birkes & Dodge, 1993; Dietz, 1987; Iman &
Conover, 1979; Tam, 1996; Theil, 1950; Yale &
Forsythe, 1976).

Robust Regression
Alternatives to OLS regression may be regarded

as falling into broad classes based upon the approach
to the problem of parameter estimation and the
assumptions placed upon the model.  Robust
regression is a general term that encompasses a wide
array of estimation methods.  In general, robust
estimation methods are considered to perform
reasonably well if the errors of prediction have a
distribution that is not necessarily normal but “close”
to normal (Birkes & Dodge, 1993).  Thus, these
methods have been developed for situations in which
symmetric error distributions have heavy tails due to
outliers in the observed data (Hamilton, 1992).  A
common element to these methods is the definition of
a loss function on the residuals, which is subject to
minimization via differentiation with respect to the
slope and Y-intercept parameters (Draper & Smith,
1981).  Examples of this type of robust estimation
are Huber M-estimation, the method of Least Median
of Squares, and the method of Least Absolute
Deviations (LAD).

The robust LAD estimator is investigated in the
present study and so a brief description of the method
is mentioned here.  LAD was developed by Roger
Joseph Boscovich in 1757, nearly 50 years before
OLS estimation (see Birkes & Dodge, 1993 for a
review and historical citations).  In contrast to OLS
estimation which defines the loss function on the
residuals as Σei

 2, LAD finds the slope and Y-

intercept that minimize the sum of the absolute
values of the residuals, Σ|ei |. In concept, the LAD

estimator is no more complex than the OLS
estimator.  Some have considered LAD to be simpler
than OLS because |ei | is a more straightforward
measure of the size of a residual as compared to ei

 2.
Unfortunately, computing LAD estimates is more
difficult than computing OLS estimates; there are no
exact formulas for LAD estimates and thus
algorithmic methods must be employed to calculate
them.

Other forms of robust regression involve iterative
modification of the sample data, often based upon the
residuals from OLS estimation.  Examples of this
type of robust estimation are Winsorized Regression
(Yale & Forsythe, 1976) and regression using data
trimming methods (Hamilton, 1992).  These methods
maintain the assumptions of OLS estimation and
employ smoothing techniques to resolve the influence
of Y-outliers on the estimates of slope and Y-
intercept. The trimmed least squares estimator (TLS)
is computationally similar to a trimmed mean
(Hamilton, 1992).  Estimates for TLS are computed
by deleting cases corresponding to a specified

percentage of the largest positive and the largest
negative residuals under an initial OLS estimation.
After case deletion, OLS estimation is performed on
the remaining data to compute the TLS estimates of
slope and Y-intercept.

Winsorized regression, which can take on several
different forms, is used as a method to reduce the
effect of Y-outliers in the sample by smoothing the
observed Y-data rather than simply deleting outlying
cases (as in TLS).  Fundamental to the method is the
formulation of an observed response measure as  
yi = yi + ei.  If an observed response measure is far
from the majority of the other Y-values (i.e., an
outlier), then the residual for that case will tend to be
large in absolute value.  Winsorization methods
modify extreme Y-values, in an iterative fashion, by
replacing the observed residual for an extreme Y-value
with the next closest (and smaller) residual in the data
set, and then computing new Y-values using the
formulation for an observed score as presented above.
These new Y-values are used to compute new slope
and intercept estimates for the regression line, and
then a new set of residuals is obtained.  The process
of estimation, obtaining residuals, and data
modification is continued for a specified number of
iterations.

Variations on Winsorization methods for linear
regression are described by Yale and Forsythe (1976)
and incorporate techniques for both computing the
residuals and for modifying the observed Y-data.
They note the most common method for obtaining
the residuals is to compute the OLS estimates of
slope and intercept and form the residuals in the usual

manner as ei = yi - (α  + β Xi).  The most
straightforward method for smoothing the data is a
process in which a specified percentage of the Y-data,
at each extreme of the ordered residuals, is modified
iteratively. Iterations involve computing OLS
estimates, obtaining residuals, and then replacing
extreme Y-values with modified Y-values as described
above.

Nonparametric Regression
The robust regression methods described above

assume normally distributed error terms in the
regression model. In distinction, classical
nonparametric approaches to linear regression
typically employ parameter estimation methods that
are regarded as distribution free.  Since nonparametric
regression procedures are developed without relying
on the assumption of normality of error distributions,
the only presupposition behind such procedures is
that the errors of prediction are independently and
identically distributed (i.i.d.) (Dietz, 1989). The
assumption that the data are i.i.d. is a considerably
weaker assumption as compared to the normality
assumption underlying OLS regression and robust
regression procedures. Hence nonparametric regression
methods are expected to perform well without regard
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to the nature of the distribution of errors. Several
classical nonparametric approaches to linear
regression are reviewed by Tam (1996) and are briefly
described here.

Many nonparametric procedures are based on
using the ranks of the observed data rather than the
observed data themselves.  An application of rank
transformation in the linear regression model was
developed by Iman and Conover (1979) and is known
as monotonic regression.  This technique has been
proposed for estimating slope and Y-intercept when
the data exhibit a nonlinear relationship (i.e., data that
exhibit a monotonic increasing or decreasing
relationship).  Monotonic regression uses the rank
ordering of the data as the values for criterion and
independent variables in the estimation of slope and
Y-intercept.  Iman and Conover (1979) compared the
performance of the rank regression method against
OLS, mean isotonic regression, and median isotonic
regression and found that for data exhibiting a strictly
monotonic increasing or decreasing relationship,
monotonic regression shows strong estimator
performance.  They also note that the procedure fits
the monotone non-linear trend in the sample data
while robust regression is forced to treat non-linearity
in the data as outliers.  Therefore, Iman and Conover
suggest using monotonic regression for situations of
non-linearity but not for cases in which the sample
data is contaminated by outliers.

In addition to methods based on ranks,
nonparametric procedures have been developed that
use the median as a robust measure (rather than
means, as in OLS).  Theil (1950) considered the
geometric formula for the slope of the line between
any two data points (say the ith and jth points) as

bij = 
yj - yi

xj - xi
,

where xi ≠ xj. He proposed a robust measure for the
slope of the regression line passing through all n
sample data points by taking the median of all
possible pairwise slopes.   Conceptually, this method
would yield an estimate of slope that is resistant to
outliers in the sample data.

Modifications to Thiel’s original method for
computing the slope of the regression line have been
proposed in which each of the pairwise slopes, bij, are
weighted using a weighting scheme.  The median of
these weighted pairwise slopes is then taken as the
slope of the regression line passing through all n
observations in the sample.  Jaeckel (1972) proposed
that each slope should be weighted by the X-distance
between the ith and jth observations (i.e., wij = xj - xi).
Sievers (1978) and Scholz (1978) suggested the use of
wij = (j - i) as the weighting scheme, which is the
number of steps between ith and jth observations.
Still another weighting method, as discussed by
Birkes and Dodge (1993), uses wij = |xj - xi |.

Using medians, several methods for computing
the Y-intercept have been proposed and investigated.
It can be shown that the intercept of the line joining
any two data points is given by

aij = 
xjyi - xiyj

xj - xi
, i < j, xi ≠ xj.

Under this formulation, several nonparametric
estimators for Y-intercept have been proposed.  The
most obvious one is to take the median of the aij

values.
A different approach that does not require the aij

terms explicitly is to make use of the various
nonparametric slope estimators previously mentioned.

For some estimator of slope, β , the term yi - β X i is
computed for each observation, and then the median
of these terms is taken for the Y-intercept of the
regression line passing through all n observations.
Theil (1950) originally proposed this estimator for
the Y-intercept of the line using his proposed median

of pairwise slopes as β .  A variant of this Y-
intercept may be formed substituting the modified

(weighted) Theil slope estimator as β .
Yet another approach to estimating the Y-

intercept is to compute it as the median of all

pairwise averages of the yi - β X i terms.  This Y-
intercept can also be computed using either the

original Theil median of pairwise slopes as β  or

using the modified Theil slope as β .  Finally,
Conover (1980) proposed estimating the Y-intercept
using α  = median(yi) - median(xi), using the Theil

median of pairwise slopes as β .  This Y-intercept
estimate is usually paired with the Theil median of

pairwise slopes estimator for β  in the regression
equation.

Tam (1996) reviews two important studies that
compare the performance of median based classical
nonparametric methods for estimating the slope and
Y-intercept in linear regression.  Hussain and Sprent
(1983) present a simulation study in which they
compared the OLS regression estimator against the
Theil pairwise median and weighted Theil estimators
in a study using 100 replications per condition.
Hussain and Sprent characterized the data modeled in
their study as typical data patterns that might result
from contamination due to outliers.  Contaminated
data sets were generated using a mixture model in
which each error term is either a random observation
from a unit normal distribution [N(0,1)] or an
observation from a normal distribution with a larger
variance [N(0,k2), k >1].

The investigators present results from simulated
data sets with the probability, p, of drawing data from
the N(0,1) distribution fixed between 0.85 and 0.95.
Sample sizes of 10 and 30 are presented for the
situation in which there are no outliers (p = 1.0) and
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for the condition in which the data contain
approximately 10% outliers (k = 9; p = 0.85 for n =
10, p = 0.90 for n = 30).  X-values in the Hussain
and Sprent study follow an equally spaced, sequential
additive series (xi = 1, 2,..., n).  Observed outcome
values are generated by the model: yi = 2 + xi + ei, in
which ei is a random deviate drawn from the
appropriate normal distribution.

Results from Hussain and Sprent (1983) indicate
that Theil’s method was appreciably better than OLS
in the presence of outliers, especially for small
sample sizes.  Such results pertain especially to the
estimation of the Y-intercept term in the linear
regression model.  Furthermore, their results showed
no real advantage of the weighted median estimator as
compared to the Theil estimator under their simulated
data conditions.

In addition to the work of Hussain and Sprent,
findings in Dietz (1987) have contributed
substantially to the field of classical nonparametric
regression.  Dietz estimated and compared the mean
square errors (MSE) of the Theil slope and several
weighted median slope estimators under a variety of
simulated data conditions.  Additionally, Dietz
examined several nonparametric estimators of Y-
intercept.  Dietz simulated data according to two
sample sizes (20 and 40), three X-designs to generate
X-values, and nine error distributions (i.e. standard
normal, 6 contaminated normal distributions with
various degrees of flatness, heavy-tailed t-distribution
with 3 degrees of freedom, and an asymmetric
lognormal distribution).  Dietz generated 500 data
replications per condition.

Findings in Dietz (1987) demonstrated that for
normal error distributions, the OLS slope estimator
yielded the lowest MSE, while for nonnormal errors
the OLS slope estimator had the largest MSE.  The
weighted median slope estimators showed strong
performance under the moderately contaminated data
conditions while the Theil unweighted median slope
estimator yielded the lowest MSE under the heavily
contaminated data conditions.  Dietz also reported that
the Y-intercept estimator as proposed by Theil (1950)
yielded large MSE values and should be avoided in
practice.

Alternatives to OLS regression continue to
intrigue applied statisticians and methodological
researchers. The present study explores the behavior
of robust regression and nonparametric approaches to
simple linear regression under various situations with
respect to contaminated data and nonnormal error
distributions.  This study provides an extension to
previous research in some important areas.  As noted
by Tam (1996), very little research exists in which
classical nonparametric alternatives to linear
regression are directly compared against robust
regression methods.  Additionally, comparisons of
alternative regression methods are often presented

only within the framework of statistical theory or by
examining estimator performance on exemplary data
sets (e.g., Birkes & Dodge, 1993).  The present study
serves to begin addressing the issue of comparing
alternatives to OLS regression within the framework
of a simulation study.

Method
All programming for the simulation study was

developed using GAUSS (Aptech Systems, 1996).  In
the present study, three levels of sample size (n = 10,
30, 50) were crossed with five types of error
distributions (unit normal, contaminated unit normal
with 10% Y-outliers, contaminated unit normal with
30% Y-outliers, lognormal, t-5df).  For each of the
15 cells in the study, 1000 simulated bivariate data
sets were generated.  Algorithms for drawing random
deviates from contaminated unit normal, lognormal,
and t-5df distributions are found in Evans, Hastings,
and Peacock (1993).

Data generation methods are conformable to
those of Hussain and Sprent (1983).  Vectors of
random error variates were drawn from the appropriate
error distribution.  Error vectors for the contaminated
normal distributions were mixtures of deviates drawn
from a unit normal distribution and from a normal
N(0,k2) distribution with k = 9.  It has been
demonstrated that drawing deviates from this larger
variance normal distribution will result in some
(potentially) large Y-outliers (Hussain & Sprent,
1983).

Simulated bivariate data sets consisted of (X,Y)
vectors.  The vector of X-values was generated to
follow an equally spaced, sequential additive series
(xi = 1, 2,..., n).  The Y-vector was generated by the
model:  yi =  2 + xi + ei, in which ei is a random
deviate drawn from the appropriate error distribution.
Thus, the population parameters underlying the model
are α  = 2 and β = 1 for Y-intercept and slope,
respectively.

For each simulated data set, estimators of slope
and Y-intercept were computed.  The robust
regression estimators considered in this study are
LAD, 10% and 20% Winsorized least squares, and
10% TLS.  Algorithms for computing the LAD
estimator are found in Birkes and Dodge (1993).
Winsorization methods for computing residuals and
smoothing the Y-data were implemented via the
methods described previously, and used five iterations
of data smoothing.  We conducted pilot studies using
Winsorized regression, with results showing very
little change in the parameter estimates beyond five
iterations of data adjustment.  Estimates for the 10%
TLS were computed by deleting cases corresponding
to the 10% largest positive and the 10% largest
negative residuals under an initial OLS estimation.
After case deletion, OLS estimation was performed on
the remaining observations to compute the TLS
estimates.
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Table 1.  Summary Measures for Estimating Population Slope (β = 1.0).
                                                                                                                  

Estimation                   Error Distribution: N(0,1) - 0% contamination            
    Method                 Variance                     Bias                      MSE                              RMSE              
OLS: 0.01115491   0.00707727 0.01120500         0
LAD: 0.01838679   0.00598824 0.01842265 -0.64414576
WIN10: 0.01223615   0.00756652 0.01229340 -0.09713513
WIN20: 0.01299585   0.00830138 0.01306476 -0.16597602
TLS: 0.01646757   0.00737854 0.01652201 -0.47452125
MON: 0.00096072 -0.04701818 0.00317143   0.71696304
Theil: 0.01266696   0.00790564 0.01272946 -0.13605202
    Wtd. Theil:       0.01235103            -0.00126754           0.01235263            -0.10242155         

                                 Error Distribution: N(0,1) -     1    0% contamination          
OLS: 0.11142026  0.01378250 0.11161021        0
LAD: 0.02767390  0.00432905 0.02769264 0.75188074
WIN10: 0.02192931  0.00375534 0.02194342 0.80339239
WIN20: 0.02942458  0.00682076 0.02947111 0.73594615
TLS: 0.01880606  0.00268830 0.01881329 0.83143757
MON: 0.02047459 -0.15438788 0.04431021 0.60299146
Theil: 0.02066901  0.00651707 0.02071149 0.81443018
    Wtd. Theil:       0.02018951            -0.00604903           0.02022610            0.81877913          

                                 Error Distribution: N(0,1) -     3    0% contamination          
OLS: 0.31264452 -0.00547711 0.31267452        0
LAD: 0.06165909 -0.00054303 0.06165939 0.80280009
WIN10: 0.14933177 -0.01329565 0.14950854 0.52183970
WIN20: 0.10990528 -0.00357852 0.10991809 0.64845845
TLS: 0.15258114 -0.01516154 0.15281101 0.51127769
MON: 0.04915750 -0.34893333 0.17091197 0.45338696
Theil: 0.06853707 -0.00716128 0.06858835 0.78063978
    Wtd. Theil:       0.09594470            -0.02908675           0.09679074            0.69044252          

                                            Error Distribution:     Lognormal                      
OLS: 0.05361053  0.00528236 0.05363843         0
LAD: 0.02574529 -0.00334989 0.02575651 0.51981235
WIN10: 0.02661642 -0.00448754 0.02663656 0.50340532
WIN20: 0.02639584  0.00045408 0.02639604 0.50788934
TLS: 0.03613776 -0.00986773 0.03623513 0.32445574
MON: 0.01326078 -0.10921212 0.02518806 0.53041014
Theil: 0.01489242 -0.00264993 0.01489945 0.72222444
    Wtd. Theil:       0.01521499            -0.01259078           0.01537352            0.71338612          

                                            Error Distribution:         t    - 5    df                                  
OLS: 0.01764455 -0.00219277 0.01764936           0
LAD: 0.02363482  0.00078222 0.02363543 -0.33916683
WIN10: 0.01707596 -0.00241412 0.01708179  0.03215808
WIN20: 0.01734658 -0.00224915 0.01735164  0.01686858
TLS: 0.02184069 -0.00112768 0.02184196 -0.23755002
MON: 0.00321083 -0.07123636 0.00828545  0.53055218
Theil: 0.01810661 -0.00002527 0.01810661 -0.02590776
    Wtd. Theil:       0.01704933            -0.01184856           0.01718971             0.02604293         

Note:  Tabled results are for the   n  =10 sample size.  OLS: ordinary least squares;
LAD: least absolute deviations; WIN10: 10% Winsorized regression; WIN20: 20%
Winsorized regression;  TLS: trimmed least squares; MON: monotonic regression;
Theil: median of pairwise slopes; Wtd. Theil: weighted median of pairwise slopes.
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The classical nonparametric estimators for
population slope included in this study are monotonic
regression, the Theil median based estimator, and the
modified (weighted) Theil estimator.  Since our
design employs X-values such that each xi value
equals its index number (i.e. xi = i, for all i), all the
previously described methods for weighting pairwise
slopes are equivalent and hence are simply referred to
as the weighted Theil slope estimator. The non-
parametric Y-intercept estimators described previously
and investigated by Dietz (1987) were also
investigated in the present study.

Summary measures for each estimator were
obtained for the set of 1000 replications in each of the
15 cells in the study.  Summary measures of minima
and maxima, mean, and median were collected.  To
measure the quality of parameter estimation,
estimator variance, bias, mean square error (MSE),
and relative mean square error (RMSE) were computed
for the estimators under each condition.  MSE can be
a useful measure of the quality of parameter
estimation (Stone, 1996), and is computed as
MSE = Var(θ´) + bias(θ´)2, in which θ´ is an estimate
of the population parameter θ.

Relative mean square error has also been used as
a measure of the quality of parameter estimation (e.g.,
Yale & Forsythe, 1976). We computed RMSE as
(MSEOLS - MSEθ')/MSEOLS. We believe this form-
ulation is useful for comparing estimator performance
within a given condition, and is interpreted as a
proportionate (or percent) change from baseline, using
the OLS estimator MSE within a given data
condition as a baseline value.  Positive values of
RMSE refer to the proportional reduction in the MSE
of a given estimator with respect to OLS estimation.
Hence, RMSE is interpreted as a relative measure of
performance above and beyond that of the OLS
estimator.

Results
Effects of sample size

Across sample sizes, estimator variances (and, to
some lesser degree estimator bias) decreased with
increasing sample size.  For example, the variances
for the OLS slope estimator under the uncontaminated
unit normal distribution are 0.011, 0.00043, and
0.000098 for sample sizes n = 10, 30, and 50
respectively.  This pattern of decreasing variance and
bias holds for all estimators under all error
distributions. The patterns seen in the variances are
also exhibited in the estimator MSE values.  Because
the results for the n = 30 sample size are intermediate
to those for the n = 10 and n = 50 sample sizes, they
are not reported here.

Slope estimator performance
Tables 1 and 2 present summary results for the

estimation of population slope under the unit normal,

contaminated normal, and nonnormal error
distributions for sample sizes n = 10 and n = 50,
respectively.  For the OLS slope estimator, note the
increase in MSE as the degree of contamination in the
data increases.  OLS slope estimator MSE values for
the lognormal and t-5df error distributions also show
increases as compared to the unit normal error
distribution.

Under most conditions, the results for monotonic
regression in Tables 1 and 2 show small variances for
this slope estimator accompanied by large (in
absolute value) bias values. For example, in Table 1,
the variance for monotonic regression under the
uncontaminated unit normal condition is 0.00096 as
compared to the variance for the OLS slope estimator
of 0.01115.  While monotonic regression yields
reduced variances, bias values for this slope estimator
can be quite large.  Bias values in Table 1 for
monotonic regression are often several orders of
magnitude higher than the corresponding bias values
for the other slope estimators.  Note that bias values
for monotonic regression are not only large in
absolute magnitude, but also negative.  These
negative bias values indicate the monotonic
regression slope estimator consistently under
estimated the population slope value of β = 1.0.

Under ideal conditions (unit normal error
distribution, no contamination), MSE values in
Tables 1 and 2 indicate inflation in MSE for all
robust and nonparametric estimators (with the
exception of monotonic regression) as compared to
OLS.  MSE for these slope estimators are larger than
for OLS for this condition and thus corresponding
RMSE values are negative. LAD and TLS slope
estimators exhibit the largest inflation in MSE as
compared to OLS with corresponding reductions in
relative estimator performance of approximately 64%
for the LAD estimator and 47% (n = 10) and 37% (n
= 50) for the TLS estimator.

For the 10% data contamination condition, all
robust and nonparametric slope estimators (with the
exception of monotonic regression) show strong
performance gains with 75-84% decreases in MSE as
compared to OLS under this moderate level of data
contamination.  Comparing estimator performance
across the two sample sizes, one sees that
performance gains are generally lower for the n = 10
sample size with the exception of the TLS slope
estimator.  The TLS slope estimator yields an 83.1%
reduction in MSE under the n = 10 sample size and a
74.5% reduction in MSE under the larger sample size
condition.

Under the 30% contamination condition, the
LAD slope estimator shows superior performance for
both the small and large sample sizes.  RMSE values
in the two tables indicate reductions in MSE of
80.3% and 88.8% for the n = 10 and n = 50 sample
sizes respectively.  In this extreme contamination
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Table 2.  Summary Measures for Estimating Population Slope (β = 1.0).
                                                                                                                  

Estimation                   Error Distribution: N(0,1) - 0% contamination            
    Method                 Variance                     Bias                      MSE                              RMSE              
OLS: 0.00009810  0.00027520 0.00009818        0
LAD: 0.00016128  0.00031704 0.00016138 -0.64382254
WIN10: 0.00010321  0.00022429 0.00010326 -0.05175852
WIN20: 0.00010363  0.00022180 0.00010367 -0.05600182
TLS: 0.00013426  0.00001423 0.00013426 -0.36749649
MON: 0.00000043 -0.00214771 0.00000504  0.94866569
Theil: 0.00010445  0.00024160 0.00010451 -0.06451524
    Wtd. Theil:       0.00010419             0.00015729           0.00010421            -0.06148768         

                           Error Distribution: N(0,1) -     1    0% contamination                
OLS: 0.00088268  0.00146208 0.00088482        0
LAD: 0.00017786  0.00016588 0.00017789 0.79895156
WIN10: 0.00015842  0.00036745 0.00015855 0.82081015
WIN20: 0.00019381  0.00049379 0.00019406 0.78068165
TLS: 0.00022498  0.00053138 0.00022527 0.74541118
MON: 0.00010839 -0.01713325 0.00040194 0.54574057
Theil: 0.00014566 0.00026384 0.00014573 0.83529971
    Wtd. Theil:       0.00014591            0.00017933            0.00014594            0.83506178          

                            Error Distribution: N(0,1) -     3    0% contamination               
OLS: 0.00255733  0.00110911 0.00255856         0
LAD: 0.00028630  0.00049167 0.00028655  0.88800458
WIN10: 0.00086501  0.00036565 0.00086514  0.66186374
WIN20: 0.00084013  0.00011337 0.00084015  0.67163290
TLS: 0.00047307  0.00037883 0.00047321  0.81504716
MON: 0.00032382 -0.04740485 0.00257104 -0.00487937
Theil: 0.00034353  0.00008385 0.00034354  0.86573035
    Wtd. Theil:       0.00034969             0.00000300           0.00034969             0.86332687         

                                           Error Distribution:     Lognormal                       
OLS: 0.00041453 -0.00022877 0.00041458         0
LAD: 0.00015974  0.00023784 0.00015979 0.61456832
WIN10: 0.00016734 -0.00003671 0.00016734 0.59635229
WIN20: 0.00016585 -0.00005373 0.00016586 0.59994409
TLS: 0.00025751  0.00016274 0.00025753 0.37881494
MON: 0.00008034 -0.00906487 0.00016251 0.60800790
Theil: 0.00006711 -0.00000821 0.00006711 0.83811642
    Wtd. Theil:       0.00006952            -0.00015675           0.00006954            0.83225400          

                                            Error Distribution:     t    - 5    df                                  
OLS: 0.00015653  0.00035306 0.00015665     0
LAD: 0.00016443  0.00007171 0.00016443 -0.04966430
WIN10: 0.00013112  0.00026626 0.00013119  0.16251913
WIN20: 0.00013395  0.00026166 0.00013402  0.14449768
TLS: 0.00015108 -0.00001635 0.00015108  0.03555771
MON: 0.00000383 -0.00367558 0.00001734  0.88929977
Theil: 0.00013153  0.00029653 0.00013162  0.15980954
    Wtd. Theil:       0.00013104             0.00015973           0.00013106             0.16336140         

Note:  Tabled results are for the   n  =50 sample size.  OLS: ordinary least squares;
LAD: least absolute deviations; WIN10: 10% Winsorized regression; WIN20: 20%
Winsorized regression; TLS: trimmed least squares; MON: monotonic regression;
Theil: median of pairwise slopes; Wtd. Theil: weighted median of pairwise slopes.
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Figure 1.  Mean square error in estimation of population slope under varying levels of
data contamination.  Results charted are for the n = 50 sample size.

Figure 2.  Mean square error in estimation of population slope for normal and nonnormal
error distributions.  Results charted are for the n = 50 sample size.
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Table 3.  Summary Measures for Estimating Population Y-Intercept (α = 2.0)
                                                                                                                  

Estimation                   Error Distribution: N(0,1) - 0% contamination            
    Method                 Variance                     Bias                      MSE                              RMSE              
OLS: 0.46623625 -0.04029911 0.46786027         0
LAD: 0.69815192 -0.03000075 0.69905197 -0.49414688
WIN10: 0.49958621 -0.04058599 0.50123343 -0.07133146
WIN20: 0.53987082 -0.04371208 0.54178157 -0.15799866
TLS: 0.63496493 -0.04029981 0.63658900 -0.36063915
MON: 0.02906177 -1.74140000 3.06153573 -5.54369673
med (aij): 0.60101301 -0.04286027 0.60285001 -0.28852576
Conover: 0.75428972 -0.05273348 0.75707054 -0.61815522
Median-1: 0.55398222 -0.03755454 0.55539257 -0.18709068
Median-2: 0.51962863 -0.04548496 0.52169752 -0.11507120
Wtd. Mdn-1: 0.54440377  0.01445567 0.54461273 -0.16404996
    Wtd. Mdn-2:     0.50696225             0.00284416           0.50697034            -0.08359348         

                           Error Distribution: N(0,1) -     1    0% contamination                
OLS: 4.26531434 -0.10433764 4.27620068         0
LAD: 0.97412322 -0.01615455 0.97438419 0.77213787
WIN10: 0.82937738 -0.02296355 0.82990470 0.80592475
WIN20: 1.03965787 -0.03238871 1.04070690 0.75662814
TLS: 0.69793756 -0.01368506 0.69812484 0.83674180
MON: 0.61935638 -1.15086667 1.94385047 0.54542581
med (aij): 0.79369545 -0.02981975 0.79458466 0.81418443
Conover: 1.21925681 -0.06955337 1.22409448 0.71374251
Median-1: 0.76404907 -0.02949380 0.76491895 0.82112183
Median-2: 0.77021114 -0.03544536 0.77146751 0.81959043
Wtd. Mdn-1: 0.75465027  0.03493991 0.75587107 0.82323770
    Wtd.       Mdn-2:     0.75285108                 0.03346361           0.75397089            0.82368206          

condition, the Theil and weighted Theil estimators
also show strong slope estimator performance.  For
the n = 50 sample size, slope estimator MSE values
for the uncontaminated and contaminated data
conditions are plotted in Figure 1.  

For the lognormal error distribution, the
nonparametric Theil and weighted Theil methods
exhibit the strongest performance in both the small
and large sample sizes.  For the n = 10 sample size,
Table 1 reports relative reductions in MSE of 71-72%
for these nonparametric estimators.  For the large
sample size, RMSE values in Table 2 show even
higher performance gains with relative reductions in
MSE of 83-84%.  Close to one another, but running
a distant second, are the robust LAD and Winsorized
least squares estimators with relative reductions in
MSE of about 51% for the small sample size and
60% for the large sample size. Under the t-5df error
distribution, the Winsorized least squares estimators
and the nonparametric Theil and weighted median
estimators yield only small reductions in MSE
relative to the OLS MSE under this condition.  Table
2 shows reductions in MSE of about 16% for these
estimators under the large sample size while for the
small sample size, RMSE values in Table 1 show
reductions in MSE of only 2-3%.  Figure 2 displays

the estimator MSE results from the unit normal,
lognormal, and t-5df error distributions for the n = 50
sample size.  Note that the MSE values for the
N(0,1) condition in Figure 2 represent the same
summary measures as the 0% contaminated data in
Figure 1.

Y-Intercept estimator performance
Tables 3 and 4 present summary results for the

estimation of population Y-intercept under the unit
normal, contaminated normal, and nonnormal error
distributions for the small and large sample sizes,
respectively.  Similar to the slope estimator, notice
(for both the large and small sample sizes) the OLS
Y-intercept estimator yields increases in MSE as the
contamination in the data increases.  Increased MSE
values (as compared to the unit normal error dis-
tribution) for OLS are also reported for the non-
normal error distributions.  For the small sample
size, Table 3 reports the largest MSE for the OLS Y-
intercept under the 30% data contamination condition
with a value of 12.17.  Unlike the small sample size,
inspection of MSE values for the OLS Y-intercept in
Table 4 reveals the largest MSE value falls under the
lognormal error distribution with a reported value of
3.10.   



Robust & Nonparametric Regression

Multiple Linear Regression Viewpoints, 1998, Vol. 25 63

Table 3 (continued).  Summary Measures for Estimating Population Y-Intercept (α = 2.0)
                                                                                                                  

Estimation                                 Error Distribution:     Lognormal                         
    Method                 Variance                     Bias                      MSE                              RMSE              

OLS: 1.97547147  1.61204928 4.57417434         0
LAD: 1.00661028  1.17225486 2.38079173 0.47951443
WIN10: 1.11938148  1.46240345 3.25800534 0.28773914
WIN20: 1.08117248  1.31667353 2.81480166 0.38463175
TLS: 1.38701960  1.39707222 3.33883039 0.27006928
MON: 0.40113847 -1.39933333 2.35927225 0.48421899
med (aij): 0.76859984  1.07407962 1.92224688 0.57976091
Conover: 1.17645633  1.53385117 3.52915574 0.22846060
Median-1: 0.69420592  1.14652836 2.00873319 0.56085338
Median-2: 0.74321559  1.31729607 2.47848453 0.45815696
Wtd. Mdn-1: 0.72207252  1.20571787 2.17582810 0.52432331
    Wtd. Mdn-2:     0.76095906             1.37362165           2.64779550            0.42114242          

                                            Error Distribution:          t    - 5    df                                 
OLS: 0.66246365  0.01522071 0.66269532           0
LAD: 0.89415823  0.00021390 0.89415828 -0.34927507
WIN10: 0.63214117  0.01585090 0.63239242  0.04572674
WIN20: 0.64452998  0.01393173 0.64472407  0.02711842
TLS: 0.77244571  0.00765923 0.77250437 -0.16570065
MON: 0.09712767 -1.60820000 2.68343491 -3.04927396
med (aij): 0.75091053  0.00304771 0.75091982 -0.13312981
Conover: 1.00145486 -0.02732700 1.00220163 -0.51231131
Median-1: 0.71263706  0.00291803 0.71264557 -0.07537438
Median-2: 0.67747509  0.00604977 0.67751169 -0.02235773
Wtd. Mdn-1: 0.67256536  0.06871781 0.67728750 -0.02201944
    Wtd. Mdn-2:     0.63839635             0.06975511           0.64326212             0.02932449         

Note: Tabled results are for the   n  =10 sample size.  OLS: ordinary least squares;
LAD: least absolute deviations; WIN10: 10% Winsorized regression; WIN20: 20%
Winsorized regression; TLS: trimmed least squares; MON: monotonic regression;
med (aij): median of pairwise intercepts; Conover: Conover Y-intercept; Median-1:

median of (yi  - β  Xi), Theil slope; Median-2: pairwise average of (yi  - β  Xi),

Theil slope; Wtd. Mdn-1: median of (yi  - β  Xi), weighted Theil slope;

Wtd. Mdn-2: pairwise average of (yi  - β  Xi), weighted Theil slope.

Results for the monotonic regression Y-intercept
estimator show extremely poor estimator performance
under both the large and small sample sizes.  Notice
in both Tables 3 and 4, bias values in the Y-intercept
for this estimator (under all conditions) are large and
negative.  These negative bias values indicate that the
monotonic regression Y-intercept estimator
consistently underestimates the population value of
α  = 2.0.  For the large sample size, and looking
across error distributions, MSE values for the
monotonic regression Y-intercept estimator are
generally larger than the OLS Y-intercept estimator
under similar conditions.  Thus, most RMSE values
in Table 4 for monotonic regression are negative,
indicative of a loss in estimator performance as
compared to OLS. Similar to the monotonic
regression Y-intercept estimator, the Conover Y-
intercept (Conover, 1980) did not perform well.  For
the small sample size, the Conover Y-intercept shows

reductions in MSE as compared to the OLS MSE
baseline, but these reductions are not evidenced in
Table 4 for the n = 50 sample size.  For the large
sample size, the Conover Y-intercept yields MSE
values that are larger than the corresponding OLS
MSE values.  Thus, RMSE values in Table 4 for the
Conover Y-intercept are negative.

Under the uncontaminated, unit normal error
distribution, all robust and nonparametric Y-intercept
estimators yield inflation in MSE as compared to
OLS.  These inflated MSE values are seen for both
sample sizes in the two tables.  After the monotonic
regression and Conover Y-intercept estimators, the
LAD and TLS estimators exhibit the most substantial
loss in estimator performance.

Under the 10% data contamination all non-
parametric and robust Y-intercept estimators show
strong performance relative to OLS.  Discounting the
monotonic regression and Conover intercepts, all   
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Tabl  e 4    .       Summary Measures for Estimating Population      Y     -Intercept (     α      = 2.0)                

Estimation                   Error Distribution: N(0,1) - 0% contamination            
    Method                 Variance                     Bias                      MSE                              RMSE              

OLS: 0.08306252 -0.01121545 0.08318831         0
LAD: 0.13422339 -0.01715318 0.13451762  -0.61702554
WIN10: 0.08685171 -0.01015017 0.08695474  -0.04527592
WIN20: 0.08794651 -0.00868562 0.08802195  -0.05810480
TLS: 0.10876400 -0.00432918 0.10878275  -0.30766868
MON: 0.00027777 -1.94523347 3.78421102      -44.48969748
med (aij): 0.10683096 -0.01485406 0.10705160  -0.28685873
Conover: 0.43071144 -0.00363965 0.43072469  -4.17770702
Median-1: 0.09617646 -0.01358010 0.09636088  -0.15834637
Median-2: 0.08781186 -0.01081533 0.08792884  -0.05698550
Wtd. Mdn-1: 0.09576219 -0.01185850 0.09590282  -0.15284007
    Wtd. Mdn-2:     0.08751654            -0.00873591           0.08759285             -0.05294667        

                           Error Distribution: N(0,1) -     1    0% contamination                
OLS: 0.72959431 -0.03815976 0.73105048          0
LAD: 0.14628716 -0.00046989 0.14628738  0.79989428
WIN10: 0.13127624 -0.00755356 0.13133329  0.82034990
WIN20: 0.15145369 -0.01096891 0.15157401  0.79266273
TLS: 0.17187647 -0.01173481 0.17201417  0.76470275
MON: 0.07048059 -1.56310204 2.51376858 -2.43857044
med (aij): 0.13115023 -0.00677069 0.13119607  0.82053760
Conover: 0.97688948  0.00936086 0.97697710 -0.33640170
Median-1: 0.12444677 -0.00521617 0.12447398  0.82973272
Median-2: 0.12000176 -0.00529341 0.12002979  0.83581191
Wtd. Mdn-1: 0.12399224 -0.00303475 0.12400145  0.83037909
    Wtd. Mdn-2:     0.11985011            -0.00315264           0.11986005             0.83604409         

                            Error Distribution: N(0,1) -     3    0% contamination               
OLS: 2.22128658  0.00799708 2.22135053        0
LAD: 0.25062945 -0.01285950 0.25079481  0.88709805
WIN10: 1.01203716  0.02938913 1.01290088  0.54401574
WIN20: 0.72494948  0.02057523 0.72537282  0.67345414
TLS: 0.48621344  0.01482624 0.48643326  0.78101914
MON: 0.21056519 -0.79117633 0.83652517  0.62341596
med (aij): 0.25423256 -0.01322216 0.25440739  0.88547175
Conover: 2.36044148   0.01979859 2.36083347 -0.06279195
Median-1: 0.28495314 -0.00119235 0.28495456  0.87172013
Median-2: 0.30048783  0.00552801 0.30051839  0.86471366
Wtd. Mdn-1: 0.28922996 -0.00037240 0.28923010  0.86979538
    Wtd. Mdn-2:     0.30494324             0.00740885           0.30499813                 0.86269698         

        

Y-intercept estimators under both sample sizes yield
reductions in MSE of 75-83%.  The Y-intercept
nonparametric estimators show slight advantage over
the robust estimators.  Also, notice the TLS
estimator shows weaker performance in the large
sample size condition as compared to the n = 10
sample size cell for this moderately contaminated data
condition.

For the 30% contamination, the LAD Y-intercept
estimator and the Y-intercept estimator  based on the
median aij values yield the lowest MSE values with
the other nonparametric Y-intercepts all very close.
These results hold for both the small sample size
MSE values in Table 3 and for the n = 50 sample size
presented in Table 4.  

Under the lognormal error distribution, all
estimators of Y-intercept had difficulty in recovering
the population value of α = 2.0.  Note the large bias
values for the estimators under this condition,
suggesting large discrepancies between the means for
the estimators and the population value. The median
aij estimator showed the strongest relative
performance under both sample sizes. The
nonparametric techniques using the median of the   

(yi  - β  Xi) terms (using either the Theil slope or
weighted Theil slope) also yield relative strong
estimator performance with RMSE values of 0.64 for
the n = 50 sample size. For the large sample size, the
LAD Y-intercept estimator was also competitive.
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Table 4 (continued).  Summary Measures for Estimating Population Y-Intercept (α = 2.0)
                                                                                                                  

Estimation                                Error Distribution:     Lognormal                          
    Method                 Variance                     Bias                      MSE                              RMSE              

OLS: 0.38500603  1.64740505 3.09894942          0
LAD: 0.14386289  1.01840542 1.18101249  0.61889908
WIN10: 0.16699356  1.38154934 2.07567214  0.33020135
WIN20: 0.15463921  1.28493558 1.80569865  0.41731910
TLS: 0.21240544  1.25722778 1.79302712  0.42140807
MON: 0.05224150 -1.76884571 3.18105666 -0.02649519
med (aij): 0.09562958  0.90239609 0.90994829  0.70636878
Conover: 0.64892005  1.64056750 3.34038177 -0.07790781
Median-1: 0.07920296  1.01310474 1.10558416  0.64323904
Median-2: 0.08361419  1.22682737 1.58871960  0.48733607
Wtd. Mdn-1: 0.08168383  1.01704798 1.11607041  0.63985523
    Wtd. Mdn-2:     0.08588540             1.23072013           1.60055744             0.48351611         

                                            Error Distribution:          t    - 5    df                                 
OLS: 0.12955685 -0.00977434 0.12965239          0
LAD: 0.13381946 -0.00339975 0.13383102 -0.03222951
WIN10: 0.11127929 -0.00778139 0.11133984  0.14124342
WIN20: 0.11042154 -0.00831868 0.11049074  0.14779248
TLS: 0.12116747 -0.00114135 0.12116877  0.06543357
MON: 0.00249143 -1.90627265 3.63636686     -27.04704888
med (aij): 0.11836755 -0.00596709 0.11840316  0.08676456
Conover: 0.56742654 -0.02887466 0.56826029 -3.38295273
Median-1: 0.11431813 -0.00951134 0.11440859  0.11757436
Median-2: 0.10786731 -0.00879750 0.10794471  0.16742983
Wtd. Mdn-1: 0.11455410 -0.00583959 0.11458820  0.11618908
    Wtd. Mdn-2:     0.10789910            -0.00524933           0.10792666             0.16756907         

Note:  Tabled results are for the   n  =50 sample size.  OLS: ordinary least squares;
LAD: least absolute deviations; WIN10: 10% Winsorized regression; WIN20: 20%
Winsorized regression; TLS: trimmed least squares; MON: monotonic regression;
med (aij): median of pairwise intercepts; Conover: Conover Y-intercept; Median-1:

median of (yi  - β  Xi), Theil slope; Median-2: pairwise average of (yi  - β  Xi),

Theil slope; Wtd. Mdn-1: median of (yi  - β  Xi), weighted Theil slope; Wtd. Mdn-2:

pairwise average of (yi  - β  Xi), weighted Theil slope.

For the t-5df error distribution, Tables 3 and 4
report only modest reductions in MSE as compared to
the OLS MSE benchmark.  Table 3 shows increases
in MSE for the LAD estimator as well as for most of
the other Y-intercept estimators. For the large sample
size, the nonparametric pairwise methods demonstrate
slightly smaller MSE as compared to OLS, with the
Winsorized regression methods exhibiting good
performance. The LAD Y-intercept estimator
exhibited poor performance with a MSE value
slightly larger than that of the OLS Y-intercept
estimator.

Discussion
Findings in the present study have substantive

implications for educational researchers and research
methodologists.  The poor performance of OLS
estimation under the contaminated data conditions and
nonnormal error distributions serves to reaffirm both
the importance of assessing underlying assumptions

as part of any regression analysis and the need for
alternatives to OLS regression.  This study has also
replicated past findings that have suggested that when
the appropriate assumptions are met, OLS regression
is the method of choice.  Our results have shown,
under all sample sizes and for estimation of both
population slope and Y-intercept, the OLS estimator
yields the lowest MSE under ideal conditions.

Findings in the present study have demonstrated
the merits of alternatives to OLS regression under
non-ideal conditions. Our results indicate that
estimator performance is dependent upon the nature of
the error distribution.  Figure 1 shows that under mild
(10%) data contamination there is no real preference
for one alternative slope estimator over another.
When the degree of data contamination was increased
to 30%, the LAD slope estimator moderately
outperformed the other slope estimators by yielding
the smallest MSE.
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Figure 3.  Bias in estimation of population slope for normal and nonnormal error distributions.
Results charted are for the n = 50 sample size.

Figure 4.  Bias in estimation of population slope for normal and nonnormal error distributions
   – monotonic regression slope estimator removed.  Results charted are for the n = 50 sample size.
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For the case of nonnormal error distributions, our
results demonstrate that the symmetry of the error
distribution substantially impacts estimator
performance.  Figure 2 illustrates that when the error
distribution is nonnormal and symmetric (t-5df errors)
the robust LAD estimator, which demonstrated strong
performance under the contaminated normal
conditions, is not a desirable choice. Under this
condition, the Winsorized least squares and
nonparametric methods employing medians of
pairwise slopes (Theil and weighted Theil) exhibited
superior performance. Figure 2 also demonstrates that
when the error distribution is skewed, the
nonparametric Theil methods yield very strong
performance.

The monotonic regression and the TLS methods
investigated in this study were generally not
competitive. The poor results obtained for monotonic
regression are not entirely unexpected.  In their
proposal of this alternative method of regression,
Iman and Conover (1979) caution the use of this
method under situations in which there are outliers in
the observed data.  They recommend this method only
for situations in which observed data exhibits a
monotonically increasing or decreasing trend -
curvilinear data.  Additionally other investigators have
found the rank transformation procedure to be
problematic (McKean & Vidmar, 1994; Sawilowsky,
Blair & Higgins, 1989).  Our results have served to
substantiate these findings with empirical evidence of
the unacceptability of rank transformation in the form
of monotonic regression with respect to bias and
RMSE.  Large bias values in the summary tables
reflect monotonic regression’s inability to recover the
true population values under our data conditions.

The results for monotonic regression in this
study also provide valuable insight into the use of
MSE as a sole indicator of the quality of parameter
estimation.  A useful estimator is one in which both
bias and variance are minimized.  Figure 2 shows
monotonic regression as having very low MSE under
the N(0,1) and t-5df error distributions. The small
values for monotonic regression in this figure can be
misleading with respect to choice of estimator.  Table
2 reports bias values for monotonic regression that
are approximately 10 times larger than the bias values
for the other slope estimators under each condition.
We present Figure 3 which charts bias values for the
various estimators under the unit normal, t-5df, and
lognormal error distributions for the n = 50 sample
size.  When considering bias as a measure of the
quality of parameter estimation, this figure readily
demonstrates that monotonic regression is not an
optimal estimator under the conditions of our study.
For clarity of presentation, we also present Figure 4
which shows the same results as in Figure 3, with
the monotonic regression estimator removed.  With
respect to assessing the quality of parameter

estimation, our recommendation for methodological
researchers is to evaluate MSE with the caveat that
bias should also be simultaneously considered.

The TLS estimator was included in the study to
address the issue of case deletion, an approach
frequently adopted in applied scenarios in which there
are outliers in the observed data.  For the TLS
estimator, data points corresponding to the 10%
largest positive and the 10% largest negative residuals
from an initial OLS regression were deleted.  Under
the contaminated data conditions in this study, the
case deletion approach to estimation of population
slope did not generate unattractive results, although
comparison of the TLS slope estimator in Tables 1
and 2 suggests the performance of this estimator is
sample size dependent.  Under the small sample size,
the TLS slope estimator performed well under the
10% data contamination, but not under the 30%
contamination condition.  For the larger sample size,
Table 2 reports weaker performance under the
moderate contamination condition (with respect to the
other slope estimators) but stronger performance
under the more extreme 30% data contamination
condition.  While the performance of the TLS slope
estimator was not unreasonable, for both the 10% and
30% contamination conditions, robust and
nonparametric methods (discounting monotonic
regression) which utilize all the available data
outperformed TLS.  Additionally, for the conditions
in which the distribution of errors was nonnormal,
the TLS slope estimator was not competitive.  Figure
4 shows very low bias for this estimator, but the
variance for this slope estimator tends to be inflated.
Thus the MSE values for TLS shown in Figure 2
tend to be higher than some of the other slope
estimators.  Our results demonstrate that methods
which utilize all available data, but are resistant to
outlying values, provide more accurate long run
estimates of true population values.  This conclusion
is consistent with previous research in resistant
methods of regression (Birkes & Dodge, 1993;
Rousseeuw & Leroy, 1987).  

With respect to the estimators investigated in the
present study, our results have demonstrated that the
nonparametric approaches based on the Theil method
are very strong alternatives to OLS regression. This
conclusion holds for the small sample size
investigated here as well for the large sample size.
This study has demonstrated that this approach
provides accurate estimates of true population
parameters under both outlier contaminated data
conditions and under nonnormal error distributions.
While these median based nonparametric methods did
not outperform the LAD estimator under the heavily
contaminated conditions (30% outliers) they were
nearly as strong as the LAD regression method under
this condition.  Under the nonnormal error conditions,
no estimator outperformed the Theil methods.
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Additionally, under the lognormal error distribution,
the Theil based regression methods showed superior
performance. The Theil based estimation methods
were never the worst, sometimes nearly the best and
in some cases the best methods for parameter
estimation under the simple linear model.  

Median based nonparametric methods for
parameter estimation have found little attention in
social science research and deserve further
consideration by applied researchers.   This study has
demonstrated that the Theil based regression methods
provide strong parameter estimation under a variety of
non-ideal conditions. There is also literature available
that provides an extension of this method, using a
weighted form of the Theil method, to multiple
regression (Birkes & Dodges, 1993). Hypothesis
testing procedures have been developed for testing
both model adequacy and individual regression
coefficients (for reviews see Tam, 1996; Birkes &
Dodge, 1993).  Finally, the modified form of the
Theil regression method has been incorporated into at
least one of the commonly available applied statistics
packages (RANK REGRESSION in Minitab)
available for researchers. performs nonparametric
regression estimation based on the weighted Theil
method.

We recommend the following approach to
applications in educational research.  First, data
analyses should always involve checking for outliers
in the observed data and testing the underlying
assumptions under OLS estimation. Secondly,
researchers may be well advantaged to routinely
estimate regression parameters using both OLS and
alternative methods when conducting regression based
analyses.  Should the assumptions of normality and
homoscedasticity hold, researchers might adopt and
report OLS estimates in their findings.  Under applied
settings in which the OLS assumptions are not
tenable, researchers may turn to estimates of
population values using an outlier-resistant method.

The present study only considered estimators
under the simple linear regression situation. Further
study might compare the performance of
nonparametric median based estimators against robust
regression estimators under the multiple regression.
In addition, future studies might be warranted to
compare the nonparametric median based estimators
against robust regression methods such as M-
regression (Birkes & Dodge, 1993), iteratively
reweighted least squares (Holland & Welsch, 1977),
or least median squares regression (Rousseeuw &
Leroy, 1987).  These robust methods are known to be
resistant to more extreme forms of data contamination
such as leverage points.  Finally, additional research
investigating power and Type I error rates using
nonparametric median based methods would be useful
to more fully characterize the behavior of these
methods under hypothesis testing paradigms.
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Jonathan Nevitt
1228 Benjamin Building
University of Maryland
College Park, MD 20742-1115.
E-mail: jnevitt@wam.umd.edu
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Analysis Options for Testing Group Differences on Ordered
Categorical Variables:  An Empirical Investigation of

Type I Error Control and Statistical Power

Jeffrey D. Kromrey                                Kristine Y. Hogarty
University of South Florida

Type I error control and statistical power of four methods of testing group differences on an ordered categorical
response variable were evaluated in a Monte Carlo study.  Data were analyzed using the independent means t-test, the
chi-square test of homogeneity, the delta statistic, and a cumulative logit model.  The number of categories of the
response variable, sample size, population distribution shape, and effect size were examined. These experimental
conditions were crossed with each other providing a total of 192 conditions.  The independent means t-test provided
the best control of Type I error, but was rarely the most powerful.  For the 5-point response scale, the chi-square was
most often the most powerful.  Results varied for the 7-point response scale.  Small power differences (in many
instances) among these procedures suggest that researchers’ choices should be driven by the interpretations that are
appropriate for the research questions being addressed.

esponse variables that are measured as ordered
categories, such as Likert scale and other
rating scale items, present a variety of analysis

options for researchers. For example, in testing for
the equality of two groups on such a response
variable, the data are usually analyzed using either a
Pearsonian chi-square test of homogeneity or a test
for the equality of population means such as the
independent means t-test. Implicit in the former
analysis is the treatment of the response variable as
nominal-level measurement, while the latter analysis
implies an assumption of interval-level data. In
between these two extremes are analysis options that
are infrequently seen in applied educational research,
specifically, logistic regression models (Agresti,
1996; Agresti & Finlay, 1997) and ordinal indices of
association (Cliff, 1996a). Arguments about the
relationship between levels of measurement and
appropriate statistical analyses have been ongoing
since Stevens’ (1951) classic work, and, no doubt,
will continue in the future.

Although the present paper is not intended to
directly address the logical arguments related to
Stevens' levels of measurement issues, the influence
of his work is unavoidable. For example, recent
arguments on the level-of-measurement/appropriate-
statistics issue have been advanced by Davidson and
Sharma (1988) and by Velleman and Wilkinson
(1993). Rather than examining such analysis issues
in terms of “appropriate statistics,” the issues
surrounding the analysis of ordered categorical data
may be productively addressed in terms of Type I error
control and statistical power. For example, Cliff
(1996a) has argued that ordinal measures of
association such as Tau and delta are useful both

descriptively and inferentially because of their
robustness properties when compared to traditional
parametric tests such as the independent means t-test.
Similarly, Agresti (1989) suggested that researchers
may realize power advantages in the use of
cumulative logit models rather than Pearsonian
chi-square tests when testing hypotheses about ordered
categorical data. Unfortunately, neither Cliff nor
Agresti presented empirical evidence of the magnitude
of power differences or the extent of improvement in
robustness when these ordinal-level statistics are used.

It is important to recognize that different
statistical null hypotheses are tested with each of
these procedures. For example, the independent means
t-test provides a test of the null hypothesis of
equivalence of population means and the chi-square
test of homogeneity tests the equivalence of the
population proportions at each level of the response
variable. In contrast, the G2 statistic used in testing
the cumulative logit model provides a test of the null
hypothesis of equal cumulative log odds, while the
delta statistic is used to test equivalence of
probabilities of scores in each group being larger than
scores in the other (the property that Cliff (1993)
referred to as “dominance”). However, as Cliff (1993,
1996a) has pointed out, despite the differences in
statistical null hypotheses tested, each of these
procedures may be used to test the same, conceptual
research hypothesis (e.g., “the two groups respond
differently on the dependent variable”).

The purpose of the present study was to
empirically compare the Type I error control and
statistical power of four tests of group differences on
ordered categorical response data: a parametric test of
mean differences (independent means t-test), the

R
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Pearsonian chi-square test of homogeneity, the
cumulative logit model recommended by Agresti
(1989, 1996), and the delta statistic recommended by
Cliff (1993, 1996a). Such a comparison was made for
a variety of sample sizes and distribution shapes
likely to be encountered in educational research.
Although previous research has investigated the Type
I error control and statistical power of parametric and
nonparametric statistics (primarily comparisons of the
t-test and the Wilcoxon-Mann-Whitney U test), such
comparisons have typically been conducted using
continuous outcome variables (see, for example, Blair
& Higgins, 1980, 1985). A notable exception is the
recent work of Nanna and Sawilowsky (1998),
comparing the t-test with the Wilcoxon rank-sum test
based on resampling from actual data obtained on
ordered categorical variables.

Test Statistics Examined
Four test statistics were examined in this study.

These test statistics will be presented in reference to
the set of data presented in Table 1. These data,
consisting of responses to a 5-point Likert item, were
obtained from six members of an experimental group
and ten members of a control group. The research
question to be addressed is whether the two
populations from which the samples were obtained
differ in their response to this item.

Table 1. Sample of Two Groups’ Responses to a
5-Point Likert Item

   Control Group     Experimental Group     
1 1
1 2
2 3
2 4
2 4
3 5
3
3
4
5 

Independent Means t-test. The independent means
t-test is used to test the null hypothesis of equivalent

population means (HO: µ1 = µ2). The test statistic is
given by

t = (X1 - X2)

[(n1 - 1) + (n2 - 1)]Spl

where (X1 - X2)is the difference in sample means, n1

and n2 are the sample sizes, Spl is a pooled estimate of
the population standard deviation given by

Spl = (SS1 + SS2)

(n1  + n2 - 2)

and SS1 and SS2 are the sums of squares computed in
each of the samples.  The obtained value of this test
statistic is compared to the sampling distribution of t
with degrees of freedom equal to n1 + n2 - 2.

For the sample of data presented in Table 1, the
means for the experimental and control groups are
3.167 and 2.600, respectively, and the pooled variance
estimate is 1.802. The obtained value of t for these
data is -0.817, and the probability associated with this
value under the null hypothesis is 0.427. The t-test,
thus, fails to reject the null hypothesis of equal
population means.

Chi-Square Test of Homogeneity. In contrast to
the t-test which compares sample means, the
Pearsonian chi-square test of homogeneity tests the
null hypothesis of equivalent population proportions

in each response category (H0: π1j = π2j, for all j).
For computation of the chi-square statistic, the data
may be arranged in a contingency table as illustrated
in Table 2. The sample value of this test statistic is
given by

χ2 = 

(Oij - Eij)
2∑

j
∑

i

Eij

where Oij is the observed frequency in cell ij of the
contingency table, Eij is the expected frequency in the
cell under the null hypothesis of homogeneity, and
the summation is over all of the cells in the table.

The obtained value of  χ2 is compared to the

sampling distribution of  χ2  with degrees of freedom

equal to (nrows - 1)(ncols - 1).

Table 2.  Contingency Table for the Sample Data
                                                                                    
                                    Response Category                    
      Group             1              2              3              4              5           

1  2 3 3 1 1
              2                  1              1              1              2              1            

For the sample of data presented in Table 1, the
obtained value of chi-square is 1.778. In comparison
to a four degree of freedom chi-square sampling
distribution, this value has a probability of 0.777
under the null hypothesis. Thus, like the t-test, the
chi-square test fails to reject the null hypothesis of
equal population proportions for each level of the
response variable.

Delta Statistic. Cliff (1993, 1996a) has proposed
the use of the delta statistic for testing null
hypotheses about group differences on ordinal level
measurements. The population parameter for which
such tests are intended is the probability that a
randomly selected member of one population has a
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higher response than a randomly selected member of
the second population, minus the reverse probability.
That is,

delta = Pr(xi1 > xj2) - Pr(xi1 < xj2) ,
where xi1 is a member of population one and xj2 is a
member of population two.

A sample estimate of this parameter can be
obtained by enumerating the number of occurrences of
a sample one member having a higher response value
than a sample two member, and the number of
occurrences of the reverse. This gives the sample
statistic

d = 
#(xi1 > xj2) - #(xi1 < xj2)

n1  n2
This statistic, and inferential methods associated

with it, are readily addressed by considering the data in
an arrangement called a dominance matrix. This n1 by
n2 matrix has elements taking the value of 1 if the
row response is larger than the column response, -1 if
the row response is less than the column response,
and 0 if the two responses are identical. The sample
value of d is simply the average value of the elements
in the dominance matrix. The dominance matrix for
the Table 1 data is presented in Table 3. The row and
column marginals of this table provide mean values
of the elements in the respective rows and columns of
the matrix. These marginals are used in the inferential
statistics associated with d. The null hypothesis tested
in such inferential statistics (representing no
relationship between the grouping variable and the
response variable) is that delta is equal to zero.

Table 3. Dominance Matrix for the Sample Data
                                                                                 
                 1           2           3           4           4           5                    di    .       

1    0  -1  -1  -1  -1  -1  -0.833
1    0  -1  -1  -1  -1  -1  -0.833
2  +1   0  -1  -1  -1  -1  -0.500
2  +1   0  -1  -1  -1  -1  -0.500
2  +1   0  -1  -1  -1  -1  -0.500
3  +1 +1   0  -1  -1  -1  -0.167
3  +1 +1   0  -1  -1  -1  -0.167
3  +1 +1   0  -1  -1  -1  -0.167
4  +1 +1 +1   0   0  -1   0.333

     5              +1         +1         +1         +1         +1          0                0.833      
  d    .    j                0.    8         0.3      -0.3      -0.7      -0.7      -0.9         -0.250         

Cliff (1996b) presented three methods of inference
for d.  The first method uses an "unbiased" estimate
of the variance of d. This estimate is given by

Sd
2 = 

n2
2 (d i. - d)2∑

i

 + n1
2 (d .j - d)2∑

j

 + (d ij - d)2∑
j

∑
i

n1n2(n1 - 1)(n2 - 1)

where di. is the marginal value of row i, d.j is the
column marginal of column j, and dij is the value of
element ij in the matrix.

For the sample data in Table 1, the value of d is
-0.25 and the value of Sd

2 is 0.098. The square root of
this variance is used as the denominator of a z
statistic:  zunbiased = d / Sd

For the sample data, the value of z is -0.798,
yielding a probability under the null hypothesis of
0.425. The unbiased test fails to reject the null
hypothesis of delta = 0.

The second method of inference for d uses a
“consistent” estimate of the variance:

Sdc
2  = 

(n2 - 1)Sdi.
2  + (n1 - 1)Sd.j

2  + Sdij
2

n1 n2

where Sdi.
2 = Σ(di. - d)2/(n1-1), Sd.j

2 = Σ(dj. - d)2/(n2-1),

and Sdij
2 =  ΣΣ(dij - d)2 / [(n1 - 1)(n2 - 1)].

As with the "unbiased" estimate of variance, the
square root of this "consistent" estimate of the
variance of d can be used as the denominator of a z
statistic:  zconsistent = d / Sdc .  

For the Table 1 data, the value of Sdc
2 is 0.106,

yielding a value for zconsistent of -0.768, with a
probability under the null hypothesis of 0.443. The
conclusion with this sample is the same as that
reached with the unbiased test, that is, a failure to
reject the null hypothesis of delta = 0.

The final method of inference regarding d uses Sdc

to construct an asymmetric confidence interval around
the sample value of d. When such an interval does not
include the value of zero, the null hypothesis of delta
= 0 can be rejected. The limits of this asymmetric
confidence interval are given by

d - d3 ± Zα /2Sdc[(1 - d2)2 + Zα/2
2 Sdc

2 ]

1 - d2 + Zα/2
2 Sdc

2

where Zα/2 is the normal deviate corresponding to the
(1 - α/2)th percentile of the normal distribution.

For the Table 1 data, the lower limit of the 95%
confidence interval is -0.713, and the upper limit is
0.364. Because this interval contains the value of
zero, the null hypothesis is not rejected at the .05
level.

Cliff (1996a) has pointed out that the well-known
Mann-Whitney-Wilcoxon statistic can also provide a
test of delta = 0 (because d and U are related by
d = 2U/[n1n2 - 1]). However, the rank test is not
recommended by Cliff because it is actually testing
for the equivalence of the two groups’ distributions
rather than focusing on the parameter delta.

Cumulative Logit Models. Logistic regression is
a technique used to construct models of the
probabilities of values of categorical variables. In its
simple, binary form, a model relating the probability
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of response 1 as a function of an explanatory or
predictor variable X, can be thought of as:

π = 
exp(α  + βX)

1 + exp(α  + βX)

where π is the probability of response 1, exp is the
exponential function or the antilog function of the

natural logarithms, and α  and β are regression
parameter estimates.  This equation describes an S-
shaped curve called the logistic regression model.

However, the relationship between π and X  is often
expressed as logits, yielding the linear logit model:

logit(π) = log[π/(1 - π)] = α  + βX.
A relatively minor modification of this linear

logit model can be used with ordinal response
variables having more than two levels (Agresti, 1990;
McCullough & Nelder, 1989). With a response
variable having J ordered categories, the probability

associated with any category j can be denoted πj,

where Σπj = 1. The cumulative logit model is formed
from logits of cumulative probabilities. For example,
the probability of a response less than or equal to an
arbitrary category j is given by

logit[Pr(Y≤j)] = log[(π1 + ... + πj)/(π j+1 + ... + πJ)]

 = α j + βX

This model treats the response as binary by
forming the cumulative probability over the first j
categories, and the remaining (J - j) categories. This

model has J - 1 values of α j, one for each of the
adjacent category differences. The parameter of

primary interest in this model is β, which describes
the relationship of the X  variable to the cumulative

probabilities of response. When β is equal to zero,
the variable X is not related to the response variable.

Two methods for testing the null hypothesis that

β = 0 are available. The first method uses the standard

error of the sample estimate of β to form a z test (or
an equivalent chi-square test), called the Wald test.

The standard error of β is obtained from the inverse of
the information matrix, the matrix of second partial
derivatives of the log likelihood function. For the

Table 1 data, the sample estimate of β is -0.834,
with a standard error of 0.936. The value of the Wald
z test is -0.891, with a probability of 0.373 under the
null hypothesis. As with the other tests examined
thus far, the Wald test fails to reject the null

hypothesis of β = 0.

The second method of testing the null hypothesis

that β = 0 is with a likelihood ratio test. This test is
based on the likelihood ratio statistic:

G2 = 2Σj Oj log(Oj/Ej),
where Oj and Ej are the observed and expected counts,
respectively, and log is the natural logarithm.

The likelihood ratio test of β = 0 is obtained as
the difference in the values of G2 for the model that
includes X, and the model that does not (i.e., a model
with intercepts only). This difference in G2 values is
distributed as a chi-square with a single degree of
freedom. For the sample data, the value of G2 for the
model that includes X  is 49.808, while that for the
intercept only model is 50.586. The difference in
these G2 values is 0.737, which has a probability of
0.391 under the null hypothesis. Thus, consistent
with the other tests conducted on these data, the
likelihood ratio tests does not reject the null

hypothesis that β = 0.
Method

This research was a Monte Carlo study designed to
provide an empirical comparison of the Type I error
control and statistical power of the four methods of
testing group differences on an ordered categorical
response variable. Two of these tests are frequently
used with ordered categorical data: the independent
means t-test and Pearsonian chi-square test of
homogeneity. The other two methods, the cumulative
logit model and the delta statistic, have been
recommended for the analysis of ordinal level data
because of increased power (relative to the chi-square
test) or increased robustness (relative to tests of mean
differences). Although four methods for testing group
differences were examined in this study, a total of
seven statistical tests were compared (i.e., three tests
associated with the d statistic and two tests associated
with the logistic regression method).

All of the conditions simulated provided tests of
differences between two groups on an ordered
categorical dependent variable. Four factors were
investigated in the Monte Carlo study: number of
categories of the response variable, sample size,
population distribution shape, and effect size. The
number of categories of the response variable was
examined at two levels (5-category and 7-category
responses). Six sample sizes were examined (equal
sizes of 10:10, 30:30, and 100:100; and unequal sizes
of 10:30, 10:100, and 30:100). Four population
distribution shapes were investigated (a uniform
response distribution, a moderately skewed
distribution, a highly skewed distribution, and a
unimodal symmetric distribution). Finally, small,
medium and large population effect sizes (Cohen,
1988) were examined as well as a null condition.
These experimental conditions were crossed with each
other providing a total of 192 conditions examined.
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Table 4. Type I Error Rate Estimates for 5 Point Response Scale at nominal α  = .05
                                                                                                                                                                                             
Marginal Sample  Chi-                   Cliff's     d     Tests                   Cumulative Logit  
   Distribution           Size                   Square               t    -    test             Unbiased        Consistent              CI                    Wald                    LR         

1:1:1:1:1  10, 10 0.033 0.055 0.081 0.073 0.043 0.057 0.068
 10, 30 0.042 0.048 0.071 0.067 0.049 0.052 0.057
 10,100 0.045 0.054 0.084 0.082 0.067 0.055 0.059
 30, 30 0.046 0.050 0.057 0.056 0.046 0.053 0.054
 30,100 0.051 0.050 0.056 0.055 0.049 0.051 0.052

                          100,100              0.055               0.051               0.054               0.054               0.050               0.052               0.053       
6:1:1:1:1  10, 10 0.015 0.050 0.073 0.066 0.046 0.039 0.067

 10, 30 0.046 0.049 0.078 0.076 0.060 0.038 0.061
 10,100 0.053 0.048 0.086 0.085 0.075 0.031 0.059
 30, 30 0.043 0.054 0.060 0.059 0.051 0.053 0.057
 30,100 0.048 0.050 0.056 0.056 0.050 0.047 0.051

                          100,100              0.050               0.046               0.048               0.048               0.046               0.046               0.047       
16:1:1:1:1  10, 10 0.004 0.033 0.084 0.038 0.035 0.004 0.083

 10, 30 0.038 0.036 0.115 0.114 0.108 0.026 0.070
 10,100 0.083 0.046 0.132 0.132 0.126 0.036 0.101
 30, 30 0.018 0.048 0.054 0.053 0.050 0.034 0.055
 30,100 0.050 0.046 0.062 0.062 0.059 0.035 0.053

                          100,100              0.049               0.048               0.051               0.051               0.049               0.047               0.052       
1:2:4:2:1  10, 10 0.030 0.049 0.077 0.071 0.042 0.047 0.063

 10, 30 0.048 0.049 0.074 0.071 0.055 0.052 0.057
 10,100 0.049 0.051 0.079 0.078 0.063 0.053 0.054
 30, 30 0.046 0.050 0.058 0.056 0.048 0.050 0.053
 30,100 0.047 0.050 0.057 0.056 0.051 0.051 0.052

                         100,100             0.053             0.050              0.053              0.052              0.050              0.051              0.052      

Programming for the Monte Carlo Study.  The
program for the Monte Carlo study was written in
SAS/IML version 6.12.  The data were generated
using uniform random numbers on the zero to one
interval (the SAS RANUNI function). A separate seed
value was used for each execution of the simulation
and the accuracy of the program code was verified
using benchmark data sets. To simulate samples, a
separate series of random numbers was generated for
each of the two groups. The observations were then
assigned to values of the ordered categorical response
variable based upon the value of the random number.

For example, with a 5-point response scale with
equal marginals and an effect size of zero, two series
of random numbers were generated. Observations with
random numbers between zero and .20 were assigned
to the first category of the response variable, those
with random numbers between .20 and .40 were
assigned to the second category, etc.  This procedure
yields tables in which the expected proportion in each
cell is equal, providing a uniform response across the
five categories and the two groups.

The marginal skewness of the response variable
was controlled by assigning larger or smaller ranges
of the uniform random numbers to each of the ordered
categories. For example, to simulate a
60:10:10:10:10 marginal distribution, 60% of the

observations were assigned to the first value of the
response variable, and 10% to each of the other
values. Four marginal distributions were examined in
this study. The equal marginal condition provided
equal proportions at each level of the response
variable. A slightly skewed marginal distribution was
produced by generating data in which 60% of the
observations were in the first category of the response
variable, and the remaining 40% were evenly
dispersed over the other values. Similarly, a more
highly skewed marginal was produced by generating
data in which 80% of the observations were at the
first value and the remaining 20% were evenly
distributed over the remaining values. Finally, a
unimodal symmetric distribution was generated with
the mode at the middle of scale and descending
proportions of observation for scale values towards
the scale endpoints.

Non-null effects were generated by assigning
observations to response categories in proportions
that differed from the products of the row and column
marginal proportions. By varying the extent of
discrepancy between the products of the marginals and
the actual proportions of observations, effect sizes
corresponding to w values of 0.10, 0.30, and 0.50
(Cohen, 1988) were produced.   
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Table 5.  Type I Error Rate Estimates for 7 Point Response Scale at nominal α  = .05
                                                                                                                                                                                             
Marginal Sample  Chi-                   Cliff's     d     Tests                   Cumulative Logit  
   Distribution              Size                   Square               t    -    test             Unbiased        Consistent              CI                    Wald                    LR         

1:1:1:1:1:1:1  10, 10 0.020 0.053 0.077 0.068 0.041 0.058 0.066
 10, 30 0.038 0.049 0.070 0.066 0.048 0.055 0.057
 10,100 0.044 0.050 0.084 0.082 0.067 0.054 0.055
 30, 30 0.047 0.052 0.061 0.059 0.048 0.055 0.057
 30,100 0.050 0.051 0.060 0.058 0.052 0.051 0.053

                             100,10    0              0.050               0.048               0.050               0.049               0.047               0.049               0.049       
9:1:1:1:1:1:1  10, 10 0.006 0.049 0.072 0.064 0.044 0.037 0.065

 10, 30 0.043 0.048 0.077 0.074 0.061 0.037 0.060
 10,100 0.061 0.044 0.088 0.086 0.076 0.031 0.058
 30, 30 0.032 0.052 0.058 0.057 0.048 0.051 0.055
 30,100 0.048 0.050 0.058 0.058 0.054 0.049 0.054

                             100,10    0              0.045               0.049               0.048               0.048               0.046               0.047               0.048       
24:1:1:1:1:1:1  10, 10 0.001 0.028 0.083 0.038 0.034 0.004 0.082

 10, 30 0.037 0.040 0.118 0.117 0.111 0.030 0.069
 10,100 0.096 0.041 0.125 0.125 0.121 0.031 0.093
 30, 30 0.008 0.046 0.056 0.056 0.050 0.035 0.057
 30,100 0.048 0.042 0.063 0.062 0.060 0.035 0.051

                             100,10    0              0.037               0.051               0.052               0.052               0.051               0.048               0.052       
1:2:3:8:3:2:1  10, 10 0.018 0.049 0.075 0.070 0.044 0.047 0.063

 10, 30 0.040 0.050 0.073 0.070 0.054 0.053 0.058
 10,100 0.052 0.050 0.078 0.077 0.063 0.054 0.054
 30, 30 0.034 0.054 0.064 0.061 0.051 0.056 0.060
 30,100 0.046 0.051 0.061 0.060 0.053 0.053 0.054

                            100,100             0.049              0.053              0.055              0.054              0.051              0.053              0.054      

     

For each of the 192 conditions, 10,000 samples
were generated using SAS IML, version 6.12 (SAS,
1992). The use of 10,000 samples provides an
adequate level of precision for this study, yielding
maximum 95% confidence intervals of ±.0098 around
the observed proportion of null hypotheses rejected
(Robey & Barcikowski, 1992). For each condition,
seven test statistics were computed: (a) the
independent means t-test, (b) Pearson's chi-square test
of homogeneity, (b) Cliff's Unbiased test of d, (c)
Cliff's Consistent test of d, (d) Cliff's asymmetric
confidence interval (CI) for d, (e) the Wald test
associated with the cumulative logit model, and (f)
the likelihood ratio (LR) test associated with the
cumulative logit model. Estimates of the Type I error
control and the statistical power of each test were
conducted at nominal alpha levels of .10, .05, and
.01.

Results and Discussion
Before turning to an examination of statistical

power, attention must first focus on a comparison of
the relative ability of the seven tests to control Type I
error.  Estimates of Type I error rate were calculated
for each of the seven procedures based on 10,000
randomly generated samples for each null condition
under examination. Bradley’s (1978) liberal criterion
of robustness (actual α  within α nominal ± 0.5α nominal)
was used to evaluate the capacity of each of the seven

procedures to control Type I error under the various
conditions. To save space, results are provided only
for nominal alpha equal to .05. Type I  error rates and
power estimates for alpha level equal to .10 and .01
are available from the first author.

Estimates of Type I Error Control
Five Point Response Scale. The estimates of

Type I error rates for the 5-point scales are provided in
Table 4. A broad overview of the robustness of all of
the seven tests across all conditions at alpha = .05 is
presented in a series of box and whisker plots in
Figure 1.  The two horizontal lines in this figure are
Bradley’s limits of robustness. Examination of these
plots revealed the t-test best able to control Type I
error, followed closely by the LR, the Wald test,
Cliff's confidence interval, and the chi-square test.
Considerably less control was exhibited by Cliff's
consistent and unbiased tests.  The t-test stood alone
in its ability to maintain the appropriate level across
all conditions.  The CI, Wald, LR, and Chi-Square
were able to maintain alpha within acceptable limits
for all but the most skewed conditions coupled with
small and unequal sample sizes.  Both the unbiased
and consistent tests failed to maintain acceptable
control in several instances when small and unequal
samples were involved.
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| Five Point Response Scale - α = .05
  0.14 +

|
| 0 0
| *

  0.12 +
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| | *
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| |
| |
| | | * 0
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| | | +---- + |
| | + | | | | |
| *---- * | + | | |
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| +---- + +---- + | + | | 0 | *---- *
| | | *---- * +---- + *- +- * *---- * +---- +
| | +---- + *- +- * | | + | |

  0.04 + | | +---- + | |
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| | |
| |

  0.02 + 0
| 0
|
| * 0

0+                                                                                                                     
|               +               +               +               +               +               +               +     

TEST Unbiased  Consistent   CI  Chi-Square t-test Wald  LR

Figure 1.  Distribution of Type I Error Rate Estimates for Seven Tests across Experimental Conditions.

Seven Point Response Scale. The estimates of
Type I error rates for the 7-point scales are provided in
Table 5. The box and whisker plots presented in
Figure 2 provide a general overview of the robustness
of all seven procedures across all conditions when
alpha was set equal to .05. Again, the t-test
maintained Type I control across all conditions.
Generally, the seven procedures maintained alpha
within acceptable limits when large sample sizes were
examined. The most skewed condition presented
problems for several of the tests, as liberal estimates
were observed, on several occasions, for the LR, and
Cliff's Confidence Interval, Unbiased, and biased
tests. However, there were a few instances in which
the Chi-Square and Wald test became conservative.
For the unimodal, symmetric distribution, Cliff's
Unbiased and consistent tests were liberal only for the
unequal sample sizes of 10 and 100, while the
Chi-Square test was conservative with the smallest
samples.

Estimates of Statistical Power
Five Point Response Scale. Table 6 contains

power estimates for the seven procedures.  Statistical

power estimates are provided only for conditions in
which Type I error was controlled.  In addition, the
Wald test used with the cumulative logit model was
not calculable for most samples when the distribution
was highly skewed and a non-null condition was
simulated (conditions which typically yielded a
singular covariance matrix).  Estimates of power for
only those samples in which it was calculable would
be misleading, so these power estimates have also
been omitted.

An examination of statistical power at nominal
α  = .05 revealed the chi-square to be superior to all
other tests under the equal marginal and slightly
skewed marginal conditions.  Under the highly
skewed marginal conditions, the Chi-Square was the
most powerful only under the largest samples
examined. For smaller samples, or unequal samples,
other tests were more powerful. For example, Cliff's
Consistent test and CI produced the highest power
under a highly skewed, small sample condition with a
large effect size (power = .625 for both).  However, it
should be noted that in this instance only one other
test, the t-test, was able to control Type I error.
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  0.04 + | | | + | 0 | |
| | +---- + +---- +
| | * |
| |
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Figure 2.  Distribution of Type I Error Rate Estimates for Seven Tests across Experimental Conditions

The t-test produced the highest power under highly
skewed and unbalanced design conditions, but again,
it was one of only two tests that were able to control
Type I error under these conditions.  For the
unimodal, symmetric distribution, the chi-square test
was never the most powerful. Rather, for samples
drawn from this distribution shape, either the LR test
or Cliff's Unbiased or Consistent tests were the most
powerful.

Seven Point Response Scale. Table 7 contains
power estimates for the seven procedures for nominal
alpha level equal to .05.  Examination of these
results, revealed the Chi-Square to be the most
powerful test only under the equal marginal condition,
except with small sample sizes.  When small sample
sizes were examined, Cliff's Consistent test and the
LR produced more power than the other tests.  Under
the slightly skewed and highly skewed marginal
distributions, the power produced by several tests was
very similar.  For example, under the slightly skewed
condition with small samples, Cliff's delta tests and
the LR produced similar estimates.  With larger
samples under this condition, it was difficult to
choose a superior test from among Cliff's delta tests,
the Wald test, or the LR.  Similar circumstances

surrounded the highly skewed distribution with large
sample sizes.  For small sample sizes under this
condition, the consistent test and CI produced the
most power, but many of the tests were unable to
control Type I error.  For the unimodal, symmetric
distribution, the most powerful tests were typically
Cliff's Unbiased or Consistent tests. As with the
results obtained with the 5-point scales, neither the
Chi-Square nor the t-test were the most powerful in
any sample size condition with this distribution
shape.

The differences in the results
obtained between the 5-point and 7-point data
prompted a further examination of the populations
from which samples were generated. Recall that these
populations were constructed based on differences
between proportions at each scale point to produce
desired values of Cohen's w (the effect size for
differences in population proportions). These
populations were examined in terms of the effect size
for standardized mean difference (Cohen's d) and Cliff's
delta. Although the latter is not an effect size, per se,
it represents the proportional non-overlap of the two
populations from which samples were drawn. These
results are presented in Table 8.
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Table 6.  Statistical Power Estimates for 5 Point Response Scale at nominal α  = .05
                                                                                                                                                                                                
Marginal Sample  Effect  Chi-                   Cliff's     d     Tests                   Cumulative Logit  
   Distribution        Size               Size             Square                t    -    test             Unbiased        Consistent              CI                    Wald                     LR          
1:1:1:1:1  10, 10 .10 0.040 0.061  -----  0.078 0.048 0.067 0.075

 10, 10 .30 0.115 0.139  -----  0.161 0.104 0.147 0.162
 10, 10 .50 0.345 0.296  -----  0.310 0.226 0.321 0.339
 10, 30 .10 0.061 0.068 0.086 0.082 0.062 0.076 0.079
 10, 30 .30 0.220 0.211 0.206 0.200 0.158 0.242 0.234
 10, 30 .50 0.638 0.482 0.391 0.385 0.307 0.535 0.505
 10,100 .10 0.060 0.074  -----   -----   0.080 0.082 0.083
 10,100 .30 0.310 0.265  -----   -----   0.185 0.298 0.280
 10,100 .50 0.807 0.597  -----   -----   0.337 0.646 0.596
 30, 30 .10 0.080 0.079 0.087 0.084 0.071 0.080 0.083
 30, 30 .30 0.427 0.320 0.330 0.325 0.293 0.336 0.336
 30, 30 .50 0.924 0.710 0.689 0.685 0.651 0.729 0.723
 30,100 .10 0.103 0.108 0.111 0.109 0.099 0.115 0.114
 30,100 .30 0.649 0.482 0.410 0.407 0.383 0.513 0.489
 30,100 .50 0.994 0.888 0.769 0.768 0.743 0.900 0.875
100,100 .10 0.170 0.142 0.146 0.145 0.140 0.145 0.146
100,100 .30 0.950 0.777 0.768 0.766 0.759 0.779 0.778

                       100,100           .50              1.000            0.996               0.994               0.994               0.993               0.996               0.995       
6:1:1:1:1  10, 10 .10  ----- 0.058 0.078 0.071 0.048 0.039 0.071

 10, 10 .30  ----- 0.111 0.115 0.109 0.080 0.071 0.112
 10, 10 .50  ----- 0.225 0.192 0.186 0.143 0.138 0.191
 10, 30 .10 0.045 0.050  -----   ----- 0.080 0.031 0.065
 10, 30 .30 0.147 0.113  -----   ----- 0.150 0.056 0.119
 10, 30 .50 0.551 0.261  -----   ----- 0.284 0.127 0.237
 10,100 .10 0.063 0.047  -----   -----  0.100 0.022 0.063
 10,100 .30 0.243 0.117  -----   ----- 0.201 0.036 0.126
 10,100 .50 0.770 0.297  -----   ----- 0.370 0.111 0.268
 30, 30 .10 0.058 0.068 0.070 0.069 0.058 0.062 0.068
 30, 30 .30 0.394 0.218 0.192 0.189 0.171 0.185 0.194
 30, 30 .50 0.956 0.508 0.430 0.426 0.400 0.435 0.443
 30,100 .10 0.082 0.072 0.094 0.093 0.087 0.063 0.074
 30,100 .30 0.602 0.290 0.298 0.297 0.286 0.223 0.256
 30,100 .50 0.998 0.662 0.622 0.620 0.605 0.546 0.589
100,100 .10 0.165 0.109 0.097 0.096 0.093 0.095 0.097
100,100 .30 0.958 0.572 0.491 0.489 0.481 0.495 0.496

                     100,100          .50             1.000           0.952              0.898              0.897              0.893              0.907              0.906            

Note that, for the null condition, the populations
are identical regardless of how population
“differences” are represented. Further, when differences
are represented in terms of Cohen's w, the 5-point and
7-point populations have identical effect sizes.
However, when differences are represented by Cohen's
d, the effect sizes differ across the two sets, and the
difference is not consistent across the distribution
shapes. For example, with the "small effect"
populations under the slight skew condition, Cohen's
d was 0.10 for the 5-point data and 0.17 for the
7-point data. A similar difference was evident for the
high skew. However, for the unimodal, symmetric

distributions, the Cohen's d values were nearly
identical (0.17 vs. 0.19). Similar differences were
noted across the remaining non-null conditions
examined. Such discrepancies were also evident when
the population differences were measured as Cliff's
delta.  These observed deviations across effect sizes
reflect variations in the magnitude of population
differences that result from the design variables of
distribution shape and number of scale points.  These
design variables produced differential effects when
inequalities were measured as discrepancies in
population standardized mean difference or proportion
of non-overlap.
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Table 6 (continued).  Statistical Power Estimates for 5 Point Response Scale at nominal α  = .05
                                                                                                                                                                                                
Marginal Sample  Effect  Chi-                   Cliff's     d     Tests                   Cumulative Logit  
   Distribution        Size               Size             Square                t    -    test             Unbiased        Consistent              CI                    Wald                     LR          
16:1:1:1:1  10, 10 .10  -----  0.032  ----- 0.038 0.033  -----  -----

 10, 10 .30  -----  0.068  ----- 0.058 0.056  -----  -----
 10, 10 .50  -----  0.542  ----- 0.625 0.625  -----  -----
 10, 30 .10 0.036 0.025  -----  ----    -----  0.015 0.076
 10, 30 .30 0.089 0.035  -----  ----    -----   ----- 0.116
 10, 30 .50 0.054 0.670  -----  ----    -----   ----- 0.981
 10,100 .10  -----  0.021  -----  ----    -----  0.018  -----
 10,100 .30  -----  0.013  -----  ----    -----   -----  -----
 10,100 .50  -----  0.874  -----  ----    -----   -----  -----
 30, 30 .10  -----  0.060 0.062 0.062 0.057 0.044 0.063
 30, 30 .30  -----  0.197 0.146 0.145 0.138 0.105 0.147
 30, 30 .50  -----  0.998 1.000 1.000 1.000  ----- 1.000
 30,100 .10 0.073 0.056 0.093 0.093 0.090 0.035 0.065
 30,100 .30 0.584 0.212 0.257 0.256 0.251 0.098 0.180
 30,100 .50 0.998 1.000 1.000 1.000 1.000  ----- 1.000
100,10 .10 0.154 0.099 0.083 0.083 0.081 0.078 0.083
100,10 .30 0.972 0.495 0.340 0.340 0.335 0.331 0.343

                       100,10             .50              1.000            1.000               1.000               1.000               1.000                    -    -    -    -    -                     1.000       
1:2:4:2:1  10, 10 .10 0.035 0.070  -----   0.095 0.062 0.069 0.089

 10, 10 .30 0.105 0.222  -----   0.283 0.210 0.227 0.274
 10, 10 .50 0.319 0.536  -----   0.625 0.533 0.481 0.628
 10, 30 .10 0.063 0.078 0.115 0.111 0.088 0.086 0.094
 10, 30 .30 0.216 0.299 0.379 0.372 0.322 0.334 0.352
 10, 30 .50 0.654 0.725 0.787 0.783 0.733 0.778 0.799
 10,100 .10 0.064 0.079  -----    -----  0.100 0.086 0.089
 10,100 .30 0.305 0.378  -----    -----  0.411 0.411 0.424
 10,100 .50 0.821 0.821  -----    -----  0.797 0.871 0.872
 30, 30 .10 0.075 0.103 0.123 0.120 0.104 0.111 0.116
 30, 30 .30 0.417 0.540 0.616 0.611 0.581 0.603 0.612
 30, 30 .50 0.934 0.948 0.974 0.974 0.968 0.974 0.975
 30,100 .10 0.103 0.139 0.162 0.161 0.149 0.150 0.153
 30,100 .30 0.650 0.729 0.782 0.780 0.764 0.785 0.787
 30,100 .50 0.995 0.994 0.996 0.996 0.995 0.998 0.998
100,100 .10 0.166 0.235 0.266 0.265 0.257 0.262 0.264
100,100 .30 0.954 0.967 0.982 0.982 0.981 0.981 0.981

                       100,100          .50             1.000           1.000              1.000              1.000              1.000              1.000              1.000      

Note.  Estimates are based on 10,000 samples of each condition.  Power estimates are provided only for conditions
in which Type I error was controlled.

Conclusions
The results of this research need to be interpreted

in the light of the limitations of the study. First,
only analyses based on two independent groups were
conducted. Although all of the statistical procedures
investigated can be extended to multiple group
applications, the resulting Type I error rates and
power estimates will not necessarily be comparable to
those obtained here. Secondly, a limited number of
distribution shapes were examined in this study.
Extensions to other shapes, such as bimodal
distributions, are important areas to explore because
distribution shape was seen to influence both Type I
error control and the relative power of these tests.

Finally, in the consideration of statistical power, the
nature of the differences between groups can assume
several forms. Although ordered categorical data
preclude the consideration of simple shifts in location
(because of the boundedness of the response scale),
types of non-null effects other than those modeled
here need to be investigated.

In light of these limitations, the superiority of the
t-test and the cumulative logit model in their control
of Type I error is evident in these data. Problems with
the control of Type I error rates were frequently
encountered in conditions with skewed marginal
distributions and with unbalanced or small samples.
Specific limitations in Type I error control were
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Table 7.  Statistical Power Estimates for 7 Point Response Scale at nominal α  = .05
                                                                                                                                                                                                
Marginal Sample  Effect  Chi-                   Cliff's     d     Tests                   Cumulative Logit  
   Distribution        Size               Size             Square            t    -    test             Unbiased        Consistent              CI                    Wald                    LR         

1:1:1:1:1  10, 10 .10  -----  0.053  -----  0.071 0.041 0.059 0.067
 10, 10 .30  -----  0.060  -----  0.079 0.046 0.067 0.077
 10, 10 .50  -----  0.081  -----  0.106 0.064 0.093 0.104
 10, 30 .10 0.054 0.055 0.076 0.072 0.052 0.059 0.062
 10, 30 .30 0.181 0.073 0.093 0.087 0.066 0.083 0.084
 10, 30 .50 0.548 0.103 0.126 0.120 0.090 0.119 0.121
 10,100 .10 0.064 0.053  -----   -----  0.063 0.061 0.059
 10,100 .30 0.265 0.078  -----   -----  0.081 0.097 0.090
 10,100 .50 0.757 0.127  -----   -----  0.111 0.156 0.145
 30, 30 .10 0.067 0.052 0.059 0.056 0.047 0.053 0.055
 30, 30 .30 0.347 0.083 0.095 0.092 0.077 0.088 0.091
 30, 30 .50 0.868 0.143 0.160 0.155 0.136 0.151 0.155
 30,100 .10 0.084 0.056 0.064 0.063 0.055 0.058 0.058
 30,100 .30 0.578 0.111 0.114 0.112 0.102 0.122 0.119
 30,100 .50 0.988 0.212 0.205 0.203 0.187 0.230 0.223
100,100 .10 0.137 0.065 0.068 0.067 0.064 0.066 0.067
100,100 .30 0.923 0.165 0.171 0.170 0.163 0.168 0.169

                       100,100           .50              1.000            0.378               0.383               0.381               0.372               0.383               0.384  
9:1:1:1:1  10, 10 .10  -----  0.064 0.092 0.084 0.059 0.048 0.084

 10, 10 .30  -----  0.207 0.293 0.278 0.218 0.172 0.278
 10, 10 .50  -----  0.521 0.665 0.646 0.568 0.394 0.654
 10, 30 .10 0.017 0.065  -----  0.132 0.116 0.048 0.100
 10, 30 .30 0.028 0.260  -----  0.424 0.385 0.241 0.382
 10,100 .10 0.023 0.060  -----   -----   ----   0.030 0.106
 10,100 .30 0.022 0.296  -----   -----   ----   0.295 0.441
 10,100 .50 0.350 0.761  -----   -----   ----   0.670 0.879
 30, 30 .10 0.048 0.094 0.117 0.114 0.102 0.107 0.114
 30, 30 .30 0.317 0.521 0.631 0.626 0.603 0.615 0.628
 30, 30 .50 0.862 0.939 0.981 0.981 0.978 0.972 0.982
 30,100 .10 0.036 0.120 0.181 0.180 0.170 0.141 0.158
 30,100 .30 0.406 0.680 0.806 0.805 0.791 0.797 0.807
 30,100 .50 0.971 0.990 0.998 0.998 0.997 0.992 0.999
100,100 .10 0.139 0.229 0.283 0.283 0.276 0.279 0.282
100,100 .30 0.916 0.958 0.986 0.986 0.985 0.986 0.986

                      100,100          .50             1.000           1.000              1.000              1.000              1.000              1.000              1.000  

observed for the tests of delta suggested by Cliff
(1993, 1996a). Of special interest is that in many
conditions, Cliff's Confidence Interval approach to
inferences regarding delta were superior to the two z
test approaches examined. The asymmetric approach
to the confidence interval estimation appeared to
improve the control of Type I errors in several of the
conditions examined in this study. However, for
researchers working with small samples or unequal
sample sizes, the t-test or cumulative logit model
appear to be the tests of choice to maintain Type I
error control.

Finally, in terms of statistical power, although
the independent means t-test provided the best control
of Type I error rates across the conditions examined,
this test was rarely the most powerful, and,

consequently, should not be the first choice in most
applications. For the 5-point response scales, the
chi-square test of homogeneity was clearly the most
powerful test for those conditions in which it
maintained Type I error control. In contrast, for the
7-point scales, the Chi-Square test was only the most
powerful when the marginal distribution was
symmetric. For the skewed marginal distributions,
the cumulative logit models or the tests of delta
tended to be the most powerful. However, the
variation in power across these scales should not be
interpreted as a simple function of the number of
scale points. Rather, such variations represents
changes in the magnitude of the population
differences in terms of standardized  mean difference or
proportion of non-overlap of the populations.
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Table 7 (continued). Statistical Power Estimates for 7 Point Response Scale at nominal α  = .05.
                                                                                                                                                                                                
Marginal Sample  Effect  Chi-                   Cliff's     d     Tests                   Cumulative Logit  
   Distribution           Size               Size             Square                t    -    test             Unbiased        Consistent              CI                    Wald                     LR          
24:1:1:1:1  10, 10 .10  -----  0.046  -----  0.063 0.057  -----   -----

 10, 10 .30  -----  0.173  -----  0.232 0.217  -----   -----
 10, 10 .50  -----  0.506  -----  0.622 0.622  -----   -----
 10, 30 .10 0.011 0.024  -----   -----   -----  0.007 0.126
 10, 30 .30 0.001 0.145  -----   -----   -----   -----  0.441
 10, 30 .50 0.004 0.620  -----   -----   -----   -----  0.982
 10,100 .10  -----  0.011  -----   -----   -----   0.005  -----
 10,100 .30  -----  0.107  -----   -----   -----    -----    -----
 10,100 .50  -----  0.818  -----   -----   -----    -----    -----
 30, 30 .10  -----  0.105 0.129 0.128 0.119 0.090 0.131
 30, 30 .30  -----  0.575 0.694 0.692 0.677 0.535 0.699
 30, 30 .50  -----  0.999 1.000 1.000 1.000  -----  1.000
 30,100 .10 0.017 0.100 0.224 0.223 0.220 0.094 0.167
 30,100 .30 0.129 0.707 0.894 0.894 0.890 0.708 0.859
 30,100 .50 0.960 1.000 1.000 1.000 1.000  -----  1.000
100,10 .10 0.120 0.233 0.288 0.288 0.284 0.278 0.288
100,10 .30 0.920 0.972 0.992 0.992 0.992 0.991 0.992

                          100,10             .50              1.000            1.000               1.000               1.000               1.000                    -    -    -    -    -                     1.000       
1:2:3:8:3:2:1  10, 10 .10  -----  0.072  -----   0.098 0.066 0.072 0.089

 10, 10 .30  -----  0.245  -----   0.307 0.232 0.244 0.293
 10, 10 .50  -----  0.611  -----   0.680 0.596 0.539 0.667
 10, 30 .10 0.050 0.082 0.116 0.111 0.089 0.091 0.096
 10, 30 .30 0.208 0.369 0.410 0.402 0.345 0.401 0.408
 10, 30 .50 0.632 0.810 0.799 0.792 0.741 0.821 0.837
 10,100 .10 0.082 0.087  -----   ----- 0.098 0.095 0.094
 10,100 .30 0.352 0.432  -----   -----  0.405 0.472 0.464
 10,100 .50 0.882 0.891  -----   -----  0.802 0.910 0.902
 30, 30 .10 0.054 0.114 0.131  0.126 0.111 0.118 0.123
 30, 30 .30 0.310 0.602 0.653  0.645 0.612 0.634 0.643
 30, 30 .50 0.876 0.978 0.984  0.983 0.979 0.981 0.983
 30,100 .10 0.088 0.139 0.156  0.154 0.144 0.150 0.152
 30,100 .30 0.624 0.803 0.806  0.804 0.790 0.831 0.829
 30,100 .50 0.994 0.998 0.997  0.997 0.997 0.999 0.998
100,100 .10 0.136 0.259 0.282  0.280 0.272 0.276 0.279
100,100 .30 0.919 0.982 0.987  0.987 0.987 0.987 0.987

                          100,100          .50             1.000           1.000              1.000               1.000             1.000              1.000              1.000      

Note.  Estimates are based on 10,000 samples of each condition. Power estimates are provided only for conditions
in which Type I error was controlled.

Further, the power differences among these procedures
were small suggesting that researchers' choices may
be based on the types of interpretations that are
appropriate for the research questions being addressed.
For interpretations based on simple dominance, the d
statistics and their inferential tests would be the most
appropriate. In contrast, a more rigorous modeling of
response probabilities is provided by the cumulative
logit models.

In summary, ordered categorical data, such as
those investigated in this study, are frequently
encountered in educational research. Unfortunately,
the analysis strategies most frequently employed with
these types of data are not necessarily the best

strategies to use. This research has provided
information about the operating characteristics (Type
I error control and statistical power) of the commonly
used tests employed with ordered categorical data, and
has provided evidence of the advantages (in some data
conditions) associated with two recently recommended
options for testing hypotheses. Although additional
research is certainly needed to further explore the
performance of these tests and their limitations, this
initial examination suggests that for many data
conditions, the choice of an appropriate test statistic
is vitally important to the validity of research
inferences.   
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Table 8.  Indices of Differences in the Simulated Populations
                                                                                                                                                                  
Population                                    Index of Group Difference                                   
   Group Marginal          Effect size       W                       Effect Size     d                         Cliff's     d               
   Differences          Distribution            5-    point        7-    point           5-    point        7-    point           5-point 7-point      

Null Model Uniform 0.00 0.00 0.00 0.00 0.00 0.00
Slight Skew 0.00 0.00 0.00 0.00 0.00 0.00
High Skew 0.00 0.00 0.00 0.00 0.00 0.00
Unimodal Sym 0.00 0.00 0.00 0.00 0.00 0.00

Small Effect Uniform 0.10 0.10 0.13 0.05 0.07 0.03
Slight Skew 0.10 0.10 0.10 0.17 0.05 0.10
High Skew 0.10 0.10 0.09 0.18 0.03 0.08
Unimodal Sym 0.10 0.10 0.17 0.19 0.10 0.11

Medium Effect Uniform 0.30 0.30 0.39 0.14 0.21 0.08
Slight Skew 0.30 0.30 0.31 0.53 0.14 0.29
High Skew 0.30 0.30 0.28 0.57 0.09 0.24
Unimodal Sym 0.30 0.30 0.54 0.58 0.31 0.32

Large Effect Uniform 0.50 0.50 0.67 0.23 0.36 0.13
Slight Skew 0.50 0.50 0.52 0.95 0.23 0.49
High Skew 0.50 0.50 1.40 1.36 0.40 0.40
Unimodal Sym 0.50 0.50 1.00 1.05 0.51 0.54

Correspondence should be directed to
Jeffrey D. Kromrey
Educational Measurement & Research,
University of South Florida
4202 East Fowler Avenue, Tampa, FL  33620

References
Agresti, A. (1989). Tutorial on modeling ordered

categorical response data. Psychological Bulletin,
105, 290-301.

Agresti, A. (1990). Categorical data analysis. New
York: Wiley.

Agresti, A. (1996). An introduction to categorical
data analysis. New York: Wiley.

Agresti, A. & Finlay, B. (1997). Statistical methods
for the social sciences (3rd ed.). Upper Saddle
River, NJ: Prentice Hall.

Blair, R. C. & Higgins, J. J. (1980). A comparison
of the power of Wilcoxon's rank-sum statistic to
that of the student's t statistic under various
non-normal distributions. Journal of Educational
Statistics, 5, 309-335.

Blair, R. C. & Higgins, J. J. (1985). Comparison of
the power of the paired samples t test to that of
Wilcoxon's signed-ranks test under various
population shapes. Psychological Bulletin, 97,
119-128.

Bradley, J. V. (1978). Robustness? British Journal of
Mathematical and Statistical Psychology, 31,
144-152.

Cliff, N. (1993). Dominance statistics: Ordinal
analyses to answer ordinal questions.
Psychological Bulletin, 114, 494-509.

Cliff, N. (1996a). Answering ordinal questions with
ordinal data using ordinal statistics. Multivariate
Behavioral Research, 31, 331-350.

Cliff, N. (1996b). Ordinal methods for behavioral data
analysis. Hillsdale, NJ: Erlbaum.

Cohen, J. (1988). Statistical power analysis for the
behavioral sciences (2nd ed.). New York:
Academic Press.

Davidson, M. L. & Sharma, A. R. (1988).
Parametric statistics and levels of measurement.
Psychological Bulletin, 104, 137-144.

McCullough, P. & Nelder, J. A. (1989). Generalized
linear models (2nd ed.). London: Chapman and
Hall.

Nanna, M. J. & Sawilowsky, S. S. (1998). Analysis
of Likert data in disability and medical
rehabilitation research. Psychological Methods, 3,
55-67.

Robey, R. R. & Barcikowski, R. S. (1992). Type I
error and the number of iterations in Monte Carlo
studies of robustness. British Journal of
Mathematical and Statistical Psychology, 45,
283-288.

Stevens, S. S. (1951). Mathematics, measurement
and psychophysics. In S. S. Stevens (Ed.),
Handbook of experimental psychology. New
York: John Wiley.

Velleman, P. F. & Wilkinson, L. (1993). Nominal,
ordinal, interval and ratio typologies are
misleading. American Statistician, 47, 65-72.



Comments on Alternative Regression Procedures

Multiple Linear Regression Viewpoints, 1998, Vol. 25 83

Think Different.
Comments on Alternative Regression Procedures

T. Mark Beasley, Guest Editor
St. John’s University

 chose Apple Computers’ slogan, not because I
happen to be a Macintosh user, but because the
issues raised in these three articles should lead us

to “Think Different” as statisticians, data analysts,
and researchers.  One key issue underlying these
articles is the ultimate question, “What are the data
trying to tell us?”  Several statistics texts have used
the signal-to-noise analogy for analyzing data.
Therefore, if we are simply trying to detect a signal
amongst random, ambient noise then it does not seem
as problematic to transform the data or to perform
alternative procedures that potentially test different
statistical hypotheses.  If exact parameter estimation
is of interest, however, data transformations may lead
to interpretive difficulties.

Nevitt and Tam (pp. 54-69) approach this
issue from the parameter estimation perspective of:
What should be done in order to detect an accurate
signal if the data are not “well behaved” or do not
conform to the statistical assumptions of the
regression model?  These authors examine three
general approaches for estimating parameters when
data are not well behaved (i.e., nonnormal): (a) treat
outliers differently (i.e., Trimming, Winsorizing), (b)
transform the data (i.e., Monotonic Regression), or
(c) compute parameter estimates in a different manner
(i.e., LAD, Theil estimators).  

The authors make an important distinction
between robust and nonparametric estimators.
Robust methods were developed for situations in
which symmetric error distributions have heavy tails
due to outliers in the observed data.  Thus, the
normality assumption is simply relaxed.  Robust
estimators are therefore resistant to violation of
assumptions while testing the same null hypothesis
as the normal theory methods (Draper & Smith,
1981).  By contrast, nonparametric and distribution-
free methods may involve (a) transforming data to
ranks or other metrics or (b) computing the parameter
estimate in an entirely different way.  Therefore, the
normality assumption may not apply whatsoever.  In
these cases, the statistical hypothesis tested, although
conceptually similar, may be quite different than the
hypothesis evaluated by a normal theory counterpart.
Because of this difference, the performance of
nonparametric methods relative to OLS methods is
often hard to assess except under conditions where
many parameters (i.e., skew and kurtosis) are held to
normal theory assumptions which of course favors
OLS procedures.  

Recall the question posed in the foreword (p. 2),
“How do these techniques integrate with what is
already known about statistics?”  There are extremely
interesting relationships between OLS and
nonparametric estimators of slope.  By using the
geometric definition of a regression slope and taking
the n(n - 1) pairwise slopes,

bij = 
yj - yi

xj - xi
  where xi ≠ xj,

the Theil estimator of slope is the median of all the
bij slopes. Interestingly, when all values of X  are
distinct, Sprent (1993) demonstrates that significance
testing of the Theil median slope is based on
Kendall’s (1970) tau statistic which is related to
Cliff’s (1994) ordinal multiple regression (Long, pp.
45-53). This can be inferred from the fact that n(n - 1)
pairwise values are used in both procedures.  Other
relationships can be shown by making an aggregate
of these slopes such that

 

β = 

wij bij∑
i  < j

wij ∑
i  < j  

,

OLS regression defines the weight as wij = (xj - xi)
2.

Other nonparametric approaches defines wij = |xj - xi|
(Birkes & Dodge, 1993) which reduces to a sign
function for the X  variable over the sum of the
absolute deviations of X  (Huynh, 1978).  For
Kendall’s tau, the weights would be defined in terms
of the absolute value of both the Y  and X  deviations
(i.e., wij = |xj - xi|/|yj - yi|) which would then reduce to
a sign function for both Y  and X .  Kendall’s tau is
the simple (i.e., unweighted) average sign of the   
n(n - 1) pairwise slopes.

In terms of Nevitt and Tam’s methodology, it is
questionable whether the sequential series of X  is
realistic.  First of all, the sequential series of X  is a
uniform distribution.  This implies that Nevitt and
Tam are examining fixed-effects models because the
underlying assumption of a random-effects model is
that Y  and X  are sampled from a bivariate normal
distribution (Hays, 1994). Although fixed-effects
models are applied most commonly, even when
random-effects are of interest (Clark, 1973), the use of
a uniform distribution as the basis for the parameter
model seems realistic only if the population
relationship among ranks is of interest. Secondly, in
the population, the uniform distribution of X yields a
uniform distribution for Y  through the linear
transformation described in the methods section (p.

I
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57).  When a normal, random error component is
added to Y  then the conditional distribution of Y  is
normal which again is adequate for a fixed-effects
model.  In this case however, the overall distribution
of Y is neither uniform nor normal which violates the
bivariate normality assumption of a simple linear
regression random-effects model.  Thus in regression
applications where random-effects models are of
interest, the fact that the data for Y  are nonnormal
could stem from either (a) the structural component
(i.e., population distributions of X  and Y  are
nonnormal), (b) the error component being
nonnormal, or (c) from both (a) and (b).

Thus, from this fixed-effects perspective, Nevitt
and Tam’s methodological approach assumes that
“bad” (i.e., nonnormal) data originates from the error
distribution of a regression model.  Therefore, they
rightfully suggest that “data analyses should always
involve checking for outliers in the observed data and
testing the underlying assumptions under OLS
estimation” (p. 68).  The idea that outliers and
heteroscedasticity may stem from nonnormal error
distributions is certainly interesting and leads to the
question: How does one know if the error distribution
is normal when the data are nonnormal? The
possibilities are that: (a) the variable itself is
nonnormal; (b)  there are outliers present in a
symmetric error distributions; or (c) the error
distribution is skewed or nonnormal.  Thus, there is
an important distinction between: (1) a normal
distribution with outliers that create skewness and (2)
a skewed distribution such as reaction time.  Nevitt
and Tam’s results show that as expected (Draper &
Smith, 1981), robust estimators perform better under
condition (1) but nonparametric methods perform
better under condition (2).  Nevitt and Tam report the
surprisingly good overall performance of the Theil
estimator.  Furthermore, the Theil estimates were
accurate especially with nonnormal error
distributions.  As expected with contaminated normal
error distributions, the robust procedures (i.e., LAD,
Trimming, Winsorizing) performed well.  As a
personal bias, however, I am not fond of Trimming
because this form of discarding data creates a situation
where the data are systematically missing which is
know  to lead to biased estimates.  

One astounding and important result, mainly
because of the common application of rank
transformations, was the poor performance of
Monotonic Regression.  This finding should be
viewed in a certain light, however.  The authors note
that their results substantiate the unacceptability of
rank transformation in the form of Monotonic
Regression with respect to Bias and root mean square
error (RMSE).  Namely, large Bias values reflect the
inability of Monotonic Regression to “recover the
true population values” (see p. 67).  The fact that
Nevitt and Tam used sequential values of X  would

seem to have benefited Monotonic (rank) Regression
because the transformation was linear for X .  With
the addition of a random error distribution, however,
the rank transformation for Y  was not linear in most
cases.  Thus, Monotonic Regression did not perform
well in general.  Yet, procedures that transform the
original data should not be expected to perform as
well.  How would rank values transform back to the
original metric of Y  if sequential X  values were not
used?  Furthermore, one must consider that
Monotonic Regression tests a different null
hypothesis; it tests OLS hypotheses in the metric of
ranks.

As with the Brockmeier et al. article (pp. 20-39),
if the purpose of a study is simply to establish a
relationship (i.e., just detecting the signal) then
finding non-zero correlations (or standardized
regression slopes) is the major issue rather than exact
parameter estimation.  Perhaps the rank transform
procedure (Monotonic Regression) would not perform
so poorly in these circumstances (e.g., a simulation
study where Type I error and Power rates, instead of
estimation bias, would be reported).  Yet, if exact
parameter estimation is of interest then the precision
of both α  and β parameter estimates is important.
The RMSE and Bias reported by Nevitt and Tam are
both valuable indicators because procedures such as
Monotonic Regression can maintain stable Type I
error rates and demonstrate superior power (e.g.,
Harwell & Serlin, 1989) yet provide consistently bad
parameter estimates.  Thus, it would appear that rank
(as well as other non-linear) transformations are not
appropriate when exact parameter estimates are to be
“recovered.”  By contrast, if researchers are merely
attempting to establish a relationship, then they could
consider the signal-to-noise analogy where
transformations (and other alternative approaches) do
not seem so disabling.

To elaborate, in experimental designs and other
group comparison research, ANOVA models that test
for mean differences are employed.  In contrast to
single-sample statistics where a relevant population
parameter must be known a priori, the fact that there
is a comparison group makes the signal more
detectable.  One may think of this in terms of
perceptual research which has demonstrated that
judging the length or orientation of an object is much
easier when there are perceptual cues that allow for
comparisons (e.g., Witkin & Goodenough, 1981).
Using the same analogy, violations of assumptions
and other data problems can be viewed as the factors
that create perceptual (statistical) distortions and
illusions, and thus, the use of statistics in many
behavioral research contexts may be seen as a field-
dependent endeavor.  Similar to the ANOVA model, a
linear regression model is a comparison of means in
the sense that as X  increases the expected value of Y
increases by the slope on average.  Again, if one is
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simply trying to detect a signal, rather than
estimating a parameter precisely, then the fact that Y
generally increases with increases in X  may be good
enough.  And it does not matter too much how the
variables are expressed.

Popular sources such as Tabachnick and Fidell
(1996) discuss transforming data when assumptions
are violated. This is even more systematized as the
“ladder of re-expression” when power and logarithmic
transformations are used to transform data (Hoaglin,
Mosteller, & Tukey, 1983). Yet most researchers
have problems with such nonlinear transformation
with the exception of the rank transform concept.
That is, unlike taking the square root of a variable to
quell an outlier or reduce asymmetry, ranking the data
still retains the “meaning” of the data to many
researchers (Zimmerman, 1996). Furthermore, there
are conveniences because there are many rank-based
tests already in existence and ranks have known
means and variances.  Despite these conveniences,
Nevitt and Tam’s results are consistent with other
research (Zimmerman, 1996, 1998; Zimmerman &
Zumbo, 1993) that has demonstrated serious
problems in applying rank transformations.
Therefore, the reliance on rank transformation may be
somewhat superstitious because its historical
prevalence and intuitive appeal are more convincing
than empirical evidence showing its statistical
viability for estimating parameters.  

One issue that all researchers have with any re-
expression is what do the data “mean” after
transformation.  For the sake of symmetry in a
variable, a researchers may be left with the question:
What does the square root of achievement scores
mean?  Cliff (1996) argues that  researchers usually
do not want their conclusions to be confined to the
current, somewhat arbitrary version of the variables.
Moreover the current measurements are often assumed
to be manifest versions of latent variables that are not
linearly related to them.  Therefore, a poignant
question for researchers to ask would be: What did my
scores mean in the first place?  From this perspective
the central question of data analysis can be posed as:
What question should I be asking?  That is, the null
hypotheses associated with OLS regression may not
be what is really of interest.  Cliff (1993, 1996)
contends that most of the answers behavioral
researchers want to get from their data are ordinal
ones.  Furthermore, most of the observed variables
have only ordinal justification, at least as measures of
the theoretical constructs they are used to represent.
Therefore, because the questions asked are ordinal and
the data are ordinal, ordinal methods are suggested.

Based on this perspective, Long (pp. 45-53)
explicates another less common re-expression, the
transformation of data into what Cliff (1993) has
termed the “dominance” metric.  Many of us have
been familiarized with this concept through Kendall’s

(1970) measure of concordance.  Not only does this
notion lead to testing statistical hypotheses that are
different from their OLS counterparts, the procedures
require us to “Think Different” because the
hypotheses are different conceptually.  From the
Pearsonian perspective, relationships are an issue of
the average value of Y  conditional on X .  From the
dominance perspective, however, relationships are
expressed as the proportional alignment of Y  with X .
In terms of group comparisons where the OLS
solution involves an ANOVA model, ordinal methods
address what proportion of scores in group one are
larger than the scores in group two.  In terms of a
linear regression, they assess what proportion of Y
scores become larger as X increases.  

Marascuilo and McSweeney (1977, pp. 439-440)
discuss Kendall’s tau as a measure of concordance and
as a measure of correlation.  However, Kendall’s tau
as a measure of correlation is not interpreted in the
Pearsonian sense but as a measure of “array.”  That
is, it is an index of the amount of agreement between
two sets of ranks.  When teaching the Pearson
product-moment correlation, I prefer demonstrating
the z-score formula and discussing the Pearson r as an
averaged leverage (i.e., product-moment) value.
Similarly, the notion of the dominance metric is
appealing because it allows a perspective of what
Kendall’s tau (as well as ordinal multiple regression
and Cliff’s d statistic) actually measures.  Thus, from
the dominance matrix, it can be seen that Kendall’s
tau measures the proportional agreement between the
dominance scores on two variables.  Therefore,
Kendall’s tau coefficient, as a summary measure, is
an average of proportional increase.

As is the case with OLS regression, a second
predictor makes the interpretation more complicated
but there are analogies in ordinal multiple regression
(OMR).  However, there are some unresolved issues
in OMR which again force us to “Think Different.”
First of all, OMR does not yield truly partialled
values.  Similar to Marascuilo and McSweeney’s
discussion of the relationship of Kendall’s tau to
Pearson’s r, one cannot interpret the coefficients that
result from OMR as OLS regression weights.
Furthermore, although Kendall (1970) developed a
“partial tau,” its properties are quite different from
those in OLS.  For example, suppose there are three
variables that have positive intercorrelations and a
trivariate normal distribution.  Although the first two
are statistically independent, conditional on the third
(r12.3 = 0), Kendall’s partial tau will not be zero (Cliff,
1996).  Thus, Long rightfully warns that the “OMR
function is much more ambiguous in its specification
of the relationship between the weights and the
criterion. In fact, an algebraic formula expressing the
criterion in terms of the weighted predictors is not
possible” (p. 47).  This means that there is no final
“regression equation” where a line or plane of best fit
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is described.  Predicted values for each subject are not
rendered.  Long states that it  would be possible “if

d ihy were used in the loss function” (p. 47).  To
elaborate, one can use either equation (4) or (6) and

calculate, d ihy = .40(dih1) + .33(dih2), a “prediction
equation” for the n(n - 1) pairwise dominance scores.
Then based on these n(n - 1) predicted values an

“average predicted dominance score” of the form d iy =

Σh(d ihy)/(n - 1) can be computed for each of the n

subjects.  It can be shown that both d ihy and d iy sum
to zero as would standardized predicted values from an
OLS regression.  However, this approach violates the
logic of ordinal analysis. Therefore, only a verbal
description of the functional relationship between the
weights and the criterion is appropriate.  Thus, the
OMR weights are the constants that when applied to
the predictor dominance scores best predict order on
the criterion, “best” meaning that Q is optimal (p.
47).  Thus using equation (5), Q = .5945; however,
this is only the optimization of the weights. That is,
Q can be viewed as analogous to Multiple R2, but it
is not the “variance accounted for” typically associated
with OLS regression.  Furthermore, to date there is
not an omnibus test for Q analogous to the F-test for
the full model R2.  Given the confidence interval
approach taken by Long this may be less
problematic. Still Q is only a statistic descriptive of
the loss function.  Thus, in its current state OMR has
many statistical and interpretive limitations despite
the compelling arguments of Cliff (1996).  Possibly
the OMR methodology forces us to “Think too
Different.”  When applied to group comparison
research, however, the dominance metric approach has
many foreseeable advantages.  In research in which
two or more groups are compared, ANOVA models
are applied to test differences in means which
addresses the question:  “Do the groups have different
average values?”  Cliff (1993) suggests that through
using the dominance metric one can answer the
question many behavioral researchers really want to
ask, “Which group has higher scores?” Yet a similar
and even more general question is:  “Did the groups
respond differently?”

Kromrey and Hogarty (pp. 70-82) address the
differences among these three questions.  They present
an interesting situation in which two groups are
compared on an ordered categorical response, as
opposed to analyzing a dependent variable that is truly
continuous in nature.  This is a common practice in a
variety of educational and psychological studies where
Likert-type responses are elicited and groups are
subsequently compared.  Kromrey and Hogarty
evaluate the statistical properties of four general
procedures (t-test, Pearson chi-square test, Cliff’s d,
and Cumulative Logit model).  They contend that
despite the differences among the statistical null

hypotheses tested, each of these procedures may be
used to test the same, “conceptual” research
hypothesis (p. 70).  Although these methods may
seem to address conceptually similar research
questions, statistically they are not the same.  Thus, a
review of the procedures, their null hypotheses, and
the questions addressed should be examined carefully.

Again, the most general question is, “Did the
groups respond differently?” It is most likely to be
addressed with the Pearson chi-square test for
contingency tables which for two groups has the
following null hypothesis:

HO(π): π1k = π2k, for all k categories.  
The question of “Which group has higher scores?” is
often thought of terms of the t-test.  However,  this
issue is actually more in line with Cliff’s d statistic.
It tests the null hypothesis that the probability that a
randomly selected member (i) of one population has a
higher response than a randomly selected member (j)
of the second population is equal to the reverse
probability.  That is, the probability that the scores
from one group are higher minus the probability that
a second group’s scores are higher is equal to zero:

HO(δ): δ = Pr(yi1 > yj2) - Pr(yi1 < yj2) = 0.  
These population probabilities are measured by the
frequencies in the samples.  It should be noted that
the d statistic is equivalent to Kendall’s tau performed
with a dummy code representing the group
distinctions, and thus, Cliff’s d can extend into
multiple group and factorial designs (Cliff, 1996).  

The most specific of the three research questions
is, “Do the groups have different average values?”  It
is addressed by the independent samples t-test with the
following null hypothesis:

HO(µ): µ1 - µ2 = 0.
A fourth approach investigated by Kromrey and

Hogarty is a Cumulative Logit model suggested by
Agresti (1989).  In the current situation, this method
treats the categorical response as an ordinal variable
and the grouping variable as dichotomous.  The
impetus for the Cumulative Logit model is that the
Pearson chi-square test was designed for variables that
have unordered categories.  Therefore, it detects any
type of deviation from the null hypothesis HO(π).  If
the variable is ordinal, however, the categorical data
may be represented with fewer degrees-of-freedom
which for a fixed noncentrality structure increases the
statistical power of a test.  Thus, the Cumulative
Logit model detects only monotonic deviations but
these are the ones of most importance with ordinal
variables (Agresti, 1989, p. 298).  

To explicate this approach, Beasley and
Schumacker (1995) demonstrated a method for
orthogonally partitioning a contingency table using
ANOVA contrast codes.  One thing not pointed out
by Beasley and Schumacker is that in the situation
presented by Kromrey and Hogarty, the contingency
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table can be partitioned in order to test for mean
differences (i.e., HO(µ)).  Suppose a linear polynomial
contrast (i.e., [-2 -1 0 1 2] for 5 categories, [-3 -2 -1 0
1 2 3] for 7 categories) is applied to the categorical
variable.  If this contrast variable is weighted by the
frequencies and then correlated with a dummy code
representing the two groups, the result is identical to
the t-test.  Therefore, with 5 ordered categories and
two groups, the null hypothesis for the linear
polynomial contrast (ψ) of population proportions in
a contingency table,

    HO(ψ): -2π11 -1 π12 +0 π13 +1 π14 +2 π15

     +2π21 +1 π22 +0 π23 -1 π24 -2 π25 = 0 ,
is equivalent to evaluating differences in population
means, HO(µ): µ1 - µ2 = 0.  The Cumulative Logit
model uses a similar approach (Agresti, 1989, p.
294); however, a Logit model instead of a Pearsonian
model is used. Thus, the null hypothesis associated
with the cumulative Logit model (HO(β): β = 0, see p.
73 or Agresti, 1989 for details), although not
identical to HO(µ), is extremely similar in concept.
Differences among these statistical hypotheses will be
discussed later.

When evaluating the performance of these four
procedures, one must consider that any test of
statistical significance has assumptions.  The
assumption that each of the observations are
independent of each other applies to all these
procedures.  Importantly, the independent t-test has
the additional assumptions that the two groups are
sampled from identical (i.e., homogeneous variances),
normal (i.e., skew and kurtosis of zero) populations.
The assumption of homogeneous variances translates
into the notion that the group effect is “additive.”  As
a point of distinction, the Cumulative Logit model
can be interpreted as the multiplicative effect of the
grouping variable on the cumulative odds.  Because
these odds for cumulative probabilities are expressed
in logits, however, this multiplicative effect can be
interpreted as “additive.” The Cumulative Logit model
investigated by Kromrey and Hogarty implies a
uniform association of cumulative odds ratios and is
referred to as the “Proportional Odds” model (Agresti
& Finlay, 1997, p. 601).  Therefore, this Cumulative
Logit Model assumes that the group effect is the
same for each cumulative probability, an assumption
analogous to an additive model (Agresti, 1989, p.
293).  Furthermore, under the conditions imposed by
Kromrey and Hogarty, the Cumulative Logit model
performed similarly to the t-test in terms of Type I
error (e.g., Table 4, p. 74) and power rates (e.g.,
Table 6, p. 78).  Unlike the t-test, however, the
independence of the variables corresponds to the
distribution of the response variable being identical,
not necessarily identical and normal.  Therefore,
similar to the Pearson chi-square and Cliff’s d, which
are relatively “distribution-free,” the Cumulative

Logit model makes no assumption about the shape of
the response variable.  Moreover, like the Pearson
chi-square and Cliff’s d, it can be sensitive to
differences in variance and shape even when
population means are identical. Thus, the Cumulative
Logit model tests a statistical hypothesis that is
different from HO(µ), a topic explicated later.

Kromrey and Hogarty’s results confirmed that the
Pearson chi-square test should not be used with small
sample sizes which accentuates the need for an
alternative procedure such as the Cumulative Logit
model that reduces the hypothesis degrees-of-freedom
in a contingency table analysis.  That aside, it is
interesting that most tests were generally acceptable
for testing the null hypothesis of identical population
distributions, but the t-test gave the most consistent
Type I error rate (see Fig. 1, p. 76).  The Type I error
results (e.g., Table 4, p. 74) also showed that even
when the conditional distribution of the dependent
variable was highly skewed, the t-test was generally
robust to violations of the normality assumption thus
confirming the seminal work of Norton (1952, cited
in Lindquist, 1956) and Boneau (1960).  It should be
noted, however, that under the conditions simulated
the conditional distributions for Y  were identical in
that the population values for variance, skew, and
kurtosis, as well as the population means, were the
same for both groups.  Therefore, the null hypotheses
for all procedures were true.  Thus, because of the
robustness of the t-test to violations of the normality
assumption, the three research questions are
considered the same if the groups have identical
distributions in terms of variance, skew, and kurtosis.
However, one must consider that outside of violating
the normality assumption, the Type I error
simulation conditions favored the parametric t-test
(i.e., identical conditional distributions).  Although
the Type I error results are valid, they are limited in
the sense that there are many situations in which
some of the null hypotheses are false while others are
true.  Moreover, it is difficult to reconcile one
procedure being more “robust” when they have
different assumptions.  That is, a test cannot be
robust to a condition for which it makes no
assumption (Huber, 1991).

The Power results were even more difficult to
interpret because in the conditions simulated, all three
null hypotheses were false but to different extents (see
Table 8, p. 82).  Furthermore, because some tests are
sensitive to different parameters, a researcher may
confirm the “conceptual” research hypothesis for a
variety of reasons.  For example, the Pearson chi-
square test was powerful because it can detect a
variety of differences (i.e., mean, variance, skew,
kurtosis).  By contrast, the t-test detects very specific
differences.  It is designed to detect differences in
means but can be sensitive to differences in variance.
Thus, as compared to evaluating the robustness of
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these tests, it is even more problematic to discern
which is most “powerful” when the null hypotheses
tested are different.  To elaborate, the chi-square null
hypothesis is the most general.  Consequently, if
HO(π) is true, then HO(µ), HO(δ), and HO(β) are also
true.  However, a true HO(µ) does not imply that HO(π)

is true.  Likewise, a true HO(δ) does not imply that
HO(δ) is true.  This is also the case for HO(β).  

Imagine the following tables show the
population probabilities (πk) for each of the K = 5
ordered categories in each group.  Situation One is
identical to the moderately skewed distribution
condition simulated by Kromrey and Hogarty for
assessing Type I error rates.

Situation One
Probabilities π1 π2 π3 π4 π5

Group 1 60 10 10 10 10
Group 2 60 10 10 10 10

In this case all four null hypotheses are true.  By
contrast, imagine the following scenario.

Situation Two
Probabilities π1 π2 π3 π4 π5

Group 1 44 4 4 4 44
Group 2 10 20 40 20 10

In this case µ1 = µ2 = 3, and thus, HO(µ) is true. HO(δ)

and HO(β) are also true.  However, HO(π) is false again
demonstrating that the Pearson chi-square test of
HO(π) is sensitive to parameters other the mean
differences.  It should also be noted that the
homoscedasticity assumption of the t-test is violated
in that σ2

1 = 3.6 and σ2
2 = 1.2. Therefore, the t-test

may not maintain a Type I error rate near the nominal
alpha in this case (i.e., it can be sensitive to
differences in variance).  

In the following scenarios the difference between
the t-test, Cliff’s d, and the Cumulative Logit Model
can be further demonstrated.

Situation Three
Probabilities π1 π2 π3 π4 π5

Group 1 6 34 30 14 16
Group 2 16 14 30 34 6

In this case the two distributions have identical values
for the population mean (µ1 = µ2 = 3), variance (σ2

1 =
σ2

2 = 1.36), and kurtosis (γ4
1 = γ4

2 = -0.80).
Therefore, the null hypothesis for the t-test is true.
The population skews are different (γ3

1 = -0.39, γ3
2 =

0.39).  Furthermore, HO(π), HO(δ), and HO(β) are false.
Importantly, Cliff’s d and the Cumulative Logit
Proportional Odds model can be sensitive to

differences in skew even when population means and
variances are identical.  However, if the means are the
same and both distributions are symmetric, not
necessarily identical (e.g., Situation Two) both HO(δ)

and HO(β) are true (see Vargha & Delaney, 1998, for a
discussion of what they call Stochastic
Homogeneity).  

To further accentuate how Cliff’s ordinal method
and Agresti’s Cumulative Logit model forces us to
“Think Different,” all four population moments are
different (µ1 = 3.0, µ2 = 3.1; σ2

1 = 0.96, σ2
2 = 3.60;

γ3
1 = -0.34, γ3

2 = 0; γ4
1 = -0.55, γ4

2 = -1.98) in
Situation Four, but HO(δ) and HO(β) are true.

Situation Four
Probabilities π1 π2 π3 π4 π5

Group 1 4 36 32 22 6
Group 2 44 4 4 4 44

Also, imagine a situation where Cliff’s d would be
equal to 1.0.  That is, every subject in Group 1 (n1 =
100) has a higher score than every subject in Group 2
(n2 = 100).  Furthermore, suppose that 50 people in
Group 1 responded to category 5 and the other 50
endorsed category 4.  

Situation Five
Probabilities π1 π2 π3 π4 π5

Group 1 0 0 0 50 50
Group 2 0 50 50 0 0

In terms of maintaining a Cliff’s d of 1.0, it does not
matter what pattern of 3, 2, or 1 categories is
endorsed by Group 2.  

Situation Six
Probabilities π1 π2 π3 π4 π5

Group 1 0 0 0 50 50
Group 2 50 0 0 0 0

That is, regardless of whether Group 2 responds to
categories 3 and 2 only (Situation Five) or all of
them endorse category 1 (Situation Six), Cliff’s d
would still be equal to 1.0.  Thus, in this scenario,
the d statistic can be contrasted with the t-test in the
sense that Cliff’s d considers rank position and
dominance rather than average magnitude.  Although
the Cumulative Logit Proportional Odds model is
somewhat sensitive to these differences in magnitude
(Agresti, 1989), in general it seems more similar to
Cliff’s d than to the t-test, at least statistically.

It would be interesting to see how the
Cumulative Logit model performs empirically under
the various conditions elaborated, especially with
between group differences in variance and skew (e.g.,
Situations Two through Four).  Agresti (1989, p.
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294) indicates that the independence of X  and Y  (i.e.,
HO(β) is true) corresponds to the distribution of the
ordered categorical response (Y) being the same for
each level of X (the grouping variable).  In Situation
Two, however, the β parameter is zero although the
distributions of the ordered categorical responses are
not identical for both groups which presents a
violation of the Proportional Odds model.  Therefore,
it would also be interesting to determine whether the
Cumulative Logit model performs more similar to
Cliff’s d, the Pearson chi-square, or to the t-test under
such conditions.  

Because of these statistical issues, the conceptual
differences, and other previously elaborated
arguments, Cliff (1996) contends that δ (and Q for
OMR) are NOT just surrogates for OLS solutions;
they are parameters worth estimating in their own
right.  From this perspective, Cliff’s d, Kendall’s tau,
and OMR make parametric use of “nonparametric”
statistics.  For such statistical procedures, Bradley
(1968) suggested the term “distribution-free,” while
Cliff prefers the term “ordinal methods.”  

Bradley (1968) and Zimmerman (1996) have
pointed out that much of the confusion concerning
the use of nonparametric methods lies in the
treatment of nonparametric tests as “different” in most
textbooks when actually many nonparametric tests are
often algebraic reduction of OLS parametric tests
performed on ranks (or signs or a dominance matrix).
Under the basic assumptions of parametric tests,
ranks have known means and variances.  This allows
the parametric formula to simplify which in turn
makes it seem different.  However, many of the
problems associated with the original data can be
inherited by the ranks (Zimmerman, 1996, 1998).
Therefore, they may not be as “robust” as commonly
believed. It is also true that the ordinal methods (i.e.,
Cliff’s d, OMR) are OLS solutions for the dominance
matrix (see Long, p. 46).  Yet, the dominance matrix
is a transformation that partially changes the meaning
of the score.  Therefore, the associated hypotheses are
different both statistically and conceptually.  Given
its statistical similarity to Cliff’s d , the same may
also be said for the Cumulative Logit model.

The differences among the statistical hypotheses
of parametric and alternative procedures has been seen
as a drawback to employing “nonparametric”
methods.  Yet, Cliff (1996) argues that the
hypotheses tested by alternative methods are often
more in line with what behavioral researchers want to
know from their data as compared to a null
hypothesis of equal means.  The point is that mean
differences may not always be of interest (Olejnik,
1987).  For example, in a randomized experiment if
differences in variances occur then, an ANOVA model
(t-test) may be inappropriate because a non-additive
effect is suggested.  That is, differences in variance
indicate that the treatment did something to change

the variability and thus a test of means may not be
entirely appropriate.  Furthermore, heterogeneous
variances may also indicate some non-additive,
interaction effect that has not been examined.  This
emphasizes the importance of data screening, data
exploration, descriptive statistics, and graphical
display in order to evaluate “What the data are trying
to tell us.”  Moreover, instead of employing
parametric statistical tests ritualistically, perhaps
researchers should “Think Different” and perform
alternative procedures.  Again, the conclusions may
be similar conceptually.  Yet, there is the distinct
possibility that the results from an alternative
procedure may force investigators to “Think
Different” about their research questions.
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