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A Fixed Effects Panel Data Model:
 Mathematics Achievement in the U.S.

Todd Sherron                                Jeff M. Allen
University of North Texas

Statistical models that combine cross section and time series data offer analysis and interpretation advantages over
separate cross section or time series data analyses (Mátyás & Severstre, 1996).   Time series and cross section
designs have not been commonplace in the research community until the last 25 years (Tieslau, 1999).  In this
study, a fixed effects panel data model is applied to the National Education Longitudinal Study of 1988 (NELS:88)
data to determine if educational process variables, teacher emphasis, student self-concept, and socio-economic status
can account for variance in student mathematical achievement.  A model that includes seven independent variables
accounted for 25% of the variance in student mathematical achievement test score.  The study provides educational
researchers with an applied model for panel data analysis.

ime series and cross section designs have not
been commonplace in the research community
until the last 25 years (Tieslau, 1999). In fact,

the U.S. Department of Education’s National Center
for Education Statistics (NCES) was not mandated to
“collect and disseminate statistics and other data related
to education in the United States” until the Education
Amendments of 1974 (Public Law 93-380, Title V,
Section 501, amending Part A of the General
Education Provisions Act).   Researchers commonly
have termed data that contains time series and cross
section units to be panel or longitudinal data.  In this
study, these terms are used interchangeable.
Essentially, panel data is a set of individuals who are
repeatedly sampled at different intervals in time, across
a multitude of cross sectional variables.  The term
“individual” might be used loosely to imply a person,
a household, a school, school districts, firms, or a
geographical region.  Figure 1 provides a typical Panel
data structure.  Schools have been used to represent the
different “individuals”. (Note: the individual unit could
just as well have been different schools within a
particular district, school districts within a state, or an
aggregate representation by state).  

Researchers who are interested in understanding,
explaining, or predicting variation within longitudinal
data are faced with complex stochastic specifications.
The problem that occurs when measures exhibit two-
dimensional variation—variation across time and cross
section, in model specification.   In other words,
researchers need to specify a model that can capture
individual differences in behavior across individuals
and/or through time for estimation and inference
purposes (Greene, 1997). In general, longitudinal
(panel) data sets contain a large number of cross-
section units and a relatively small number of time-
series units.

The U.S. Department of Education began
collecting data in 1988 about critical transitions
experienced by students as they leave elementary
schools and progress through high school and into

postsecondary institutions or the work force.  The
National Education Longitudinal Study of 1988
(NELS:88) contains data about educational processes
and outcomes pertaining to student learning, predictors
of dropping out, and school effects on students’ access
to programs and equal opportunities to learn.  The first
follow-up was conducted with the same students, their
teachers, and principals in 1990.  The second follow
up survey was conducted in 1992, and the third in
1994.  Data from NELS:88 will be used in this study
to determine if student perception of educational
process variables can account for the variance in
mathematical achievement.

Model Specification
When should a fixed effects or random effects

model be utilized?  The answer to this question is
often debated.  Some believe that it is dependent upon
the underlying cause in the model.  For example, if the
individual effects are the result of a large number of
non-observable stochastic variables, then the random
effect interpretation is demanded.  Others think the
decision rests on the nature of the sample – that is
when the sample is comprehensive or exhaustive, then
fixed effects models are the natural choice to enhance
the generalizability.  On the contrary, if the sample
does not contain a large percent of the population then
the random effects model would be the model of
choice.  According to Hasiao (1985), it is ultimately, “
up to the investigator to decide whether he wants to
make an inference with respect to population
characteristics or only with respect to effects that are in
the sample” (p. 131).   It is unlikely that this debate
will ever be resolved per se, however, if the choice
between the two underlying methods is clear, then the
estimation method should be chosen accordingly.
However, if the choice is not clear, then the decision
should be based on the nature of the sample and
statistical evidence. For example, if the individual
effects are significant then this is a sign that a
significant component of the model is accounted for   

T



Sherron & Allen

Multiple Linear Regression Viewpoints, 2000, Vol. 26(1)2

Y school#1, year#1
Y school#1, year#2

X1 school#1, year#1
X1 school#1, year#2

X2 school#1, year#1
X2 school#1, year#2

XK school#1, year#1
XK school#1, year#2

:
:

:
:

:
:

:
:

Y school#1, year#T X1 school#1, year#T X2 school#1, year#T XK school#1, year#T

. . . . . . . . . . . .
Y school#2, year#1
Y school#2, year#2

X1 school#2, year#1
X1 school#2, year#2

X2 school#2, year#1
X2 school#2, year#2

XK school#2, year#1
XK school#1, year#2

Yit  = :
:

Xit  = :
:

:
:

:
:

Y school#2, year#T X1 school#2, year#T X2 school#2, year#T XK school#1, year#T
. . . . . . . . . . . .

Y school#N, year#1
Y school#N, year#2

X1 school#N, year#1
X1 school#N, year#2

X2 school#N, year#1
X2 school#N, year#2

XK school#N, year#1
XK school#N year#2

:
:

:
:

:
:

:
:

Y school#N, year#T X1 school#N, year#T X2 school#N, year#T XK school#N, year#T

Figure 1. Panel Data Structure

by the individual effects parameter and so fixed effects
might be preferred over random effects.  However, the
Hausman test statistic, a statistic designed to test
model fit, can be used to determine when a random
effects model is preferred, i.e. a large Hausman test
statistic indicates a random effects components
(Greene, 1997).

The Fixed-Effects Model
The fixed effects (FE) model takes α i to be a

group specific constant term in the regression equation

Yit = α i + β1X1it + β2X2it . . . + βKXKit + εit  (1)

or in matrix notation
Yit  =  α i + Xit´β + εit       (2)

where X it´ = [X1it, X2it, . .  ., XKit]   

and    β´  =  [β1, β2, . .  ., βK].

The “i” indexes cross-section realizations so that i
= 1,2,3, …, N and “t” indexes time-series realizations
so that t = 1, 2,3, . . . ,T.   The individual effect α i, is
regarding to be constant over time (t) and specific to

the individual cross-sectional unit (i).   The term iα  is

presumed to capture the unobservable, and non-
measurable characteristics that differentiate individual
units.  Basically, this implies that all behavioral
differences between individuals (e.g., schools in Figure
1) are fixed over time and are represented as parametric
shifts of the regression function.  Mátayás and
Sevestre (1996, p. 34) state, “the intercept is allowed
to vary from individual to individual while the slope
parameters are assumed to be constants in both the
individual and time dimensions”.

The fundamental assumption of the fixed effects
model are:

  E[εit] = 0,

  Cov(εit, εjt) = 0,

  Var (εit) = E[ε2
it] = σ2

e,

  E[εit, X1it] = E[εit, X2it] = . . . = E[εit, XKit] = 0,

   and Xkit is not invariant.

Under these assumptions, the ordinary least
squared estimator (OLS) can be use to obtain unbiased,
consistent, and efficient (BLUE) parameter estimates.

The Random Effects Model
The random effects (RE) model—also know as the

error component model, includes a non-measurable
stochastic variable, which differentiates individuals.  It
is written as:

Yit = α i+ β1X1it+β2X2it ... + βKXKit+ui+εit     (3)

or in matrix notation

Yit  =  α i + Xit´β + ui+ εit      (4)

where X it´ = [X1it, X2it, . .  ., XKit]   

and    β´  =  [β1, β2, . .  ., βK].

The “i” indexes cross-section realizations so that
i=1,2,3,…, N and “t” indexes time-series realizations
so that t = 1,2,3,…, T .  The term “ui” is a stochastic
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variable that embodies the unobservable or non-
measurable disturbances that accounts for individual
differences.  Essentially, the effect is thought to be a
random individual effect rather that fixed parameter.  
For example, a researcher might try to discern whether
there is difference in achievement between districts in
the State of Texas.  Instead of including every school
district in the equation (as we would have in the fixed
effects model using dummy variables) one can
randomly sample school districts and assumes that the
effect is random distributed across “individuals” but
constant through time.

The fundamental assumptions of the random
effects model are as such:

E[ui, X1it] = E[ui, X2it] = . . . = E[ui, XKit] = 0,

E[εit] = [ui] = 0,

Var (ui) = E[u2
i] = σ2

u, and

Cov(ui, εit) = E[ui, εit] = σε,u,

Assuming normality ui ~ N(0, σ2
u), εit ~ N(0, σ2

e),

both “ui” and “εit” are stochastic variables, but form

one composite error term-called omega (ui+εit)   =   ωit,

u1 + ε11
u1 + ε12

:
u1 + ε1T

  where    ωit = . . .

uN + εN1
uN + εN2

:
uN + εNT

The error term now consist of two components: (1) the
error disturbance ε it, and (2) the individual specific

disturbance ui,.  The RE model now takes the form of

Yit = α  + β1X1it + β2X2it . . . + βKXKit + ωit  (5)

or in matrix notation

Yit  =  α  + Xit´β + ωit       (6)

The error term in the model now exhibits the
following characteristics:

σ2
e     σε,u

Var(ωit) = σu,ε    σ
2
u

The OLS estimator can not be applied to equation 6
because the error term not longer possess ideal
properties (constant variance and zero covariance) thus
the estimate would be inefficient and, hence generalized
least squares (GLS) is appropriate.  However, the
nature of data in behavioral sciences does not permit
the variance components σ2

u and σ2
e to be known,

therefore, alternative estimation methods must be
utilized.  One common estimation method that can
deal with the unknown variance components feasible
generalized least squares (FGLS).  FGLS takes an
estimate of the variance components and then
estimates the equation.
 The individual effect in the random effect model may,
too, be tested with the following hypotheses:

H0: ui  =  0, or equivalently, σ2
u  =  0

Ha: σ2
u  ≠  0.

After correcting the error term (ωit) the t and F-test are

reliable, thus inference can be regarded as valid. Based
on statistical evidence, a FE model will be used in this
paper.

National Education Longitudinal Data Set:88
The NELS:88 database is divided into two

sections: (1) N2P, and  (2) N4P.  In this study, data
were extracted from N2P.  A representative sample of
students (N=16,749) enrolled in tenth grade in the
spring of 1990, who completed a questionnaire in both
the first follow-up and second follow-up, were
identified and used in the analysis.  The LIMDEP
program (Greene, 1992) and output are in the
appendix.

Seven independent variables are included in the
specified model.  They are listed as entered into the
model: (1) Review Work (F2S19BA),  (2)
ListenLecture (F2S19BB), (3) CopyNotes (F2S19BC),
(4) Calculators (F2S19BF), (5) Think Problem
(F2S20D), (6) SES (F2SES1),and  (7) Self concept
(F2CNCPT).  The first four variables, (ReviewWork,
ListenLecture, Copynotes, Calculators), are frequency
measures of student educational processes and are
scaled as followed: (1) Never/Rarely, (2) 1-2
Times/Month, (3) 1-2 Times/Week, (4) Almost each
day, (5) Every Day. For example, the variable
ReviewWork is a measure of how frequently students
review their work for the previous day.  The variable
ListenLecture is a measure of how frequently students
listen to the teacher’s lecture.  The variable CopyNotes
is a measure of how frequently students take notes.
The variable Calculator is a measure of how frequently
students use calculators.  The variable ThinkProblem
measures student perception of teachers emphases on
mathematical objectives and is scaled, (0) none, (1)
minor emphasis, (2) moderate emphasis, (3) major  
emphasis.    SES   is  a  continuous   variable
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Table 1. Estimated Fixed Effects

Group   Coefficient
   Standard

   Error    t-ratio
North
East 45.84312* 0.42968 106.69
North
Central 45.48305* 0.44005 103.36

South 43.06207* 0.42588 101.11

West 44.10279* 0.44472 99.17
Note. *Statistically significant at the p < .01.

indicating socioeconomic status. This measure is based
on Duncan’s (1961) socioeconomic index for all
occupations.  It was derived from the parent
questionnaire data, the student questionnaire data, or
the first follow-up or second follow-up New Student
Supplement data. This variable has been standardized
to have a mean of 0 and standard deviation of 1.  

Selfconcept is a composite measure of all of the
self-concept items (question 66) in the student
questionnaire.  Essentially, this variable measures
students’ self concept on a four point scale with: (1)
strongly agree ,(2) agree ,(3) disagree,(4) strongly
disagree.  It should be noted that this variable was
reverse scaled before a composite score was created and
was standardized to have mean of zero and a standard
deviation of 1.  MathScore is the dependent variable
and it was derived by Item response theory (IRT) to
have a mean of 50 and standard deviation of 10.

Empirical Results
The FE model below was specified and estimated.

(Mathscore)it = β0 +  β1(ReviewWork)it +
β2(ListenLecture)it + β3(CopyNotes)it +
β4(Calculators)it + β5(ThinkProblem)it +
β6(SES)it + β7(Selfconcept)it +  εty  

Table 1 provides evidence that the FE model is
indeed the correct choice over the RE model; all t-
values are significant.  Region is the cross section unit
(i = 1, 2, 3, 4) indicating which of the four US Census
regions (1) Northeast, (2) Midwest,(3) South, or (4)
West.

Table 2 provides the descriptive statistics, measure
of central tendency, measure of dispersion, minimum
and maximum, and number of cases.  Table 3 provides
the correlation coefficients for all of the variables used
in the analysis.

Six out of the seven independent variables were
statistically significant at the p < 0.0001 alpha level
accounting for 25% of the variance in the dependent
variable (mathematics achievement score).  See Table
4 for parameter estimates.

The variable ReviewWork is statistically
significant (t = 3.27, p < .001).   As ReviewWork in-

Table 2. Descriptive Statistics
Variable  Mean   SD Min Max

MathScore
(N = 12,992)

51.81 9.93 29.50 71.49

ReviewWork
(N = 13,577

3.87 1.21 1.00 5.00

ListenLecture
(N = 13,565)

4.24 1.03 1.00 5.00

CopyNotes
(N = 13,565)

4.01 1.27 1.00 5.00

Calculators
(N = 13,560)

3.69 1.38 1.00 5.00

ThinkProblem
(N = 13,568)

2.23 0.84 0 3.00

SES
(N = 16,563)

0.04 0.81 -3.24 2.75

Selfconcept
(N = 15,123)

0.01 0.70 -3.69 1.24

Region
(N = 16,426)

2.56 1.01 1.00 4.00

creases by one unit, MathScore increases by 0.234
points.  In other words, as students increase the
frequency in which they review their work, holding all
else constant, their math score increases by 0.234
points.  

The variable ListenLecture is statistically
significant (t = 3.924, p < .001). As ListenLecture
increases by one unit, MathScore increases by 0.370
points.  Or put differently, the more attentive the
student is to the teacher’s lecture, their math score
increases by 0.370 points.   The variable CopyNotes
is not statistically significant (t = -1.488, p < .1367).

The variable Calculators is statistically significant
(t = 11.10, p < .001). As Calculators increases by one
unit, MathScore increases by 0.667 points.
Essentially, this estimate is showing that students
math score will increase with the use of a calculator.

The variable ThinkProblem is statistically
significantly (t = 14.304, p < .001).  Recall, this
variable measures student perception of teachers
emphasis on mathematical objectives and is scaled, (0)
none, (1) minor emphasis, (2) moderate emphasis, (3)
major emphasis.  As ThinkProblm increases by 1
unit, MathScore increases by 1.387 point.  Abstracted
differently, the more teachers’ emphasize “thinking
about what a problem means and ways it might be
solved”, holding all else constant, students math score
increases by 1.387 points.

The variable SES is statistically significant (t =
47.333, p < 0.001).  As SES increases by 1 unit,
holding all else constant, MathScore increases by
4.937 points.  Recall SES is a continuous variable
indicating member’s socioeconomic status.   This
measure is based on Duncan’s 1961 socioeconomic
Index for all Occupations.

The variable SelfConcept is statistically
significant (t = 10.071, p < 0.001).  As SelfConcept
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Table 3. Correlation Matrix
Math
Score

Review
Work

Listen
Lecture CopyNotes Calculators

Think
Problem SES

Self
Concept

Review
Work

.099 1.000

ListenLecture .119 .369 1.000

CopyNotes .103 .278 .535* 1.000

Calculators .148 .135 .140 .095 1.000
Think
Problem .181 .224 .256 .237 .099 1.000

SES .470 .042 .044 .084 .103 .050 1.000
Self
Concept .144 .085 .085 .076 .053 .134 .081 1.000

Region -.103 .009 .022 -.031 .074 -.009 -.082 .002
Note. The moderate correlation between the two variables, CopyNotes and ListenLecture r = .535 is indicative of
multicolinearity. This correlation gives reason to question the inference drawn from the t-ratio values on these two
variables, however, the parameter estimates for CopyNotes and ListenLecture are still the best least square estimates.

increases by 1 unit, MathScore increases by 1.137
points.  Essentially, students who have a more
positive self perception, are scoring higher on the
standardized math test.

Conclusions
In this study, a fixed effects panel data model

were applied to the National Education Longitudinal
Study of 1988 (NELS:88). The empirical evidence
presented here suggests that student mathematics test
score is influenced by educational process variables,
teacher emphasis, student self-concept, and socio-
economic status. Specifically, a model that included
seven independent variables accounted for 25% of the
variance in student mathematical achievement test
score.  

Caveat
The NELS:88 data set does not have a means of

extracting the time component in the data.  Although,
models for analyzing time effects were not discussed in
the study, it is an important aspect of panel data that
should be coded when the data file is constructed.  In
addition, the time series unit should be measured in
smaller periods of time.  Residual analysis should be
performed on the error term.  That is, the error term
should be analyzed for heteroscedasticity and
autocorrelation.  

Correspondence should be directed to:
Todd Sherron
Educational Research Lab
University of North Texas
Denton, Texas  76203-1337
E-mail: sherron@coefs.coe.unt.edu

Table 4. Fixed Effects Estimates
Variable Coefficient SE t p-value

ReviewWork 0.234 0.072 3.27 0.0011
ListenLecture 0.370 0.094 3.92 0.0001

CopyNotes -0.190 0.073 -1.49 0.1367

Calculators 0.667 0.601 11.10 0.0000

ThinkProblem 1.388 0.097 14.30 0.0000

SES 4.938 0.103 47.73 0.0000

Selfconcept 1.137 0.113 10.07 0.0000

R2  =  0.246 R2adj  = 0.245
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Appendix

LimDep Code

READ;File=C:\WINDOWS\Program Files\ES Limdep\PROGRAM\nels6.lpj;
Nobs=16749;
Nvar=23;
Names=x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,

x19,x20,x21,x22,x23$

SKIP$

DSTATS; RHS = X2,X3,X4,X7,X13,X19,X20,X23; OUTPUT = 2 $

REGRESS;Lhs=X22
 ;Rhs=X2,X3,X4,X7,X13,X19,X20

       ;Str=X23
       ;Wts=X16
       ;Panel $

REGRESS;Lhs=X22
 ;Rhs=X2,X3,X4,X7,X13,X19,X20

       ;Str=X23
       ;Panel

 ;Output=2
       ;Wts=X16
       ;Fixed $

Data Output

--> SKIP$
--> DSTATS; RHS = X2,X3,X4,X7,X13,X19,X20,X23; OUTPUT = 2 $

                             Descriptive Statistics
               All results based on nonmissing observations.
Variable        Mean         Std.Dev.        Minimum         Maximum      Cases
-------------------------------------------------------------------------------
X2        3.87029535      1.21401018      1.00000000      5.00000000      13577
X3        4.24061924      1.02966250      1.00000000      5.00000000      13565
X4        4.00906612      1.27206705      1.00000000      5.00000000      13567
X7        3.69041298      1.37809060      1.00000000      5.00000000      13560
X13       2.23349057      .839799327      .000000000      3.00000000      13568
X19       .485648735E-01  .811172698     -3.24000000      2.75000000      16563
X20       .111955300E-01  .701701693     -3.69000000      1.24000000      15123
X23       2.55777426      1.01482683      1.00000000      4.00000000      16426

Correlation Matrix for Listed Variables

               X2       X3       X4       X7      X13      X19      X20      X23
      X2  1.00000   .38402   .28129   .13514   .22252   .04671   .08881   .00758
      X3   .38402  1.00000   .54066   .13636   .26014   .04523   .08992   .01662
      X4   .28129   .54066  1.00000   .09404   .23307   .07737   .07659  -.03424
      X7   .13514   .13636   .09404  1.00000   .10102   .10769   .05500   .07762
     X13   .22252   .26014   .23307   .10102  1.00000   .05100   .14062  -.01871
     X19   .04671   .04523   .07737   .10769   .05100  1.00000   .08907  -.08566
     X20   .08881   .08992   .07659   .05500   .14062   .08907  1.00000   .01745
     X23   .00758   .01662  -.03424   .07762  -.01871  -.08566   .01745  1.00000
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--> REGRESS;Lhs=X22
     ;Rhs=X2,X3,X4,X7,X13,X19,X20
    ;Str=X23
    ;Wts=X16
    ;Panel $

+----------------------------------------------------------------------------+
| OLS Without Group Dummy Variables                                     |
| Ordinary    least squares regression    Weighting variable = X16      |
| Dep. var. = X22      Mean=   52.55493863    , S.D.=   9.343603189     |
| Model size: Observations =   10895, Parameters =   8, Deg.Fr.=  10887 |
| Residuals:  Sum of squares= 731652.8662    , Std.Dev.=        8.19782 |
| Fit:        R-squared=  .230712, Adjusted R-squared =          .23022 |
| Model test: F[  7,  10887] =  466.44,    Prob value =          .00000 |
| Diagnostic: Log-L = -38376.9800, Restricted(b=0) Log-L =  -39805.8044 |
|             LogAmemiyaPrCrt.=    4.208, Akaike Info. Crt.=      7.046 |
| Panel Data Analysis of X22        [ONE way]                           |
|           Unconditional ANOVA (No regressors)                         |
| Source      Variation        Deg. Free.     Mean Square               |
| Between       20751.0                3.         6917.00               |
| Residual      930327.            10891.         85.4216               |
| Total         951078.            10894.         87.3029               |
+----------------------------------------------------------------------------+
+---------+--------------+-----------------+---------+----------+------------+
|Variable | Coefficient | Standard Error |b/St.Er.|P[|Z|>z] | Mean of X |
+---------+--------------+-----------------+---------+----------+------------+
 X2        .2150986215      .72295926E-01    2.975   .0029  3.8895953
 X3        .3746630995      .95235646E-01    3.934   .0001  4.2207458
 X4       -.1516385665      .73563678E-01   -2.061   .0393  3.9716586
 X7        .7025006784      .59425942E-01   11.821   .0000  3.7239903
 X13       1.398697309      .97973819E-01   14.276   .0000  2.2173183
 X19       5.040076855      .10413200       48.401   .0000  .86701895E-01
 X20       1.035652953      .11377009        9.103   .0000  .42022957E-01
 Constant  44.54122268      .41506161      107.312   .0000

+----------------------------------------------------------------------------+
| Least Squares with Group Dummy Variables                              |
| Ordinary    least squares regression    Weighting variable = X16      |
| Dep. var. = X22      Mean=   52.55493863    , S.D.=   9.343603189     |
| Model size: Observations =   10895, Parameters =  11, Deg.Fr.=  10884 |
| Residuals:  Sum of squares= 716924.2581    , Std.Dev.=        8.11601 |
| Fit:        R-squared=  .246198, Adjusted R-squared =          .24551 |
| Model test: F[ 10,  10884] =  355.48,    Prob value =          .00000 |
| Diagnostic: Log-L = -38266.1998, Restricted(b=0) Log-L =  -39805.8044 |
|             LogAmemiyaPrCrt.=    4.189, Akaike Info. Crt.=      7.027 |
| Estd. Autocorrelation of e(i,t)    -.000540                           |
+----------------------------------------------------------------------------+
+---------+--------------+-----------------+---------+----------+------------+
|Variable | Coefficient | Standard Error |b/St.Er.|P[|Z|>z] | Mean of X |
+---------+--------------+-----------------+---------+----------+------------+
 X2        .2342486655      .71596894E-01    3.272   .0011  3.8895953
 X3        .3704126069      .94402933E-01    3.924   .0001  4.2207458
 X4       -.1089542352      .73215840E-01   -1.488   .1367  3.9716586
 X7        .6668605394      .60076332E-01   11.100   .0000  3.7239903
 X13       1.387686017      .97011428E-01   14.304   .0000  2.2173183
 X19       4.937094032      .10343209       47.733   .0000  .86701895E-01
 X20       1.136968803      .11289363       10.071   .0000  .42022957E-01
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+----------------------------------------------------------------------------+
|                Test Statistics for the Classical Model                 |
|                                                                        |
|        Model            Log-Likelihood    Sum of Squares    R-squared  |
| (1)  Constant term only   -39805.80420   .9510780165D+06     .0000000  |
| (2)  Group effects only   -39685.63264   .9303270109D+06     .0218184  |
| (3)  X - variables only   -38376.97986   .7316528662D+06     .2307120  |
| (4)  X and group effects  -38266.19962   .7169242581D+06     .2461983  |
|                                                                        |
|                                Hypothesis Tests                        |
|               Likelihood Ratio Test                F Tests             |
|          Chi-squared   d.f.  Prob.         F    num. denom. Prob value |
| (2) vs (1)   240.343      3     .00000    80.975    3 10891     .00000 |
| (3) vs (1)  2857.649      7     .00000   466.435    7 10887     .00000 |
| (4) vs (1)  3079.209     10     .00000   355.481   10 10884     .00000 |
| (4) vs (2)  2838.866      7     .00000   462.825    7 10884     .00000 |
| (4) vs (3)   221.560      3     .00000    74.534    3 10884     .00000 |
+----------------------------------------------------------------------------+
REGR;PANEL. Could not invert VC matrix for Hausman test.

            +------------------------------------------------------+
            | Random Effects Model: v(i,t) = e(i,t) + u(i)     |
            | Estimates:  Var[e]              =   .658696D+02  |
            |             Var[u]              =   .489455D+01  |
            |             Corr[v(i,t),v(i,s)] =   .069167      |
            | Lagrange Multiplier Test vs. Model (3) = 6971.10 |
            | ( 1 df, prob value =  .000000)                   |
            | (High values of LM favor FEM/REM over CR model.) |
            | Fixed vs. Random Effects (Hausman)     =     .23 |
            | ( 7 df, prob value = 1.000000)                   |
            | (High (low) values of H favor FEM (REM).)        |
            | Reestimated using GLS coefficients:              |
            | Estimates:  Var[e]              =   .663837D+02  |
            |             Var[u]              =   .499445D+01  |
            |             Sum of Squares          .729365D+06  |
            |             R-squared               .233117D+00  |
            +------------------------------------------------------+
+---------+--------------+-----------------+---------+----------+------------+
|Variable | Coefficient | Standard Error |b/St.Er.|P[|Z|>z] | Mean of X |
+---------+--------------+-----------------+---------+----------+------------+
 X2        .2341713422      .71596797E-01    3.271   .0011   3.8895953
 X3        .3703833036      .94402278E-01    3.923   .0001   4.2207458
 X4       -.1090676626      .73213889E-01   -1.490   .1363   3.9716586
 X7        .6669200976      .60069733E-01   11.102   .0000   3.7239903
 X13       1.387746607      .97011341E-01   14.305   .0000   2.2173183
 X19       4.937585087      .10343032       47.738   .0000   .86701895E-01
 X20       1.136524709      .11289247       10.067   .0000   .42022957E-01
 Constant  44.62217113      1.1804686       37.800   .0000

--> REGRESS;Lhs=X22
    ;Rhs=X2,X3,X4,X7,X13,X19,X20
    ;Str=X23
    ;Panel
     ;Output=2
    ;Wts=X16
    ;Fixed $
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+----------------------------------------------------------------------------+
| OLS Without Group Dummy Variables                                     |
| Ordinary    least squares regression    Weighting variable = X16      |
| Dep. var. = X22      Mean=   52.55493863    , S.D.=   9.343603189     |
| Model size: Observations =   10895, Parameters =   8, Deg.Fr.=  10887 |
| Residuals:  Sum of squares= 731652.8662    , Std.Dev.=        8.19782 |
| Fit:        R-squared=  .230712, Adjusted R-squared =          .23022 |
| Model test: F[  7,  10887] =  466.44,    Prob value =          .00000 |
| Diagnostic: Log-L = -38376.9800, Restricted(b=0) Log-L =  -39805.8044 |
|             LogAmemiyaPrCrt.=    4.208, Akaike Info. Crt.=      7.046 |
| Panel Data Analysis of X22        [ONE way]                           |
|           Unconditional ANOVA (No regressors)                         |
| Source      Variation        Deg. Free.     Mean Square               |
| Between       20751.0                3.         6917.00               |
| Residual      930327.            10891.         85.4216               |
| Total         951078.            10894.         87.3029               |
+----------------------------------------------------------------------------+
+---------+--------------+-----------------+---------+----------+------------+
|Variable | Coefficient | Standard Error |b/St.Er.|P[|Z|>z] | Mean of X |
+---------+--------------+-----------------+---------+----------+------------+
 X2        .2150986215      .72295926E-01    2.975   .0029   3.8895953
 X3        .3746630995      .95235646E-01    3.934   .0001   4.2207458
 X4       -.1516385665      .73563678E-01   -2.061   .0393   3.9716586
 X7        .7025006784      .59425942E-01   11.821   .0000   3.7239903
 X13       1.398697309      .97973819E-01   14.276   .0000   2.2173183
 X19       5.040076855      .10413200       48.401   .0000   .86701895E-01
 X20       1.035652953      .11377009        9.103   .0000   .42022957E-01
 Constant  44.54122268      .41506161      107.312   .0000

+----------------------------------------------------------------------------+
| Least Squares with Group Dummy Variables                              |
| Ordinary    least squares regression    Weighting variable = X16      |
| Dep. var. = X22      Mean=   52.55493863    , S.D.=   9.343603189     |
| Model size: Observations =   10895, Parameters =  11, Deg.Fr.=  10884 |
| Residuals:  Sum of squares= 716924.2581    , Std.Dev.=        8.11601 |
| Fit:        R-squared=  .246198, Adjusted R-squared =          .24551 |
| Model test: F[ 10,  10884] =  355.48,    Prob value =          .00000 |
| Diagnostic: Log-L = -38266.1998, Restricted(b=0) Log-L =  -39805.8044 |
|             LogAmemiyaPrCrt.=    4.189, Akaike Info. Crt.=      7.027 |
| Estd. Autocorrelation of e(i,t)    -.000540                           |
+----------------------------------------------------------------------------+
+---------+--------------+-----------------+---------+----------+------------+
|Variable | Coefficient | Standard Error |b/St.Er.|P[|Z|>z] | Mean of X |
+---------+--------------+-----------------+---------+----------+------------+
 X2        .2342486655      .71596894E-01    3.272   .0011   3.8895953
 X3        .3704126069      .94402933E-01    3.924   .0001   4.2207458
 X4       -.1089542352      .73215840E-01   -1.488   .1367   3.9716586
 X7        .6668605394      .60076332E-01   11.100   .0000   3.7239903
 X13       1.387686017      .97011428E-01   14.304   .0000   2.2173183
 X19       4.937094032      .10343209       47.733   .0000   .86701895E-01
 X20       1.136968803      .11289363       10.071   .0000   .42022957E-01

        Estimated Fixed Effects
        Group       Coefficient       Standard Error       t-ratio
            1          45.84312               .42968     106.69106
            2          45.48305               .44005     103.35884
            3          43.06207               .42588     101.11422
            4          44.10279               .44472      99.16970
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+----------------------------------------------------------------------------+
|                Test Statistics for the Classical Model                 |
|                                                                        |
|        Model            Log-Likelihood    Sum of Squares    R-squared  |
| (1)  Constant term only   -39805.80420   .9510780165D+06     .0000000  |
| (2)  Group effects only   -39685.63264   .9303270109D+06     .0218184  |
| (3)  X - variables only   -38376.97986   .7316528662D+06     .2307120  |
| (4)  X and group effects  -38266.19962   .7169242581D+06     .2461983  |
|                                                                        |
|                                Hypothesis Tests                        |
|               Likelihood Ratio Test                F Tests             |
|          Chi-squared   d.f.  Prob.         F    num. denom. Prob value |
| (2) vs (1)   240.343      3     .00000    80.975    3 10891     .00000 |
| (3) vs (1)  2857.649      7     .00000   466.435    7 10887     .00000 |
| (4) vs (1)  3079.209     10     .00000   355.481   10 10884     .00000 |
| (4) vs (2)  2838.866      7     .00000   462.825    7 10884     .00000 |
| (4) vs (3)   221.560      3     .00000    74.534    3 10884     .00000 |
+----------------------------------------------------------------------------+
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Demystifying Parametric Analyses: Illustrating
Canonical Correlation Analysis as the

Multivariate General Linear Model

Robin K. Henson, University of Southern Mississippi
A review of the research literature suggests that teachers need to provide students with engaging problems, facilitate
their discovery of analysis methods, and encourage classroom discussion and presentation of their approaches to
solving problems.  The present article illustrates how canonical correlation analysis can be employed to implement
all the parametric tests that canonical methods subsume as special cases, including multiple regression.  The point is
heuristic: all analyses are correlational, all apply weights to measured variables to create synthetic variables, and all
yield effect sizes analogous to r2.  Knowledge of such relationships helps inform researcher judgement of analysis
selection and use.  

n one of his seminal contributions, the late Jacob
“Jack” Cohen (1968) demonstrated that multiple
regression subsumes all the univariate parametric

methods as special cases, and thus provides a
univariate general linear model (GLM) that can be
employed in all univariate analyses.  At about the
same time, researchers increasingly also came to
realize that ANOVA was being overused, and in many
cases used when other methods would have been more
useful.  One source of ANOVA overuse was that too
many researchers erroneously associated ANOVA as an
analysis with the ability to make causal statements
when using experimental research designs; however, it
is the design, and not the analysis that leads to the
ability to make definitive causal statements!

As Humphreys (1978) explained this
phenomonon:

The basic fact is that a measure of
individual differences is not an independent
variable [in an experimental design], and it
does not become one by categorizing the
scores and treating the categories as if they
defined a variable under experimental
control in a factorially designed analysis of
variance. (p. 873, emphasis added)

Similarly, Humphreys and Fleishman (1974) noted
that categorizing variables in a nonexperimental design
using an ANOVA analysis “not infrequently produces
in both the investigator and his audience the illusion
that he has experimental control over the independent
variable.  Nothing could be more wrong” (p. 468).

Furthermore, as Cliff (1987) noted, the practice of
discarding variance on intervally-scaled predictor
variables in order to perform ANOVA-type analyses
creates problems in almost all cases:

Such divisions are not infallible; think of
the persons near the borders.  Some who
should be highs are actually classified as
lows, and vice versa.  In addition, the
“barely highs” are classified the same as the
“very highs,” even though they are
different.  Therefore, reducing a reliable

variable to a dichotomy makes the variable
more unreliable, not less. (p. 130,
emphasis added)

These various realizations have led to less frequent use
of ANOVA methods, and to more frequent use of
general linear model approaches such as regression (cf.
Edgington, 1974; Elmore & Woehlke, 1988; Goodwin
& Goodwin, 1985; Willson, 1980).

Since all analyses are correlational, and it is the
design and not the analysis that yields the capacity to
make causal inferences, the practice of converting
intervally-scaled predictor variables to nominal scale so
that ANOVA and other OVAs (i.e., ANCOVA,
MANOVA, MANCOVA) can be conducted is
inexcusable in many cases.

However, canonical correlation analysis, and not
regression analysis, is the most general case of the
general linear model (Baggaley, 1981; Fornell, 1978;
Thompson, 1991, 1998).  [Structural equation
modeling (SEM) represents an even broader general
linear model, but SEM is somewhat different in that
this analysis usually also incorporates measurement
error estimation as part of the analysis (cf. Bagozzi,
Fornell, & Larcker, 1981; Fan, 1996, 1997).]  In an
important article, Knapp (1978) demonstrated this in
some detail and concluded that “virtually all of the
commonly encountered parametric tests of significance
can be treated as special cases of canonical correlation
analysis” (p. 410).

The present article will illustrate how canonical
correlation analysis can be employed to implement all
the parametric tests that canonical methods subsume as
special cases.  The point is not that all research ought
to be conducted with canonical analyses, rather the
point is heuristic: all analyses are correlational, all
analyses apply weights to measured variables to create
synthetic variables that become the analytic focus, and
all yield effect sizes analogous to r2 that are important
to interpret.  For example the R2 obtained in a
multiple regression, the eta2 obtained from an
ANOVA, and the squared canonical correlation
coefficient obtained from a canonical correlation

I
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analysis all describe the variance-accounted-for between
two variables and/or sets of variables.  Ultimately,
these statistics are directly analogous to the squared
Pearson correlation.

Understanding general linear model principles aids
in realizing that parametric analyses are all
fundamentally related.  Individual methods, such as
ANOVA or t-tests, can then be viewed from a global
perspective which will, hopefully, facilitate thoughtful
researcher judgment in selecting analyses as opposed to
employing “lock-step” decision strategies that limit
the utility of analyses.

The Basics of Canonical
Correlation Analysis

While a comprehensive discussion of CCA is
beyond a scope of the present article, the reader is
referred to Thompson (1991) for an accessible and user-
friendly treatment of CCA.  Furthermore, neither the
analytic derivations of CCA nor the equivalent
derivations of the linear models for the various
analyses will be visited here.  Since the purpose of
this article is to demonstrate equivalence of models
through obtained results, the reader is referred to Knapp
(1978) for mathematical demonstration of the linear
models.

The theory of canonical correlation analysis
(CCA) has been with us for considerable time
(Hotelling, 1935), but did not come into practical use
until the onset of computerization (Krus, Reynolds, &
Krus, 1976).  In canonical analysis, the variables are
considered to be members of two or more (in practice,
almost always two) variable sets (e.g., pretest and
posttest scores, aptitude and achievement scores) –
otherwise we would analyze the data with factor
analysis so as to consider simultaneously all the
relationships, but without considering the existence of
variable sets.  Each set will include more than one
variable, otherwise we generally would use a Pearson   r  
or regression analysis.  As will be shown later, these
analyses are essentially the same thing anyway!

A CCA will yield many useful statistics, the
most recognized of which is the canonical correlation
(Rc).  The canonical correlation describes the
relationship between two synthetic variables that have
been modeled from their respective variable sets by
applying weights to the measured variables.  A
canonical correlation will be produced for each function
(i.e., for each set of standardized canonical function
coefficients and respective measured variables).  The
number of functions, each of which will be perfectly
uncorrelated with the others, equals the number of
variables in the smaller of the variable sets.  The
canonical correlation can be squared to yield a variance-
accounted-for effect size (Rc

2), or the percentage of
variance explainable in the criterion variable set
predictable with knowledge of the variance in the
predictor set.

One advantage of CCA, and other multivariate
methods, lies in its simultaneous examination of the
variables of interest, thus reducing risk of
experimentwise Type I error (Fish, 1988; Henson, in
press; Thompson, in press).  A second, and perhaps
often overlooked, advantage is the flexibility of the
analysis in looking at various research problems.  One
example of this versatility can be found in a
measurement study involving multivariate criterion-
related score validity (Sexton, McLean, Boyd,
Thompson, & McCormick, 1988).  Thus, CCA can
be used in either substantive or measurement inquiries.

Canonical Correlation Analysis as
the General Linear Model

An heuristic data set for 12 elementary, middle,
and high school students will be used to illustrate that
CCA can conduct the other parametric methods that it
subsumes, both univariate and multivariate alike.
CCA will be used to perform a t-test, Pearson
correlation, multiple regression, ANOVA, MANOVA,
and descriptive discriminant analysis.  Table 1 lists
heuristic data on four intervally scaled variables related
to motivational and personality issues: attributions of
effort (EFFORT), attributions of ability (ABILIT),
locus of control (LOCUS), and degree of extroversion
(EXTROV). Also included are grouping data indicating
some experimental treatment (TREAT) and whether
students are in elementary, middle, or high school
(GRADE).  The reader will also notice five planned
contrast variables which will be described later.

Analyses will be run using the SPSS (v9.0)
statistics package.  The canonical correlation macro
(CANCORR) is a new addition to this version of
SPSS but it limits analyses to two sets of variables of
equal size.  Since several examples used here include
analyses on variable sets of differing size, the
canonical macro was not used.  There is also a General
Linear Model menu which can be used to run a variety
of analyses.  However, for the sake of consistency and
clarity, a uniform command syntax will be used in the
present article to illustrate the relationship between
canonical correlation the other parametric analyses.
This command syntax is included in the Appendix.
Note that CCA is conducted here using the MANOVA
command (again, suggesting that these analyses are be
related).  Using Table 1 variable names, the SPSS
commands for CCA are:

    MANOVA
LOCUS EXTROV WITH EFFORT ABILIT
/PRINT=SIGNIF (MULTIV EIGEN DIMENR)
/DISCRIM=(STAN ESTIM COR ALPHA(.99)).

The SAS statistical software has a more direct
command for CCA: PROC CANCORR.  An example
of SAS syntax used to perform a similar heuristic
illustration can be found in Campbell and Taylor
(1996).      
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Table 1. Heuristic Data (n=12) for Canonical Correlation Illustration

ID EFFORT ABILIT LOCUS EXTROV GRADE TREAT CGR1 CGR2 CTREAT CTGR1 CTGR2
1 10 12 18 15 1 1 -1 -1  -1  1  1
2 15 14 19 16 1 1 -1 -1  -1  1  1
3 17 18 18 13 1 2 -1 -1   1 -1 -1
4 14 13 15 10 1 2 -1 -1   1 -1 -1
5 09 15 14 04 2 1  0  2  -1  0 -2
6 06 19 16 04 2 1  0  2  -1  0 -2
7 06 20 12 07 2 2  0  2   1  0  2
8 07 19 16 03 2 2  0  2   1  0  2
9 18 11 06 18 3 1  1 -1  -1 -1  1

10 17 10 04 13 3 1  1 -1  -1 -1  1
11 12 09 10 12 3 2  1 -1   1  1 -1
12 14 13 09 14 3 2  1 -1   1  1 -1

Conducting Pearson Correlation
with Canonical Correlation

When examining relationships between two
variables, a Pearson correlation (r) is often invoked.
The reader should immediately note conceptual
similarities between a Pearson r and canonical
analysis, even before examining the results from the
SPSS analysis.  Both investigate relationships
between variables, only in the canonical case the
measured variables of interest occur within
multivariate sets.

A Pearson r was computed for EFFORT and
ABILIT.  Table 2 reports the obtained results, r = -
.6150, p = .033.  Table 2 also reports the CCA
results, including the canonical correlation (Rc),
squared canonical correlation (Rc

2), and Wilks lambda
(λ) .  Wilks lambda, like Rc

2 is a variance-accounted-
for type statistic.  However, Wilks lambda indicates
the variance not accounted for in the canonical
correlation, modeled by (1 – Rc

2).  It is used for testing
the statistical significance of Rc.  As the magnitude of
_ decreases (ranging from 0 to 1), the effect size (Rc

2)
increases as does the likelihood of obtaining statistical
significance.

For these variables, the CCA computed a squared
canonical correlation coefficient of .378.  The simple
square root transformation of Rc

2 = .378 gives us R c =
.6148.  The Pearson r and canonical correlation values
are identical, save for rounding error and the fact that a
canonical correlation cannot be negative.  This is
because the weights that are used in CCA scale the
variables in the same direction, as such R c will always
range from 0 to 1. The p values are identical.

Herein lies the most fundamental of general linear
model principles: all analyses are correlational.  The
canonical correlation is nothing more than a bivariate r
between the synthetic variables created in CCA after
the application of weights.  As Thompson (1991)
noted, “This conceptualization is appealing, because
most researchers feel very comfortable thinking in
terms of the familiar bivariate correlation coefficient”
(p. 81).

Since the present heuristic CCA only had one
variable in each set, the synthetic variables reflected
the same relationship as did a Pearson r between the
variables without the application of weights.  This
result should not be surprising, given the fact that
multiplicative constants do not affect the value of r.
The only effect the weights had in this case was to
scale the variables in the same direction, thus yielding
a positive value for Rc.

Conducting Multiple Regression with
Canonical Correlation

As Cohen (1968) indicated, multiple regression
subsumes all other univariate parametric analyses as
special cases.  Therefore, there is a directly analogous
relationship between Pearson r and multiple
regression.  Since CCA subsumes Pearson r, it should
be apparent that it will do the same for multiple
regression.

A multiple regression analysis was conducted with
EFFORT predicted by LOCUS and EXTROV.  SPSS
results of the regression and canonical analyses are
found in Table 3.  Again, all parallel statistics match
within rounding error, with the exception of the
weights.  However, the difference between the weights
is arbitrary at this point.  Beta (B) weights and
standardized function coefficients are easily converted
into each other using the following formulas
(Thompson, in press):

B / Rc = Function Coefficient
Function Coefficient * R = B
For example, LOCUS had a B weight of -

.171156.  Using R c = .828 from the CCA, we find
that the standardized function coefficient matches,
within rounding error, that reported in Table 3 (-
.171156 / .828 = -.2067).  Since we know from the
obtained results that the regression multiple R  equals
the canonical R c, we can use the conversion formulas
to find canonical function coefficients using only a
regression analysis and B weights using only CCA.
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Table 2. Conducting Pearson Correlation with
Canonical (EFFORT by ABILITY)

Pearson r Analysis Canonical Analysis
r -.615 R c .615
r2 .378 Rc

2 .378
lambda .622

p .033 p .033
Note. Rc cannot be negative.

Also of note here is the relationship between a
Pearson r, the obtained multiple R  from the
regression, and the Rc from the canonical analysis.  A
regression analysis applies weights to observed
(manifest) predictor variables to create a synthetic
variable called predicted Y (or sometimes YHAT), which
is a linear combination of the predictor variables.  The
multiple R  from the regression analysis is nothing
more than a Pearson correlation between predicted Y
and the observed dependent measure, EFFORT in this
case (R predicted Y, EFFORT).  Furthermore, as shown
above, the canonical correlation (Rc) also is a Pearson
r between two synthetic variables.  In this case,
however, only the predictor set (LOCUS and
EXTROV) was linearly combined via the application
of weights.  While technically the dependent measure
(EFFORT) also was transformed by a multiplicative
weight, since only one variable existed, the weight
was +1 and the EFFORT variable did not change.  As
such, the CCA and the multiple regression yielded
identical results, both of which are based on a simple
Pearson r between two variables (either manifest or
synthetic)!  

Conducting t-test and Point-biserial
Correlation with Canonical Correlation
One of the most basic of statistical analyses is the

t-test which is used to compare means between groups.
Here a t-test was used to evaluate if the treatment and
control groups (TREAT) differed on the EFFORT
variable.  Results reported in Table 4 indicate that the
means of the groups were not statistically significantly
different, t = .310, p = .760.  A canonical analysis on
the same variables yielded F(1, 10) = .100, p = .760.
Note that the p calculated values are identical between
analyses.  The test statistics (t and F) are different only
in metric.  In fact, the F distribution consists of
squared values of the t distribution.  Squaring t = .310
produces .096 which does match the F value.  The
slight difference in the values is arbitrary and solely
due to rounding error by the statistics program.

A point-biserial correlation was also conducted to
illustrate the correlational nature of even the t-test.  In
essence, a t-test is can be conceptualized as a
correlation between one dichotomous variable
(TREAT) which indicates group membership and one
continuous variable (EFFORT) as the dependent

Table 3. Conducting Multiple Regression with
Canonical (EFFORT by LOCUS and ABILIT)

Regression Analysis Canonical Analysis
R .828 R c .828
R2 .685 Rc

2 .685
lambda .315

F(2, 9) 9.797 F(2, 9) 9.797
p .006 p .006

Beta Weights Function Coefficients
LOCUS -.171 LOCUS -.207

EXTROV .767 EXTROV .926

measure.  The point-biserial correlation is a
generalization of the Pearson r illustrated above that
allows for a dichotomy in one of the variables.  Again
looking at Table 4, we see that the p values are
identical across the t-test, point-biserial, and canonical
analyses.  Furthermore, the point-biserial correlation
matches the magnitude of the canonical correlation
within rounding error.  Remember that a canonical
correlation cannot be negative as discussed above.  The
point is again made here that all analyses are
correlation in nature, even those which utilize
dichotomous variables.

Conducting Factorial ANOVA with
Canonical Correlation

The SPSS syntax file (see Appendix) includes
commands to compute the five orthogonal contrast
variables reported in the Table 1 data.  Planned
contrasts can be used with ANOVA methods to test
specific, theory-driven hypotheses as against omnibus
hypotheses (Thompson, 1994).  One advantage of
using planned contrasts is the ease of pinpointing
statistically significant effects without having to
conduct post-hoc tests which include Bonferroni-type
corrections for experimentwise error.  It is important
to note that the contrasts will yield the same overall
effect [i.e., Sum of Squares (SS) explained] as the
omnibus test.  They are necessary here to show that
CCA can conduct ANOVA.

In the present analysis, a 3 X 2 factorial ANOVA
was conducted with TREAT and GRADE as
independent variables and EFFORT as the dependent
variable.  For the CCA, the contrast variables from
Table 1 were used.  The total number of orthogonal
contrasts that can be created equals the degrees of
freedom for each main effect.  The GRADE main effect
has two degrees of freedom and is represented by
CGR1 and CGR2.  The TREAT main effect is
represented by CTREAT with one degree of freedom.
CTRGR1 and CTRGR2 are simply cross products of
the other main effects and test the GRADE X TREAT
interaction effects.  Table 5 presents results for the
ANOVA: GRADE, F = 19.367; TREAT, F = .510;
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Table 4 . Conducting t-test and Point-biserial
Correlation with Canonical (EFFORT by TREAT)

t-test Canonical Point-biserial
t(10) .314 F(1, 10) .100

p .760 p .760 p .760
M(TREAT1) 12.500
SD(TREAT1) 4.848 R c .100 r -.100
M(TREAT2) 11.667 Rc

2 .010 r2 .010
SD(TREAT2) 4.320 lambda .990
Note.  Rc cannot be negative.

GRADE X TREAT, F = 3.449.  Note that the effect
size (r2) for the error term was .1323.

Obtaining comparable results with CCA requires
us to take several steps.  The first step involves
conducting canonical analyses in four separate designs,
using EFFORT as the dependent measure and the
contrasts as independent variables.   Design 1 included
all planned contrasts, CGR1, CGR2, CTREAT,
CTRGR1, and CTRGR2, to test the total effect (SOS
explained).  Design 2 used CTREAT, CTRGR1, and
CTRGR2 to jointly test the TREAT and interaction
effects.  Design 3 used CGR1, CGR2, CTRGR1, and
CTRGR2 to jointly test the GRADE and interaction
effects.  The final CCA, Design 4, used CGR1,
CGR2, and CTREAT to jointly test the GRADE and
TREAT effects.  Table 6 displays the Wilks’ lambda
values for each design from the first step.  Remember
that λ  is something of a “reverse” effect size and will
equal the effect for the error term.  A quick comparison
of λ  for the total effect (Table 6) with the error effect
size (Table 5) confirms this relationship between the
statistics.

After canonical lambdas have been attained, we
must use them to determine the omnibus ANOVA
lambdas.  This was done by dividing the Design 1
total effect (lambda) by the lambdas of the other
designs.  For example, to find the omnibus lambda for
the GRADE main effect the total lambda (.11507) was
divided by the Design 2 lambda (.85793), which
reflects the joint effect of the contrast variables for the
TREAT main effect and the GRADE X TREAT
interaction effect.  This process “removes” the effects
of the other hypotheses, leaving the omnibus lambda
for the GRADE main effect to be .13412516 (.11507 /
.85793 = .13412516 = λ).  The same process was used
to find the other ANOVA lambdas with results
reported in Table 6.

One final step remained.  ANOVA lambdas were
converted into ANOVA F statistics using the
following formula: [(1 – λ)/λ]*(dferror / df effect) = F.

To illustrate, the F value for the GRADE main
effect was modeled by [(1 - .13413) / .13413] * (6 / 2)
= 19.36636.  Table 6 also reports transformations for
both main effects and the interaction.  Note that the F
statistics obtained by the canonical process match

Table 5.  3 X 2 Factorial ANOVA
(EFFORT by GRADE and TREAT)

Source SS df MS F p eta2

GRADE 158.167 2 79.083 19.367 .002 .743
TREAT 2.083 1 2.083 0.510 .502 .010
G x T 28.167 2 14.083 3.449 .101 .132
Error 24.500 6
Total 212.917 11

those obtained by the factorial ANOVA (see Table 5),
within rounding error of course.

It should also be noted that the equivalence of
ANOVA and CCA can be demonstrated with dummy
codes that represent group membership in the
independent variable (see Fan, 1978).  However, the
predictors would be correlated in this case.  The use of
orthogonal contrast is useful here to maintain the
factorial structure of the groups.

Conducting Factorial MANOVA
with Canonical Correlation

Since SPSS can use the MANOVA command to
perform CCA, it would seem that the two are related.
To illustrate the relationship, a 3 X 2 factorial
MANOVA was computed with EFFORT and ABILIT
as dependent variables and GRADE and TREAT as
independent measures.  Results from this analysis are
found in Table 7.  Since MANOVA is a multivariate
method, Wilks lambdas are reported by SPSS and are
used to test statistical significance of the F values.    

The comparable canonical analysis was
performed using the same process as with the ANOVA
above.  Four CCA designs using the contrast variables
were run with canonical lambdas reported in Table 8.
The subsequent conversion of these values to
MANOVA lambdas is also found in Table 8.  The
reader will note the equivalence of the MANOVA _s in
Table 7 with those obtained through the canonical
analysis in Table 8.  The final conversion to F values
was not necessary here since the MANOVA uses the
λ value to calculate F statistics, unlike the SOS value
used in ANOVA.  However, the same full model F-
test formula used in the ANOVA section can be used
to find the F statistics in this case.  

Conducting Discriminant Analysis
with Canonical Correlation

Discriminant analysis is a multivariate method
that can either be used predictively to classify persons
into groups or descriptively where variables identify
latent structures among groups (Huberty, 1994).  The
descriptive discriminant analysis (DDA) case is
especially useful as the preferred substitute for a one-
way MANOVA or as a post hoc analysis to multi-way
MANOVA analyses.
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Table 6. Conduct ANOVA with Canonical Analysis
            (EFFORT by Contrasts)

Step One: Canonical Analyses on Four Designs
Design Independent Variables lambda

1 CGR1, CGR2, CTREAT
    CTGR1, CTGR2

.11507

2 CTREAT, CTGR1, CTGR2 .85793
3 CGR1, CGR2, CTGR1, CTGR2 .12485
4 CGR1, CGR2, CTREAT .24736

Step Two: Conversion of Canonical Lambdas to
                     ANOVA Lambdas

ANOVA
Effect Designs Transformation

ANOVA
Lambda

GRADE 1 / 2 .11507/.85793 .13412516
TREAT 1 / 3 .11507/.12485 .92166600
G x T 1 / 4 .11507/.24736 .46519243
Step Three: Conversion of ANOVA Lambdas to
                    F-ratio

Source Transformation F-ratio
GRADE [(1-.13413)/.13413]*(6/2) 19.36636
TREAT [(1-.92167)/.92167]*(6/1) 0.50992
G x T [(1-.46519)/.46519]*(6/2) 3.44898

To demonstrate the DDA and CCA relationship, a
descriptive discriminant analysis was conducted with
TREAT as the nominally scaled predictor variable and
EFFORT and ABILIT as criterion variables.  Table 9
reports a statistically non-significant result χ2(2, 9) =
.648, p = .723.  The canonical analysis was conducted
using the planned contrast variable CTREAT as the
predictor.  Results of the CCA are also reported in
Table 9.  The reader will note that the analyses yield
identical results.  One arbitrary difference is in the
reporting of a χ2 statistic for the discriminant analysis
as opposed to the CCA F value.  As with the t and F
distributions described above, the difference is arbitrary
since the χ2 and F statistics represent the same value
expressed in a different metric.  The χ2 statistic can be
calculated by multiplying the F value by (j * k), where
j is the number of variables in the predictor set and k
is the number of variables in the criterion set.  In this
case, F = .33602, so χ2 = (1 * 2).33602 = .67204.
This transformation approximates the χ2 reported in
Table 9 with the difference due to rounding.

Table 9. Conducting Multiple Regression with
Canonical (EFFORT by LOCUS and ABILIT)

Discriminant Analysis Canonical Analysis
R c .264 R c .264
Rc

2 .070 Rc
2 .070

lambda .931 lambda .931
.648 F .336

df 2, 9 df 2, 9
p .723 p .723

Table 7.   3 X 2 Factorial ANOVA
(EFFORT and ABILIT by GRADE and TREAT)
Source lambda df F p

GRADE .05061 4, 10 8.61299 .003
TREAT .61798 2,  5 1.54541 .300
G x T .44653 4, 10 1.24122 .354

Table 8.  Conduct MANOVA with Canonical
   Analysis (EFFORT and ABILIT by Contrasts)
Step One: Canonical Analyses on Four Designs
Design Independent Variables lambda

1 CGR1, CGR2, CTREAT
    CTGR1, CTGR2

.03184

2 CTREAT, CTGR1, CTGR2 .62924
3 CGR1, CGR2, CTGR1, CTGR2 .05153
4 CGR1, CGR2, CTREAT .07132

Step Two: Conversion of Canonical Lambdas to
                     MANOVA Lambdas

ANOVA
Effect Designs Transformation

ANOVA
Lambda

GRADE 1 / 2 .03184/.62924 .05060072
TREAT 1 / 3 .03184/.05153 .61789249
G x T 1 / 4 .03184/.07132 .44643859

Conclusion
The purpose of the present article has been to

illustrate that canonical correlation analysis represents
the multivariate parametric general linear model.  As
such, CCA can be used to conduct the univariate and
multivariate analyses that CCA subsumes, including
multiple regression. The point is heuristic and not in-
tended to suggest that all analyses should be conduct-
ed with CCA.  In fact, it is quite clear in the ANOVA
and MANOVA examples that CCA, at least as
reported by SPSS, is the long way to the same results.
However, CCA would be superior to ANOVA and
MANOVA when the independent variables are
intervally scaled, thus eliminating the need to discard
variance.  

Knowing that there is a general linear model and
understanding that all parametric analyses are
intricately related can be of great educational value to
both students and teachers of quantitative methods as
well as practicing researchers.  Knowing these
relationships facilitates understanding of commonalties
and differences among all the parametric methods and
serves to inform researcher judgement concerning
analysis selection and use.

The author would like to graciously thank Bruce
Thompson for a review of an earlier draft of the
manuscript.
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APPENDIX

SPSS Command Syntax for Canonical Demonstration

TITLE ' Canonical correlation
        demonstration '.
TITLE ' Robin K. Henson '.
COMMENT Heuristic data for 12 cases
COMMENT EFFORT - attributions of
              effort
COMMENT ABILIT - attributions of
             ability
COMMENT LOCUS - external vs internal
            locus of control
COMMENT EXTROV - degree of
          extroversion scale
COMMENT GRADE - elementary(1),
         middle(2), high(3) school
COMMENT TREAT - treat(1),
         control(2) groups.
SET BLANKS=SYSMIS UNDEFINED=WARN
PRINTBACK LISTING.
DATA LIST
  FILE='c:\ccaasglm.txt'
  FIXED RECORDS=1
  /ID 1-2 EFFORT 4-5 ABILIT 7-8
  LOCUS 10-11 EXTROV 13-14
  GRADE 16 TREAT 18.
EXECUTE.
COMMENT Show that cca can do Pearson r.
CORRELATIONS
 /VARIABLES=EFFORT ABILIT
 /PRINT=TWOTAIL NOSIG
 /MISSING=PAIRWISE .
MANOVA
 EFFORT WITH ABILIT
 /PRINT=SIGNIF (MULTIV EIGEN DIMENR)
 /DISCRIM=(STAN ESTIM COR).
COMMENT Show that cca can do
      multiple regression.
REGRESSION
 /MISSING LISTWISE
 /STATISTICS COEFF OUTS R ANOVA
 /CRITERIA=PIN(.05) POUT(.10)
 /NOORIGIN
 /DEPENDENT EFFORT
 /METHOD=ENTER LOCUS EXTROV  .
MANOVA
 LOCUS EXTROV WITH EFFORT
 /PRINT=SIGNIF (MULTIV EIGEN DIMENR)
 /DISCRIM=(STAN ESTIM COR).
COMMENT Show that cca can do t-test
   and point biserial correlation.
T-TEST
 GROUPS=TREAT(1 2)
 /MISSING=ANALYSIS
 /VARIABLES=EFFORT
 /CRITERIA=CIN(.95) .

MANOVA
 TREAT WITH EFFORT
 /PRINT=SIGNIF (MULTIV EIGEN DIMENR)
 /DISCRIM=(STAN ESTIM COR).
COMMENT Show cca can do point-biserial
    which is a generalization of r.
CORRELATIONS
 /VARIABLES = treat effort
 /PRINT=TWOTAIL NOSIG
 /MISSING=PAIRWISE .
COMMENT Show that cca can do
      factorial ANOVA.
COMMENT Compute contrast variables
      to do cca.
IF (GRADE = 1) CGR1 = -1.
IF (GRADE = 2) CGR1 = 0.
IF (GRADE = 3) CGR1 = 1.
COMMENT Tests equality of the
   means of elementary(4) vs
    high school(4) students.
EXECUTE.
IF (CGR1 = -1) CGR2 = -1.
IF (CGR1 = 0) CGR2 = 2.
IF (CGR1 = 1) CGR2 = -1.
EXECUTE.
COMMENT Tests equality of means
    of middle(4) vs
    elementary high school(8) students.
IF (TREAT = 1) CTREAT = -1.
IF (TREAT = 2) CTREAT = 1.
EXECUTE.
COMMENT Tests equality of means of
   treatment (6) vs control groups (6).
COMPUTE CTRGR1 = CGR1 * CTREAT.
COMPUTE CTRGR2 = CGR2 * CTREAT.
EXECUTE.
COMMENT Tests treatment by grade
    interaction effects.
COMMENT Show contrast variables
     are orthogonal.
CORRELATIONS
 /VARIABLES=CGR1 CGR2 CTREAT
           CTRGR1 CTRGR2
  /PRINT=TWOTAIL SIG
  /MISSING=PAIRWISE .
COMMENT Step one: run factorial ANOVA
       and cca on constrast variables.
ANOVA
  VARIABLES=EFFORT
  BY GRADE(1 3) TREAT(1 2)
  /MAXORDERS ALL
  /METHOD UNIQUE
  /FORMAT LABELS .
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MANOVA
 CGR1 CGR2 CTREAT CTRGR1 CTRGR2
   WITH EFFORT
 /PRINT=SIGNIF (MULTIV EIGEN DIMENR)
 /DISCRIM=(STAN ESTIM COR).
MANOVA
 CTREAT CTRGR1 CTRGR2 WITH EFFORT
 /PRINT=SIGNIF (MULTIV EIGEN DIMENR)
 /DISCRIM=(STAN ESTIM COR).
MANOVA
 CGR1 CGR2 CTRGR1 CTRGR2 WITH EFFORT
 /PRINT=SIGNIF (MULTIV EIGEN DIMENR)
 /DISCRIM=(STAN ESTIM COR).
MANOVA
 CGR1 CGR2 CTREAT WITH EFFORT
 /PRINT=SIGNIF (MULTIV EIGEN DIMENR)
 /DISCRIM=(STAN ESTIM COR).
COMMENT Show cca can do MANOVA.
MANOVA
  EFFORT ABILIT BY GRADE(1 3)
        TREAT(1 2)
  /PRINT SIGNIF(MULT UNIV )
  /NOPRINT PARAM(ESTIM)
  /METHOD=UNIQUE
  /ERROR WITHIN+RESIDUAL
  /DESIGN  .
MANOVA
 CGR1 CGR2 CTREAT CTRGR1 CTRGR2
   WITH EFFORT ABILIT
 /PRINT=SIGNIF (MULTIV EIGEN DIMENR)
 /DISCRIM=(STAN ESTIM COR).

MANOVA
  CTREAT CTRGR1 CTRGR2
    WITH EFFORT ABILIT
  /PRINT=SIGNIF (MULTIV EIGEN DIMENR)
  /DISCRIM=(STAN ESTIM COR).
MANOVA
  CGR1 CGR2 CTRGR1 CTRGR2 WITH EFFORT
ABILIT
  /PRINT=SIGNIF (MULTIV EIGEN DIMENR)
  /DISCRIM=(STAN ESTIM COR).
MANOVA
  CGR1 CGR2 CTREAT WITH EFFORT ABILIT
  /PRINT=SIGNIF (MULTIV EIGEN DIMENR)
  /DISCRIM=(STAN ESTIM COR).
COMMENT Show cca can do
       discriminant analysis.
DISCRIMINANT
  /GROUPS=TREAT(1 2)
  /VARIABLES=EFFORT ABILIT
  /ANALYSIS ALL
  /PRIORS  EQUAL
  /CLASSIFY=NONMISSING POOLED .
MANOVA
  EFFORT ABILIT WITH CTREAT
  /PRINT=SIGNIF (MULTIV EIGEN DIMENR)
  /DISCRIM=(STAN ESTIM COR).
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The Use of Problem Solving Strategies
in Teaching Mathematics

Randall E. Schumacker, University of North Texas
T. Mark Beasley, St. John’s University, New York

A review of the research literature suggests that teachers need to provide students with engaging problems, facilitate
their discovery of analysis methods, and encourage classroom discussion and presentation of their approaches to
solving problems.  Two separate studies compared differences in mathematics test scores involving students
randomly assigned to experimental and control conditions using a causal-comparative design. The results from both
studies indicated that mathematics test scores were significantly higher for the groups of students who learned
problem solving strategies. Confidence intervals, effect sizes, and bootstrap estimates are reported.

umerous studies in mathematics education
have examined the factors that are essential for
learning, especially in the area  of problem

solving (Hudgins, 1977).  For example, according to
several cognitive based studies, meaningful learning is
reflective, constructive, and self-regulated (Bransford &
Vye, 1989; Davis & Maher, 1990; Hiebert et al.,
1996; Marzano, Brandt, & Hughes, 1988; Rickard,
1995; Wittrock, 1991).  Other studies have indicated
that specific transfer of knowledge paradigms exist for
the assessment of learning (Levine, 1975; Stolurow,
1966) and that contemporary research designs can be
useful to assess transfer of learning tasks (Cormier &
Hagman, 1987; Gick & Holyoak, 1987).  Brooks and
Dansereau (1987) have further identified four general
types of learning transfer: (a) content-to-content; (b)
skills-to-skills; (c) content-to-skills; and (d) skills-to-
content.  Snow (1989) conceptualized the learning
process to include concept formation, procedural skills,
learning strategies, self-regulated functions, and
motivational orientations.  Rosenshine, Meister, and
Chapman (1996) recently reviewed numerous
intervention studies and found overall that teaching
students cognitive strategies for generating questions
about the material improved their learning
comprehension and understanding.

Identifying the important information in a
problem and using that information to attempt a
solution is basic to successful problem solving.
Subsequent use of that information in a new problem
under different circumstances presents an even higher
level of problem solving skill.   Problem solving, in
fact, has been shown to involve at least three stages:
understanding the problem, solving the problem, and
answering the question (Charles, Lester, & O'Daffer,
1987; Whitener, 1989).

Palumbo (1990) further reviewed the relevant
issues in problem solving research, especially the
distinction between specific and generalized problem

solving which focuses on the strategy required to most
effectively solve a particular type of problem.  Early
work by Bloom and Broder (1950) has also indicated
the ways in which students provide solutions to their
problems: (a) gaining an understanding of the nature of
the problem; (b) obtaining an understanding of the
ideas contained in the problem: (c) attempting a
general approach to the problem (e.g., guessing,
working backwards, logical reasoning, looking for
patterns); (d) using an implementation approach (no
work shown, possibilities overlooked, strategy not
clear); and (e) having a positive attitude and motivation
toward solving the problem.  Consequently, effective
assessment of problem solving  ability appears to
require more than simply an examination of
right/wrong answers given by students (Szetela &
Nicol, 1992).  

A further review of the literature indicated that for
problem solving strategies to be effective in
mathematics they must be taught (Frederikson, 1984).
Rickard’s (1995) case study results revealed that a
teacher generally structures teaching around their own
problem solving goals and beliefs, and not necessarily
those specified in the curriculum.  These findings
indicated that we can not assume that a teacher has
taught the necessary strategies nor allowed students the
opportunity to explore and discuss their methods and
solutions to a problem.

Biehler and Snowman (1990) and Ormrod (1990)
have provided specific mathematics problem solving
strategies that teachers can use.  Their research
involving 9th and 10th grade public school children
enrolled in Algebra I classes indicated that students
who are aware of certain problem solving strategies are
more effective in working algebra problems.  Overall,
their findings further suggest that teachers who want
students to think critically must explicitly emphasize
problem solving, use varied examples, and verbalize
their methods and strategies, especially if they want

N
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students to generalize, i.e., transfer, what they have
learned to new and different problems.

Effective teaching, therefore, should include both
the teachers’ involvement in providing engaging
problems and strategies using various subject matter,
as well as, the teachers’ facilitation of students to
become more aware of their own metacognitive
strengths and weaknesses in problem solving.
Basically, in the teaching of problem solving
strategies, students should be provided an opportunity
to express their own strategies.  The problem solving
skills most commonly cited as being needed by
students include: identifying the problem;
distinguishing relevant from irrelevant information;
choosing main points; judging the credibility of
sources; making inferences from information given;
observing accurately; interpreting observations; and
making value judgments (National Center for Research
to Improve Postsecondary Teaching and Learning,
1989-1990).

Hiebert et al. (1996) argued that reform in
curriculum and instruction in mathematics should be
based on allowing the student to “problematize” the
subject, rather than mastering skills and applying
them.  Their method involved allowing students to
contemplate why things are, to inquire, to search for
solutions, resolve incongruities, and to communicate
their problem solving method(s) to others.  They
advocated an approach based upon Dewey’s “reflective
inquiry” which involves giving engaging problems,
dilemnas, and questions for the students to solve.  The
features of this approach are: identifying problems;
active studying of the problem; and reaching a
conclusion.  In this context, the teachers’ role is to
facilitate students’ analysis of the adequacy of the
methods to achieve a solution to a problem.  That is,
the teacher should help the students to develop their
own problem solving strategies.

In a recent review across several decades of
research literature, Alexander (1996) addressed the role
knowledge plays in learning and instruction.  Findings
indicated that the knowledge a learner possesses affects
what information they attend to in a problem, how
that information is perceived, what is judged to be
relevant or important, and what is understood and
remembered.  One further aspect of this review
suggests that a student’s knowledge of topics,
procedures, or strategies can be influenced by
instruction.  Problem solving strategies are therefore
important components in the student learning process
and are important factors to consider when teaching
mathematics.

One could easily assume that brighter students
naturally excel at problem solving in the classroom
because of their high level of achievement and
exemplary metacognitive ability.  Related research
characterizing individuals with exemplary meta-
cognitive ability indicate they are able to: perceive

large meaningful patterns; reach solutions rapidly;
represent problems at a deeper level; spend more time
analyzing a problem; and possess stronger self-
monitoring skills (Chi, Glaser, & Farr, 1988); display
their ability to learn in specific domain areas (Minsky
& Papert, 1974); are better at judging the difficulty of
a problem (Chi, Glaser, & Rees, 1982; Glaser, 1987);
and use memory more than a general reasoning process
(Posner, 1988).  As a result of these findings, it seems
reasonable to assume that brighter students would not
benefit from instruction in problem solving strategies,
however, this has never been researched.  In our
investigation of the use of problem solving strategies
in teaching mathematics, two separate studies were
conducted. We examined the effect of direct instruction
of problem solving strategies on mathematics test
score performance among two different groups of
students:  high school students and accelerated early
college entrance high school students, respectively.
We specifically hypothesized that students given
problem solving strategy instruction would have
higher average test scores on a mathematics test than
students who did not receive such instruction.  This
approach was employed because of the research focus
of our study and the overemphasis on single studies in
educational research (Rosnow & Rosenthal, 1989).

We further felt that our study has significant
educational importance due to the findings from the
Third International Mathematics and Science Study
(Beaton, et al., 1996). In 1994-1995, achievement
tests in mathematics and science were administered
around the world to students in classrooms.
Performance expectations centered around four areas:
knowing, performing routine procedures, using
complex procedures, and solving problems.  The
United States, in comparison to other world countries,
ranked among the last in mathematics test scores.
This may be due more to how we teach rather than to
what we teach (i.e. content).

Study One
Subjects and Design

The subjects in the first study were seventy-eight
(78) 10th grade high school students who were selected
for admission into an Academy of Mathematics and
Science, an early college entrance program for gifted
and talented students, during the spring semester.
Students were accepted into the Academy based on
SAT scores, personal interviews, letters of reference,
and high school transcripts.  The students left their
respective high schools after completing 10th grade to
attend the Academy full time, which was housed, on a
university campus.  While in the Academy, students
would take university undergraduate courses in
mathematics, science, and the humanities.  Students
who graduated from the Academy after two years
concurrently received their high school diplomas and
two years college credit. The average SAT-Quantitative
score was 640 and the average SAT-Verbal score was
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550.  Students ranged in age from 15 to 18 years with
37% females, 4% African-American, 9% Hispanic, and
12% Asian-American.

Students met in a large auditorium for orientation
the first week of classes at the university.  After a brief
presentation, students were directed to one of two
different classrooms based on randomly picked seats. 

The students were randomly assigned to either a
control group (n=43) which only received the
mathematics test or an experimental group (n=35)
which was instructed in problem solving strategies,
followed by the mathematics test.  The use of an
experimental control group design to investigate the
effectiveness of instructional interventions has been
used before (Schumacker & Miller, 1992).

Materials
A mathematics test, which included 13 problems

selected from an Algebra I textbook used by high
school students (Coxford & Payne, 1990), was used as
the dependent measure.  The types of mathematics
problems selected involved skills-to-skills (e.g.,
arithmetic to algebra) transfer in mathematics
knowledge such as (a) determining profit and loss, (b)
the volume of water in different sized containers, and
(c) determining the area of different shapes.  Students
were required to indicate their problem solving
strategies for each math problem in the test booklet,
i.e., methods of analysis and steps taken to answer
each problem, not just provide a right/wrong answer.
Each math problem had five questions worth 1 point
each if correctly answered (5 points per math problem),
for a maximum possible score of 65.

A standardized set of overhead transparencies was
prepared which presented different strategies for the
various types of mathematics problems.  The problem
solving strategies were adopted from Biehler &
Snowman (1990) and Ormrod (1990).  The strategies
involved information on how various mathematical
problems could be reorganized, thus leading to clues
on how to solve them.  Each problem on the test was
different and therefore had a different problem solving
strategy associated with it, so as to minimize any
“teaching to the test” effect.  An example math
problem and problem solving strategy is in the
Appendix.

Procedures
Students were directed to one of two different

classrooms based upon their randomly assigned
auditorium seating.  One classroom represented an
experimental group while the other a control group.
Two different teachers were also randomly assigned to
one or the other classroom.  The problem solving
strategies for various types of mathematics problems
were presented to students in the experimental group
using standardized overhead transparencies. The random
assignment of the two teachers and the standardization

of the materials were done to reduce any bias or teacher
effects in the study.   The teacher in the experimental
group indicated that students had no problems or
concerns about the problem solving strategy
instruction provided.  The two teachers and the
principal author scored the mathematics tests using a
scoring rubric.

Study Two
Subjects and Design

The subjects in the second study consisted of fifty-
two (52) 10th grade high school students completing an
Algebra I class during the fall semester.  The high
school students were randomly assigned to either the
control group (n=25) or the experimental group
(n=27).  The same exact design and procedures were
followed as in the first study.  These students were
from a different academic setting, but were of similar
age and demography as those in the first study.
Although the high school grade point averages were
similar for students in both studies, most of the high
school students in the second study had not taken the
SAT.  These students mainly differed from students in
the first study in that they were not selected to attend
an early college entrance program targeted for gifted
and talented students.

Materials and Procedures
The mathematics test used in the first study was

used in the second study.  The same procedures were
followed with the exception that students did not attend
a university orientation session.  Two high school
teachers were randomly assigned to one or the other
classroom.  The problem solving strategies for the
various types of mathematics problems were again
presented to students in the experimental group using
the standardized overhead transparencies.  The teacher
in the experimental group indicated that students had
no problems or concerns about the problem solving
strategy instruction provided.  The two teachers and the
principal author scored the mathematics tests with the
same scoring rubric used in the first study.

Results
The Cronbach (1951) Alpha internal consistency

reliability coefficient for the academy student scores in
the first study was .84.  For the high school student
scores in the second study, Alpha was .85. The mean
test score difference between the groups in the first
study for the Academy students was 13.86.  The mean
test score difference between the groups in the second
study for the high school students was 12.18. The test
score means and standard deviations for the
experimental and control groups in both studies are
also presented in Table 1.

Based on the sample characteristics from each
condition in these studies, O'Brien's (1981) test for
unequal variances was performed (Beasley, 1995;
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Ramsey, 1994).  These tests verified that the
experimental groups had significantly less variability
in their math scores for both the Academy
[F(1,76)=9.31, p=.0031] and high school students
[F(1,50)=5.14, p=.0028].  Thus, it is reasonable to
assume that there were differences in the variability of
performance between the groups in each study.

In order to test mean differences under these
circumstances, independent t-tests for unequal variances
were performed using Satterthwaite's (1946) correction
for the degrees-of-freedom (df).  A statistically
significant mean difference was found between the
experimental and control group in both the first
(t=4.74, df=64.07, p=.0001) and second (t=3.05,
df=36.23, p=.004) studies.  Thus, students in the
experimental groups of both studies who received
instruction in problem solving strategies had
significantly higher mean test scores than students in
the control groups, after the correction for unequal
variances. Students in both experimental groups also
demonstrated less variability in their scores, hence a
need to interpret results using unequal variances.  The
results from both studies taken together indicate that
the use of problem solving strategies in teaching
mathematics is effective in improving mathematics
achievement.

Post hoc Analyses
Our findings are based upon significance testing,

which has recently been scrutinized because the
researcher controls the sample size, level of
significance, and power of the tests (e.g., Huberty,
1987; Robinson & Levin, 1997; Thompson, 1988,
1989a, 1989b, 1993; 1997).  It has been recommended
instead that effect sizes, confidence intervals, and
bootstrap estimates be provided to better indicate the
practical and meaningful interpretation of results (Kirk,
1996).  Therefore, the mean differences between the
groups, their respective effect sizes, and bootstrap
estimates were computed and presented in Table 2.

Because mean differences were of primary interest,
effect sizes were computed using a program by Mullen
and Rosenthal (1985) in order to compare the results of
both studies.  The standard metric used for calculating
the effect sizes was the standard deviation of the
control group (Glass, McGaw, & Smith, 1981;  Wolf,
1986).  Interpretation of the effect size was based on
the amount of standard deviation units the
experimental group scored above the control group.  It
should be noted that in both studies, the control group
standard deviation was previously determined to be sig-
nificantly larger than the experimental group.
Therefore, the mean differences reported provide
conservative estimates of effect sizes.

Table 2 indicates that the Academy experimental
group scored .83 standard  deviation units  above  their

Table 1. Means and Standard Deviations of
Experimental and Control Groups

Study   n Mean  SD
1. Academy
Control 43 43.14 16.76
Experimental 35 57.00   8.33
2. High School
Control 25 45.60 17.69
Experimental 27 57.78   9.54

respective control group, and the high school
experimental group scored .69 standard deviation units
above their respective control group.  The gain
associated with these effect sizes can be obtained by
referring to a table of areas under the normal curve.
Looking in a table of the areas under the normal curve,
a .83 effect size corresponds to .30 of the area above
the mean (above the 50th percentile).  Thus, an effect
size of .83 implies that if an average student in the
control group were to receive instruction on problem
solving strategies, they would now score at the 80th
percentile of the control group.  Similarly, the .69
effect size for the high school students corresponds to
.25 of the area above the mean, and thus an effect size
of .69 implies that if an average student in that control
group were to receive instruction on problem solving
strategies, they would now score at the 75th percentile
of that group.

Bootstrap estimates and confidence intervals are
also reported in Table 2 to further examine the
stability of these findings.  The bootstrap estimate
(θ*B), the standard error of the bootstrap estimate,
SE(θ *B), bias or the sampling error (θ*B - θ), where
θ represents the contrast mean difference, and the 95%
confidence interval [θ    +    1.96SE(θ*B)] for each contrast
were computed using programs by Lunneborg (1987).
The bootstrap estimates were based upon 1,000
resampling trials.

Bias or sampling error is determined when
bootstrap estimates are compared to the actual mean
differences.  The bias or difference between the
bootstrap estimator and the sample mean differences
were .20 = (14.06 - 13.86) and .10 = (12.28 - 12.18),
respectively, which indicates that the magnitude of
difference reflected in the means are reasonably stable
estimates of the mean differences observed in the two
studies (Mooney & Duval, 1993).

The 95% confidence intervals reflect the range of
variation one could expect in the mean differences if
conducting 1,000 replicated studies (the number of
bootstrap resampling trials).  The range of values for
the lower and upper confidence interval estimates in
both studies were similar.  In the first study, the
confidence intervals indicate that the mean difference
between the two groups could vary between 8.12 and
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Table 2.  Contrasts, Effect Sizes, and Bootstrap Estimates for Experimental vs. Control Groups

Study
Contrast

Effect Sizea Bootstrap Estimatesb

(1)  Academy
    Mean
Difference ∆ Estimator (θ*B) SE(θ*B) Bias 95%  CI

Experimental
vs. Control 13.86 0.83 14.06 2.93 0.20 (8.12, 19.60)
(2) High School
Experimental
vs. Control 12.18 0.69 12.28 3.50 0.10 (5.32, 19.04)

Note. a The effect sizes (∆) are based upon the mean difference divided by the standard deviation of the control group.
    (see Glass et al., 1981 for rationale on choice of metric).
  b Based on 1,000 bootstrap resampling trials.

19.60.  In the second study, the confidence intervals
indicate that the mean difference could vary between
5.32 and 19.04.

Overall, the statistically significant mean
differences, the small bootstrap estimator differences,
and the 95% confidence interval values from both
studies indicate strong evidence that the students in the
experimental groups who were taught problem solving
strategies performed better than those students in the
control groups on the mathematics test.

Discussion
In two separate studies, students in the

experimental group who were provided standardized
instruction on problem solving strategies scored on
average higher than students in a control group on a
mathematics problem solving test.  The first study
involved 10th grade high school students who were
considered above average or gifted and talented, and
who had been selected to begin an early college
entrance program rather than return to high school for
their junior year.  These students possessed high
academic achievement levels and metacognitive skills,
yet the experimental group of students still benefited
from learning problem solving strategies.  The second
study involved 10th grade high school students who
would be returning to complete high school.
Although these students were in a different academic
setting, those in the experimental group also benefited
from learning problem solving strategies.  The
“lecture-type” presentation of problem solving
strategies was practical and effective in getting the
students to think about how to solve various
mathematics problems and improved their mathematics
test scores.  The effect sizes, confidence intervals, and
bootstrap estimates presented from both studies
strengthen the ability to generalize the findings from

these two studies to other 10th grade high school age
students taking Algebra I classes.

Our findings suggest that teachers should be
trained to explicitly emphasize problem solving
strategies in teaching mathematics.  Previous research
by Biehler & Snowman (1990) and Ormrod (1990) was
supported.  Hiebert et al. (1996) supports the idea of a
teacher using engaging problems and facilitating a
students “reflective inquiry” so that they can discover
methods to solve a problem (also see, Hiebert et al.
1997, Prawat, 1997, and Smith, 1997 for further
discussion).  Other research has suggested that a
teacher should use a variety of examples and verbalize
their methods to increase  students’ ability to learn and
to solve problems.  Hattie, Biggs, and Purdie (1996)
also provide additional research support in their review
of the effects of interventions on student learning.
They broadly classified instructional interventions as
cognitive, metacognitive, and affective in nature.  The
approach taken in this study could be characterized as a
cognitive intervention because specific tactics were
taught, which were grouped and purposefully used as
strategies (Derry & Murphy, 1986; Snowman, 1984).
Our findings should encourage teachers to address the
need for using problem solving strategies during
instruction (i.e., model and verbalize strategies for
problem solving to their students).  Given the
previous research literature cited and our findings, we
recommend that teachers practice giving engaging
problems to students to solve, facilitate discovery of
problem solving strategies and methods, use varied
problem examples, and verbalize their methods and
strategies, as well as, those of other students.  We
highly recommend that university teacher preparation
programs instruct student mathematics educators in
these approaches in their curriculum and instruction
course work.
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APPENDIX

Math Problem and Problem Solving Strategy

Mathematics Problem One

Assume that you have just purchased a lot on which you plan to build a home.  You must tell the

lender the area of your lot.  Unfortunately, your lot is in the shape of a parallelogram. How do you

determine the area of your parallelogram shaped lot?

1.  What is the problem?

2.  What do I need to know?

3.  What steps can I take to solve it?

4.  What other methods could be used?

5.  What is the area of your lot?

Problem Solving Strategy:

1.  Convert the parallelogram into a rectangle.

2.  Use the formula for determining the area of a rectangle:

    (Area = Length x Width).

Method and Solution:

1.  Drop a line perpendicular to side(length).

2.  Move newly formed right triangle area to opposite side

      to form a rectangle.

3.  Use formula for determining area of a rectangle:

    (Area = Length x Width)

3

2

1 0 2
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Extraneous Variables and the Interpretation
of Regression Coefficients

Cam-Loi Huynh, University of Manitoba

This paper addresses some difficulties concerning the interpretation of the regression coefficients in simple and
multiple regression models. The root of the problem lies in the fact that the fitted multiple regression equation is the
result of transforming raw data of the independent variables into residualized scores. In the standard interpretation of
the partial regression coefficients, effects of the residual term have not been explicitly differentiated from those of the
regressors. Alternative interpretations of the regression coefficients are proposed. The recognition of residual and
residualized effects plays an important role in the evaluation of the obtained values of the regression coefficients, R2,
the overall F tests and the construct validity of the multiple regression model.  

here are three types of variables in a regression
model, namely, the dependent variable (Y ), at
least one regressor or independent variable (X j,

j = 1, ..., m) and the unknown error term (ε) estimated
by the residual scores (e = Y  -   ̂Y ) which in turn
represent the extraneous variables, where   ̂Y  is the
predicted value of Y . Typically, the regression slope
coefficient in the simple regression model   ̂Y  = a + bX
is defined as, "the amount of the difference in   ̂Y
associated with a one-unit difference in X" (Howell,
1997, p. 242), or "The slope of the line equals the
gain in Y  associated with each 1-unit gain in X"
(Darlington, 1990, p.10). On the other hand, each of
the slope coefficients in the multiple regression model

  ̂Y  = a + b1X  + ... + bmXm is called a partial regression
coefficient “to make clear that it is the weight to be
applied to an independent variable (IV) when one or
more specified IVs are also in the equation” (Cohen &
Cohen, 1983, p. 83). The coefficient bj, j = 1, 2,...,
m, is defined as, "the change in the dependent variable
per unit change in the jth independent variable,
assuming all other independent variables are held
constant" (Rawlings, 1988, p. 67). Similar definitions
are found in several textbooks on regression analysis.
It will be argued in this paper that the above def-
initions of b and bj should be used with great care to
avoid misleading interpretation on the effects of X j in
predicting Y  for data analysis. First, some possible
implications of "holding all regressors but one con-
stant" in the multiple regression model are explored.
Next, in an attempt to understand the meanings of
regression coefficients, several ways to obtain their
estimates are investigated. It will be demonstrated that
the independent variables can be operationally
transformed into the residualized terms in the process
of computing the partial regression coefficients. This
leads to the realization that a regression analysis
transforms the obtained data into another data set called
the residualized scores while reproducing the same
values for the partial regression coefficients. As a
result, a simple way to determine the residualized
scores in multiple regression models is developed.

Before proceeding, however, an explanation of the
terms "residual scores" and "residualized scores" is in
order. The residual term  (e) represents the difference
between Y  and   ̂Y  as a result of regressing Y  against
one or more independent variables (X 's); denoted as
eY,1, eY,2, or eY,1, 2 for regression models involving one
or two regressors (where the first subscript represents
the dependent variable and the subsequent subscripts,
the independent variables). A residualized variable is
formed when the residual term (e) is used either as a
regressor (Ej) or as a dependent variables yielding
predicted values (  ̂eY,j and   ̂eY,h). The residual scores (e)
capture the portion of variability in Y , called the
"uncontrolled" extraneous effect of the model, that is
not accounted for by all independent variables (X 's).
On the other hand, the residualized scores of X j, say Ej

(for any j = 1, ..., m), represent the residual term when
X j is regressed on all other independent variables.
Thus, when Y  is regressed on the jth residualized
variable, the resulting regression coefficient represents
only the effect of X j since the effects of other
independent variables in the original multiple
regression model have been "partialled out."

Winne (1969) has studied the problems of
construct validity in using multiple regression models.
He indicated that regressors in such models do not
represent the constructs described by the original data
since the partial regression coefficients are computed
for the residualized scores instead. However, he did not
discuss how these residualized scores can be interpreted
and analyzed. Rather, Winne (1969) recommended that,
"anchor variables not of direct interest in a research
study be measured and correlated with residualized
variables. This supplementary analysis sheds light on
changes to construct validity that must be known
before interpreting multiple regression analyses" (p.
187). On the contrary, it is suggested in this paper that
the effects of regressors in multiple regression models
are interpreted as those of residualized scores, in the
same way as one would interpret partial correlation
coefficients. Then, the simple regression equations of
Y  on the residualized variables (called the "residualized
regression equations") are studied to shed light on the

T
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interpretation of the partial regression coefficients in
the conventional multiple regression equation.
Moreover, the coefficient of determination associated
with the multiple regression model is explained in
terms of the semi-partial coefficients of determination
obtained from the above residualized regression
equations. Finally, the residual plots of the multiple
regression model and those of the residualized
regression equations (called the partial regression
residual plots) are examined for model diagnostics.
These steps are recommended not only for identifying
the effects of "controlled" extraneous variables
associated with the partial regression coefficients and
recapture the same R2 but also for obtaining test
statistics (t for the slopes and overall F for the fit) that
take into account the influence of the residual and
residualized variables. For the sake of illustration, all
numerical analyses are based on the data set in Figure
1, Panel A. In the multiple regression under
consideration, Test Score (Y ) is regressed on
Cumulative GPA (X1) and Study Hour (X2).   

Limi tations  of the
Conventional  Interpretations

What Happens to Partial Regression Coefficients If
Only Values of One Regressor Are Changed?

The main difference in the definitions of simple
and partial regression coefficients given above lies in
the requirement that all but one regressors in the
multiple regression model are "held constant." It is
true that if values of the jth regressor X j, i in the
multiple regression equation for the ith subject (i = 1,
2, ..., n) is changed by a constant whereas the observed
values of remaining regressors are intact then the
predicted value   ̂Y i for this particular subject is
modified by an amount of bj. However, if values of X j

in the above example are modified by a fixed constant
for all subjects then in the resulting regression
equation, only the intercept term (a) will change (i.e.,
values of   ̂Y i and all slopes b1, ..., bm remain the same
for i = 1, ..., n). Although only values of a single
regressor have been modified, one no longer has the
same regression model since the intercept term has
changed. The following example serves to illustrate
this point.

Based on the data set in Figure 1, Panel A, three
regression models are considered, the first with the
original values for Y , X1 and X2 and the remaining
two, with the linearly transformed values of X3 = X1 +
5 and X4 = X2 + 3. As expected, the resulting
regression equations have the same slopes but different
intercepts:

Model 1a:   ̂Y  = a1 + b1X1 + b2X2  
= 43.651 + 7.301X1  + 2.839X2, R

2 = .4105,
Model 2:   ̂Y  = a2 + b1X3 + b2X2

=   7.145 + 7.301X3  + 2.839X2, R
2 = .4105,

Model 3:   ̂Y  = a3 + b1X3 + b2X4

= -1.373 + 7.301X3  + 2.839X4, R2 = .4105.

Figure 1. Data and Test Statistics for
             Regression Models 1a and 1b

Panel A: Data Example
ID Y X1 X2

1 73.5 3.5 2.4
2 69.0 2.8 2.5
3 85.5 3.0 5.5
4 82.0 3.7 3.1
5 90.0 3.9 5.2
6 84.0 3.1 5.5
7 86.5 3.3 7.1
8 74.5 2.9 3.6
9 71.5 3.1 5.5

10 75.5 3.6 4.4
11 80.0 4.0 5.1
12 91.8 3.5 4.2
13 86.5 3.3 7.2

Mean 81.76 3.36 1.50
SD 7.96 0.36 1.50

rY,1 = .354 r1,2 = .354 rY,2 = .354
Panel B: Common Statistics for
              Models 1a and 1b

IV     SE
t

(p < t)
C/Intercept 17.941 2.433

(.0322)
X1 5.082 1.437

(.1786)
X2 1.232 2.305

(.0416)
Panel C: Goodness-of-Fit Statistics
              for Models 1a and 1b

Model
SSR
(SST) R2

MSR
(MSE)

F
(p < F)

1a 338.15
(823.77)

0.41 167.08
(44.15)

3.78
(.0547)

1b 93933.73
(94419.35)

0.99 31311.24
(44.15)

709.20
(.0001)

Note. IV  = Independent variable, SE = Standard error of
the regression coefficient estimate, SSR  = Regression
sum of squares, SST = Total sum of squares, MSR  =
Regression mean squares, MSE = Error mean square.

(Note that a2 = a1 - 5b1 and a3 = a1 - 5b1 - 3b2.) For
example, given X1 = 3.50 and X2 = 2.40 for the first
subject then   ̂Y  = 76.02 and e = 2.52 in the three
models. Typically, the same interpretation applies to
the partial regression coefficients in these models, say,
"If X2 is held constant, then each 1-unit increase in X1

leads to an average increase in   ̂Y  of 7.301 units."
However, if the units of measurement for any
independent variable has been changed, not only a new
regression model with a different intercept term is
needed but also the statistical significance of the
intercept term may also be altered (In the three models
above, t(α ) = 2.433, p < .03, t(α ) = 0.167, p > .870
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and t(α ) = -0.032, p > .975, respectively). Apparently,
the standard interpretation is focussed on the case in
which one wants to compute a predicted value   ̂Y i,
given a certain value of X j, i, i = 1, 2, ..., n, for each
subject, one at a time. However, the intercept term
should be considered when the scales of measurement
have been changed for several, if not all, subjects.
Hence, the above statement could be modified as, “For
each observation i, if X2,i is held constant, then a 1-
unit increase in X1,i leads to an increase in   ̂Y  i of
7.301 units. On the other hand, if all values of X2 are
changed by the same constant c, then a 1-unit increase
in X1,i leads to an average increase in   ̂Y i of (43.651 -
7.301c) units.”

The Same Values of Partial Regression Coefficients
May Not Y ield the Same Regression Models

The above three regression models have different
values for the intercept term but otherwise identical
with respect to the test statistics of t for regression
coefficients as well as overall F and R2 for goodness of
fit (as reported for Model 1a in Figure 1, Panel C).
The regression coefficients in Model 1a can be
reproduced by regressing Y  on C, X1 and X2 where C
is a dummy variable of constant values, say C = 1,

Model 1b:   ̂Y  = a1C + b1X1 + b2X2

= 43.651C + 7.301X1  + 2.839X2, R
2 = .995.

Although the t tests for the regression coefficients
in Models 1a and 1b are identical (Figure 1, Panel B),
they are substantially different with respect to
goodness-of-fit statistics (Figure 1, Panel C). Model
1a yields poor fit with small R2 and marginally
significant overall F. In Model 1a, R2 represents the
ratio of sum of squares of regression (SSR) over the
corrected total sum of square (SSTc).  Since Model 1b
has no intercept term, R2 has been redefined by using
the uncorrected total sum of square (SSTu). As a result,
both its R2 and F have increased remarkably! It can be
explained that this phenomenon occurs when
extraneous effects independent of the predictors have
been accounted for in the regression model. Hence the
significance test of the failure to control for the impact
of extraneous variables under the null hypothesis can
be conducted by means of the following F test with
degrees of freedom (q, dfr):

  
F

R R

R

df

q
r= −2 2

2
(Model.1b) (Model.1a)

1 - (Model.1b)
[ ] ,

where dfr = the residual degree of freedom in Model 1b
and q = (the difference in number of regressors in
Models 1b and 1a) = 1 (Darlington, 1990, pp. 124-
125; Cohen and Cohen, 1983, pp. 145-151). For the
data at hand, F = (.9610 - .2652)(11) = 7.653, p <
.00001.

Different Ways  to Obtain Values
of the Regress ion Coeffi ci ents

In an attempt to enhance the understanding, and
thus improving the interpretations, of simple and
partial regression coefficients, it is necessary to
investigate several ways to obtain the same values of
these coefficients for a given data set. Some of the
steps presented below have been discussed elsewhere
(Draper and Smith, pp. 196-201) but for a different
objective, namely, the confirmation of the least-
squares results by various methods rather than the
difference in their interpretations.

As presented in Table 1, thirteen regression
models can be computed on the basis of two predictors
X1 and X2 (in Figure 1, Panel A). The three models g,
h and k are the pivot models against which all
remaining models will be compared. For identification
purposes, the subscripts "g", "h" and "k" are attached
to the regression coefficients when necessary. The
predicted values   ̂Y  and   ̂X j, j = 1, 2, in steps h, k, 4
and 5 are used as dependent variables (  ̂Y Y,1,   ̂Y Y,2) or
regressors (  ̂X 1, and   ̂X 2) in steps 6 and 7, respectively.
For the remaining models (steps 8 to 13), either the
residual scores (obtained in steps h and k) or Y  are
regressed on the residualized scores (Ej obtained in
steps 4 and 5) and X j. The intercept terms are present
in all regression models with raw data, except in steps
8 and 9 where only the residual and residualized scores
are involved.

The regression models in Table 1 were computed
using both raw and standardized data with identical
variables. All the regression models with standardized
scores must be fitted without the intercept terms (The
computed values of the intercept terms would be zero
had they been included). The results in Table 2
illustrate that it is the variable type, not the data
metric, which determines the elements constituting the
"extraneous variables."

Approach 1 (Based on Raw Data)
The simple regression coefficients for X1 and X2

are 7.775 (step h) and 2.911 (step k), respectively.
Their partial counterparts are bY,1.2  b1g = 7.301 and
bY,2.1  b2g = 2.839 (step g).

Approach 2 (Based on Standardized Scores)
For simple regression models (in steps h and k),

the simple, or zero-order, correlations of Y  and X j are
used instead of bj (i.e., rY,1  rh = .3545 and rY,2  rk =
.5476). For multiple regression models, each rY,j.i

denotes the partial correlation of Y  and X j, or the
correlation of Y  and X j, given that X i has already
entered the model (rY,1.2  r1g = .3329, and rY,2.1  r2g =
.5341 in step g).
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Table 1 . Regression Models for Comparing
  Regression/Correlation Coefficients and R2.

Step Regression Models
g Y  is regressed on X1 and X2

h Y  is regressed on X1 (yielding   ̂Y Y,1 and eY,1)
k Y  is regressed on X2 (yielding   ̂Y Y,2 and eY,2)
4 X1 is regressed on X2 (yielding   ̂X 1 and E1)
5 X2 is regressed on X1 (yielding   ̂X 2 and E2)
6   ̂Y Y,1 (from step h) is regressed on   ̂X 1

       (from step 4)
7   ̂Y Y,2 (from step k) is regressed on   ̂X 2

       (from step 5)
8 eY,1 (from step h) is regressed on E1

      (from step 4) (without the intercept term)
9 eY,2 (from step k) is regressed on E2

     (from step 5) (without the intercept term)
10 Y  is regressed on E1 (from step 4)
11 Y  is regressed on E2 (from step 5)
12 Y  is regressed on X2 and E1 (from step 4)

13
Y  is regressed on X1 and E2 (from step 5)

Approach 3 (Based on Predicted and
        Residualized Scores)

The same values of the slope/correlation
coefficients in the simple and multiple regression
models can also be obtained by fitting regression
models on the basis of predicted (  ̂Y ) and residualized
scores. In step 6, by regressing   ̂Y Y,1 obtained in step h
on   ̂X 1 in step 4, the simple regression/correlation
coefficients in step h are recovered. Similarly, the
results in step k are reproduced in step 7 by regressing

  ̂Y Y,2 (step k) on   ̂X 2 (step 5). The two partial
regression/correlation coefficients in step g are
reclaimed by fitting two simple regression models in
terms of residualized scores (  ̂eY,j and Ej) in steps 8 and
9, respectively.

Identi fying the Extraneous  Variables  in
the Mul tipl e Regress ion Model

What Are the Residualized Scores for Xj?
A much simpler procedure to obtain the

residualized scores for any regressor and show that its
effect can be measured by the corresponding partial
regression coefficient is described below.
 Step (i). Fit X j on the remaining regressors:

     ̂X j = a + b1X1 + ... + bj-1X j-1 + bj+1X j+1.

For Model 1a, this is realized by obtaining the
regression equations in steps 4 (for X1) and 5 (for X2)
in Table 2.

Step (ii). Obtain the residualized scores for X j:

Ej = X j -   ̂X j for j = 1, 2, ..., m.

Thus, in the example, the residual terms obtained
by fitting the regression equations in steps 4 and 5
(Table 2) yield the residualized scores for X1 and X2,
respectively.

Step (iii). Reproduce the partial regression
coefficient for X j, by fitting the regression equations in
steps 8 and 9 (or steps 10 and 11, Table 2).
Alternatively, they can be computed as:

    bj = Cov(Y , Ej)/S
2(Ej) = r(Y ,Ej){S (Y )/S (Ej)},

where Ej = the jth residualized variable, Cov(Y , Ej) =
covariance of Y  and Ej, S

2(Ej) = sample variance of Ej,
S (Y ) = sample standard deviation of Y , and r(Y ,Ej) =
the zero-order correlation of Y  and Ej. For the example,
S (Y ) = 7.9603, S (E1) = .3626, S (E2) = 1.496, r(Y ,E1)
= .3325 and r(Y ,E2) = .5337. Therefore, the partial
regression coefficients for X1 and X2 are:

b1 = r(Y ,E1){S (Y )/S (E1)} = (.33)(7.96)/.36 = 7.30,
and b2 = r(Y ,E2)/{S (Y )/S (E2)}=(.53)(7.96)/1.49 = 2.84,
respectively.

Understanding the Simple Regression
   Correlation Coefficient

So far, the regression and correlation coefficients
in a simple regression model play the same roles. The
same values of simple regression/correlation
coefficients are reproduced in steps h and 6 (Table 2)
because the predicted values of   ̂Y  and   ̂Y Y,1 in these
equations are determined by X1 independently of X2.
Analogously, the regression/correlation coefficients in
steps k and 7 are identical since the relevant predicted
values of   ̂Y  and   ̂Y Y,2 are determined by X2 and free of
X1. Since the different values of regression and
correlation coefficients are simply due to data metrics,
their meanings should be interpreted similarly. The
simple correlation coefficient has been defined as "a
measure of the degree of closeness of the linear
relationship between two variables" (Snedecor and
Cochran, 1967, p. 173). This statement remains
meaningful in the context of simple regression models
with either raw or standardized scores. A linear
relationship is one in which the variation in Y ,
produced by a specified change in X , is constant. The
“linear relationship” between X  and   ̂Y  in the simple
regression model with the intercept has two
components, constant (determined by the intercept) and
linearly changeable (accounted for by the slope).
Therefore, the slope regression coefficient in a simple
regression model can be interpreted as, "In raw data
metric, the slope b represents the relative weight of X
to account for the linear variability in   ̂Y   that is free
of the unknown extraneous effects represented by the
residual e = Y  -  ̂Y  ."

In other words, bX  represents the linear trend of,
or portion of the linear variation in, the values of   ̂Y
that is not attributed to unknown extraneous effects.
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Table 2. Results and Test Statistics for the Regression Models in Table 1.

Step
Regression Model

(Raw Data)
Regression Model

(Standardized)
SSR
(SST) R2 MSR MSE

F
(p <F)

g   ̂Y  = ag + b1gX1 + b2gX2

= 43.652 + 7.301X1 +2.839X2

  ̂Y  = r1gX1 + r2gX2

= .3329X1 + .5341X2

338.15
(823.77)

.4105 169.07 44.15 3.83
(.05)

h   ̂Y  = ah + bhX1

= 55.606 + 7.775X1

  ̂Y  = rhX1 = .3545X1
103.50

(823.77)
.1256 103.50 60.06 1.72

(.00)

k   ̂Y  = ak + bkX2

= 67.874 + 2.911X2

  ̂Y  = rkX2 = .5476X2
247.03

(823.77)
.2999 247.03 48.06 5.14

(.04)

4   ̂X 1 = a1 + b1,2X2

= 3.317 + .010X2

  ̂X 2 = r2,1X1

= .0404X1

0
(1.71)

.0016 0 0.14 0.02
(.89)

5   ̂X 2 = a2 + b2,1X1

= 4.210 + .167X1

  ̂X 1 = r1,2X2

= .0404X2

0.05
(29.15)

.0016 0.04 2.42 0.02
(.89)

6   ̂Y Y,1 = ah + bh  ̂X 1

= 55.606 + 7.775  ̂X 1

  ̂Y Y,1 = rh  ̂X 1

= .3545  ̂X 1

0.17
(103.50)

.0016 0.17 8.61 0.02
(.89)

7   ̂Y Y,2 = ak + bk  ̂X 2

= 67.874 + 2.911  ̂X 2

  ̂Y Y,2 = rk  ̂X 2

= .5476  ̂X 2

0.40
(247.03)

.0016 0.40 20.55 0.02
(.89)

8   ̂eY,1 = b1gE1

= 7.301E1

  ̂eY,1 = r1gE1

= .3329E1

234.65
(720.27)

.1580 234.65 37.36 6.28
(.03)

9   ̂eY,2 = b2gE2

= 2.839E2

  ̂eY,2 = r2gE2

= .5341E2

91.12
(576.74)

.3258 91.12 37.36 2.44
(.14)

10   ̂Y  = Y  + b1gE1

= 81.764 + 7.301E1

  ̂Y  = r1gE1

= .3329E1

91.12
(823.77)

.1106 91.12 61.05 1.49
(.25)

11   ̂Y  = Y  + b2gE2

= 81.764 + 2.839E2

  ̂Y  = r2gE2

= .5341E2

234.65
(823.77)

.2840 234.65 49.09 4.78
(.05)

12   ̂Y  = ak + bkX2 + b1gE1

= 67.874 + 2.911X2 + 7.301E1

  ̂Y  = rkX2 + r1gE1

= .5476X2 + .3329E1

338.15
(823.77)

.4105 169.07 44.15 3.83
(.05)

13
  ̂Y  = ah + bhX1 + b2gE2

= 55.606 + 7.775X1 + 2.839E2

  ̂Y  = rhX1 + r2gE2

= .3545X1 + .5341E2

338.15
(823.77)

.4105 169.07 44.15 3.83
(.05)

Note. For variables with double subscripts, the first subscript refers to the dependent variable and the second
subscript denotes the regressor.

Moreover, a + bX  constitutes the value of   ̂Y  with the
maximum value of R2 if it can be assumed that the
influence of the unknown extraneous effects is equally
distributed to all members of the sample. This
assumption can be checked by running the regression
model without the intercept that contains X  and a
dummy variable C of fixed values. As a result, the
same value for b in the original simple regression
equation is reproduced in the multiple regression model
without the intercept. For the regression models in
steps h and k, by letting C = 1 for all subjects, say,
we get

     ̂Y  = ahC + bhX1 = 55.606C + 7.775X1,
           R2 = .9954,  (revised step h)
     ̂Y  = akC + bkX2 = 67.874C + 2.911X1,
             R2 = .9939,  (revised step k)

The values of R2 have been increased dramatically
(as compared to those reported for steps h and k in
Table 2) to reflect the fact that extraneous effects have
been (artificially or statistically) controlled.

Understanding the Partial Regression
      Correlation Coefficient

The residual term in step h is regressed on the
residual term in step 4 to produce the residualized
scores   ̂eY,1 in step 8, representing the portion of
variation in Y  that is free of X2. Analogously, the
residual terms in steps k and 5 are used to yield the
residualized scores   ̂eY,2 in step 9 representing the part
of variation in Y  that is not influenced by X1.
Therefore, b1g (in steps g and 8) denotes the relative
weight of X1 in the raw data metric (or r1g, the simple
correlation between Y  and X1 in terms of standardized
scores) that is free of X2. Analogously, b2g (in steps g
and 9) signifies the relative weight of X2 in raw data
metric (or r2g, the simple correlation between Y  and X2

based on standardized scores) that is free of X1. Since
the partial regression coefficients in step g can be
reclaimed as two simple regression coefficients in
steps 8 and 9, the simple and partial regression
coefficients should be logically defined and explained
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similarly. This is the approach adopted in the
following discussion.

The partial correlation coefficient, say r1,2.3, is
commonly defined as, "the correlation between
variables 1 and 2 in a cross section in individuals all
having the same value of variable 3" (Snedecor and
Cochran, 1967, p. 400). In the regression context, the
partial correlation rY,1 . 2, . . ,  m, say, represents the
portion of the correlation of Y  and X1 which has no
dependence on values of the variables X2, ..., Xm and
extraneous effects. In the same vein of logic, the
partial regression coefficients for X j in a multiple
regression model can be interpreted as, "In raw data
metric, the slope bj represents the relative weight of Xj

to account for the linear variability in   ̂Y   that is free
of the effects due to other regressors in the model and
the unknown extraneous effects."

The effects due to other regressors are estimated by
the residualized scores   ̂eY,j (steps 8 and 9) whereas the
unknown extraneous effects are estimated by the
residual   ̂Y  - Y  (step g). The meaning of this
interpretation is further explained by the two multiple
regression equations in steps 12 and 13. The partial
regression coefficient bk in step 12 represents the
simple regression coefficient (or relative weight) of X2

whereas b1g, the partial regression coefficient in step g,
is actually transformed into an extraneous effect, being
the slope of a residualized variable (E1). A similar
interpretation applies to bh and b2g in step 13. The
transformation of regressors into residual and
residualized variables in the multiple regression models
is not expected to influence the test statistics. Indeed,
as shown in Table 2, R2, the sum of squares, mean
squares, and F of the three models g, 12 and 13 are
identical.

As shown above, had the extraneous effects been
"controlled" by a dummy variable, say C = 1, the
regression model in step g can be reproduced but with
a much greater value of R2.

Impl i cations  of Taking Extraneous
Variables  into Consideration

There are at least three pertinent outcomes rendered
by the recognition of extraneous effects in the
regression model: (i) an understanding of the
limitations in the construct validity of multiple
regression models, (ii) a proper decomposition for the
coefficient of determination (R2), and (iii) an
improvement in the evaluation of estimates of the
regression/correlation coefficients and the overall F
tests.

Construct Validity in Multiple Regression Analysis
The extent to which the regressors can be used to

meaningfully explain and accurately predict values of
the dependent variable represents the construct validity
of the regression model. The analysis so far indicates
that, although the regressors (X1, ..., Xm) are used in

the multiple regressions, the regression slopes and R2

measure the contributions of the residualized scores
(E1, ..., Em) or a mixture between regressors and
residualized scores unless X1, ..., Xm are uncorrelated.
Hence, the construct validity in multiple regression
analysis may be low. The following illustration is
adapted from Winne (1989), given the results in Table
2. From the three basic regression models (in steps g,
h and k), how do the relationships among Y , X1 and
X2 be explained? One may be tempted to arrive at the
following conclusions:

(i) If the entry order was X1 and X2 then X1

accounted for 12.56% of the variability in Y  and X2

accounted for an additional 28.49% of the variability in
Y  (since R2 = .4105 in step g, R2 = .1256 in step h
and .4105 - .1256 = .2849). On the other hand, if the
entry order was X2 and X1 then X2 accounted for
29.99% of the variability in Y  and X1 accounted for
the remaining 11.06% of the variance in Y .

(ii) When all variables are transformed to
standardized scores, an increment of one standard
deviation in X1 is associated with a 33.29% increase in
Y . Similarly, an increment of one standard deviation in
X2 yields an increase in Y  by 53.41 percent.
     Although intuitively meaningful, both of these
statements are wrong with respect to the revised
interpretations of partial regression/correlation
coefficients! In the first statement (i), for the (X1, X2)-
entry order, X2 did not account for the additional
28.49% of the variability in Y  but the residualized
scores E2 did. The statement is correct if X2 is replaced
by E2. This can be seen by following the series of
equations in steps h, 11 and 13 (either raw data or
standardized scores). The last model (step 13) contains
the same values for the slopes and the sum of R2's
reported for the combination of models h and 11.
Similar arguments apply to the (X2, X1)-entry order in
the second part of statement (i) above based on the
results for steps k, 10 and 12. Statement (ii) is wrong
since X1 and X2 are correlated. The statement is correct
by either of the following modifications. First, the
percentages are changed to 35.45% and 54.76% for X1

and X2, respectively (see steps h and k). The pairs
(33.29%, 53.41%) and (35.45%, 54.76%) are quite
close to each other since the correlation between X1

and X2 is quite small (r1,2 = .04). Greater difference is
expected for larger r1,2. Alternatively, X1 and X2 are
replaced by E1 and E2, respectively (see steps 10 and
11).

The mistakes made in statements (i) and (ii)
presage a serious error that materializes when one
attempts to assess the statistical significance of the
slopes and determine the proportional contributions of
the regressors to variations in Y  in multiple regression
models. For these purposes, the results of Table 2
should be obtained and examined in conducting the
statistical evaluation of the standard multiple
regression model. In particular, the regression models
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in steps 10 and 11 in terms of residualized scores
should be used for studying the statistical inference of
the partial regression/correlation coefficients. We
return to this point later. Meanwhile, the following
discussion serves to illustrate how to analyze the
multiple regression model taking into consideration
the effects of residualized scores and extraneous factors.

Decomposition of the Coefficient of Determination
The decomposition of R2 for the multiple

regression model is given by Engelhart (1936) as, say
for m = 3,

R2 = βY,1
2 + βY,2

2 + βY,3
2 + 2βY,1βY,2r1,2

         + 2βY,1βY,3r1,3 + 2βY,2βY,3r2,3,                     (1)

where _Y,j = the standardized partial regression
coefficient of X j and rj,h = the zero-order correlation of
X j and Xh. From this equation, it was argued that the
total variance in Y  is reproduced by the direct variance
(indicated by the betas squared) and shared variance
(denoted by twice the sum of the correlational cross
products) of the regressors. Engelhart (1936) argued
that the shared variance is divided among each of the
regressors in the same proportions as the direct
variance. Chase (1960) modified this equation to be

R2 = (βY,1
2 + βY,1βY,2r1,2 + βY,1βY,3r1,3)

    + (βY,2
2 + βY,1βY,2r1,2 + βY,2βY,3r2,3)

          + (βY,3
2 + βY,1βY,3r1,3 + βY,2βY,3r2,3).            (2)

so that “the total direct and shared variance in the
criterion associated with the ith independent variable is
given by the square of the beta for the ith variable, plus
half of all the covariance terms in formula (1) which
include the beta for the ith variable” (p. 266). The
decomposition of R2 for step g in Table 2 yields:

Direct effect of X1: βY,1
2 = (.3329)2 = .11082,

Direct effect of X2: βY,2
2 = (.5341)2 = .28526,

Shared effect of X1 and X2:
   [βY,1βY,2r1,2= (.3329)(.5341)(.04044) = .00719],
Total effect of X1: .11082 + .00719 = .11802,
Total effect of X2: .28526 + .00719 = .29245,
The multiple coefficient of determination:
   R2 = .11802 + .29245 = .41047.

Although this decomposition reproduces the
multiple coefficient of determination (R2), it is not
useful in determining the contribution of the
residualized variables since the coefficients of
determination in steps 10 and 11 (Table 2) are not
equal to the total effects of X1 and X2, assumed in (2)
as the components of R2. Moreover, the
decomposition (2) "has none of the most important
properties that a "contribution to variance" has when
variables are uncorrelated" (Darlington, 1968, p. 170).
A more appropriate partition of R2 is based on the

semi-partial coefficients of determination. The general
form of the semi-partial coefficient of determination
for the jth residualized variable (R2

Y,j.j*) is R2
Y,j.j* = R2 -

r2
Y,j, for j ≠ j* = 1, ..., m, where R2 = the (multiple)

coefficient of determination of the full model and rYj =
the zero-order correlation of Y  and X j. The semi-partial
coefficients of determination for X1 and X2 in the
example are R2

Y,1.2 = R2 - r2
Y,1 = .4105 - (.3545)2 =

.2849, and R2
Y,2.1 = R2 - r2

Y,2 = .4105 - (.5476)2 =
.1106, respectively. As a result, the coefficient of
determination in the multiple regression model can be
expressed as R2 = {R2

Y,1.2 + R2
Y,2.1 + r2

Y,1 + r2
Y,2}/2.

Effects of Extraneous Variables on Statistical Inference
In analyzing the goodness of fit of the multiple

regression model, the researcher would get a clearer
understanding of the role played by partial regression
coefficients by fitting the conventional (step g) and
residualized versions (steps 10 and 11). The model in
step g has the advantage that the regressors are
expressed in terms of the original unit of
measurement. Hence, with a reasonable R2, it can be
used for predicting Y . However, in assessing the
contributions of the regressors to variations in Y , the
regression coefficients of the residualized scores in
steps 10 and 11 are more meaningful and should be
used.

For the multiple regression model in step g, the
slope of X2 is statistically significant at α  = .05 [t(b2)
= 2.305, p < .05] whereas that of X1 is not [t(b1) =
1.437, p > .18]. However, the significance of X2 may
be misleading in light of the overall F statistic (p >
.05, Table 2). On the other hand, the regression
models of Y  using the residualized variables in steps
10 and 11 facilitate the evaluation of the statistical
inference on the regressors in the multiple regression
model (step g). Evidently, both E1 and E2 are not
statistically significant (p > .25 and .05, respectively
in Table 2). Whereas the multi-dimensional graph of Y
against X 's that also contains the regression line for
the multiple model in step g is hard to draw, the
regression lines of the residualized variables can be
easily depicted since the simple models 10 and 11
involve only single regressors (E1 or E2) and their
intercept term is equal to the sample mean of Y . The
plot of the regression line for step 10, say, is the same
as the plot of Y  on X1 at given values of X2 (as
illustrated by Mullet, 1972) but with much less effort.

Conclus ions
It is suggested that the partial regression

coefficient bj represent the effect of the jth residualized
variable which is computed as the difference between
X j and its predicted values obtained by regressing X j on
all other independent variables in the multiple
regression model. The revised interpretations of the
regression coefficients are based not only on the
mathematical properties of the regression equation but
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also on the sources of the values reported by such an
equation. The proposed interpretations of simple and
partial regression coefficients reflect the same
meanings conveyed by their corresponding correlation
coefficients. The consideration of residualized effects in
regression analysis leads to explanations that are more
uniform in terminologies for both simple and partial
regression coefficients. Moreover, it enables a
recognition of low construct validity in regression
modelling and sheds light on how to analyze the test
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Path Model of Treatment Outcome in a
Multidisciplinary Pain Management Clinic

Daisha J. Cipher, Southern Methodist University
P. Andrew Clifford, Cognitive Psychophysiological Institute at Dallas

The treatment of chronic pain disorders has become multifaceted as the field of pain research has recognized the
complex nature of chronic pain.  Multidisciplinary pain management has been developed in order to address the
complexities of chronic pain disorders.  However, in the study of multidisciplinary pain management, there have
been few models predicting patients’ response to treatment.  This study examined a path model of treatment
outcome, incorporating such variables as coping styles, treatment compliance, and treatment outcome.  Results
indicated that a coping style involving the suppression of negative emotion is associated with more treatment
compliance, functional capacity, and perceived life control.  A coping style involving amplification of negative
emotion was found to be associated with poorer treatment compliance, functional impairment and emotional distress,
such as depression and anxiety.  Possessing an aggressive coping style was found to be associated with poor
treatment compliance, as well as anger, hostility, and a low probability of benefiting from a treatment program.

hronic pain is reported by 80 million
Americans (Bonica, 1987), and 60% of all
social security disability claims involve the

allegation of pain (Simmons, Avant, Demski, &
Parisher, 1988).  In view of the vast empirical support
for psychological treatments for pain, the strict
biomedical intervention for pain has given way to
multidisciplinary pain management (Flor, Fydrick, &
Turk,. 1992). Multidisciplinary pain management
typically incorporates not only pharmacotherapy and
physical therapy, but also biofeedback, operant
conditioning, relaxation and cognitive restructuring.
The most common goals of multidisciplinary pain
centers (MPCs) are functional capacity, pain reduction,
reduction in addictive medication, reduction of health-
care utilization, increased activity including return to
work, closure of disability claims, and reduction in
emotional distress, with functional capacity considered
most important, by clinicians and insurance companies
alike (Turk, 1996).

In the MPC treatment outcome research, most
salient is the need for predictors of success (and for that
matter, failure) of MPC treatment.  Such predictors
would allow clinicians to identify those patients who
will benefit from an MPC approach, and those who
might need an alternative form of treatment.
Preliminary studies have indicated that the coping
scales of the Millon Behavioral Health Inventory
(MBHI) are good predictors of behavioral treatment
outcomes (Wilcoxson et al., 1988, Gatchel et al.,
1985), and there is evidence that these scales can be
used to classify distinct coping styles of chronic pain
patients (Dickson et al, 1992, Cipher & Clifford,
1996; Marron et al, 1984).  The MBHI coping scales
are described below (see Table 1).

A recent factor analysis (Cipher, 1999) performed
on the eight MBHI coping styles confirmed past
cluster analytic findings of Cipher & Clifford (1996),
as well as the actual authors of the MBHI.  

The factors extracted are summarized below:
Factor One: Expression of Negative Emotion.

The MBHI Inhibited and Sensitive Scales loaded
negatively on Factor One, consistent with other
studies finding these scales to be grouped together
(Dickson et al., 1992; Gatchel et al, 1985; Marron et
al., 1984). The Confident and Sociable scales loaded
positively on Factor One.  Based on these loadings and
the results from the correlational analyses, Factor One
appears to be a dimension of expression of negative
emotion.  That is, on one end of the dimension, there
appears to be a high reporting of emotional distress
and neuroticism.  On the other end, there is an
underreporting of distress coupled with high
defensiveness.  For example, Factor One is negatively
correlated with affective distress, functional
impairment, depression, and overall psychopathology
(MPI I, MPI AD, MMPI-2 D, MMPI-2 F scales).
Factor One is positively correlated with a subjective
sense of life control (MPI LC scale), and positively
correlated with defensiveness and the denial of
psychopathology (MMPI-2 K and F scales,
respectively) – similar to a “Polyannish” attitude.
Thus, on one end of the dimension, there is
suppression of negative emotion, and on the other end,
“amplification” of negative emotion.  Consequently, it
appears that Factor One has largely captured the
clusters found by Cipher and Clifford (1996) onto one
dimension, with suppression of negative emotion and
stress on one end (e.g. Repressors), and amplification
of negative emotion on the other (e.g. Amplifiers).

Factor Two: Aggression. The Cooperative scale
loaded negatively on Factor Two, while the Forceful
scale loaded positively.  This factor appears to be a
dimension of aggression.  One end of the dimension
represents aggression and forcefulness.  The other end
represents passiveness and cooperation.   Correlational
analyses revealed Factor Two to be positively related
to anger, cynicism, anti-social practices and Type A

C
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behavior (MMPI ANG, CYN, ASP, and TPA scales,
respectively).  Factor Two is not related to neuroticism
per se; rather, it is associated with anger, hostility,
resentment of authority, having a temper, being
impatient, and being critical. Factor Two was
negatively related to defensiveness, and is associated
with frankness and self-centeredness (MMPI K scale).
In sum, Factor Two appears to be separate from
amplification; it is a dimension of active independence,
anger, and resentment on one end, and passive
dependence and cooperation on the other.

This study examined the role of coping styles in
the chronic pain patient’s treatment compliance and
outcome in order to identify those patients who
respond (and do not respond) to multidisciplinary pain
management.  Patients' compliance with their
treatment regimen is an important factor in any
clinical setting, but is often overlooked when
examining treatment outcome and cost effectiveness.
In one of the few studies quantifying treatment
compliance in the pain management context, Lutz,
Silbret and Olshan (1983) found a significant
relationship between compliance and treatment
outcome.  However, compliance has not been
examined as a mediator between coping/personality
styles and outcome.  

The findings of Cipher and Clifford (1996)
indicated that certain coping styles might be predictive
of chronic pain patients’ treatment compliance and
post treatment outcome.  As outlined by Turk (1996),
functional impairment is one of the most common and
useful outcome variables examined in
multidisciplinary pain centers.  This study assessed the
predictive value of the MBHI coping styles in a
cognitive-behavioral pain management treatment
outcome model, with treatment compliance as a
mediator between coping styles and treatment
outcome.  Figure 1 below illustrates the proposed
model of treatment outcome.

Table 1. Brief Descriptions of High Scorers on the
              MBHI Coping Style Scales

Style Description
Introversive Keeps to self, quiet, unemotional,

not easily excited, lacks energy
Inhibited Shy; socially ill-at-ease, avoids

close relationships, fears rejection
Cooperative Soft-hearted, reluctant to assert self,

submissive, dependent
Sociable Charming, emotionally expressive,

histrionic, talkative
Confident Self-centered, egocentric, acts self-

assured
Forceful Domineering, abrasive, intimidates

others, blunt, aggressive
Respectful Serious-minded, efficient, rule

conscious, emotionally constrained
Sensitive Unpredictable, moody, passively

aggressive, negativistic

Method
Data were collected from 67 outpatients who

completed treatment at a University pain clinic. All
patients had been previously diagnosed with some sort
of chronic pain syndrome.   Exclusion criteria were the
presence of any cognitive deficits due to neurological
disorders, progressive terminal illnesses, or any other
medical conditions which were not stable (e.g. end-
stage cancer). The most common diagnoses were low
back pain, neck/shoulder pain, headache, neuropathy,
and fibromyalgia.  The average age of patients was 45
years old.

Treatment .
Treatment consisted of multi-disciplinary pain

management, which included  cognitive-behavioral
therapy incorporating biofeedback and relaxation train-

Figure 1. Path Model of  MPC Treatment Outcome
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ing, and pharmacotherapy. Licensed psychologists
provided cognitive-behavioral therapy. Pharmaco-
therapy was provided on a monthly basis by attending
anesthesiologists. Goals of pharmacotherapy involved
tapering the patients to lowest possible dosages of
analgesics required to minimize the pain.

Measures
Millon Behavioral Health Inventory (MBHI).

The Millon Behavioral Health Inventory (MBHI;
Millon, Green, & Meagher, 1979) was designed to
measure people’s response to medical evaluation and
treatment.  The MBHI consists of eight scales which
assess coping styles in the medical setting as well as
14 other scales measuring psychogenic attitudes,
somatization, and prognoses.  The eight coping styles
on which this study focuses include Introversive,
Inhibited, Cooperative, Sociable, Confident, Forceful,
Respectful, and Sensitive (see Table 1 for
descriptions).  The MBHI appears to be a valid and
reliable instrument (Millon, Green, & Meagher,
1982).  The factor scores produced by the MBHI
factor analysis will be used to represent coping styles
in this study.

Treatment Compliance/Collaboration Rating
Scales.  These rating scales were developed in order to
measure the level of treatment compliance,
interpersonal rapport, alliance, and collaboration
between the therapist and the patient in a
multidisciplinary pain treatment setting. No other
instrument of this kind has yet been developed.
Domains of the treatment compliance/collaboration
rating are pain management, relaxation, emotional
management, activity management, social functional
restoration, recreational functional restoration,
vocational functional restoration, substance/med-
ication management, weight management, and auto-
nomic nervous system management/neuromuscular
re-education (see Appendix A).  Domains of
compliance/collaboration are rated by the patient’s
attending psychologist on a 5-point scale ranging
from Needs Improvement to Self-Directed.  An
Overall Compliance Score is computed by adding the
10 ratings and dividing by the number of domains
rated (e.g. excluding “not applicable”). For a sample
of 31 patients, the median inter-rater reliability for the
overall compliance score was found to be .87 among
three raters (therapists).

Multidimensional Pain Inventory (MPI).  The
West Haven-Yale Multidimensional Pain Inventory
(MPI; Kerns, Turk, & Rudy, 1985), as described in
Study I, is a comprehensive, psychometrically sound
instrument which is composed of three sections with
a total of 13 empirically derived scales (Kerns et al.,
1985).  The present study focuses on only one of the
scales, Interference.  The Interference scale assesses
the patient’s perception of how much and in what
ways the patient perceives his/her pain to affect daily

functioning, and thus will be used to represent functional
impairment. The means and standard deviation for the
Interference scale among a sample of chronic pain patients
are M=55.66, SD=7.98.  Higher numbers are indicative of
more functional impairment.   The MPI is a reliable and
valid instrument (Jamison, Rudy, Penzien, & Mosley,
1994).  An improvement score was generated for each
patient by subtracting the pre-treatment Interference score
from the post-treatment Interference score.  Thus, negative
scores are indicative of improvement from pre-treatment to
post-treatment.

Procedure
The patients receiving treatment at the pain center

completed the MBHI during their first visit.  After
completing 18-22 sessions of cognitive-behavioral therapy
within a 6-month period of time, the patients were
administered the MPI.  Within two months after patients
completed treatment, their attending psychologist
completed a Treatment Compliance Rating Scale.  

Data Analysis
The factors retained from the factor analysis represented

the classifications of coping styles in the current path
model.  First, these factors were correlated with treatment
compliance ratings and improvement in functional
capacity. A path analysis was then conducted to obtain
direct and indirect effects between the variables, allowance
for error terms (e.g. measurement error), a model R2, and an
indication of overall “fit” of this model.  Path analysis also
allowed for multiple dependent variables in one path model
(as compared to multiple regression, which only allows
one dependent variable at a time to be analyzed).   Path
analysis allowed for a graphical representation of
relationships between variables, as represented by path
coefficients.  Path coefficients are either Pearson correlation
coefficients or beta weights, depending upon the number of
variables predicting the endogenous (dependent) variable
(Schumacker & Lomax, 1996).  Model fit indices yielded a)
the difference between the path coefficients and original
(correlation) coefficients among the variables (thus
indicating any under/overidentification of the model); and b)
the likelihood that this model will replicate across different
samples of chronic pain patients.  The path diagram, as
illustrated in Figure 1, shows treatment
compliance/collaboration as hypothesized to be the
mediating variable between coping styles and treatment
outcome.  The R2 for predicting treatment compliance was
.375 and the R2 for predicting functional impairment was
.274.  The R2 for the path model is therefore equal to:  
1 - (1 - .375)(1 - .274) = .546.   

Results
Correlational analyses revealed Factor One (Expression

of Negative Emotion) to be positively related to
compliance, whereas Factor Two (Aggression) was
negatively related to compliance (Table 3).  Compliance
was positively related to reductions  in functional impair-
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Table 2. Means for Treatment Outcome Variables

Mean
Standard

Deviation
Factor1 0.03 1.02
Factor2 0.02 1.04
Compliance 3.70 0.62
Interference
(Improvement)

-1.44 1.17

ment. As shown in Table 4, the fit indices for this
model appear to be a good model fit.  However,
correlations between compliance and the other
variables may be underestimated due to the small
variance associated with compliance (see Table 2).
The lowest compliance rating given a patient was a
three (out of five points).  Thus, most patients in this
study were rated as having at least satisfactory overall
treatment compliance.

Discussion
These results lend support for a mediational

model of treatment outcome in a pain management
center.  Coping styles predict the manner in which
patients comply with treatment, and compliance
predicts patients’ improvements in functional
capacity.   Results indicate that amplification of
emotional distress leads to less compliance with
treatment, resulting in poorer outcome.  The more
emotionally constrained or stabilized, the more
compliance patients exhibit and in turn, the higher
improvements they attain in functional capacity.
Likewise, the more aggressive and forceful patients
are in their coping styles, the less likely they are to
comply and respond to treatment.  

Thus, it appears that possessing a defensive,
Polyannish style of coping is much more advan-
tageous in terms of complying with treatment and
having a positive treatment outcome.  Undergoing
emotional distress, depression, and/or other psycho-
pathology, coupled with a lack of defensiveness,
appears to put patients at risk for not complying with
treatment, and in turn, having a poor treatment
outcome.  Moreover, being forceful, having Type A
personality traits, and being aggressive is also a
detriment to treatment compliance and outcome.  

The confirmation of this model emphasizes the
importance of treatment compliance in MPCs.
Moreover, the psychologist-rated compliance scales
appeared to be useful as a measure of treatment
compliance as well as a predictor of treatment
outcome.  Compliance appears to be the link between
coping/personality styles that patients possess when
entering into treatment, and the improvement they’ve
accomplished by the end of treatment.  These findings
confirm that of other studies using the MBHI as
predictors of compliance in health care settings (Tracy
et al, 1988).

Table 3. Correlations Among Treatment Outcome
         Variables (N=67)

Improvement Compliance Factor1

Improvement 1.00
Compliance -0.21 1.00
Factor1 -0.04 0.25 1.00
Factor2 -0.09 -0.33 * -0.06
Note. * indicate values with probability of p <.05.

Conclusions
Findings from Study II indicate that having a coping

style that involves suppression and denial of negative
emotion facilitates compliance with treatment.  However,
these findings are not intended to suggest that suppressing
negative emotion is functional.  Possessing defensive
coping traits (e.g. being emotionally constrained/stable,
Polyannish) can be healthy when one is living a relatively
stress-free life.  However, when the non-expressive person
is faced with a severe stressor that does not go away, such
as a chronic pain disorder, denying emotional distress and
being defensive may become maladaptive (Wickramasekera,
1993). .  This phenomenon has been evidenced in the study
of End State Renal Disease patients.  Social withdrawal and
social alienation were found to be significantly related to
poor compliance and poor prognosis (Tracy et al., 1987).
Likewise, in a study by Esterling et al. (1990), those
chronic pain patients who were repressors, were non-
expressive, and disclosed little about themselves were found
to have the lowest levels of immune functioning.
Defensiveness, which is closely related to avoidance and
non-disclosure, has also been found to be related to lower
levels of immune functioning (Jamner et al, 1988).
Consequently, while being on the non-expressive end may
appear to be better than being on the amplifying end, both
are likely to be dysfunctional for patients in the long run.

Expression of Negative Emotion and Aggression are,
by and large, orthogonal factors.  Patients scoring either
high or low on Expression of Negative Emotion can score
either high or low on Aggression.  Judging from the path
analytic results, it is most desirable to score on the
repressive end of the Expression of Negative Emotion
factor and the passive end of the Aggression factor.  These
patients are likely to be most compliant with treatment and
exhibit the most treatment improvements. The most
difficult patients are most likely those who score on the
amplifying end of Repression/Amplification and the
aggressive end of Aggression.  Not only are these patients
suffering from high levels of emotional distress and
functional impairment, but they are also hostile, resentful
and aggressive in their approach to treatment.  These
patients are likely to be most difficult to work with and
have a smaller chance of completing a treatment program.
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Table 4. Goodness of Fit Criteria for Path Model
         of Treatment Outcome.

Criterion Value
Acceptable

Level*
Chi-square 3.04 Tabled Chi-

square value
GFI

(Goodness of fit)
0.98 0 (no fit) to

1 (perfect fit)
AGFI

(Adjusted GFI)
0.92 0 (no fit) to

1 (perfect fit)
RMSEA

(Root-mean-square
error of approximation)

0.01 <.05

AIC
(Akaike information criterion)

17.04 Negative
value = poor

fit
Note. * based on Schumaker & Lomax, 1996.
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