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In Memoriam: Max R. Martin
Nancy K. Martin, University of Texas at San Antonio

hen I was asked to write about my dear
friend Max Martin, I was honored to be able
to remember him in this way.  I am however

overwhelmed as I stare at the blinking cursor and try to
figure out what to say.  I’ve known Max for years.  It
seems like this task would be easy, but the idea of a
memoriam for Max is surreal.  All of us who knew him
are in shock over his untimely passing.  Also, it’s hard
to know what to say about someone like Max.  How do I
sum up such a special life in just a few words?  No
doubt, an impossible task; still, I will try.  Max
passed away on August 18, 2000 at age 52 – eight days
after suffering a massive heart attack at home.  Prior to
his death, Max used his amazing computer and
statistical skills as the senior evaluator in the Research
and Evaluation Systems Technology Department for
one of the poorest school districts in Texas.  Ironically,
Max began his career as a chemical engineer.  He could
have done anything he wanted to do, been anything he
wanted to be, but after a stint as a math teacher at a
Catholic school, his career path was clear.  Education
was his calling and it was that road that crossed with
mine.

I first came to know Max when we were enrolled in
the same doctoral program at Texas Tech University in
the early 1980s.  We struggled through graduate school
together (I struggled more than he) and we formed that
special bond that only fellow doctoral students can
understand.

We had the same last name and that often led to
confusion.  His mail was in my mailbox; his student
messages were on my answering machine at home -
“Would you please tell your husband . . . ?”  The idea
that we were husband and wife was a natural
assumption and we had a lot of fun with it over the
years.  By coincidence, we both ended up living in San
Antonio and we both have served as past Presidents of
the Southwest Educational Research Association, so
the confusion (and fun) continued.

There’s nothing like a good story to provide a
composite picture of someone, especially Max.  Max and
I had the same dissertation chairman, Dr. Paul Dixon.
Dr. Paul Dixon was tough as nails, but Max and I were
both wise enough to realize a smart choice when we saw
one.  Everyone knew two things before enrolling in one
of Paul’s classes.  First, be ready to work hard, and
second, we were going to learn more than we probably
wanted to know about the subject matter.  Paul’s take-
home final exam in Learning Theory was inspired and
infamous.  The final exam was a dialogue between
learning theorists we studied during the semester with
questions in between that we had to respond to by
Wertheimer, Pavlov, Skinner, and others.  The exam was

extremely difficult and we were required to work
independently.  We all scurried home to work into the
wee hours of the morning drinking gallons of coffee for
days on end.  Finally, the exam due date arrived.  Max’s
answers were brilliantly composed, thoughtful and
insightful, but he had an added surprise.  His answers
were not in English, instead with a little help from his
friends, his wife, and his own language skills, Max had
written Wertheimer’s responses in German, Pavlov’s
responses in Russian, and so on.  In order to grade the
exam, Dr. Dixon had to enlist assistance from the
Foreign Language Department, and with the help of an
international student, his graded comments to Max were
written in Korean.

There are so many things we will miss about Max.
If you were around Max you had to at least smile, if not
laugh out loud, doing otherwise was against the rules.
He was creative, brilliant, kind, and gentle; a giant of a
man, everyone knew when he entered a room.  In
graduate school and later in other professional arenas,
people were in awe of his intellect and wit.  Even when
surrounded by some of the greatest minds in the world,
he was respected for his intelligence.   Charlotte Keefe,
Professor, Texas Woman’s University, was another of
Max’s dear friends.  She described him eloquently, “Max
shared his intellect and insights graciously and willingly
and usually with uncanny wit.  He could ‘nail’ the
essence of a problem with elegance.  When I had the
privilege of working with him on projects, it was such a
pleasure – never a grind because he found humor in
even the most trying situations.”

Max had so many special gifts.  He was a computer
whiz, artist, musician, calligrapher, jewelry maker, and
photographer.  What stood out the most about him was
his spirit.  His passing is a loss for us all, even those
who never knew him.  We will never know what
additional contributions he could have made or
influenced in the field of education, the nation’s school
children, teachers, professors, and administrators.  His
statistical expertise was sought after by many, “Hey
Max, how do you think I should crunch this data?”
“What’s the best way to design this study?”  He was
always willing to take the time to help you figure it out.
His own research pertained to a variety of topics
including statewide testing and evaluation, hierarchical
linear modeling, and complicated cross-cultural issues.
In addition to Hispanic educational issues in Texas, Max
also considered cross-cultural issues related to Turkey
and Korea that undoubtedly touched many lives around
the world.

I think we all wonder what people will say about us
after we’re gone.  What will be our legacy?  More than
anything else, Max was dedicated to his family and to
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God.  His faith was deep and strong.  He was happily
married to his wife Diane for 25 years – a real
accomplishment these days.  They were blessed with
four children, Jeremy, Max II, Miranda, and Johanna,
who are as brilliant, creative, and talented as their dad.
Max Martin was my dear friend for almost 20 years.  I
had the utmost respect and admiration for him both
professionally and personally.  I am a better person for
having known him and I will miss him deeply.  Max, from
all of us, “Well done, my friend.  Well done.”

Nancy K. Martin
Associate Dean for Undergraduate Studies
College of Education & Human Development
The University of Texas at San Antonio
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Outlier Lies: An Illustrative Example of Identifying  
Outliers and Applying Robust Models  

 
Karl Ho, University of North Texas 

Jimmie R. Naugher, University of North Texas 
The presence of outliers can contribute to serious deviance in findings of statistical models.  In this study, we illustrate 
how a minor, typographical error in the data could make a standard OLS model “lie” in the estimates and model fit.  We 
propose robust techniques that are insensitive to extreme, outlying cases and provide better predictions.  With 
implementation examples, we demonstrate how robust technique improves estimations over conventional models based 
on normality and outlier-free assumptions. 

he possibility of outliers is an important 
consideration when applying regression statistics 
such as R2 and the Pearson product moment 
correlation coefficient (Huber 1981, Hempel et al 

1986).  We provide an example in this article that 
illustrates how dramatic the influence of only a tiny 
portion of the data can have on the model estimate and 
goodness of fit statistics.  In the following analysis, we 
demonstrate that with two outliers included in a data set of 
48 observations, only 15% of the variation in the 
dependent variable is accounted for by the differences on 
the independent variable (r = .39 and r2 = .15, N=48).  
However, when the two outliers are removed, 48% of the 
variation is accounted for (r = .69 and r2 = .48, N=46). 
 The data are from a survey of metropolitan colleges 
and universities conducted by the Office of University 
Planning at the University of North Texas.  The 
institutions ranged from some with essentially open 
admissions to those with selective admissions criteria.  The 
independent variable is the institution’s average SAT score 
for new freshmen and the dependent variable is the 
institution’s six-year graduation rate.  As expected, there 
was a strong linear relationship between the average SAT 
score for new freshmen and the graduation rates.  
However, only two outliers can hide this fact in terms of r 
and r2 analysis.  There are three purposes to this article: 
• To illustrate how only two outliers can have a dramatic 

influence on r and r2 values. 
• To demonstrate that outliers can be identified by visual 

inspection of the scattergram, provided the difference 
is extreme enough. 

• To point to statistical tools that provide more reliable 
statistical means to identify outliers than visual 
inspection alone. 

 The reported SAT averages ranged from 464 to 1152.  
The reported graduation rates ranged from 12.0% to 
74.4%.  The outliers reported the two lowest average SAT 
scores with relatively high graduation rates, i.e., an SAT of 
464 with a graduation rate of 44.1% (near the middle) and 
an SAT of 598 with a graduation rate of 72.0% (near the 
top).  Institutions were requested to use the total SAT for 
averages, for which 400 is the lowest possible value.  An 
average SAT of 464 or 598 is not believable.  (Probably a 
clerk recorded either the math SAT or verbal SAT instead 
of the total SAT.  Doubling the two reported SAT values 
of 464 and 598 yields values that fit well with the 
graduation rates.) 

 Figure 1 is based on the 48 cases that include the two 
outliers.  The SAT values and graduation rates are plotted 
as a graph and the resulting regression line is plotted.  
Note how the paired values of SAT=464 and graduation 
rate=44.1 and SAT=598 and graduation rate=72.0 are 
isolated in the top left corner of the graph.  The two points 
“lie outside” the general pattern formed by the other cases.  
The R2 is 0.1523. 
 Figure 2 is based on 46 cases, with the two outliers 
excluded.  The SAT values and graduation rates as shown 
in Table 1 are plotted as a graph with the regression line.  
Note how much better the fit of the regression line with 
the two outlying cases discarded (R2 =0.4735). 
 

Identifying and Dealing with Outliers 
 Apart from visual methods, statistical tools for 
identifying regression outliers abound.  The more 
commonly known are Mahalanobis distance and Cook’s 
distance.  The former measures the distance of a case from 
the centroid of the remaining cases where centroid is the 
point created by the means of all variables in a 
multidimensional space.  
 
Mahalonobis distance = (n - 1)( hi – 1/n) 
 
where n is the number of observations and hi is the 
leverage value for ith case derived from the diagonal of the 
hat matrix (X′X)-1X′. 
 Cook’s distance is another influence measure that 
reflects the change in the estimates of regression 
coefficients if the ith case is removed. 
 
  Cook = (h x deleted residual square) 
      (k x residual mean square) 
 
 Figure 3 vividly depicts the outlying observations of 
the 47th and 48th cases, which Mahalanobis distances are 
6.052 and 12.104, respectively, indicating a departure 
from other cases.  Cook’s distances for the two cases are 
1.039 and 0.664, as compared with the others falling 
below 0.2. 
 To circumvent effects of outlying observations, one 
could remove those cases from the sample, but this 
sacrifices important information about the outliers.  

T 
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Table 1. SAT scores and  
     Graduation Rate (GRADRATE) 
 

Case  SAT GRADRA 
1 1152.00 74.40 
2 1121.00 69.00 
3 1099.00 69.00 
4 1069.00 39.00 
5 1060.00 68.00 
6 1050.00 53.50 
7 1044.00 34.00 
8 1028.00 41.80 
9 1027.00 49.00 

10 1026.00 30.00 
11 1025.00 47.00 
12 1019.00 69.00 
13 1009.00 46.00 
14 1006.00 50.00 
15 1004.00 48.00 
16 1000.00 27.00 
17 1000.00 45.00 
18  998.00 64.00 
19  980.00 53.00 
20  977.00 34.00 
21  968.00 32.00 
22  958.00 45.00 
23  953.00 46.00 
24  927.00 47.00 
25  921.00 28.00 
26  919.00 44.00 
27  918.00 36.00 
28  917.00 46.50 
29  900.00 50.00 
30  892.00 51.00 
31  890.00 29.00 
32  885.00 25.40 
33  876.00 31.00 
34  873.00 44.00 
35  866.00 41.00 
36  857.00 23.00 
37  855.00 39.00 
38  846.00 37.00 
39  831.00 23.00 
40  809.00 32.00 
41  806.00 12.00 
42  799.00 27.00 
43  795.00 42.40 
44  777.00 41.00 
45  760.00 23.00 
46  677.00 17.00 
47  598.00 72.00 
48  464.00 44.10 

 
Deletion of outliers should not be contemplated when the 
number of cases is substantial.  A more positive treatment 
is to apply Robust Regression techniques that minimize 
influence of outliers for model estimation. 
 

 

 
 

 
 
 One of the Robust Regression modeling techniques is 
based on an MM-estimate computational strategy 
introduced by Yohai, Stahel and Zamar (1991).  The 
Robust MM Regression method generates highly  
robust estimates with minimized influence of the outlying 
cases. 
 Table 2 lists the model estimates and goodness of fit of 
the OLS model and Robust MM model using only the 
SAT score the predict the graduation rate.  Notice that the 
intercept is not statistically significant in the former model.  
While keeping the two outlying 

R2 = .1523 

Reported Average SAT 
Figure 1. Outliers In: Scattergram of Average 
SAT and Graduation Rate.  

Reported Average SAT 
Figure 2. Outliers Out: Scattergram of Average 
SAT and Graduation Rate.  

R2 = .4735 



Ho & Naugher 

Multiple Linear Regression Viewpoints, 2000, Vol. 26(2) 
 

4 

 

Case Number

484746454443424140393837363534333231302928272625242322212019181716151413121110987654321

V
al

ue
 M

ah
al

an
ob

is
 D

is
ta

nc
e

14

12

10

8

6

4

2

0

 

Case Number

46434037343128252219161310741

V
al

ue
 C

oo
k'

s D
is

ta
nc

e

1.2

1.0

.8

.6

.4

.2

0.0

 
Figure 3. Mahalanobis Distinaces and Cook’s Distances. 
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Figure 4. Comparing Densities of Residuals between Robust MM-estimator and Least Square 
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Figure 5.  Comparing OLS and Various Robust Estimators 
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Table 2. Comparison of OLS and Robust Models 
 
 
OLS 

 
Value 

Standard 
Error 

 
t value

 
Pr(>|t|) 

(Intercept) 1.9170 14.2486 0.135 .893564
   SAT 0.0440 0.0153 2.875 .006098

LS Fit : 0.1523    

Robust MM     
(Intercept) -48.2586 16.8244 -2.868 .006209
   SAT 0.0960 0.0178 5.382 .000002
LS Fit : 0.3151    
 
cases, namely the 47th and 48th, the Robust MM model 
does not assume any "manual error” in the data entry 
but discounts their high influence in modeling the data.  
The model fit is improved by more than 100 percent. 
 Figure 4 illustrates how the density of residuals of 
the robust model is compared to that of the OLS which 
has bumps on both sides.  Comparatively, the robust 
estimate is well-centered at zero and pushes the outliers 
farther away to the right.  
 There are other Robust estimators like Minimum 
Absolute Residual (L1) Regression, Least Trimmed 
Squares (LTS), M-estimation(RREG) and Robust Sim- 

ple Regression by Biweight (Bisquare).  Figure 5 
demonstrates the relative fit of these robust models  
compared to OLS. These models can all be 
implemented using available functions in the  S-PLUS 
2000 statistical software package (Mathsoft Data 
Analysis Products Division,  1999). 
 In conclusion, this article gives a simple illustration 
of implementing robust models over conventional OLS 
in the presence of outliers.  We demonstrated how 
outliers can be identified with simple tools and how to 
deal with data plagued with outlying cases using robust 
modeling techniques. 
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accomplishment these days.  They were blessed with 
four children, Jeremy, Max II, Miranda, and Johanna, 
who are as brilliant, creative, and talented as their dad.  
Max Martin was my dear friend for almost 20 years.  I 
had the utmost respect and admiration for him both 
professionally and personally.  I am a better person for 
having known him and I will miss him deeply.  Max, 
from all of us, “Well done, my friend.  Well done.” 
 

Nancy K. Martin 
Associate Dean for Undergraduate Studies 

College of Education & Human Development 
The University of Texas at San Antonio 
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Problems with Probabilistic Hindsight: A Comparison of 
Methods for Retrospective Statistical Power Analysis  

 
Jeffrey Kromrey, University of South Florida 

Kristine Y. Hogarty, University of South Florida 
In contrast to prospective uses of power analysis, retrospective power analysis provides an estimate of the statistical 
power of a hypothesis test after an investigation has been conducted. The purpose of this research was to 
empirically investigate the bias and sampling errors of three point estimators of retrospective power and the 
confidence band coverage of an interval estimate approach. Monte Carlo methods were used to investigate a broad 
range of research designs and population effect sizes that may be encountered in field research. The results suggest 
that none of the retrospective power estimation techniques were effective across all of the conditions examined. For 
point estimates, the “unbiased” and “median unbiased” estimators showed improved performance relative to the 
plug-in estimator, but these procedures were not completely free from bias except under large sample sizes and 
large effect sizes (as the statistical power approaches unity). Further the RMSE of these estimates suggests large 
amounts of sampling error for all three of the point estimators. The interval estimates showed good confidence band 
coverage under most conditions examined, but the width of the bands suggests that they are relatively uninformative 
except for large sample and large effect size conditions.  
 

tatistical power analysis is useful from both 
prospective and retrospective viewpoints. 
Prospectively, power analysis is used in the 
planning of inquiry, typically to provide an 

estimate of the sample size required to obtain a desired 
level of statistical power under an assumed population 
effect size, experimental design and nominal alpha 
level. In contrast, retrospective uses of power analysis 
involve a consideration of statistical power after 
inquiry has been completed. This important application 
of power analysis is somewhat more complicated than 
the prospective uses. 

 
Two Views on Retrospective Power 

 Recent literature suggests that retrospective power 
analysis is conceptualized in two very different forms. 
Characteristic of one approach, Zumbo and Hubley 
(1998) and Ottenbacher and Maas (1999) present 
Bayesian power estimation techniques directed at 
determining the probability of the null hypothesis 
being false, given that the null has been rejected, that is 
Pr (Ho=false|rejected Ho). While this probability is of 
importance in applied research, it's practical 
applications appear to be limited because of the 
unknown proportions of true and false null hypotheses 
in any field of inquiry (Zumbo & Hubley, 1998). This 
approach also introduces a different formal definition 
of “power” than is typically considered in inferential 
statistics (i.e., power usually represents Pr (Ho will be 
rejected|Ho=false) which is equal to 1 – β). These two 
probabilities are often very different. Because this 
conceptualization of retrospective power is not 
practical, it will not be further addressed here. 

The second approach to retrospective power 
analysis (Gerard, Smith & Weerakkody, 1998; Steiger 
& Fouladi, 1997; Brewer & Sindelar, 1987) aims to 
estimate the statistical power of a hypothesis test after 
the test has been conducted. That is, information 

obtained from a particular study may be used to 
estimate the population effect size, which in turn may 
be used (in concert with the study’s sample size and 
nominal alpha level) to estimate the power under 
which the research was conducted. This approach to 
retrospective power analysis appears to satisfy a 
practical need in applied research and retains the 
familiar formal definition of power (i.e., 1 – β). As 
applied researchers, we have been urged to consider 
the effect sizes associated with our data (e.g., Kirk, 
1996; Harlow, Muliak & Steiger, 1997), in conjunction 
with the reject/fail-to-reject decisions of our hypothesis 
tests. The second approach to retrospective power 
analysis simply extends our use of sample effect sizes 
to provide estimates of power. However, the estimation 
of statistical power based on a sample effect size is 
characterized by considerable controversy. 

 
Estimation Procedures for Retrospective Power 

 Several techniques for the second approach to 
retrospective power analysis have been suggested in 
the literature. Gerard, Smith and Weerakkody (1998) 
describe three statistics (estimates of noncentrality) that 
lead to point estimates of retrospective power: a “plug-
in estimator” (λp), an “unbiased estimator” (λub), and a 
“median unbiased” or “percentile estimator” (λ50) of 
the noncentrality parameter.  

The plug-in estimator simply represents the use of 
the sample noncentrality parameter (λp) as if it were the 
same as the population parameter. For the F 
distribution, the sample noncentrality parameter is 
given by 

 
       λp = v1F 
 
where  v1  = numerator degrees of freedom for the 
sample F, and F = obtained sample Fstatistic. 

S 
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The obtained sample noncentrality parameter is then 
used to estimate the statistical power of the test 
   Power = Pr(Fv1, v2,λp ≥ Fv1, v2,1-α  )  
 
where 

1 2, , p
Fν ν λ =  the noncentral F distribution 

with 1ν and 2ν degrees-of-freedom and a 
noncentrality parameter pλ ,  

and 
1 2, ,1Fν ν α− =  the ( )1 α− percentile of central 

F-distribution (i.e., the critical value of F 
with 1ν and 2ν degrees of freedom). 

 The use of pλ is known to produce biased 
estimates of power with a distinct positive bias in 
conditions of low power (Johnson et al., 1995). 
Johnson et al. suggested an alternative estimator 
( ubλ ) intended to reduced the bias inherent in pλ . 
This “unbiased” estimator of noncentrality is given 
by 

    ( )1 2
1

2

2
ub

Fν ν
λ ν

ν
−

= −  

 Although ubλ may provide an unbiased estimate 
of the population noncentrality, estimates of power 
derived from unbiased noncentrality estimates are not 
necessarily unbiased themselves, because power is a 
nonlinear function of noncentrality (Gerard et al., 
1988).  
 A third point estimate of noncentrality was 
suggested by Taylor and Muller (1996). This 
approach (λ50) is reported to underestimate 
noncentrality 50% of the time and overestimate it 
50% of the time (hence, Gerard et al., 1998, refer to 
the method as “median unbiased”). This method 
makes use of the cumulative distribution function of 
F and seeks the value of noncentrality for which the 
obtained value of F in a particular study (i.e., with a 
given 1ν and 2ν ) is expected 50% of the time (see 
Figure 1). Because analytical formulae for solving 
this problem are not available, the value of 

noncentrality must be obtained by numerical methods 
(see, for example, Press, Teukolsky, Vetterling & 
Flannery, 1992). 
In contrast to the point estimates suggested by Gerard 
et al. (1998), Steiger and Fouladi (1997) presented an 
interval estimation approach based on the earlier 
work of Hedges and Olkin (1985). This approach 
provides confidence bands on the noncentrality 
parameter (noncentrality interval estimates) which 
subsequently may be used to obtain confidence bands 
on statistical power. Using logic analogous to that 
used to obtain the λ50 point estimate, the approach 
involves the inversion of percentiles from noncentral 
sampling distributions to obtain confidence bands 
around the noncentrality parameter. That is, instead 
of seeking the value of noncentrality expected 50% 
of the time, a 95% confidence band is obtained by 
seeking the value of noncentrality ( )λ̂  for which  
Pr(Fv1, v2,λ < Fobt) = .025 and the value for which 
Pr(Fv1, v2,λ < Fobt = .975. This provides a confidence 
band for noncentrality, the endpoints of which are 
transformed into the endpoints of a 95% confidence 
band for statistical power.  
Purpose of the Study 
 Neither the point nor the interval estimation 
methods for retrospective power analysis have been 
thoroughly investigated in terms of their operating 
characteristics. The purpose of this research was to 
empirically investigate the bias and standard errors of 
the three point estimators of retrospective power and 
the confidence band coverage of the noncentrality 
interval estimate approach. The investigation covered 
a broad range of research designs and population 
effect sizes that may be encountered in field research. 
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Method 
 A Monte Carlo study was conducted to 
investigate the bias and standard errors of the three 
point estimators of retrospective power, and the 
confidence band coverage of the interval estimation 
technique. Data were simulated from linear models 
and sample effect size estimates were used to obtain 
power estimates. The Monte Carlo study included 
three factors in the design. These factors were (a) the 
experimental design simulated, including one factor 
designs with 2, 4, and 8 levels of the independent 
variable and three factorial designs (2X2, 2X4 and 
3X3), (b) the sample size of the study, with sample 
sizes ranging from 5 to 100 per cell, including equal 
and unequal cell sizes, and (c) population effect 
sizes, with f 2 values (Cohen, 1988) of .01, .02. .15, 
.35 and .50, as well as a null condition (f2 = 0). The 
combination of population effect sizes and sample 
sizes provides conditions with power values ranging 
from α to nearly 1.00. For each sample generated, the 
power of the hypothesis test was estimated using the 
three point estimators and the interval estimate. 
 The Monte Carlo study was conducted using 
SAS/IML version 6.12, running on Windows 95 and 
98 platforms. The RANNOR random number 
generator was used to generate normally distributed 
variables for the observations in each study, and a 
different seed value for the random number generator 
was used in each execution of the program. The 
program code was verified using benchmark datasets. 
 Fifty thousand replications were conducted for 
each condition. The use of 50,000 samples provides 
adequate precision for estimating the relative success 
of the procedures investigated. For example, the 
maximum width of a 95% confidence interval around 
a sample proportion based on 50,000 samples is 
± .0044 (Robey & Barcikowski, 1992). 
 

Results 
 The results are presented in terms of statistical 
bias and root mean squared error (RMSE) for the 
point estimates of power. Statistical bias of the power 
estimates was estimated as 
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where  k̂θ = power estimate for the kth sample, 
  θ = population power, and 
  K = number of samples simulated. 
This statistic represents the difference between the 
mean sample estimate of power and the true 
population power for the condition examined. 
 RMSE of the power estimates was estimated as 
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This statistic represents the standard deviation of the 
sample estimates in which deviation is computed 
from the population parameter rather than from the 
mean of the sample estimates. 
 For the interval estimates of power, the 
proportion of sample confidence bands that contained 
the parameter were calculated to provide an estimate 
of the accuracy of the bands. Further, the average 
width of the confidence bands for each condition was 
calculated. 
  To conserve space, results are presented for a 
subset of the conditions examined (conditions that 
correspond to Cohen’s, 1988, small, medium and 
large effect sizes in addition to the null condition). 
Complete results are available from the authors. 
  Single Factor Designs. Estimates of statistical 
bias in the point estimates of power for single factor 
designs are presented in Table 1.  Graphs of these 
bias estimates are provided in Figures 2 and 3.  To 
construct the figures, the population effect size, 
sample size and number of groups were translated 
into a population power value which is plotted on the 
abscissa of each figure. For the null condition (f 2 = 
0), in balanced designs, all of the estimates evidenced 
positive bias, with the plug-in estimator presenting 
the greatest amount of bias (reaching as high as 0.37 
for the 8-group design with large samples). Bias 
evidenced by the plug-in estimator, for a small effect 
size, was greatest for designs with larger numbers of 
groups, but the other two estimators did not show 
such a pattern. The bias in all three of the estimators 
was reduced as the population effect size increased 
and many conditions evidenced an underestimate of 
the power (negative bias). For example, with a 
medium effect size (f 2 = .15), the unbiased estimator 
evidenced negative bias large as –0.12, with n = 20 in 
2-group and 4-group designs. With large samples and 
a large effect size, all of the estimators converged to 
the true power (i.e., showing zero bias). 
 For unbalanced designs, the same pattern was 
maintained, but the bias estimates were, in general, 
slightly larger in magnitude. For the null conditions 
and conditions with a small effect size, a positive bias 
was evident in most cases, while all of the estimators 
provided unbiased power estimates for large samples 
and a large effect size. 
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 The root mean squared errors (RMSEs) of these 
point estimates are provided in Table 2.  Graphs of 
these error estimates are provided in Figures 4 and 5.  
These statistics reflect sampling variability in terms 
of squared deviations from the population parameter. 
If a statistic is unbiased, the RMSE is the same as the 
standard error. Because these statistics reflect 
sampling error, in many conditions the RMSEs 
become smaller with larger sample sizes (e.g., for 
conditions with a large effect size). When estimators 
are biased, however, the RMSE may not decrease 
with larger sample sizes. In general the magnitudes 
of the RMSE associated with these point estimates of 
retrospective power are quite large for conditions 
with a small or medium population effect size and 
small sample size. However, with large samples and 
large effect sizes, the sampling error is substantially 
reduced. Further, the magnitude of the RMSE does 
not appear to be systematically larger with 
unbalanced designs. 
 For the interval power estimates, the proportion 
of confidence bands that contained the true value of 
power and the confidence interval width are 
presented in Table 3 and illustrated in Figure 6. For 
balanced designs, the intervals showed 95% coverage 
across all non-null conditions, but performance 
decreased with the unbalanced designs. For the 
unbalanced designs, confidence band coverage 
decreased with increasing effect sizes and increasing 
sample sizes. 
 As with the RMSE for the point estimates, for 
both balanced and unbalanced designs, the average 

width of the confidence bands (Table 3) suggests that 
the bands are relatively uninformative for small 
samples and even for large samples if the effect size 
is small. Only for those conditions with large samples 
and medium and large effect sizes did the width of 
the bands become small enough to be considered 
informative in a practical sense. 
  Factorial Designs. Estimates of statistical bias in 
the point estimates of power for factorial designs are 
presented in Table 4 and illustrated in Figure 7.  
Consideration of bias for factorial designs must 
include an examination of row, column and 
interaction effects.  For the null condition (f 2 = 0), all 
of the estimates evidenced positive bias for all three 
effects, with the plug-in estimator presenting a 
greater amount of bias for both the column and 
interaction effects for the 2 X 4 factorial design 
(approximately .22 across all sample sizes).  The 
greatest amount of statistical bias was seen for the 
interaction effect for 3 X 3 factorial designs 
(reaching .26 for all but the smallest sample size).  A 
similar pattern was evidenced for the smallest effect 
size (f 2 = .02) for all but the largest sample sizes.  
That is, bias in the plug-in estimator, for small effect 
sizes, was greater for column effects with the 2 X 4 
designs and for the interaction effect for both the 2 X 
4 and 3 X 3 factorial designs, but the other two 
estimators did not show such a pattern. Similar to the 
single factor designs, the bias in all three of the 
estimators was reduced as the population effect size 
increased and many conditions evidenced an under-
estimate of power (negative bias).  For example, with 
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Table 1.  Statistical Bias of Three Point Estimates of Retrospective Power in One Factor Designs. 

Balanced Designs 

   f 2 = 0.00  f 2 = 0.02 f 2 = 0.15 f 2 = 0.35 

Groups N  
pλ  ubλ  50λ   

pλ  ubλ  50λ   
pλ  ubλ  50λ   

pλ  ubλ  50λ   

 5  0.11 0.04 0.09  0.11 0.04 0.09  0.11 0.00 0.09  0.07 -0.07 0.05 
 10  0.12 0.05 0.10  0.11 0.04 0.10  0.05 -0.05 0.04  -0.04 -0.14 -0.05

2 20  0.12 0.05 0.10  0.11 0.03 0.09  -0.04 -0.12 -0.04  -0.07 -0.11 -0.07
 50  0.12 0.06 0.10  0.07 -0.02 0.06  -0.06 -0.09 -0.06  0.00 0.00 0.00 
 100  0.12 0.06 0.10  0.00 -0.08 -0.01  -0.01 -0.01 -0.01  0.00 0.00 0.00 

 5  0.19 0.06 0.09  0.20 0.05 0.10  0.20 0.01 0.08  0.12 -0.07 0.01 
 10  0.21 0.06 0.09  0.22 0.06 0.10  0.12 -0.05 0.01  -0.02 -0.13 -0.08

4 20  0.22 0.07 0.10  0.22 0.04 0.09  -0.01 -0.12 -0.08  -0.02 -0.04 -0.03
 50  0.22 0.07 0.10  0.17 -0.01 0.04  -0.01 -0.02 -0.02  0.00 0.00 0.00 
 100  0.22 0.07 0.10  0.05 -0.10 -0.05  0.00 0.00 0.00  0.00 0.00 0.00 

 5  0.32 0.07 0.09  0.33 0.06 0.09  0.30 0.01 0.06  0.13 -0.10 -0.05
 10  0.35 0.07 0.09  0.36 0.06 0.09  0.15 -0.09 -0.04  -0.01 -0.08 -0.06

8 20  0.36 0.07 0.09  0.37 0.05 0.08  0.00 -0.09 -0.07  0.00 0.00 0.00 
 50  0.37 0.07 0.10  0.25 -0.04 0.00  0.00 0.00 0.00  0.00 0.00 0.00 
 100  0.37 0.07 0.09  0.06 -0.11 -0.08  0.00 0.00 0.00  0.00 0.00 0.00 

 

Unbalanced Designs 

   f 2 = 0.00  f 2 = 0.02 f 2 = 0.15 f 2 = 0.35 

Groups N  
pλ  ubλ  50λ   

pλ  ubλ  50λ   
pλ  ubλ  50λ   

pλ  ubλ  50λ   

 5  0.11 0.04 0.09  0.11 0.03 0.09  0.06 -0.03 0.04  -0.02 -0.14 -0.04  
 10  0.11 0.05 0.10  0.10 0.03 0.08  -0.03 -0.13 -0.05  -0.18 -0.28 -0.19  

2 20  0.12 0.05 0.10  0.08 0.01 0.06  -0.17 -0.26 -0.18  -0.20 -0.27 -0.20  
 50  0.12 0.05 0.10  0.00 -0.08 -0.01  -0.18 -0.24 -0.19  -0.03 -0.04 -0.03  
 100  0.12 0.06 0.10  -0.11 -0.19 -0.12  -0.04 -0.06 -0.04  0.00 0.00 0.00  

 5  0.20 0.06 0.09  0.21 0.06 0.10  0.24 0.05 0.13  0.19 0.01 0.09  
 10  0.21 0.06 0.10  0.23 0.07 0.11  0.19 0.03 0.09  0.04 -0.04 0.00  

4 20  0.22 0.07 0.10  0.25 0.07 0.12  0.06 -0.03 0.01  0.00 -0.01 -0.01  
 50  0.22 0.07 0.10  0.23 0.05 0.10  0.00 -0.01 0.00  0.00 0.00 0.00  
 100  0.22 0.07 0.10  0.13 0.00 0.04  0.00 0.00 0.00  0.00 0.00 0.00  

 5  0.32 0.07 0.09  0.35 0.08 0.11  0.38 0.10 0.16  0.21 0.06 0.10  
 10  0.35 0.07 0.09  0.40 0.09 0.12  0.23 0.07 0.11  0.02 0.00 0.00  

8 20  0.36 0.07 0.09  0.42 0.11 0.15  0.03 0.00 0.01  0.00 0.00 0.00  
 50  0.37 0.07 0.09  0.34 0.10 0.14  0.00 0.00 0.00  0.00 0.00 0.00  
 100  0.37 0.07 0.10  0.12 0.04 0.05  0.00 0.00 0.00  0.00 0.00 0.00  

Note. Estimates are based on 50,000 samples. 



Kromrey & Hogarty 

Multiple Linear Regression Viewpoints, 2000, Vol. 26(2) 
 

12 

Table 2.  RMSE of Three Point Estimates of Retrospective Power in One Factor Designs. 

Balanced Designs 

   f 2 = 0.00  f 2 = 0.02 f 2 = 0.15 f 2 = 0.35 

Groups N  
pλ  ubλ  50λ   

pλ  ubλ  50λ   
pλ  ubλ  50λ   

pλ  ubλ  50λ   

 5  0.20 0.13 0.19  0.22 0.14 0.20  0.28 0.22 0.27  0.30 0.28 0.29 
 10  0.20 0.13 0.19  0.22 0.17 0.22  0.29 0.28 0.29  0.27 0.33 0.28 

2 20  0.19 0.14 0.19  0.24 0.20 0.24  0.28 0.33 0.29  0.18 0.23 0.18 
 50  0.19 0.14 0.19  0.27 0.26 0.28  0.16 0.20 0.16  0.02 0.02 0.02 
 100  0.19 0.14 0.19  0.29 0.31 0.29  0.03 0.04 0.03  0.00 0.00 0.00 

 5  0.26 0.14 0.18  0.28 0.16 0.20  0.32 0.23 0.27  0.28 0.30 0.29 
 10  0.27 0.15 0.18  0.30 0.18 0.22  0.28 0.30 0.29  0.18 0.29 0.24 

4 20  0.28 0.15 0.19  0.32 0.21 0.25  0.19 0.29 0.26  0.05 0.10 0.08 
 50  0.28 0.15 0.18  0.30 0.27 0.28  0.04 0.07 0.06  0.00 0.00 0.00 
 100  0.28 0.15 0.18  0.24 0.31 0.29  0.00 0.00 0.00  0.00 0.00 0.00 

 5  0.38 0.15 0.18  0.39 0.17 0.20  0.38 0.26 0.28  0.22 0.31 0.28 
 10  0.40 0.16 0.18  0.42 0.20 0.23  0.23 0.30 0.28  0.06 0.17 0.15 

8 20  0.41 0.16 0.18  0.43 0.24 0.26  0.08 0.19 0.17  0.00 0.01 0.01 
 50  0.42 0.16 0.18  0.32 0.29 0.29  0.00 0.01 0.01  0.00 0.00 0.00 
 100  0.42 0.16 0.18  0.14 0.27 0.25  0.00 0.00 0.00  0.00 0.00 0.00 

 

Unbalanced Designs 
 

   f 2 = 0.00  f 2 = 0.02 f 2 = 0.15 f 2 = 0.35 

Groups N  
pλ  ubλ  50λ   

pλ  ubλ  50λ   
pλ  ubλ  50λ   

pλ  ubλ  50λ   

 5  0.20 0.13 0.19  0.21 0.13 0.20  0.24 0.19 0.24  0.28 0.28 0.28  
 10  0.19 0.13 0.19  0.21 0.15 0.20  0.27 0.28 0.27  0.34 0.41 0.35  

2 20  0.19 0.14 0.19  0.22 0.18 0.22  0.33 0.40 0.34  0.31 0.38 0.32  
 50  0.19 0.14 0.19  0.24 0.24 0.25  0.29 0.35 0.29  0.07 0.09 0.07  
 100  0.19 0.14 0.19  0.30 0.34 0.31  0.10 0.13 0.10  0.00 0.01 0.00  

 5  0.27 0.14 0.18  0.29 0.16 0.21  0.35 0.26 0.30  0.31 0.30 0.30  
 10  0.28 0.15 0.19  0.32 0.19 0.23  0.31 0.30 0.30  0.14 0.21 0.18  

4 20  0.28 0.15 0.18  0.34 0.24 0.27  0.16 0.23 0.20  0.02 0.05 0.04  
 50  0.28 0.15 0.18  0.34 0.29 0.31  0.02 0.03 0.02  0.00 0.00 0.00  
 100  0.28 0.15 0.18  0.25 0.28 0.27  0.00 0.00 0.00  0.00 0.00 0.00  

 5  0.38 0.15 0.18  0.41 0.19 0.22  0.44 0.30 0.33  0.25 0.25 0.25  
 10  0.40 0.16 0.18  0.45 0.22 0.25  0.27 0.26 0.26  0.03 0.06 0.05  

8 20  0.41 0.16 0.18  0.48 0.28 0.30  0.04 0.08 0.07  0.00 0.00 0.00  
 50  0.42 0.16 0.18  0.38 0.31 0.31  0.00 0.00 0.00  0.00 0.00 0.00  
 100  0.42 0.16 0.18  0.14 0.17 0.16  0.00 0.00 0.00  0.00 0.00 0.00  

 
Note. Estimates are based on 50,000 samples. 
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a medium effect size (f 2 = .15), the unbiased 
estimator evidenced negative bias of –0.10, for the 
column, row, and interaction effects with n = 10 for 
all factorial designs. Once again, with large samples 
and large effect sizes, all of the estimators converged 
to the true power (i.e., showing zero bias).  For the 2 
X 2 factorial designs (in which each effect is tested 
with a single degree of freedom), trends in bias were 
similar for all of the power estimates across all effect 
sizes. However, for the 2 X 4 factorial designs, more 
striking similarities were witnessed for the column 
and interaction effects (each tested with three degrees 
of freedom).  While maintaining a similar pattern, in 
general, the bias estimates were slightly smaller for 
the row effects than for the column and interaction 
effects.  
 The root mean squared errors (RMSEs) of the 
point estimates are provided in Table 5 and 
illustrated in Figure 8.  An examination of these 
statistics revealed a considerable amount of error 
associated with small effect sizes and small samples 
for all effects examined (i.e. row, column and 
interaction effects).  Substantially less error was 
evidenced when medium and large effect sizes were 
paired with larger sample sizes.  Additionally, the 
magnitude of the RMSE did not appear to differ 
systematically across the row, column, or interaction 
effects.  
 For the interval power estimates, the proportion 
of confidence bands that contained the true value of 
power are presented in Table 6. For all effects, the 
intervals showed 95% coverage across all conditions.  
In general, the average width of confidence bands 
(Table 6) suggests that these bands are relatively 
uninformative, that is they provide very little 
information on true power for small samples and 
small effect sizes.  Only when medium or large effect 
sizes were paired with large samples sizes, did the 

width of the bands become small enough to be 
considered useful.  
 

Discussion 
The results suggest that none of the retrospective 

power estimation techniques evaluated were effective 
across the conditions examined. For point estimates, 
the “unbiased” and “median unbiased” estimators 
showed improved performance relative to the plug-in 
estimator, but these procedures were not completely 
free from bias except under large sample sizes and 
large effect sizes (as the statistical power approaches 
unity). Further, the sampling error in these estimates, 
reflected in the RMSE, suggests large sampling 
deviations for all three of the point estimators. These 
sampling deviations are greatly reduced with large 
sample estimates of retrospective power. 
The confidence band approach suggested by Steiger 
and Fouladi (1997) provided excellent coverage of 
the parameter across most of the conditions 
examined. The coverage problems observed under 
extreme conditions (i.e., f 2 = 0 for both balanced and 
unbalanced designs, and f 2 = .35 with large sample, 
unbalanced designs) represent research contexts in 
which power is either zero or very close to one. The 
calculation of a one-sided confidence interval (e.g., "I 
am 95% sure that the power is greater than .986") 
rather than a two-sided band should improve the 
performance of the confidence bands and may be 
more useful than a two-sided interval at these 
extremes. 
 The coverage results obtained from the 
confidence band approach suggest that the method 
appears to be a wise choice (because it is unbiased). 
However, the width of the resulting confidence bands 
that provide such excellent coverage were typically 
so broad that they provided little information about 
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the true power of the study. Only with relatively 
large samples (e.g., n = 100 per cell for one-factor 
designs) and large effect sizes did the band width 
become small enough that it appears to be useful for 
research applications. As with the RMSE associated 
with the point estimates, the width of these 
confidence bands reflects the large amount of 
sampling error that appears to be inherent in 
retrospective power analysis. For researchers who 
have the luxury of working with very large samples, 
these bands appear to be the best approach to power 
analyses. 
 Although prospective power analysis is of critical 
importance in the planning of empirical 
investigations, retrospective power analysis is 
important for both the interpretation of research 
results and the planning of subsequent studies, hence 
it is a logical extension of the substantive 
interpretation of sample effect sizes. However, 
retrospective power analysis has received little 
attention in the research methods literature. Our 
results suggest that the currently available methods 
for retrospective power analysis evidence severe 
limitations (except for studies with large sample 
sizes) in terms of statistical bias and large sampling 
errors. Such results highlight the magnitude of the 
caveats that should be employed when researchers 
use retrospective power estimates. Additionally, 
these results suggest that improved methods of 
estimation appear to be necessary to supply 
researchers with an important tool that can be trusted 
to provide unbiased and precise estimates of 
retrospective power across conditions typically 
encountered in applied research. 
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Evaluating Univariate, Bivariate, and Multivariate Normality 
Using Graphical and Statistical Procedures 

 

Tom Burdenski, Texas A & M University 
This paper reviews graphical and statistical procedures for evaluating multivariate normality by guiding the reader 
through univariate and bivariate procedures that are necessary, but insufficient, indications of a multivariate normal 
distribution. A data set utilizing three dependent variables for two groups provided by George and Mallery (1999) is 
used to analyze kurtosis and skewness coefficients, Q-Q plots, the Shapiro-Wilk or Kolmogorov-Smirnov statistic, 
and bivariate scatterplots. A procedure programmed by Thompson (1990) is used to explore multivariate normality 
by plotting Mahalanobis distances against derived chi-square values in a scatterplot. 
 

eality is complex. Over time, researchers in the 
social sciences have become increasingly aware 
that simple univariate methods comparing an 

experimental group with a control group on a single 
dependent variable are inadequate to meet the needs of 
the complex phenomena that dominate educational and 
psychological research. In the majority of social 
science research, two or more dependent variables are 
necessary, because nearly every effect has multiple 
causes and nearly every cause has multiple effects. 
Even when studying a single construct, such as self-
concept, it is often helpful to use multiple tools to 
measure elusive constructs (called "multi-
operationalizing").  
 In a methodological shift that increasingly 
emphasizes honoring the complexity of reality, Grimm 
and Yarnold (1995) reported that the use of 
multivariate statistics in research has accelerated in the 
last 20 years and that it is difficult to find empirically 
based research articles that do not employ one or more 
multivariate analyses. In a comparison of the 1976 and 
1992 volumes of the Journal of Consulting and Clinical 
Psychology (JCCP) Grimm and Yarnold found that the 
use of multivariate statistics in JCCP increased from 
9% to 67% in that 16 year period.   
 Daniel (1990) noted that multivariate methods 
usually best honor the reality about which the 
researcher wishes to generalize. McMillan and 
Schumacher (1984) compellingly argued against the 
limitations of viewing the world through an overly-
simplified univariate lens: 

Social scientists have realized for many years 
that human behavior can be understood only 
be examining many variables at the same 
time, not by dealing with one variable in one 
study, another variable in a second study, and 
so forth. These [univariate] procedures have 
failed to reflect our current emphasis on the 
multiplicity of factors in human behavior. In 
the reality of complex social  situations the 
researcher needs to examine many variables 
simultaneously. (pp. 269-270) 

 Thompson (1986, p. 9), stated that the reality about 
which most researchers strive to generalize is usually 
one “in which the researcher cares about multiple 
outcomes, in which most outcomes have multiple 

causes, and in which most causes have multiple 
effects.” Given this conception of reality, only 
multivariate methods honor the full constellation of 
inter-relating variables simultaneously. 
 

 

Experimentwise Error Rates 
 Whereas "testwise" error rates refer to the 
probability of making a Type I error for a given 
hypothesis test, "experimentwise" error rates refer to 
the probability of having made a Type I error anywhere 
within the study.  Inflation of "experimentwise" error 
rates can be attributed to two factors: (a) the number of 
dependent variables in the study; and (b) the amount of 
correlation between the factors--if two factors are 
perfectly correlated there is no inflation. On the other 
extreme, very low correlations produce highly inflated 
"experimentwise" error rates. The Bonferroni 
inequality can be used to calculate the 
"experimentwise" error rate when the hypotheses or 
variables tested using a single sample are perfectly 
uncorrelated: 
 

        αEW  = 1 - (1 - αTW)K  
 As noted by Thompson (1994): 

... if three perfectly uncorrelated hypotheses 
(or dependent variables) are tested using a 
single sample, each at the αTW=.05 level of 
statistical significance, the "experiment-
wise" Type I error rate will be: 

 

        αEW  = 1 -  (1 - αTW)K 
      = 1 -  (1 - .05)3  
      = 1 -  (.95)3 
      = 1 -  (.95) (.95) (.95) 
      = 1 - ( .9025 (.95)) 
      = 1 -  .857375 
        αEW  = 0.142625 
  Thus, for a study testing three perfectly 
uncorrelated dependent variables, each at the αTW = .05 
level of statistical significance, the probability is 
.142625 (or 14.265%) that one or more null hypotheses 
will be incorrectly rejected within the study. Most 
unfortunately, knowing this will not inform the 
researcher as to which one or more of the statistically 
significant hypotheses is, in fact, a Type I error.

R 
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 As illustrated by Fish (1988) and Maxwell (1992) 
using heuristic examples, invoking multiple univariate 
tests instead of multivariate tests can also lead unwary 
researchers to fail to identify statistically significant 
results. The wrong-headed use of the so-called 
"Bonferroni correction" coupled with use of univariate 
tests is also inappropriate, because the application (a) 
severely attenuates power and (b) still does not honor a 
multivariate reality. Multivariate analyses can detect 
interaction effects between independent variables that 
would go undetected if multiple univariate measures 
were used in place of multivariate measures. 
Independent variables may have small, but noteworthy 
effects on multiple dependent variables that add up to 
an important pattern when examined as a composite, 
but otherwise appear meaningless in a univariate test 
(or series of tests) of a single dependent variable. 

 
Assumptions of Multivariate Statistics 

 Because use of multivariate statistics has become 
commonplace, it is imperative that researchers 
understand and honor the central assumptions that 
guide their use. The first assumption of most 
multivariate statistics is that the variance/covariance 
matrices across the k groups must be homogeneous 
(equal); and the second assumption, which is the focus 
of this paper, is that the interval response variables 
across the k groups must be multivariate normally 
distributed. The test for homogeneity of variance in 
multivariate statistics is Box’s M (Box, 1949; 1954), 
which is a statistically powerful test of bivariate 
correlations (unstandardized r) that is analogous to the 
Levene test in univariate analyses. If Box’s M is 
favorable, you do not reject the homogeneity of 
variance assumption, which means that you have met 
the first assumption of multivariate analyses. Box’s M 
tests the first assumption, but it is also sensitive to the 
second assumption of multivariate normality. In other 
words, if you don’t reject the homogeneity of variance 
assumption, you may have a problem with multivariate 
normality (see Tabachnick & Fidell, 1983; 1989; 1996 
for a detailed elaboration of the homogeneity of 
covariance assumption). 
 

Univariate Normality 
 Determining univariate normality is helpful when 
assessing multivariate normality, because one can do 
so even with a small sample size (n < 25) and because 
univariate normality is a necessary precondition for 
multivariate normality (Gnanadesikan, 1977; Johnson 
& Wichern, 1992). The advantage of proceeding from 
a univariate to bivariate to multivariate examination of 
the data is that such a procedure provides useful 
information on which dependent variables to use before 
conducting a multivariate analysis. In order to build a 
foundation for a complete understanding of 
multivariate normality, a brief review of univariate 
normality is in order.  

 Parametric tests require that the sample data be 
drawn from a population with a known form, most 
typically the normal distribution, so that at least one 
population parameter can be estimated from the sample 
(Munro & Page, 1993). As noted by Bump (1991), the 
normal curve is determined by a mathematical equation 
that uses the mean and standard deviation values to 
determine two additional statistics--skewness and 
kurtosis. Both statistics are used to assess the normality 
of a univariate distribution. Skewness refers to the 
degree of symmetry of the distribution. Kurtosis refers 
to the shape of the distribution against the normal 
distribution, by comparing relative height to width. The 
mean and standard deviation are used to convert the 
measured scores to z-scores, which are then used to 
compute the skewness, as explained by Glass and 
Stanley (1970, p. 91): Kx = ((ΣZi

4)/n), most researchers 
and statistical packages, however, apply an additive 
constant of (-3) so that the skewness will be equal to 0 
in a univariate normal distribution." 
 However, Glass and Stanley (1970) noted that in a 
univariate distribution, skewness has a very minor 
effect on alpha or power in ANOVA if the design is 
balanced (i.e. there are an equal number of 
observations in each cell) and kurtosis also has a very 
slight effect on alpha levels and only effects the power 
of a test when the distribution is platykurtic (flattened 
as compared to the normal distribution). The severity 
of the effect of kurtosis on power increases 
proportionately with the presence of kurtosis in more 
than one variable.  
 

Graphical and Statistical Tests 
of Univariate Normality 

 According to Stevens (1996), one of the most 
popular graphical methods for testing univariate 
normality is the normal probability plot or Q-Q Plot 
(quantile-versus-quantile) in which observations are 
ordered in increasing degree of magnitude and then 
plotted against expected normal distribution values. 
Three additional graphical tests are the box-and-
whisker plot, stem-and-leaf plot, and a histogram of the 
dependent variables. These tests allow a quick and 
simple means of evaluating the shape of the univariate 
distribution for each dependent variable. Stevens 
(1996) recommends that with samples of less than 50 
cases,  prudent researchers use non-graphical tests such 
as the chi-square goodness of fit, Kolmogorov-Smirnov 
test, the Shapiro-Wilk test, and an evaluation of the 
skewness and kurtosis of the distribution to make an 
evaluation about univariate normality. The Shapiro-
Wilk test (Wilk, Shapiro, & Chen, 1968) was 
developed to detect a wide variety of variations from a 
normal univariate distribution. The smaller the W 
value, the greater the departure from normality. As a 
guideline, Gnandesikan (1977) stated that for pcalculated 
values of 0.1 or higher, normality is a reasonable 
assumption.
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 Wilk, Shapiro, and Chen (1968) concluded that for 
sample sizes under 20, the combination of the 
skewness and kurtosis coefficients or the Shapiro-Wilk 
method were most sensitive to detecting extreme non-
normality. Stevens (1996) recommended that 
researchers evaluate unvariate normality by examining 
the Shapiro-Wilk statistic and examining the kurtosis 
and skewness coefficients (along with their standard 
errors) because Shapiro-Wilk has the most power and a 
review of the skewness and kurtosis can help determine 
the cause of non-normality whenever it is present. The 
Shapiro-Wilk test is recommended for samples of less 
than 25 and the Kolmogorov-Smirnov test is 
recommended for samples greater than 25. Both the 
Shapiro-Wilk and the Kolmogorov-Smirnov tests 
perform an aggregate test of skewness and kurtosis in 
the univariate case.  You do not want to find statistical 
significance because the null says the distribution is 
normal and you do not want to reject the assumption of 
normality. 
 

Bivariate Normality 
 As noted by Stevens (1996), in addition to 
establishing univariate normality, two additional 
characteristics of a normal multivariate distribution are 
that the linear relationship of any combination of 
variables is distributed normally, and that all possible 
subsets of the sets of variables are normally distributed. 
The relationship between bivariate and multivariate 
normality is complex. Statistical significance tests like 
those used in MANOVA require that the distribution of 
each dependent variable are normally distributed about 
each of the other dependent variables in any “X1 and 
X2” comparison.  
 Two distributions that are univariate normal might 
also be bivariate normal, but just because two 
distributions are univariate normal does not mean that 
they will be bivariate normal. In a bivariate 
comparison, we compare each person's score on two 
measures, so we are thinking in three dimensions--the 
X-axis, Y-axis and a third axis to demonstrate 
frequency of scores. This requirement means that a 
circular or elliptical pattern will emerge in a scatterplot 
when examining the correlation of any two dependent 
variables in a bivariate normal distribution. The 
narrower the ellipse in the bivariate scatterplot, the 
greater the correlation between the dependent 
variables,and subsequently, the greater the likelihood 
hat the assumption of multivariate normality will hold.   
 Figure 1 is a graphical representation of a bivariate 
frequency distribution in two-dimensional form. In this 
drawing, the viewer is looking down at the distribution 
from above. The largest concentric circle is the 
footprint or floor of the bell or mound. The footprint of 
the bell is not a circle in this example, because the 
standard deviation for each person on the X-axis is 
roughly twice as large as the standard deviation on the 
Y-axis. A series of contour lines is used to demonstrate 
a series of ellipses with varying amounts of distance 
from the common center, called the centroid.  

 
Figure 1. Contour Diagram for a  

Bivariate Normal Surface 
 

The advantage of drawing the centroid with contour 
lines is that you can graphically demonstrate the 
probability that a random bivariate observation (plotted 
on the X1X2 plane) will lie within the elliptical region, 
which is equivalent to the area under a portion of the 
normal curve in a univariate distribution of scores 
(Neter, Kutner, Nachtsheim, & Wasserman, 1996).  
 Statistical significance testing applies to the 
bivariate case in terms of the distance from the centroid 
or Cartesian coordinate for each person on the X and Y 
axes. The closer the scores aggregate toward the 
centroid, the greater the chance of being included in the 
sample because of nearness to the Cartesian coordinate. 
The first contoured line shows a value of .8 meaning 
there is an 80% chance of being included in the sample. 
The last contoured line has a value of .2 meaning that 
there is only a 20% chance of being included in the 
sample. 
 If a group of 400 people is measured in two ways--
for example, each person's composite (Verbal + 
Quantitative) GRE score (X) and self-esteem (Y)--the 
data can be represented in a bivariate frequency 
relationship as shown in Figure 2. If we had bivariate 
normality, the circles would be concentric in a sense. 
We are comparing two variables, but have three axes. 
The third axis is height, which graphically shows the 
frequency of the bivariate scores. In this example, 
height is a measure of frequency and not a third 
variable. For each person, there is a pair of scores, a 
score on X and a score on Y. A bivariate frequency 
distribution is a picture of the frequency with which 
different pairs of X and Y scores occur in a group of 
persons. In Figure 2, a bivariate frequency distribution 
is displayed for about 400 people on GRE Composite 
(Verbal + Quantitative) Score (X- axis) and self-esteem 
(Y-axis).  In this example, the highest frequency of 
scores is a GRE Composite Score of 1000 and a self- 
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Figure 2. Bivariate Frequency distribution for Persons Measured on Total GRE (X) and Self-Esteem (Y). 
 
esteem score of 30. This point is the Cartesian 
coordinate for the two sets of scores and also forms the 
highest point of the distribution of scores. When the 
height of the line is compared to the vertical scale of 
frequency, we can determine that approximately 20 
persons had a composite GRE score of 1000 and a self-
esteem score of 30 
 A surface or "roof" drawn on the top of a large 
number of scores in a bivariate frequency distribution 
takes the shape of a three-dimensional bell or hat as 
demonstrated in Figure 3. The shape is formed by 
conceptualizing the one-dimensional bell-shaped 
normal distribution and stretching it in the X and Y 
directions and rotating it around its center (i.e. the 
Cartesian coordinate) in the XY plane. All bivariate 
normal distributions have the following characteristics: 

 (a) For each value of X, the distribution of 
its associated Y value is a normal 
distribution and vice-versa. 
  (b) The Y means for each value of X are 
linear (i.e., they fall on a straight line) and 
the same is true for the X means for each 
value of Y. 
 (c) The scatterplots demonstrate homo-
scedasticity--the variance in the Y values is 
uniform across all values of X and the 
variance in X values is constant for all 
values of Y.  

 If you were to multiply all of the z-scores on the X 
axis by 2 in Figure 3 and place those scores on the Y 
axis, the base of the three-dimensional bell will be an 
ellipse instead of a circle because the Y scores will be 
twice as spread out as the X scores. However, a non-
circular base can still be normal because a 

multiplicative constant of two will not change the 
skewness, kurtosis, or mean of zero.  
 The shape of the mound or hat is determined by the 
amount of correlation between the two variables. If 
both dependent variables are expressed in standard 
deviation units, the more correlated the variables, the 
narrower the mound or hat because correlation causes 
the probability to concentrate along a line (see Figure 
4; r = .8). In the extreme case that dependent variable 
X1 is completely correlated with dependent variable X2, 
all points would be exactly on the regression equation, 
the standard deviation for X1 and X2 would be equal to 
zero and the "contour" would all be straight lines with 
no areas.  
 Furthermore, if the distribution is bivariate normal, 
any plane perpendicular to the X1X2 plane will cut the 
surface into a normal curve and a plane parallel to the 
X1X2 plane will cut in an ellipse. The bivariate normal 
distribution has the property that the regression of X1 
on X2 is linear. Therefore, if we have a bivariate normal 
distribution, we know that if we trace the means of X2 
for each X1, the result will be a straight line. It does not 
necessarily follow, however, that if the regression is 
linear, the joint distribution is bivariate normal. 

 
Multivariate Normality 

 For a data set of two or more dependent variables, 
all of the variables must be univariate normal and all 
possible pairs of the variables must also be normal as  
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necessary but insufficient conditions for multivariate 
normality. The mathematical model that serves as the 
basis for MANOVA and other multivariate techniques 
is based on the multivariate normal distribution. This 
means that both the sampling distributions of the 
means of dependent variables in each cell are normally 
distributed as are the linear combinations of dependent 
variables. The central limit theorem states that for large 
samples, the sampling distribution of means in the 
univariate case will approach normality. Mardia (1971) 
demonstrated that MANOVA is robust to modest 
violation of normality if the violation is caused by 
skewness rather than outliers.  
 In some instances, researchers can examine 
multivariate outliers by simply examining z-scores and 
looking for extreme scores on each dependent variable. 
However, this technique does not identify a set of 
scores for a person that are slightly deviant on several 
variables. Fortunately, a statistic called Mahalanobis 
distance (D2) can be used to detect scores that deviate 
from the mean (above or below) for a group of 
dependent variables as a set. Detecting multivariate 
outliers from a set of dependent variables is a much 
subtler process than detecting univariate or bivariate 
outliers.  
 The Mahalanobis distance is the distance of a case 
from the centroid where the centroid is the point 
defined by the means of all the variables taken as a 
whole. The Mahalanobis distance demonstrates how far 
an individual case is from the centroid of all the cases 
for the predictor variables. When the distance is great, 
the observation is an outlier. According to Krzanowski 
(1988) and Stevens (1996), the Mahalabonis distance is 
accepted by researchers as the measure of distance 
between two multivariate populations and it is 
independent of sample size. The Mahalanobis distance 
can be written in terms of the covariance matrix S as:      
    Di

2 = (Xi - x)' S -1 (Xi - x), 
 

Figure 3. Bivariate Normal Distribution 
 
where Di

2 is the Mahalanobis distance for a given 
individual, S is covariance matrix with variances on the 
diagonal and covariances off the diagonal. The rank for 
S is the number of rows and columns for the 
covariance matrix, which is 3 x 3, if there are three 
dependent variables.  
 The assumption of MANOVA, for example, is that 
in each group, multivariate normality holds regarding 
the dependent variables, so if there are a total of 105 
cases (as in the heuristic example below) with 64 cases 
in the female group and 41 cases in the male, both have 
to have multivariate normality. In group 1, there are 
three interval variables and the rank of the correlation 
matrix is 3 x 3. Xi is the composite of three scores of a 
given individual with a rank of 3 x 1. Person #1 has 
three scores with one column.  The matrix of means 
also has a rank of 3 X 1 (three means with one column) 
which yields a product of 3 X 1 and is not conformable 
to 3 x 3.  The transpose (') notation means you flip the 

 

     
         Mean for X1 = 30, SD1 = 2. Mean for X2 = 15, SD2 = 1. r = 0.8 
Figure 4. Elliptical Bivariate Normal Distribution for 2 Variables with Dissimilar Standard Deviations and Means 
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Figure 5. Scatterplot of Chi-Square with Mahalanobis 
   Distance for 64 females without  
   transforming or deleting scores.  
 

3 x 1 and it becomes 1 x 3. The right most part of the 
matrix is also a 3 x 1 but it does not have a transpose 
symbol, so it is not flipped on its side.  
 From the formula, the Mahalanobis distance is 
descriptive of how far each case's set of scores is from 
the group means adjusting for correlation of the 
variables (in the example, a measure of the distance of 
the each person from the group means adjusted by how 
correlated the three variables are). In Figure 5, the 
smallest Mahalanobis distance is for participant #32 
because each of the three scores (3.0, 6.1, and 9.8, 
respectively) is closest to the mean for each variable 
(2.89; 6.23; and 10.3, respectively).  
 Having correlated dependent variables is 
commonplace in social science research. The 
correlation of dependent variables must be taken into 
account when calculating the Mahalanobis distance 
because deviations from the means of two highly 
correlated dependent variables are partially redundant 
whereas the deviations from the mean for two highly 
uncorrelated dependent variables are not redundant. 
More concretely, say in a set of three dependent 
variables all with a standard deviation of 5, that the 
mean of X1 is 10, the mean of X2 is 11 and the mean of 
X3 is 2, X1 is highly correlated with X2 but X1 is highly 
uncorrelated with X3 and X2 is highly uncorrelated with 
X3. If person #1 has a score one standard deviation 
above the mean on X1 (X1=15) and X2 (X2=16) and 
scores at the mean of X3 (X3=7), that person will have a 
smaller D2 than person #2 who scores at the mean on 
X1 (X1=7) and one standard deviation above the mean 
on X2 (X2=16) and X3 (X3=7). The D2 for person #1 
includes redundant distance from the means because 
the scores on X1 of 15 and X2 of 16 are very similar. In 
a sense, X1 and X2 are measuring the same thing, so the 
deviation from the means is due in part to similarity in 
the variables. Person #1 will have a lower D2 because 
the deviation from the means is redundant whereas the 
D2 for person #2 will be much greater because the 

Mahalanobis distance is not due to distance from 
similar means of the variables but rather to substantial 
distance from dissimilar means (X1=10; X2=16; X3=7). 
 There are two evaluations to be done when 
examining the Mahalanobis distance by chi-square 
scatterplot--the first is whether or not the points form a 
straight line or not. If the points on the scatterplot form 
a straight line, you have multivariate normality. The 
second consideration is whether or not there are 
anomalous persons with scores on the scatterplot that 
are a noteworthy distance from the centroids. You can 
have a perfectly straight line and still have outliers in 
the data set, but it is rare to have a person whose scores 
are outlying on all of the dependent variables in a data 
set. Before eliminating outliers, a prudent researcher 
will examine whether or not the extreme score on the 
multivariate scatterplot is due to an anomalous score on 
one dependent variable by examining each univariate 
distribution before eliminating the person from the data 
set. If only one score is anomalous, it is more prudent 
to transform the score on that variable rather than 
eliminate valuable information from the analysis, or to 
eliminate that variable from the data set. 

 
Evaluating Univariate Normality:  

A Heuristic Example 
 To make the discussion about testing  bivariate and 
multivariate normality more concrete, a data set 
developed by George and Mallery (1999) will be 
analyzed using SPSS version 8.0 to test the distribution 
of scores for 64 female and 41 male students taught by 
the same professor in three sections of a course. The 
three dependent variables in this analysis are each 
student’s GPA previous to taking the course 
(PREVGPA), final exam grade (FINAL) and total 
points for the course (TOTAL). In such a data set, it 
might be interesting to examine the differences 
between males and females (an independent variable 
with two levels) on all three dependent variables--
previous GPA, final exam grade, and total points in the 
course. The SPSS syntax for the female group (n = 64) 
appears in Appendix A and the syntax for the male 
group (n = 41) appears in Appendix B. For the sake of 
brevity and clarity, univariate normality will be 
assumed and only the bivariate and multivariate output 
from the female group will be analyzed in detail in this 
paper.  
 As noted by Marascuilo and Levin (1983), 
multivariate normality is a requirement for utilizing the 
statistical inference procedure that is the basis of all 
“OVA” designs. The test for univariate normality for 
the grades data for the female group was done by using 
the MULTINOR program developed by Thompson 
(1990) on SPSS 8.0 (Appendix A). The MULTINOR 
program generates graphical and non-graphical 
analyses of the distribution of each dependent variable 
separately.  
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Bivariate Normality 
 If the three dependent variables displayed 
univariate normality (bearing in mind that univariate 
normality is a necessary, but insufficient foundation for 
multivariate normality), the next step would be to 
examine the bivariate correlations between each of the 
dependent variables. You can attain univariate 
normality, but fail to demonstrate bivariate normality, 
which examines each pair of variables--PREVGPA 
with FINAL, PREVGPA with TOTAL and FINAL 
with TOTAL.  This was done in this example by using 
the MULTINOR program (Appendix B) by requesting 
scatterplots and noting elliptical patterns for the three 
possible combinations of variables. In Figure 6, the 
scatterplot for each possible pair reveals a clear 
ellipitical pattern between FINAL and TOTAL, but the 
scores in the scatterplots for PREVGPA with FINAL 
and PREVGPA with TOTAL are widely scattered and 
are thus not bivariate normal. When the pattern of the 
scores in a bivariate plot are less clear, researchers can 
examine the percentage of scores that converge around 
the centroid (e.g., 80%, 60%, 40%, 20%, 10%) as a 
guide to deciding whether or not an elliptical pattern is 
displayed. 
 At this stage of the analysis, a prudent researcher 
might stop and consider replacing PREVGPA with 
another dependent variable or go back and transform 
the scores in each of the univariate distributions to 
make them more normal. As noted earlier, Tabachnick 
and Fidell (1996) recommended that researchers start 
by taking the square root of the scores, but the scores 
can also be squared, or the natural log or log-ten 
(LG10) can be used: 

...transformations may improve the analysis, 
and may have the further advantage of 
reducing the impact of outliers. Our 
recommendation, then, is to consider 
transformation of variables in all situations 
unless there is some reason not to. If you 
decide to transform, it is important to check 
that the variable is normally or near-
normally distributed after transformation. 
Often you need to try one transformation 
and then another until you find the 
transformation that produces the skewness 
and kurtosis values nearest zero, the prettiest 
picture, and/or the fewest outliers. (p. 82) 

  After transforming the univariate distributions, the 
bivariate distributions could be examined again to 
determine if the three pairs of variables have become 
bivariate normal due to the univariate transformation of 
scores. For this set of scores, four data transformations  
were conducted: (a) square root of scores (Figure 7), 
(b) squared scores (Figure 8) (c) natural log (Figure 9), 
and (d) log 10 (Figure 10). In none of these 
transformations did the bivariate relationships between 
PREVGPA and TOTAL or PREVGPA and FINAL 
become bivariate normal. Because PREVGPA appear- 

 
 

Figure 6. Bivariate Scatterplots of PREVGPA, 
   TOTAL, and FINAL. 
 

ed to be the problematic DV, a decision was made to 
create a new DV that was comprised of the sum of the 
quiz grades in the course. This new DV was named 
QUIZTOT and a new evaluation of univariate, 
bivariate, and multivariate normality was conducted as 
before. The syntax commands for the new variable are 
shown in Appendix D.  Figure 11 shows that the 
variable QUIZTOT has a bivariate normal relationship 
with both FINAL and TOTAL and is a big 
improvement over the variable PREVGPA. 
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Figure 7. Bivariate Scatterplots of PREVGPA with 
 TOTAL and FINAL (square-root transformation). 
 

Multivariate Normality 
 Assuming that both univariate and bivariate 
normality are attained after transforming the univariate 
scores or replacing a dependent variable (as done in 
this example), the third level of assessment is to 
examine the Mahalanobis distance by chi-square 
scatterplot to assess multivariate normality. As noted 
earlier, the Mahalabonis distance is accepted by 
researchers as the measure of distance between two 
multivariate populations and it is independent of 
sample size (Krzanowski, 1988; Stevens, 1996). If we 
examine the scatterplot of Mahalanobis distance (D2) 
values with chi-squares (Thompson, 1990) for this data 
set in Figure 12 we can see that we have a fairly 
straight line, which suggests multivariate normality. 
The second issue is the presence of outliers.  This 
scatterplot has one extreme score in the upper right 
hand corner that is well off the line with an 
approximate D2 score of 62 and a chi-square score of 
about 12. If we look at the listing of Mahalanobis 
distances which are ranked from lowest to highest in 
Figure 16, we can determine that the outlier is case #61 
and the D2 is more than four times larger than the next  

 
 

Figure 8. Bivariate Scatterplots of PREVGPA with 
    TOTAL and FINAL (squared-score transformation). 
 

 
largest D2 (case #36). Because case #36 in turn is twice 
as large as the next largest D2 (case #45), both case #61 
and #36 can be considered outliers. Again, assuming 
univariate and bivariate normality has been 
demonstrated, because we have multivariate normality 
except for two outliers, we can remove or transform the 
outliers and then look at the univariate and bivariate 
relationships again because removal of the extreme 
scores will change the means for both variable X and 
variable Y, which means that the Mahalanobis distance 
for each variable will change. If after examining the 
raw data for case #36 and #42, we discover that they 
both had very high quiz scores (QUIZTOT) and very 
low scores on the FINAL, we might call these two 
students and ask why they did so poorly on the final 
exam. If we learn that they both had the flu the day of 
the exam, but took the exam anyway, we might delete 
their scores from the data set because their illness 
likely produced "fluky" or abnormal scores (i.e. high 
quiz scores and low final exam scores). Figure 13 
shows the Mahalanobis distance and chi-square values 
for this data set after the outliers are re- 
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Figure 9. Bivariate Scatterplots of PREVGPA with 
 TOTAL and FINAL (natural log transformation). 
 

moved. Note that while the line appears to become less 
straight, in actuality the scale for the Mahalanobis 
distance is being reduced from 70 units to 12 units, 
thus showing more precisely the linear relationships 
between the two variables. 
 An alternative to the stair-step approach of 
examining the univariate, bivariate, and multivariate 
normality of the proposed dependent variables in 
sequence for the multivariate analysis is to plot the 
Mahalanobis distance against the chi-square values 
straight away--if you get a straight line, you can stop 
there because multivariate normality subsumes 
univariate and bivariate normality. However, plotting 
Mahalanobis distance against chi-square is only useful 
with samples greater than 25. If you fail to obtain a 
straight line, you can remove scores when you can 
justify doing so, or transform an individual's scores or a 
set of scores. 

 
 
Figure 10. Bivariate Scatterplots of PREVGPA with 
 TOTAL and FINAL (log-10 transformation). 
 

References 
Box, G.E.P. (1949). A general distribution theory for a 

class of likelihood criteria, Biometrika, 36, 317-346. 
Box, G.E.P. (1954). Some theorems on quadratic forms 

applied in analysis of variance problems: II. Effect 
of inequality of variance and of correlation between 
errors in the two-way classification. Annals of 
Mathematical Statistics, 25, 484-498. 

Bump, W. (1991, January). The normal curve takes 
many forms: A review of skewness and kurtosis. 
Paper presented at the annual meeting of the 
Southwest Educational Research Association, San 
Antonio. (ERIC Document Reproduction Service 
No. ED 342 790) 

Daniel, L.G. (1990, January). Use of structure 
coefficients in multivariate educational research: A 
heuristic example. Annual Meeting of the Southwest 
Educational Research Association, Austin, TX. 
(ERIC Document Reproduction Service No. ED 315 
451) 



Burdenski 

Multiple Linear Regression Viewpoints, 2000, Vol. 26(2) 
 

24

 
 

Figure 11. Bivariate Scatterplots of QUIZTOT with 
      TOTAL and FINAL. 
 

Fish, L. (1988). Why multivariate methods are usually 
vital. Measurement in Evaluation and Counseling 
and Development, 21, 130-137. 

George, D., & Mallery, P. (1999). SPSS for WINDOWS 
step by step. Boston: Allyn & Bacon. 

Glass, G.V., & Stanley, J.C. (1970). Statistical methods 
for education and psychology. Englewood Cliffs, 
NJ: Prentice-Hall.  

Gnandesikan, R. (1977). Methods for statistical 
analysis of multivariate observations. New York: 
Wiley. 

Grimm, L.G., & Yarnold, P.R.. (1995). Reading and 
understanding multivariate statistics. Washington, 
DC: American Psychological Association. 

 
Figure 12. Scatterplot of Chi-Square with Mahalanobis 
     Distance for 64 females after replacing  
     PREVGPA with QUIZTOT.  
 

 
Figure 13. Scatterplot of Chi-Square with Mahalanobis 
     Distance for 64 females after replacing  
     PREVGPA with QUIZTOT and deleting  
     two outliers.  
 

Johnson, N., & Wichern, D. (1988). Applied multivariate 
statistical analysis (2nd ed.). Englewood Cliffs, NJ: 
Prentice-Hall. 

Krzanowski, W.J. (1995). Recent advances in descriptive 
multivariate analysis. Oxford: Clarendon 

Marascuilo, L.A., & Levin, J.R. (1983). Multivariate 
statistics in the social sciences: A researcher’s guide. 
Monterey, CA: Brooks/Cole. 

Mardia, K.V. (1971). The effect of non-normality on some 
multivariate tests and robustness to non-normality in 
the linear model. Biometrika, 58, 105-121. 

Maxwell, S. (1992). Recent developments in MANOVA 
applications. In B. Thompson (ed.), Advances in social 
science methodology (Vol . 2, pp. 137-168). 
Greenwich, CT: JAI Press. 



Evaluating Normality 

Multiple Linear Regression Viewpoints, 2000, Vol. 26(2) 
 

25

McMillan, J.H., & Schumacher, S.  (1984). Research in 
education: A conceptual approach. Boston: Little, 
Brown. 

Munro, B., & Page, E.  (1993). Statistical methods for 
health care research (2nd ed.). Philadelphia: J. B. 
Lippincott.  

Neter, J., Kunter, M., Nachtsheim, C., & Wasserman, 
W. (1996). Applied linear statistical models (4th ed.). 
Chicago: Irwin. 

Stevens, R. (1991). Applied multivariate statistics for 
the social sciences (2rd ed.). Mahwah, NJ: Erlbaum. 

Stevens, R. (1996). Applied multivariate statistics for 
the social sciences (3rd ed.). Mahwah, NJ: Erlbaum. 

Tabachnick, B.G., & Fidell, L.S. (1983). Using 
multivariate statistics. New York: Harper & Row. 

Tabachnick, B.G., & Fidell, L.S. (1989). Using 
multivariate statistics (2nd ed.). New York: Harper 
& Row. 

Tabachnick, B.G., & Fidell, L.S. (1996). Using 
multivariate statistics (3rd ed.). New York: 
HarperCollins. 

Thompson, B. (1986, November). Two reasons why 
multivariate methods are usually vital. Paper 
presented at the annual meeting of the Mid-South 
Educational Research Association, Memphis.    

Thompson, B. (1990). MULTINOR: A FORTRAN 
program that assists in evaluating multivariate 
normality. Educational and Psychological 
Measurement, 50, 845-848. 

Thompson, B. (1994, February). Why multivariate 
methods are usually vital in research: Some basic 
concepts. In  Paper presented as a Featured Speaker 
at the biennial meeting of the Southwestern 
Association for Research in Human Development, 
Austin, T. (ERIC Document Reproduction Service 
No. ED 367 687)  

 
 

Appendix A 
SPSS Commands for Female Group (n=64) 

 

SET BLANKS=SYSMIS UNDEFINED=WARN printback=list. 
TITLE 'MULTINOR.SPS   tests multivar normality graphically****'. 
COMMENT The original MULTINOR computer program was presented, with examples, in: 
COMMENT  Thompson, B. (1990). MULTINOR: A FORTRAN program that assists in 
COMMENT  evaluating multivariate normality. Educational and Psychological Measurement, 50, 845-848. 
COMMENT  The data source for the example are from:  George, D. J., and Mallery, P. (1999). SPSS for 
COMMENT  Windows step by step. Boston: Allyn & Bacon.  
COMMENT  Here there are 3 variables for which multivariate normality is being confirmed. 
DATA LIST 
  FILE='a:normgrad.dat' FIXED RECORDS=1 TABLE 
  /1 gender 1 ethnicit 3 year 5 lowup 7 section 9 prevgpa 11-14  (1) final 16-17 (1)  total 19-21 (1)  . 
list variables=all/cases=9999/format=numbered . 
COMMENT  'y' is a variable automatically created by the program, and does not have to modified for different data sets. 
select if (gender eq 1) . 
compute y=$casenum . 
print formats y(F5) . 
regression variables=y prevgpa to total/ 
  descriptive=mean stddev corr/ 
  dependent=y/enter prevgpa to total/ 
  save=mahal(mahal) . 
sort cases by mahal(a) . 
execute . 
list variables=y prevgpa to total mahal/cases=9999/format=numbered . 
COMMENT  In the next TWO lines, for a given data put the actual n in place of the number '64' used for the example data set. 
loop #i=1 to 64 . 
compute p=($casenum - .5) / 64.  
COMMENT  In the next line, change '3' to whatever is the number of variables. The p critical value of  
COMMENT chi square for a given case is set as [the case number (after sorting) - .5] / the sample size]. 
if (gender eq 1) chisq=idf.chisq(p,3) . 
end loop . 
print formats p chisq (F8.5) . 
list variables=y p mahal chisq/cases=9999/format=numbered . 
plot 
  vertical='chi square'/ 
  horizontal='Mahalanobis distance'/ 
  plot=chisq with mahal . 
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 Appendix B 
SPSS Commands for Male Group 

 
SET BLANKS=SYSMIS UNDEFINED=WARN printback=list. 
TITLE 'MULTINOR.SPS   tests multivar normality graphically****'. 
COMMENT *******************************************************. 
COMMENT The original MULTINOR computer program was presented, with examples, in: 
COMMENT     Thompson, B. (1990). MULTINOR: A FORTRAN program that assists 
COMMENT      in evaluating multivariate normality. Educational and Psychological Measurement, 50, 845-848. 
COMMENT     The data source for the example are from: 
COMMENT     George, D. J., and Mallery, P. (1999). SPSS for Windows step by step. Boston: Allyn & Bacon.  
COMMENT  Here there are 3 variables for which multivariate normality is being confirmed. 
DATA LIST 
  FILE='a:normgrad.dat' FIXED RECORDS=1 TABLE 

  /1 gender 1 ethnicit 3 year 5 lowup 7 section 9 prevgpa 11-14  (1)    final 16-17 (1)  
  total 19-21 (1)  . 
list variables=all/cases=9999/format=numbered . 
COMMENT  'y' is a variable automatically created by the program, 
COMMENT  and does not have to modified for different data sets. 
select if (gender eq 2) . 
compute y=$casenum . 
print formats y(F5) . 
regression variables=y prevgpa to total/ 
  descriptive=mean stddev corr/ 
  dependent=y/enter prevgpa to total/ 
  save=mahal(mahal) . 
sort cases by mahal(a) . 
execute . 
list variables=y prevgpa to total mahal/cases=9999/format=numbered . 
COMMENT  In the next TWO lines, for a given data set put the 
COMMENT  actual n in place of the number '41' used for the 
COMMENT  example data set. 
loop #i=1 to 41 . 
compute p=($casenum - .5) / 41.  
COMMENT  In the next line, change '3' to whatever is the number 
COMMENT  of variables. 
COMMENT       The p critical value of chi square for a given case 
COMMENT  is set as [the case number (after sorting) - .5] / the 
COMMENT  sample size]. 
if (gender eq 2) chisq=idf.chisq(p,3) . 
end loop . 
print formats p chisq (F8.5) . 
list variables=y p mahal chisq/cases=9999/format=numbered . 
plot 
  vertical='chi square'/ 
  horizontal='Mahalanobis distance'/ 
  plot=chisq with mahal . 

 



Evaluating Normality 

Multiple Linear Regression Viewpoints, 2000, Vol. 26(2) 
 

27

 
Appendix C 

SPSS Syntax for Evaluating Univariate and Bivariate Normality 
 
PPLOT 
  /VARIABLES=prevgpa 
  /NOLOG 
  /NOSTANDARDIZE 
  /TYPE=Q-Q 
  /TIES=MEAN 
  /DIST=NORMAL . 
GRAPH 
  /HISTOGRAM=prevgpa . 
EXAMINE 
  VARIABLES=prevgpa final total 
  /PLOT BOXPLOT STEMLEAF HISTOGRAM NPPLOT 
  /COMPARE GROUP 
  /STATISTICS DESCRIPTIVES 
  /CINTERVAL 95 
  /MISSING LISTWISE 
  /NOTOTAL . 
GRAPH 
  /SCATTERPLOT (BIVAR)=prevgpa WITH total 
  /MISSING=LISTWISE . 
PLOT 
  /VERTICAL='prevgpa' REFERENCE (6,4) 
  /HORIZONTAL='total' REFERENCE (6,7) 
  /PLOT=prevgpa WITH total . 
GRAPH 
  /SCATTERPLOT (BIVAR)=prevgpa with final 
  /MISSING=LISTWISE . 
PLOT 
  /VERTICAL='prevgpa' REFERENCE (6,4) 
  /HORIZONTAL='final' REFERENCE (6,9) 
  /PLOT=prevgpa WITH final . 
GRAPH 
  /SCATTERPLOT (BIVAR)=final with total 
  /MISSING=LISTWISE . 
PLOT 
  /VERTICAL='final' REFERENCE (6,9) 
  /HORIZONTAL='total' REFERENCE (6,7) 
  /PLOT=final WITH total . 

COMMENT  is set as [the case number (after sorting) - .5] / the 
COMMENT  sample size]. 
compute p=($casenum - .5)/62 .  
compute chisq=idf.chisq(p,3) . 
end loop . 
print formats p chisq (F8.5) . 
list variables=y p mahal chisq/cases=9999/format=numbered . 
plot 
  vertical='chi square'/ 
  horizontal='Mahalanobis distance'/ 
  plot=chisq with mahal . 
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Appendix D 
SPSS Commands for New Dependent Variable 

 
SET BLANKS=SYSMIS UNDEFINED=WARN printback=list. 
TITLE 'MULTINOR.SPS   tests multivar normality graphically****'. 
COMMENT *******************************************************. 
COMMENT   The original MULTINOR computer program was presented, 
COMMENT   with examples, in: Thompson, B. (1990). MULTINOR: A FORTRAN program that assists 
COMMENT    in evaluating multivariate normality. Educational and Psychological Measurement, 50, 845-848. 
COMMENT     The data source for the example are from: 
COMMENT     George, D. J., and Mallery, P. (1999). SPSS for Windows step by step. Boston: Allyn & Bacon.  
COMMENT ***********************************************************. 
COMMENT  Here there are 3 variables for which multivariate normality is being confirmed. 
DATA LIST 
  FILE='a:norgrades.txt' FIXED RECORDS=1 TABLE 
  /1 quiztot 1-2 (1) final 4-5 (1) total 7-9 (1) . 
list variables=all/cases=9999/format=numbered . 
COMMENT  'y' is a variable automatically created by the program, 
COMMENT  and does not have to modified for different data sets . 
compute y=$casenum . 
execute . 
print formats y(F5) . 
regression variables=y quiztot to total/ 
  descriptive=mean stddev corr/ 
  dependent=y/enter quiztot to total/ 
  save=mahal (mahal) . 
sort cases by mahal(a) . 
execute . 
list variables=y quiztot to total mahal/cases=9999/format=numbered . 
COMMENT  In the next TWO lines, for a given data set put the 
COMMENT  actual n in place of the number '62' used for the 
COMMENT  example data set. 
loop #i=1 to 62 . 
COMMENT  In the next line, change '3' to whatever is the number of variables. 
COMMENT       The p critical value of chi square for a given case  
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Using Partial Residual Plots in Assessing and Improving  
the Construct Validity of Multiple Regression Models 

 
Cam-Loi Huynh, University of Manitoba 

Advantages of partial residual plots over residual plots in regression analysis are discussed and illustrated by 
empirical examples. A variation of partial residual equation is introduced and an effective procedure to use this 
revised form in identifying the proper transformation for achieving linearity and variance stabilization is presented. 
Essentially, the transformed predictors are identified by partial residual plots and introduced into the regression 
model to improve the regression fit. Uses, limitations and strengths of partial residual plots are discussed. 
 

n formulating the multiple regression model, 
researchers often feels strongly that an explanatory 
variable (xj) included in the model influences the 
response (y). But, they are not sure whether it is  

the variable (xj), as they happen to measure it, or some 
function g(xj, that is linearly related to the mean of the 
response. This is often because the jth regression 
coefficient is smaller than expected, statistically 
insignificant, or of the “wrong” sign. Unfortunately, 
estimates of partial regression coefficients and summary 
statistics such as R2, F and t are unable to detect sources 
of the failure to yield good fit (For a good discussion on 
this aspect, see Belsley, Kuh & Welsch, 1980; Cook & 
Weisberg, 1982).  
 The standard recommendation in assessing model-
data fit is to plot residuals (e) and studentized residuals 
(r) against the independent variables (e.g., Cook & 
Weisberg, 1982, Chapter 2; Draper and Smith, 1981, 
Chapter 3). These plots help the researcher in (i) 
detecting outliers, (ii) assessing the presence or absence 
of variance heterogeneity, and (iii) determining if a 
transformation of the explanatory variable is needed or if 
another term (e.g., a quadratic term) needs to be added. 
In addition to providing these information, partial 
residual plots enable the researcher in (iv) assessing the 
importance of xj (in terms of predicting power for y) in 
the presence of all other independent variables and (v) 
evaluating the importance of nonlinearity among the of xj 
variables and choosing the appropriate transformation 
more precisely (Larsen & McCleary, 1972). 
 In this paper, the comparative properties of residuals 
and partial residual plots are discussed and illustrated by 
an empirical example. A variation of partial residuals is 
introduced and an effective procedure to use this revised 
form for improving the fit of multiple regression models 
is presented and examined by means of simulation data. 
Finally, comments on the uses, limitations, and strengths 
of partial residual plots are given. 
  

Empirical Properties of  
Residualsand Partial Residuals 

 In this paper, the lower-case letters x and y and 
upper-case letters X and Y are used to represent vectors 
and matrices of the independent and dependent variables, 
respectively.  
Suppose a researcher considered the regression model 

 
  y = β0 + β1x1 + ... + βkxk + ε' = XAβ + ε'  (1) 

 
(called the "restricted" model), where ε' represents the 
associated (but unknown) residual term, XA is an (n by k 
+ 1) design matrix of the intercept and independent 
variables, and β is a (k + 1) vector of regression 
coefficients. He subsequently added an independent 
variable xq to improve its fit and interpretation of its 
parameters. As a result, the regression model 
 

     y = XAβ + βqxq + ε    (2) 
 
(called the “observed” model), is obtained, where the 
residual term ε is estimated by e. Suppose the outcome 
was found unsatisfactory (e.g., insignificant increase in 
R2, unexpected sign of βq or some nonlinear relationship 
revealed in the plot of the predicted values ŷ against xq). 
Now, the researcher wants to determine the form g(xq) 
such that 
 

     y = XAβ + γg(xq) + ε*   (3) 
 
 (called the “correct” model), where γ denotes the qth 
slope coefficient, would yield a substantially better fit 
than (2).  
The computational formula for sample residuals in the 
fitted regression equation of 
 

   ŷ = b0 + b1x1 + ... + bkxk + bqxq,  (2′) 
an estimate of the "observed" model (2), is expressed as 

      e = y - ŷ,      (4)  
and the associated partial residuals are defined as 
 

      r = e + bqxq     (5)  
 The equation (5) was first discovered by Ezekiel 
(1924) and reintroduced by Larsen & McCleary (1972). 
Partial residuals are also called the "component-plus 
residuals" by  Wood (1973). 
 Residual and partial residual plots are obtained when 
e and r are plotted against xq, respectively. Besides these 
graphical methods, three other main diagnostic plots for 
explanatory variables are (i) internal and external 
studentized residual plots (Cook & Weisberg, 1982, pp. 
18-20), (ii) added variable plots (Wood, 1973), (iii) 
partial regression leverage plots (first used by Draper & 
Smith, 1966, p. 112; reintroduced by Mosteller & Tukey, 
1977, pp. 344-345  

I 
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and 374-376; and advocated by Sall, 1990). Among 
these five methods, partial residual plots are easier to 
construct and simpler to understand than both added 
variable plots and partial regression leverage plots 
(Atkinson, 1985, p. 73). Moreover, the use of partial 
residual plots enables the researcher to determine more 
precise forms of nonlinear transformation than by 
using other plots (Gunst and Mason, 1980, Chapter 7). 
 If the relationship between xq and y is linear, the 
plot of r against xq should show data points distributed 
along a non-horizontal line. Moreover, its slope 
represents bq in (5). On the contrary, if the relationship 
is nonlinear, the plot should indicate the nature of the 
transformation that is required to demonstrate a linear 
relationship. The following example serves to illustrate 
these properties. 
 Example 1. Knwolton et al. (1980) studied some 
physiological and performance characteristics of 
athletes in the sport of competitive orienteering. In 
particular, they used three variables (x1 = maximal 
aerobic power, x2 = years of experience, x3 = anaerobic 
power and x4 = blood lactate) to predict performance 
(y). For the males sample, the partial residual plots for 
x2, x3, and x4 showed linear trends but the plot for x1 
was indicative of a quadratic relationship (Figure 1, 

Panel a). By introducing the variable x5 as the square of 
x1 into the regression equation, a nearly straight line 
was observed in the partial residual plot of r against x1 
(Figure 1, Panel b). The same findings were found for 
the total sample (males and females) before 
transformation of x1 (Figure 1, Panel c), and after the 
introduction of x1

2 (Figure 1, Panel d). 
 

Theoretical Properties of  
Residuals and Partial Residuals 

 First, it will show that the plot of the residual (e) 
against xq will not generally reveal the shape of the 
function g(xq). Next, the forms of partial residual (r) 
that can reveal g(xq) will be discussed. The sample 
residuals of the fitted model (2) can be rewritten as 
 

     e = (I - H)y,      (6) 
 
where I is the identity matrix of order n, H=X(X'X)-1X 
is an idempotent matrix, and X = (XA xq) is an (n x 
q+1) augmented matrix (for q = k + 1). The expected 
value of the residual term is given as 
 

  E(e) = (I - H)(Xβ + βqg(xq) + ε*)    
     = (I - H)(βqg(xq)     (7) 

 
because (I - H) is orthogonal to both Xβ and ε*. It is 

Figure 1. Plots of Residuals (e) and Partial Residuals (r) Against x1 in Example 1. (Knwolton et al., 1980).
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well known that the sample mean of e for regression 
models with the intercept is zero because 
 

 Σe = 1'(I - H)(estimate of βqg(xq)) = 0,  (8) 
 
since 1'(I - H) = 0 where 1 is a vector of unity. Notice 
that the mean of the residual estimate (ē) is zero 
regardless of the form of g(xq). For simplicity, let g 
denote g(xq). First, in the “ideal” case of g = xq, the 
fitted model (2) is correct, E(e) = 0 and the residual 
plot would display a random pattern around 0. On the 
other hand, if g is any linear combination of the 
columns of XA then E(e) is also zero but the residual 
plot would disclose the form of (I - H)(βqg), not of g. 
Finally, if g is a curvilinear function, say 
     g = βq0 + βq1xq + βq2xq

2, 
then E(e) = (I - H)βq2xq

2. The plot of e against xq 
would indicate that the linearity assumption has been 
violated but the shape of the function g is still 
unknown since the residual plot only reveals the 
function (I - H)βq2xq

2. Partial residual plots have been 
suggested as a more effective device than residual plots 
in detecting the function g (Larsen & McCleary, 1972 
and Wood, 1973). Some theoretical properties of r can 
be explained by means of its expected value, 
 

 E(r) = E(e) + xqE(bq) = (I - H)g + φqxq,  (9) 
 
where φq = E(bq) = (D'D)-1D'g, and D = (I - HA)xq, a 
residual obtained upon fitting xq on the columns of XA, 
where HA = XA(XA'XA)-1XA. If φq = 0, or bq ≈ 0, then 
E(r) = E(e), implying that the “restricted” model (1) is 
tenable and both the residual and partial residual plots 
would indicate the insignificance of xq in predicting y. 
On the other hand, if the "observed" model (2) is 
correct then g = βqxq and φq = βq so that (I - H)g = 0, 
E(r) = 0 and E(r) = βqxq. Then the partial residual plot 
against xq would reveal a linear curve with its slope as 
an estimate of βq. Finally, if g is not a linear 
combination of the columns of XA, the plot of r versus 
xq would indicate the nonlinear form of g (A proof of 
this effect has been shown by Manfield & Conerly, 
1987). 
 

A More Effective Partial Residual Form 
 From the preceding discussion, it becomes clear 
that the standard definition of the partial residual 
would only be indicative of the slope of the function g. 
Suppose that the function g is monotonically 
(non)linear. For a more complete information, it is 
suggested that the intercept term (c) be added so that 
the revised form the partial residual becomes 
 

     r* = c + bqxq + e     (10) 
 
where the values of c are to be determined. If the 
"observed" model (2) is "correct" then the expected 
values of r* would be 
 
     E(r*) = c + βqxq     (11) 

 
which a straight line with intercept c and slope βq. In 

all cases, including when g is a nonlinear function of 
xq, the plot of r* versus xq would reveal estimates of 
both the intercept (c) and slope (βq). It worth noting 
that, if the constant c represents the estimate of 
regression intercept in fitting model (2) then equation 
(8) can be rewritten as 
 
   r* = ȳ  + b1(x1 - x̄1) + ... + bk(xk - x̄k)  

     + bq(xq - x̄q) + e,     (12) 
 
which is the same as equation 2.9 in Larsen and 
McCleary, 1972, p. 785 and equation 1.2 in Mallows, 
1986, p. 313. 

Before data collection, the researcher may not have 
any knowledge about the form of g(xq). When the 
transformed variable w(xq) is used as an estimate of 
g(xq), it results in what will be referred to as the 
"estimated" model 
 

    y = XAβ + γw(xq) + ε*.    (3') 
 

Smith (1972) presented examples of linearizing 
regression equations, such as (3'), by manipulating the 
constant term c. Once a transformed model for y has 
been decided (say, w = exp(y + c)), it requires to plot 
only a few points of w with different values of c for the 
curve that is most linear to be identified. By applying 
Smith (1972)'s technique, it can be shown that  r* is 
superior to r for linearity and variance stabilization 
purposes. The illustration is quite easy for the two 
common forms of w, namely, logarithmic and power 
(or root) transformations. First, consider the 
logarithmic transformation w = log10(xq + c), where c 
> 0, a vector of constant values to be determined. The 
effect of the logarithmic transformation w can be 
described better in terms of the inverse function 10w = 
xq + c for it implies that xq = - c + 10w. The graph of xq 
= - c + 10w, which represents an estimate of g(xq), 
varies continuously from an exponential curve when c 
= 0 to a linear line when c is large. As a strategy, one 
can fit model (3') ŷ = XAβ + γw(xq) = XAβ + γlog10(xq + 
c) repeatedly by increasing the value of c until the 
improvement in R2 becomes insignificant. Secondly, 
consider the power transformation w = xq

c for - 1 < c < 
1 with  the associated inverse function of xq = w1/c. Its 
graph varies from a hyperbolic curve when c = -1 to an 
exponential curve as c≈ 0, and a line when c = 1. A 
strategy of repeated fitting of model (3') with positive 
values of c, but less than 1, can be applied. It is well-
known that if variances of the columns of the design 
matrix X are increased proportionally to their means 
then one can use square root transformation on the 
columns for variance stabili- zation. On the other hand, 
if variances of the columns are proportional to the 
coefficients of variation (σj/µj, j = 1, 2,..., q) then the 
logarithmic transformation may be used for variance 
stabilization (Drapper & Smith, 1981, pp. 146-148, 
237-240). In all of these cases, if a constant c is added 
to the transformed functions, the accuracy of w as an  
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Table 1. Generated Data for Examples 2 and 3. 
Example 2 (Logarithmic Transformation)  Example 3 (Power Transformation) 

  y     x1    x2 xq     gx    y     x1    x2 xq     gx 
 2.236 -0.836  9.358  9.358  2.236   4.609  2.236 -0.836  0.836 1.128 
 1.381 -0.726  3.979  3.979  1.381   2.979  1.381 -0.726  0.662 1.318 
 0.058 -0.130  1.060  1.060  0.058   2.469  0.058 -0.130  0.595 1.416 
 0.946  1.237  2.575  2.575  0.946   4.223  0.946  1.237  0.986 1.009 
-1.910  0.748  0.148  0.244 -1.410   1.453 -1.910  0.748  0.455 1.696 
 0.393  0.855  1.482  1.482  0.393   3.771  0.393  0.855  0.931 1.049 
 1.157  0.045  3.182  5.246  1.657   3.387  1.157  0.045  0.485 1.624 
 1.304 -0.092  3.685  3.685  1.304   3.654  1.304 -0.092  0.691 1.281 
-0.039 -0.481  0.962  0.962 -0.039   1.935 -0.039 -0.481  0.910 1.065 
 0.570  0.596  1.767  2.914  1.070   5.232  0.570  0.596  0.178 3.176 
-1.015  2.406  0.362  0.597 -0.515   3.569 -1.015  2.406  0.489 1.614 
 1.130 -0.530  3.095  5.102  1.630   3.462  1.130 -0.530  0.371 1.945 
 0.193 -0.793  1.213  1.213  0.193   3.924  0.193 -0.793  0.164 3.356 
-0.953  1.159  0.385  0.385 -0.953   3.799 -0.953  1.159  0.302 2.232 
-0.225  1.077  0.799  1.317  0.275   5.424 -0.225  1.077  0.118 4.176 
 1.289 -0.345  3.631  3.631  1.289   3.121  1.289 -0.345  0.793 1.169 
 0.991  0.717  2.693  2.693  0.991   4.198  0.991  0.717  0.598 1.411 
-0.840  2.042  0.432  0.711 -0.340   5.995 -0.840  2.042  0.105 4.531 
 0.055 -1.304  1.057  1.742  0.555   0.678  0.055 -1.304  0.846 1.118 
-0.379 -0.847  0.684  1.128  0.121   0.875 -0.379 -0.847  0.800 1.161 
-0.320 -1.085  0.726  0.726 -0.320   3.482 -0.320 -1.085  0.237 2.623 
 1.541 -1.706  4.670  7.700  2.041   1.640  1.541 -1.706  0.856 1.110 
 0.639  0.232  1.895  3.125  1.139   2.554  0.639  0.232  0.821 1.141 
-0.989  1.328  0.372  0.613 -0.489   6.158 -0.989  1.328  0.084 5.251 
-0.423  0.165  0.655  0.655 -0.423   5.908 -0.423  0.165  0.003 5.167 
 1.801 -0.179  6.056  6.056  1.801   5.236  1.801 -0.179  0.810 1.152 
-0.274  1.360  0.760  1.254  0.226   3.609 -0.274  1.360  0.400 1.848 
 1.948 -0.466  7.016  7.016  1.948   8.286  1.948 -0.466  0.074 5.721 
 1.046  0.487  2.846  4.692  1.546   9.536  1.046  0.487  0.054 7.069 
 1.371  0.877  3.938  3.938  1.371   4.415  1.371  0.877  0.940 1.042 

 
estimator of g(xq) can be improved by determining the 
required values of c. As demonstrated in the following 
examples, the determination of c can be achieved after 
a few trial-and-error attempts.  
 Example 2. The random variables y and x1 were 
generated as standard normal whereas x2 and xq as 
exponential, namely x2 = eY and xq = ey + .5, 
respectively. Their values are reported in Table 1. The 
transformed variable (w) was obtained according to the 
function w = log10(xq + c). The resulting regression 
equations and corresponding R2 are listed in Table 2. 
The largest value of R2 corresponds to c = 0 so that w 
= log10(xq). The improvement in R2 due to the addition 
of xq and then replacing it by w can be tested by the 
method of comparing two nonnested multiple 
regression models (Graybill & Iyer, 1994, pp. 309-
313). In nonnested regression models, there are 
predictors in one model that are not found in the other 
model and there may be some predictors that occur in 
both. The test of the null hypothesis H0: R2

A = R2
B is 

the same as the test of H0: σ2
A = σ2

B, where σ2
A and σ2

B 
are the sum of square of errors (SSE) in the two 

regression models A and B, respectively. If the 100(1 - 
α)% confidence of σB/σA contains the value of 1 then 
the null hypothesis is retained. On the other hand, if the 
upper bound of the confidence interval is less than 1 
then the null hypothesis is rejected in supporting the 
alternative hypothesis that σB < σA, or R2

B > R2
A, which 

in turn implies that model B is better than model A. 
Similar arguments applies, but in favor of model A if 
the lower bound of the confidence interval is larger  
than 1. The confidence intervals reported in Table 3 
indicates that the "estimated" model is statistically 
superior to both the "restricted" and "observed" 
models.  
 Example 3. A regression model similar to the one 
considered in Cook and Weisberg (1994) is studied. 
The variable y was generated according to the function 
 
    y = 1 + x1 + x2 + xq

-0.67 + ε,   (13) 
 
where x1 and x2 were normally distributed, ε was an 
independent normal with mean 0 and variance .025, 
and xq was an uniform random variable. Their derived 
values are reported in Table 1. The transformed 
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Table 2. Effects of Changing c in Logarithmic and 
Power Transformations 
Example 2 Logarithmic Transformation 
Model 1  
(restricted) 

ŷ = -0.476 - 0.129x1 + 0.388x2  
R2 =.800  

Model 2 
(observed) 

ŷ = -0.564 - 0.096x1 + 0.221x2 + 0.168xq 
R2 =.816  

Model 3 (estimated) 
w = Log(xq + c) 

 c = 0.0 ŷ = -0.344 - 0.042x1 + 0.101x2 + 0.815gx 
R2 =.955 

 c = 0.5 ŷ = -0.825 - 0.051x1 + 0.075x2 + 1.121gx 
R2 =.932 

 c = 1.0 ŷ = -1.310 - 0.056x1 + 0.069x2 + 1.348gx 
R2 =.917 

 c = 1.5 ŷ = -1.790 - 0.059x1 + 0.069x2 + 1.542gx 
R2 =.906 

 c = 5.0 ŷ = -4.952 - 0.069x1 + 0.094x2 + 2.556gx 
R2 =.866 

Example 3 Power Transformation 
Model 1  
(restricted) 

ŷ = 5.874 - 0.802x1 + 0.261x2  
R2 =.011  

Model 2 
(observed) 

ŷ =12.038 + 0.465x1 - 0.251x2 + 12.696xq 
R2 =.176  

Model 3 (estimated)  w =xqc 
 c = -2.00 ŷ = 3.199 + 1.046x1 + 1.207x2 + 0.0004gx 

R2 =.974 
 c = -0.67 ŷ = 1.048 + 1.087x1 + 0.841x2 + 0.999gx 

R2 =.998 
 c = -0.30 ŷ = -9.923 + 1.183x1 + 0.238x2 + 9.902gx 

R2 =.923 
c =  0.30 ŷ = 28.237 + 0.858x1 - 0.453x2 - 29.896gx 

R2 =.426 
 c =  0.70 ŷ = 14.971 + 0.587x1 - 0.351x2 - 15.977gx 

R2 =.240 
 
variable was determined to be w = xq

c. As expected, 
the largest value of R2 was found associated with c = 
-0.67. The improvement in R2 for the three regression 
models, "restricted" (x1, x2), "observed" (x1, x2, xq) and 
"estimated" (x1, x2, w), were tested by the method of 
comparing two nonnested multiple regression models. 
The resulting confidence intervals in Table 3 indicate 
that the "estimated" model is statistically superior to 
the other models.  
 

Procedure to Detect the Function g(xq) 
 As a first step, the transform variable w (of the 
function g(xq)) can be determined by examining the 
plots of residuals (e) and partial residuals (r, in 
equation 6) against xq. Next, xq is substituted by w in 
computing a fit for the initial "estimated" model. The 
significance of the improvement in R2 can be assessed 
by the method of comparing two nonnested multiple 
regression models. The formula for w may be modified 
by examining the plots of expected residuals (E(e)) and 
partial residuals (E(r*)) against xq. The computational 
formulas for these expected values are given by 

Table 3. Steps in Computing the Two-Sided 
Confidence Intervals for σB/ σA using the Bonferroni 
Method (α = 0.05). 
Step Example 2 (Logarithmic Transformation) 
(1) The 97.5% 2-sided confidence interval for σA 

in the “observed”model 
(LA = .354 , UA = .669)  
where  LA = {SSE(A)/χ2

1-α/4;n-3-1}0.5 
   = {5.624/44.762}0.5,  
 and UA = {SSE(A)/χ2

α/4;n-3-1}0.5  
   = {5.624/12.567}0.5 

(2) The 97.5% 2-sided confidence interval for σB 
in the “estimated” (LB = .176, UB = .332)  
where  LB = {SSE(B)/χ2

1-α/4;n-3-1}
0.5  

   = {.385/44.762}0.5  
  and  UB = {SSE(B)/χ2

α/4;n-3-1}
0.5  

   = {1.385/12.567}0.5  
(3) The 95% 2-sided confidence interval for 

σB/ σA: (LB/UA = .263, UB/LA = .938) 
Step Example 3 (Power Transformation) 
(1) The 97.5% 2-sided confidence interval for σA 

in the “observed”model 
(LA = 6.817 , UA = 12.866)  
where  LA = {SSE(A)/χ2

1-α/4;n-3-1}0.5 
   = {2080.255/44.762}0.5,  
 and UA = {SSE(A)/χ2

α/4;n-3-1}0.5  
   = {2080.255/12.567}0.5 

(2) The 97.5% 2-sided confidence interval for σB 
in the “estimated” (LB = .367, UB = .693)  
where  LB = {SSE(B)/χ2

1-α/4;n-3-1}
0.5  

   = {6.028/44.762}0.5  
  and  UB = {SSE(B)/χ2

α/4;n-3-1}
0.5  

   = {6.028/12.567}0.5  
(3) The 95% 2-sided confidence interval for 

σB/ σA: (LB/UA = .029, UB/LA = .102) 
 
    E(e) = [I - xq(xq'xq)-1xq']g,   (14) 

     E(r*) = c + E(e) + φqxq,     
 
where φqxq = xq(W'W)-1W'g = xq(xq'xq)-1xq'g so that 
 

E(r*) = c + [I - xq(xq'xq)-1xq']xq(xq'xq)-1xq'g   
+ xq(xq'xq)-1xq'g 

   = c + g - xqg + xqg = c + g.    (15) 
 
The modification of w would be continued until the 
plot of E(r*) shows a nearly linear curve with a slope  
steeper (positively or negatively) than that in the plot 
of E(e). The implementation of this procedure for the 
two preceding examples are studied below. 
 Example 2. The reason why the sample mean of 
residuals are equal to 0 can be seen from the fact that 
values of e are balanced out on both sides of zero 
(Figure 2, Panel a). On the other hand, values of partial 
residuals (r) clearly indicate a steady positive trend as 
xq increases (Figure 2, Panel b). It implies that xq has a 
positively exponential distribution and the required 
transformation for linearizing its values would be a 
logarithmic function. The next step is to regress y on  
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x1, x2 and w, where w = log10(xq + c), with different 
values of c. By comparing the resulting R2 and/or 
conducting the test of two nonnested regression 
models, one will know (at least statistically) if the 
"estimated" model is an improvement over the 
"observed" model. But how do we know that the model 
with the largest R2 among those fitted would be 
acceptable or "correct" given the fact that R2 can 
increase with an entry of even irrelevant independent 
variable into the regression model? The answer is 
found by observing the plots of the expected values 
E(e) and E(r*) against xq (Figure 2, Panel c) for the 
chosen "estimated" model. Whereas the plot of E(e) 
reflects the nonlinearity nature of xq, that of E(r*) 
shows a linear line with relatively steeper slope 
representing the strength of w in predicting y. In short, 
when the transformation is correctly determined, the 
resulting regression model would render largest R2 and 
a graph of E(r*) with steepest-sloped curve. 
 Example 3. Even though the sample mean of 
residuals are equal to 0, this fact does not lend support 
to the tenability of the assumption of random error in 
the "observed" model. In Figure 3, Panel a, although 
most residual values lie below zero, they are cancelled 
out by the existence of a very large residual outlier. On 
the contrary, the partial residuals (r) clearly indicate a 
monotonic downward trend as xq increases (Figure 3, 
Panel b). Therefore, g(xq) is deemed a negatively-
sloped function so that the required transformation 
would be an inverted function (or negative root) of the 
form w = xq

c, where c < 0. By comparing the resulting 

R2 and conducting the test of two nonnested regression 
models, a satisfactory model can be identified with c . -
.70. In this case, even if the true model is unknown, we 
still know that the model with the largest R2 among 
those fitted would be "correct." This is because the plot 
of the expected values E(r*) against xq shows an 
approximately linear line whereas the plot of E(e) 
against xq is clearly nonlinear (Figure 3, Panel c).  
 

Discussion 
 Two uses of partial residual plots have been shown 
in the three examples discussed above. In Example 1, 
the objective is to improve the regression fit by 
introducing xq

2 as an additional predictor of y. This 
strategy is applied mainly for meeting statistical 
assumptions of regression models (In this case, the 
linear relationship between y and its predictors). In 
Examples 2 and 3, the construct validity of xq in 
predicting y can be improved by identifying w, an 
operational definition of the unknown function g(xq). 
The improvement in the resulting model serves not 
only to satisfy statistical assumptions but also to 
facilitate the model interpretation. This can be 
explained further from the fact that, even when all 
statistical assumptions are deemed satisfactory, 
multiple regression models still have construct validity 
problems (Winne, 1983). Huynh (2000) indicated that 
the effects of regressors in multiple regression models 
do not represent those of the constructs described by 
the original data since partial regression coefficients 
are actually computed for the residualized scores  

Figure 2. Plots of Residuals (e) and Partial Residuals (r*) and Their Expected Values (E(e) and E(r*)) 
Against xq in Example 2
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Figure 3. Plots of Residuals (e) and Partial Residuals (r) and Their Expected Values (E(e) and E(r*))  
Against xq in Example 3. 
 
instead. The residualized score of the jth predictor (xj) 
represents the residual term when xj is regressed on the 
remaining predictors in the original multiple regression 
model. Therefore, in place of xj, the relevant question 
is how the construct g(xj) can be reintroduced into the 
multiple regression. The procedure of examining 
partial residuals would be helpful for this purpose. 
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Rasch Measurement Instead of Regression 
Benjamin D. Wright, University of Chicago 
Kyle Perkins, Southern Illinois University 

J. Kevin Dorsey, Southern Illinois University 
This paper illustrates the use of Rasch measurement as an alternative to regression analysis to identify gout and non-
gout patients who do and do not fit a gout variable constructed by the Rasch model.  Unlike a numerical regression 
coefficient report, the clinician benefits from the one clear picture of the relationship among laboratory values and 
gout diagnosis which the Rasch model constructs. 
 

he purpose of this paper is to demonstrate 
how a Rasch measurement model can be used 
to identify and describe the relationships 
among laboratory abnormalities among 

patients who have and have not been diagnosed with 
gout.  Rasch analysis constructs a mathematical model 
of a gout variable, which identifies blood chemistries 
which co-occur and measures their utility as gout 
predictors.  The model identifies patients whose 
pattern of blood chemistries do and do not fit the 
model.  The purpose of this paper is to show how a 
blood chemistry profile can be organized to make a 
patient’s diagnosis specific blood status immediately 
apparent to the clinician. 
 

The Measurement Model 
 Rasch measurement construction applies a 
stochastic Guttman model to convert dichotomous, 
interval, and rating scale observations into linear 
measures (to which linear statistics can be usefully 
applied) and tests for goodness-of-fit to validate its 
item calibrations and patient measures. The basic fit 
statistic is a ratio of observed residual variance to 
expected residual variance and is near 1.00 when 
observed variance is comparable to expected. 
 In this application the Rasch model combines 
calibrations of blood chemistry items additively to 
patient measures to define observation probabilities.  
This stochastic conjoint additivity specifies a Guttman 
scale of probabilities to which the data are fit 
stochastically. 
 Rasch measurement estimates each parameter 
independently of all other parameters because its 
sufficient statistics exhaust all information in the data, 
which is associated with each parameter. 
 The unidimensional linear continuum to which the 
Rasch model fits the data provides estimates of item 
calibrations and patient measures which are not 
affected by the distributions of items or patients.  
Patient measures are test-free because their estimates 
are adjusted for the difficulty distribution of the items 
reported for that patient.  All estimates are expressed 
in linear measures on a common scale defined by a 
single latent variable (Wright, 1999; Wright & Stone, 
1971). 

The Variables 
 Risk factors for gout have been studied 
intensively.  The risk factor items used in this study 

are: uric acid, gender, age (at gout diagnosis), the 
presence or absence of diabetes, hypertension, kidney 
stones and diuretics, weight, height, body surface 
area, uric acid, cholesterol, triglycerides, urea nitrogen 
and creatinine. 
 Gout is a heterogeneous group of genetic and 
acquired diseases characterized by the deposition of 
monosodium urate monohydrate crystals in a joint.  
Alcohol, surgery, or trauma can trigger gout (Wolfe, 
1991).  Gout is chiefly a disease of men.  Peak 
incidence occurs between ages 30 and 50 (Harris et 
al., 1999). 
 Further medical information can be found in 
Acheson et al., 1966; Berger & Yu, 1975; Campbell, 
1988; Culleton et al., 1999; Evans et al., 1968; 
Garrick et al., 1972; Gibson & Grahame, 1974; Glynn 
et al., 1983; Murphy et al., 1982;  Roubenoff, 1990; 
Roubenoff et al., 1991; Wolfe, 1991; Wolfe & Cathy, 
1991; and Wyngaarden, 1988. 
 

Method 
Patient Selection 
 The computer records of a multi-specialty group 
practice were searched for patients with a gout 
diagnosis who had an office visit during a nine-month 
period.  Of 91 charts available for review, 48 patients 
had information for all items under investigation. 
 Forty-eight patients without gout who had multi-
channel chemistry profiles during a previous three-
month period were matched pairwise by gender and 
age to the 48 gout patients.  
 
Chart Review 
 At the first attack of gout, patients’ gender, age, 
height, weight, urea nitrogen, creatinine, blood 
pressure, treatment with diuretics, and presence of 
insulin or non-insulin dependent diabetes mellitus 
were recorded.  Kidney Stones were considered 
present if documented at any time in the patient’s 
chart.  Uric acid values were obtained while the 
patient was asymptomatic and not receiving 
allopurinol or uricosuric therapy.  Cholesterol and 
triglyceride values were obtained after an overnight 
fast.  Ninety-six observations were submitted for 
analysis: forty-eight gout and forty-eight non-gout 
patients, each observation having values recorded for 
the previously mentioned items. 

T 
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Uniform Data Coding 
 For blood chemistries in mg/dl, height in inches 
and weight in pounds, each physical science metric 
value X was recoded linearly to nearest integer codes:   

Y=9(X-MIN)/(MAX-MIN)  
This coding simplifies the physical science metrics to 
10 equal size steps labeled 0 through 9.  The resulting 
codes are co-linear with the original physical science 
variables.  (Table 2 gives the codes for uric acid, urea 
nitrogen and creatinine.)   
 
Analysis 
 The data are analyzed by the WINSTEPS Rasch 
Analysis computer program (Linacre & Wright, 
2000).  WINSTEPS examines the complete data set, 
calculates fit statistics for each diagnostic item, uses a 
component analysis of data residuals to identify 
significant relationships among the diagnostic items 
and deletes items which do not contribute useful 
information.  The result is the best linear variable for 
predicting gout, which these data support.  
 

Results 
 Fifteen items of medical record information were 
provided for 96 patients.  Forty-eight of the patients 
are a typical sample of patients diagnosed to have 
gout.  The other 48 patients were selected so that each 
gout patient was matched by another patient similar in 
age and in gender but without a gout diagnosis. 
 Since our purpose is to explore the utility of a new 
way to analyze and display these kinds of data, we set 
aside prior expectations as to which information is 
supposed to predict gout.  Instead, we begin our 
analysis with an open mind to find out how well this 
new method of analysis, implemented by WINSTEPS, 
can discover the best ways to predict gout from these 
data without cueing as to which patients are supposed 
to have gout and then to display this prediction in a 
graphical way that is clinically useful. 
 Unlike the regression approach, we do not use the 
presence/absence of a gout diagnosis as a “dependent 
variable” by which to narrow the combined effects of 
other, “independent variables”.  WINSTEPS can do 
this by anchoring patients on their gout diagnosis.  
But, for this article, we show instead what 
WINSTEPS can discover without being cued to 
detecting gout as its only object.  We use WINSTEPS 
to look for the most general combination of the 
available medical record information, which 
maximizes a single measurement separation of these 
96 patients, independent of their gout diagnosis. 
 We begin with all 15 original medical information 
items and step-by-step set aside items, which 
WINSTEPS misfit analysis shows are inconsistent 
with the construction of a single  
 
 
Table 1. Successive Deletions of Most Misfitting 
    Blood Chemistry Item 

  MISFIT ORDER  
INFIT INFIT OUTFIT OUTFIT  
MNSQ ZSTD MNSQ ZSTD ITEM 

 
 

  
STEP 

 
ONE 

 

1.29  1.90 *1.31 *2.0 Cholesterol 
1.15  0.70   0.89 -0.5 Triglycerides
0.90 -0.50   0.95 -0.2 Urea Nitro 
0.79 -0.90   0.79 -0.9 Creatinine 
0.77 -1.80   0.78 -1.7 Uric Acid 

   
STEP 

 
TWO 

 

1.47  2.10 *1.41 *1.30 Triglycerides
0.81 -0.80   1.06   0.20 Creatinine 
0.84 -0.80   0.89  -0.60 Urea Nitro 
0.75 -1.90   0.69  -2.40 Uric Acid 

Note. * indicates deleted variables. 
 
measure.  The final steps in this process are reported 
in Table 1.   
 At each step we examine an item component 
factor analysis of data residuals to monitor 
dimensionality.  By the time we have reduced our 
number of items from 15 to 11, it becomes obvious 
that surface, weight and gender imply a different 
measure for these patients than the four remaining 
blood chemistry items.  
 Figure 1 [WINSTEPS Table 23.2], “Finding the 
Variables from Rasch Residual Principal 
Components”, shows the results of a principal 
component factor analysis of data residuals from the 
best single measure the 11 remaining items can 
support.  The plot of item factor loadings against item 
measures shows a clear separation of male corpulence, 
clustered at the top of Figure 1, from the blood 
chemistries, clustered at the bottom.  The location of a 
gout diagnosis in the center of the blood chemistry 
cluster at the bottom of Figure 1 implies that blood 
chemistry may provide better information about gout 
and also hypertension and a diuretic regimen than 
male corpulence among these 96 patients. 
 We could develop two measures of “gout”, one 
based on male corpulence and another based on blood 
chemistry.  This article  is about the four blood 
chemistries appearing at the bottom of Figure 1. 
 During the step-wise analysis of the five blood 
chemistries shown in Table 1, WINSTEPS reports that 
the separation of patients by measure is improved by 
setting aside cholesterol and triglyceride information.  
After triglyceride is removed from the measurement 
model, Creatinine emerges as the next least 
informative blood chemistry item.  We could set  
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----------------------------------------------------------------------------------------------------------------------------------------------------------  
WINSTEPS TABLE 23.2 Measuring Gout - 5 Blood Labs   
            96 PATIENTS  11 ITEMS, 62 CATEGORIES  
----------------------------------------------------------------------------- 
       Factor 1 explains 3.55 of 11 variance units 
      10     20     30     40     50     60     70     80     90    100 
      ++------+------+------+------+------+------+------+------+------++ 
      |                           SURFACE|                             | 
      |                                  |                             | 
      |                                  |                             | 
      ..99  ++                                                                    ||                                                          ++  CCOORRPPUULLEENNCCEE  
      |                                  |                             | 
      |                                  |                             | 
      |                            WEIGHT|                             | 
      |                                  |                             | 
      |                                  |                             | 
      |                                  |                             | 
   .8 +                                  |                             + 
      |                                  |                             | 
      |                                  |                             | 
      |                                  |                             | 
      |                                  |                             | 
   .7 +                                  |                             + 
F     |                     MALE         |                             | 
A     |                                  |                             | 
C  .6 +                                  |                             + 
T     |                                  |                             | 
O     |                                  |                             | 
R  .5 +                                  |                             + 
      |                                  |                             | 
1     |                                  |                             | 
   .4 +                                  |                             + 
L     |                                  |        Kidney Stones        | 
O  .3 +                                  |                             + 
A     |                                  |                             | 
D  .2 +                                  |                             + 
I     |                                  |                             | 
N  .1 +                                  |                             + 
G     |                                  |                             | 
   .0 +----------------------------------|-----------------------------+ 
      |                                  |                             | 
  -.1 +                               Triglycerides                    + 
      |                                  |                             | 
  -.2 +                                  |                             + 
      |                            (Gout)|                             | 
  -.3 +                                  |                             + 
      |                                  |                             | 
  -.4 +                             CREATININE                         + (Diagnoses) 
      |                                  |                             | 
      |                            (Hypertension)                      |   BLOOD 
  -.5 +                               URIC ACID                        + 
      |                                  |                             | 
      |                                  (Diuretic)                    | 
  -.6 +                                  |                             + 
      |                              UREA NITROGEN                     | 
      |                                  |                             | 
      ++------+------+------+------+------+------+------+------+------++ 
      10     20     30     40     50     60     70     80     90    100 

                                 ITEM MEASURE 
 
Figure 1. Finding the Variables from Rasch Residual Principal Components 
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------------------------------------------------------------------------ 
WINSTEPS TABLE 2.2 Measuring Gout from 3 Blood Tests    
      96 PATIENTS, 4 ITEMS, 32 UNIFORM CATEGORIES 
------------------------------------------------------------------------ 
 
EXPECTED SCORE: MEAN  (":" INDICATES HALF-SCORE POINT) 
10   20    30    40    50    60    70    80    90   100 
|-----+-----+-----+-----+-----+-----+-----+-----+-----|    BLOOD TEST 
0   1 :    2       :     3    :(4):5:6: 7: 8  :   9   9   Urea Nitrogen 
|                                                     | 
0    1   :   2   :  3  :  4 :(5) 6  :  7  : 8  : 9    9   Uric Acid 
|                                                     | 
|                                                     | 
0    0    :        1     :   (2) : 3:45:67:8  : 9     9   Creatinine 
 
0                   NO    :   (YES)                   1     GOUT? 
 
|-----+-----+-----+-----+-----+-----+-----+-----+-----| 
10   20    30    40    50    60    70    80    90   100 
 
    1            1     3  5 65 87 31121 21 1        PATIENTS WITH GOUT 
                  T     S     M      S     T 
 
                 1 
       2  3   2  0   5 9  8 51 11 1                PATIENTS WITHOUT GOUT 
         T     S     M      S     T 
 
Figure 2. The Complete Story on One Page 
 
aside creatinine and concentrate on uric acid and 
blood urea nitrogen.  But analysis with and without 
creatinine produces statistically equivalent results, and 
creatinine results dramatize an important finding 
concerning the non-linear relation between chemical 
measures and their medical implications.  We 
establish a new medical variable defined by the 
observed relationships among the three blood 
chemistries: uric acid, urea nitrogen and creatinine.  
 Figure 2 [WINSTEPS Table 2.2], “The Complete 
Story on One Page”, shows the resulting definition 
and patient discrimination of a gout diagnosis.  This 
definition of a blood chemistry gout variable based on 
laboratory measures of uric acid, urea nitrogen and 
creatinine provides a compelling patient chart for the 
clinician.  
 Figure 2 puts the diagnosis of gout from patient 
chemical values of these three blood chemistries onto 
a simple, easy to read chart which lays out all of the 
blood chemistry information for this medical variable 
and also shows where each of the 96 patients measure 
on this variable.  This chart makes visible in complete 
context the relation between the diagnosis of gout (the 
dependent variable in a regression analysis) and the 
predictive efficacy of the three blood chemistry 
variable (the independent variables in the regression 
analysis).  The differences between this analysis and 
regression is that all results are visualizable on a 

common linear metric and no results are contaminated 
by missing data or sample dependent covariance.  
 The three top rows of 0-9 integers in Figure 2 
mark out the medical measure positions of 10 equally 
spaced mg/dl chemical levels as they were coded 
uniformly into integers 0-9.  Table 2 lists the mg/dl 
values linearly represented by each of these 0-9 codes.  
The vertical alignments of the codes in Figure 2 mark 
the mg/dl values of the three blood chemistries which 
match in their relative strength of “gout” implication.  
The integer codes for mg/dl values which the 1997 
Merck Manual specifies as “too high” are in 
parentheses. 
 The fourth row of Figure 2 marks the predictor 
positions on this medical measure of the observed 
“Gout?” diagnosis: NO or (YES).  The colon between 
NO and (YES) at a blood chemistry measure of 53 
marks the point at which the estimated odds for 
“Gout?” are an even, 1 to 1.  Estimated gout odds can 
be calculated for any  measure position from 10 to 100 
because on this scale each increment of 9 units triples 
the odds that a patient has gout.  For example, since 
the estimated odds at blood chemistry measure  
53 are even, the estimated odds become 3 to 1 at 
53+9=62 and 9 to 1 at measure 71. In the other 
direction, the estimated odds for gout drop to 1 to 3 at 
53-9=44 and 1 to 9 at 35. 
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Table 2. Variations in Medical Implications for  
   Equal mg/dl Increases in Creatinine 
 
Uniform Coding of Blood Chemistry Levels in mg/dl 

 Uric Urea Creatinine 
Uniform Acid Nitrogen  

Code mg/dl mg/dl Mg/dl 
0 2.10 00 0.7 
1 3.30 05 1.0 
2 4.50 10 1.3 
3 5.70 15 1.6 
4 6.90 20 1.9 
5 8.10 25 2.2 
6 9.30 30 2.5 
7 10.50 35 2.8 
8 11.70 40 3.1 
9 12.90 45 3.4 

 

Medical Measure Changes Implied by Equal mg/dl 
Increments of Creatinine 

mg/dl Code MedMeasure Mg/dl per 
Change Change Change MedMeas Unit

0.3 0-1 22 0.0136 
0.3 1-2 18 0.0167 
0.3 2-3 8 0.0375 
0.3 3-4 3 0.1000 
0.3 4-5 1 0.3000 

 

 In Figure 2 the horizontal spacing of all reference 
points and measures is uniformly linear in units of 
medical importance.  (The uneven spacing of codes 0 
to 9 in Figure 2 shows that these medical implications 
units are not collinear with the original chemical 
mg/dl units).  This medical spacing enables rapid 
visual evaluation of the medical distance of any 
patient measure to the left or right of the colon at 
blood chemistry measure 53 to be sufficiently accurate 
for clinical purposes and even faster and less error 
prone than juggling odds. 
 When a patient’s blood chemistries measure them 
below the “NO” at 44, we can advise them with some 
confidence that their blood chemistry does not imply 
gout.  When, on the other hand, their measure exceeds 
the “(YES)” at 62, then our advice would have to be 
otherwise.  We can show them their own position on 
the “Gout?” blood chemistry chart so that they can see 
for themselves where they stand with respect to a 
blood chemistry diagnosis of gout. 
 Because the WINSTEPS chart in Figure 2 maps 
the medical implications of the relationship between 
blood chemistry and “Gout?” probability in easy-to-
read equal spacing, clinicians can find it easy to 
discover in their own practice where the best turning 
points are for the decisions their practice teaches them 
to make. 

 The “Gout?” diagnosis row serves the same 
purpose as gout predictions derived from a regression 
analysis.  In this application, however, the prediction 
is no longer twisted by the incidental vagaries of 
missing data or the sample distribution dependence of 
independent variable covariance. 
 The first row at the bottom of the figure shows the 
measure positions of each of the 48 gout patients and 
right below that the measure positions of each of the 
48 gender and age matched, but not gout, patients.  
This provides a linear visualization of the dependent 
variation identified by this analysis – information 
seldom provided in a regression report. 
 On this simple linear chart, the extent to which this 
three-blood-chemistry measure separates these gout 
and “not-gout” patients is obvious.  The means of the 
two patient groups, marked by “M’s” at blood 
chemistry measures 45 and 60, are statistically 
distinct.  That may be nice to publish, but clinically 
the visible position of each individual patient on this 
blood chemistry variable is far more useful. 
 All measures, indeed all inferences, are inevitably 
qualified by margins of error.  We expect a region of 
overlap, like the one around the gout colon between 
50 and 58.  The vertical alignment of the “Gout?” 
diagnosis “(YES)”with the parenthesized Merck 
Manual reference values is clear evidence of the 
coherence between these statistical results and 
established reference values – an easy to see 
verification of validity. 
 Among the gout patients in Figure 2, there are two 
at blood chemistry measures 16 and 39.  These blood 
chemistry measures are sufficiently low to suggest 
that, if these patients do have gout, it has symptoms 
other than blood chemistry. 
 Among the not gout patients there are three with 
blood chemistry measures in the 60’s, a suspicious 
level according to our measure and also according to 
Merck. 
 If we use these 96 patients as current norms for 
this kind of gout measurement, then we can see and 
explain the implications of each measure position in 
terms of the observed odds among these 96 patients 
for (or against) having gout. 
 At blood chemistry measure 57, the observed gout 
odds among these patients are 6/5, just about even.  At 
measure 64, however, observed gout odds rise to 7/1, 
or, if we group adjacent columns, (7+3)/(2)=5/1.  
These odds for the presence of gout are large enough 
to suggest a decision.  Moving down to a measure of 
52 implies gout odds of 5/8 and at measure 49 odds of 
only 1/3.  At lower measures the observed odds 
against gout become overwhelming. 
 Even this small sample of 96 provides preliminary 
norms.  A simple accumulation from medical records 
of a larger and continually growing sample will 
provide observed gout odds interpretations of any 
medical measure with increasing authority. 
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 A final, perhaps surprising and, if so, crucial, 
observation clearly visible in Figure 2 and calculated 
in Table 2 is the non-linearity of the relationship 
between mg/dl chemical metrics and the metric of 
medical diagnosis.  This non-linearity shows in the 
unequal medical measure distances between the 
integer codes which mark equal increments in 
chemical mg/dl. 
 Table 2 shows that for creatinine, the increment in 
diagnostic significance from code 0, marking 0.7 
mg/dl, to code 1, marking 1.0 mg/dl is 22 medical 
units.  This is .0136 mg/dl per medical measure unit.  
If we use 5 medical diagnosis units as our margin of 
error, then creatinine changes as small as .07 mg/dl 
could have medical implications at levels below 1 
mg/dl.  But the increment in medical significance 
from code 4, marking 1.9 mg/dl, to code 5, marking 
2.2 mg/dl, is only one medical unit, or 0.3 mg/dl per 
medical measure unit.  This means that at  creatinine 
levels near 2 mg/dl it takes a change of 1.5 mg/dl in 
chemical creatinine to mean as much medically as a 
change of 0.07 mg/dl at levels near 1 mg/dl.  The 
chemical mg/dl increase at codes 4 to 5 is 22 times the 
increase at codes 0 to 1.  This implies that mg/dl 
increases in creatinine below 1 mg/dl are 22 times 
more important medically than the same size increases 
above 2 mg/dl.  These numbers are listed in Table 2.  
A regression analysis is unlikely to document or even 
to reveal such an important finding.  
 

Discussion 
 This paper shows how Rasch measurement can 
replace regression analysis to advantage and also 
provide reports far more useful to medical diagnosis.  
The practical implications of regression coefficients 
are hard to visualize, let alone understand.  In addition 
regression coefficients are vulnerable to missing data 
and disturbed by sample dependent covariance.  The 
results reported here show how the intentions of 
regression analysis can be better realized and more 
usefully reported by Rasch measurement. 
 This paper shows how Rasch analysis can simplify 
the clinician’s job by constructing one simple picture 
from which the implications of laboratory 
abnormalities can be clearly seen.  The illustration is 
based on observed relationships among laboratory 
findings among patients who have been diagnosed 
with gout by the usual methods.  The analysis shows 
that the gout implications of corpulence can be quite 
distinct from blood chemistry and that cholesterol and 
triglycerides do not contribute useful information to a 
gout blood chemistry variable. 
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Multiple Regression with WINSTEPS 
A Rasch Solution to Regression Confusion 

 
Benjamin D. Wright, University of Chicago 

he purpose of Rasch measurement is to build 
and verify a useful “yardstick” – a stable, 
portable, reproducible instrument for making 
linear measures.  What makes a yardstick 

useful is the calibration of its reference points, which 
mark out a visible linear metric that maintains its 
spacing as long as it is used in a sensible way.   Just 
like the yardstick in your closet, a useful “yardstick” 
does not change the distances between its calibration 
marks from object to object, place to place, or time to 
time, as long as you apply it as sensibly as you apply 
the yardstick in your closet.    
 What follows explains how to use the Rasch 
measurement program, WINSTEPS (winsteps.com, 
Linacre, 2000) to solve multiple regression problems 
in a new way that avoids the sample covariance 
dependence and missing data problems which 
interfere with inferential stability.  
 The data used by Rasch measurement to build 
yardsticks can originate as any set of ordinal 
indicators: dichotomies, ratings, partial credits, 
counts, as well as any already developed metric like 
those in commerce and science.  The way data 
expressed in the decimal fractions of an existing 
metric, like inches or mg/Dl, is entered into 
WINSTEPS is: 
 
 1. Recode each decimal fraction X into interval 
(or log interval) integer Y: 
 
  Y = M(X-MIN)/(MAX-MIN) + 1/2   
 
  For   Y = 0,9       use   M = 0,N <10 
  For   Y= 00,99    use   M = 00,NN <100 
    
If an incoming metric is expected to have a ratio 
effect in the yardstick you are constructing, you can 
anticipate this by using log X instead of X in the 
above formula. 
 2. Your choice of MIN and MAX can be made 
locally from the smallest incoming value for MIN 
and the largest incoming value for MAX.  Or you can 
choose values for MIN and MAX which are natural 
to their originating metric, so long as the values you 
choose embrace the range of incoming data. 
 3. Your choice of M depends on how many 
ordinal integer categories you wish to use for your 
yardstick construction.   In our practice we have not 
encountered any situation for which M>9 was more 
informative than M<10, but WINSTEPS does enable 
you to maintain the linear articulation of your 
incoming decimal fractions up to 100 steps from 00 
to 99 by setting M=99. 

 4. In order for WINSTEPS to print the original 
decimal fractions Y of your incoming data next to 
their recoded integers X, use control variable 
CFILE=  to label each integer category X with its 
corresponding decimal fraction midpoint Y:   
  X = [(Y-1/2)(MAX-MIN)/M] + MIN        
   (for log interval X = exp X)  
This labeling enables you to see the extent to which 
the scale of decimal fractions X, however linear in X, 
does not make a linear contribution to your new 
yardstick.  It is often the case that the linear intervals 
of X do not produce linear separations among their 
code values Y in the new metric defined by your 
yardstick.  
 5.  If any of your decimal fraction variables X 
have useful reference points, such as freezing at 32 
degrees or normal body temperature at 98.6 degrees, 
you can reference your item calibration 
representations of these variables by pivoting the 
calibration of the equivalent Y integer step at that 
reference point.  
 

How to Use WINSTEPS to Solve  
Multiple Regression Problems 

 1. Organize your incoming variables into three 
groups: 
 
 Dependent Variables  = DV to be predicted  
         by IV 
 Independent Variables = IV to predict DV’s.   
 
 Conditional Variables  = CV to condition  
        prediction for  
        interaction with other  
        variables like:  
        gender, age, culture,  
        language, wealth . . . 
 
 2. Apply one of the following three “regression” 
formulations: 
 
  a. DV positioned on the IV set in terms of a 
DV defined variable. 
 

Anchor objects (persons) at their incoming 
DV values.  This establishes your 
dependent variable.  Then use WINSTEPS 
to find the best set of IV calibrations for 
predicting these anchored DV values.  
This formulation optimizes prediction, but 
binds IV calibrations to DV sample 
dependence. 

 

T 
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  b. DV positioned on IV in terms of an IV 
defined variable. 

 
Apply WINSTEPS to the IV set to find 
the best variable this IV set can define, 
independent of any DV.  This requires a 
sequence of stepwise analyses by which 
members of the IV set are edited until a 
best possible IV variable has become 
defined (The steps are listed below).  
 
Because the construction of the IV 
variable is entirely independent of DV 
data, this formulation enables the 
simultaneous evaluation of any number of 
DV’s. 
 
Anchor to the item/step calibrations of 
this best IV variable and then insert all 
DV’s and use WINSTEPS to show how 
well these DV’s are predicted by the IV 
just constructed independently of any DV 
distribution and also of any sample 
dependent covariance among the IV.  
This sample free construction of a single 
variable defined by the IV set optimizes 
the inferential stability of DV predictions. 
 

  c. Middle Ground Short Cut. 
 
Combine all DV and IV in one 
WINSTEPS analysis.  The result will fall 
between formulations (a) and (b).  But 
they will be dominated by (b) to the 
extent that IV information exceeds DV 
information.  
 

 3. Two ways to introduce CV variables. 
 

  a. Several Separate Analyses. 
 
For CV's with few categories, repeat Step 
2 for each CV sub-group.  Compare 
maps. 
 

  b. Sequence of Composite Analyses 
 

Include CVs in each analysis and use 
person separations, fit statistics and 
residual analyses to expose the extent to 
which each CV interferes (or helps). 

 
How to Construct a Best IV Variable 

 1. Item Polarity: Examine the correlations 
between item responses and person measures in the 
Item Misfit Table to identify and correct all negative 
relations by reversing their scoring. 
 
 2. Category Articulation: Examine the Rating 
Scales Structure Table to identify noisy and 
uninformative categories that you can improve by 
rescoring these categories. 
 

 3. Item Dimensionality: Examine the Item 
Principal Component Analysis of Response 
Residuals Table to find out whether there is a 
secondary item dimension large enough or 
meaningful enough to isolate. 
 
 4. Person Dimensionality: If the relative size or 
item content of the first item residual factor interests 
you, examine the Person Principal Component 
Analysis of Response Residuals Table to identify and 
evaluate the effect of  this secondary dimension on 
person measures. 
 
 5. Variable Sharpening: Reexamine the Item 
Misfit Table to evaluate the effects on person 
separation (in the Summary Table) of deleting items 
with large infit mean squares (e.g.>1.3) in order to 
find the most efficient definition of your IV variable. 
 

How WINSTEPS Improves  
on Multiple Regression MR 

  1. MR arithmetic and stochastic interpretation 
depends on normally distributed continuous linear 
data.  
 

WINSTEPS accepts discrete ordinal data of 
any distribution and constructs linear 
continuous measures from them.  Every 
analysis of raw ordinal observations requires 
this step to prepare for linear statistical 
analysis. 

 
 2. MR is vulnerable to missing data.  
 

When rows and columns are connected, 
WINSTEPS conjoint additivity corrects for 
missing data automatically. 

 
 3. MR posits a single dimensioned DV to which 
the IV, whatever their own dimensions, must produce 
a co-linear contribution. 
 

WINSTEPS extracts the best possible single 
linear dimension, which the data support 
and estimates continuous linear measures, 
standard errors and fit statistics on this 
dimensions for all item, step and person 
parameters. 

 
 4. MR regression coefficients and multiple R's are 
hard to interpret because they defy visualization. 
 

WINSTEPS constructs linear measures, 
qualified by errors and fit statistics and 
reports them on linear MAPs which show, 
in complete detail, the positional 
relationship between all values of the DV in 
terms of all values of the IV.  The resulting 
positional relationships are complete, easy 
to see and easy to interpret. 
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A Gout Application of WINSTEPS  Regression 
 Table 1 shows three panels from the application 
of WINSTEPS Rasch regression to the medical data 
discussed in the article, “Rasch Measurement Instead 
of Regression” by Wright, Perkins and Dorsey. 
 The top panel lists, on the right, the eight 
definitions of the medical items analyzed.  The next 
column to the left, “SCORE CORR.” are 
response/measure correlations.  For the three 
anchored blood measures which define the 
independent variable, IV, these correlations 
correspond to standardized regression coefficients.  
For the five dependent variables, DV, listed below, 
they correspond to the usual multiple regression 
prediction correlations.   
 Next to the left are two columns of mean square 
fit statistics.  When these mean squares are near 1.00, 
they document a valid relationship among the three 
anchored blood chemistry IV’s: Uric Acid, Urea 
Nitrogen and Creatinine.  They also validate or 
invalidate the regressions on the three blood 
chemistry IV of the five DV’s: Gout, Hypertension, 
Diuretics, Kidney Stones and Diabetes. 
 Gout does best with a prediction correlation of 
.61, closely followed by hypertension.   Both 
correlations and outfit mean squares expose the 
failure of this three blood chemistry IV to predict 
kidney stones or diabetes. 
 The middle panel of Table 1 illustrates the IV 
linear coding of chemical metrics mg/dl onto 10 
category integer scales, 0 to 9.  It also shows the 
pivot marking for each blood chemistry at the Merck 
Manual step from “normal” to “high”. The middle 
panel also lists the distribution of the 96 patients 
across the 10 levels for each IV and the average 
measure at each category of the new medical variable 
which the three blood chemistries were found to 
define.  Since the chemical mg/dl metrics are evenly 
represented by the 10 categories, the non-linear 
distributions of these average measures is 
noteworthy.  This non-linearity shows that the 
medical implications of increases in these blood 
chemistries are not collinear with increases in their 

chemical metric mg/dl.  The clinical implications of a 
particular increment in mg/dl varies with mg/dl level.  
This irregularity muddies clinical evaluations of 
blood chemistry changes.  The WINSTEPS analysis 
makes the specifics of this non-linearity evident and 
provides, instead, a new medical metric, which is 
linear in its clinical implications.     
 The bottom panel of Table 1 sums up the 
diagnostic implications of these analyses.  The 
multiple regression prediction correlations, repeated 
from above, show that Gout at .61 is better predicted 
than hypertension at .51.  Far more useful, however, 
are the measurement positions of each diagnostic 
indicator.  The gout indicators, rounded to 48 for “No 
Gout” and 59 for “Gout”, mark the positions on the 
three blood chemistry yardstick where the odds for 
the presence of gout shift from 1/2 at 48 to 2/1 at 59.  
The hypertension indicators, rounded to 49 and 59, 
provide a similar interpretation with respect to 
hypertension.  At the bottom we see again, in metric 
form, the futility of trying to predict kidney stones or 
diabetes from these three blood chemistries.   
 When the 12 unit distance (59.44 - 47.70 = 11.74) 
between the gout indicators is compared to the 10 
unit distance (58.83 – 48.93 = 9.90) between the 
hypertension indicators, we see the metric 
implications of their .61 > .51 multiple correlation 
difference.  The ratio of those distances, 11.74/9.90  
=  1.19, measures how much better this yardstick 
predicts gout than hypertension.  Similar 
comparisons can be made among all five dependent 
variables.   
 The piece de resistance for clinical interpretation, 
however, is displayed in Figure 2 of “Rasch 
Measurement Instead of Regression” by Wright, 
Perkins and Dorsey.  In that Figure, the position of 
any patient measure with respect to the “No Gout” 
and “Gout” indicators makes the clinical 
interpretation of the measure obvious.  See that 
discussion of Figure 2 to appreciate the clinical 
advantage of WINSTEPS Rasch measurement 
“regression” analysis. 

 
Table 1. WINSTEPS MULTIPLE REGRESSION Results 
+----------------------------------------------------------------+ 
|  RAW                        |INFIT|OUTFIT|SCORE|               | 
| SCORE  COUNT  MEASURE  ERROR|MNSQ |MNSQ  |CORR.|  ITEMS        | 
|-----------------------------+-----+------+-----+---------------| 
|   408     96    60.3A     .7| .83 | .82  |  .83| URIC ACID     |  INDEPENDENT 
|   325     96    62.7A     .8| .70 | .75  |  .72| UREA NITROGEN |  VARIABLES 
|   181     96    55.3A     .8| .89 |1.07  |  .62| CREATININE    | 
------------------------------------------------------------------ 
|    48     96    53.7     1.9| .80 | .88  |  .61| GOUT          |  DEPENDENT 
|    45     96    55.2     1.9| .91 |1.08  |  .51| HyperTense    |  VARIABLES 
|    22     96    66.0     2.1|1.01 | .81  |  .39| Diuretic      |  Successful 
------------------------------------------------------------------ 
|     6     96    79.5     3.5|1.19 |3.33  | -.03| KidneyStone   |  Unsuccessful 
|     9     96    75.7     2.9|1.19 |4.78  | -.06| Diabetes      | 
+----------------------------------------------------------------+ 
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Table 1.  (continued) 
 
+--------------------------------------------+ 
| SCORE |     DATA   |  AVERAGE |            |              DIAGNOSTIC 
| VALUE |    COUNT % |  MEASURE |  ITEM      |               MEASURES 
|--------------------------------------------|                           
|     0 |      1   1 |    29.12 | URIC ACID  |  2.1 mg/dl  
|     1 |      4   4 |    34.91 |            |  3.3 
|     2 |     11  11 |    42.12 |            |  4.5 
|     3 |     20  21 |    48.66 |            |  5.7 
|     4 |     21  22 |    55.76 |            |  6.9 normal   
|     5 |     12  13 |    55.28 |            |  8.1 high        55 
|     6 |     14  15 |    61.31 |            |  9.3 
|     7 |     11  11 |    64.51 |            | 10.5  
|     8 |      1   1 |    64.67 |            | 11.7 
|     9 |      1   1 |    70.53 |            | 12.9 
|--------------------------------------------|                        INDEPENDENT 
|     0 |      1   1 |    29.12 | UREA       |   0 mg/dl 
|     1 |      1   1 |    36.80 | NITROGEN   |   5 
|     2 |     21  22 |    45.80 |            |  10 
|     3 |     41  43 |    52.40 |            |  15 normal    
|     4 |     18  19 |    57.91 |            |  20 high         58 
|     5 |      6   6 |    62.29 |            |  25 
|     6 |      3   3 |    66.61 |            |  30 
|     7 |      2   2 |    69.44 |            |  35 
|     8 |      2   2 |    69.02 |            |  40 
|     9 |      1   1 |    73.50 |            |  45 
|--------------------------------------------|                         VARIABLES 
|     0 |      8   8 |    38.95 | CREATININE |  0.7 mg/dl 
|     1 |     39  41 |    50.63 |            |  1.0 normal   
|     2 |     28  29 |    55.14 |            |  1.3 high        55 
|     3 |     13  14 |    60.61 |            |  1.6 
|     4 |      3   3 |    60.12 |            |  1.9 
|     5 |      1   1 |    67.51 |            |  2.2 
|     6 |      1   1 |    61.88 |            |  2.5 
|     7 |      1   1 |    69.75 |            |  2.8 
|     8 |      1   1 |    73.50 |            |  3.1 
|     9 |      1   1 |    71.37 |            |  3.4 
|--------------------------------------------| 
---------------------------------------------- 
|     0 |     48  50 |    47.70 | GOUT       |  DIAGNOSIS 
|     1 |     48  50 |    59.44 |  1/0= +12  |   R= +.61        59 
|--------------------------------------------| 
|     0 |     51  53 |    48.93 | HYPERTENSE |  DIAGNOSIS               DEPENDENT 
|     1 |     45  47 |    58.83 |  1/0= +10  |   R= +.51        59 
|--------------------------------------------| 
|     0 |     74  77 |    51.50 | DIURETIC   |  DIAGNOSIS               VARIABLES 
|     1 |     22  23 |    60.52 |  1/0= +9   |   R= +.39        61 
|-------+------------+----------+------------| 
---------------------------------------------- 
|     0 |     90  94 |    53.65 | KidneyStone| No Diagnosis 
|     1 |      6   6 |    52.42 |  1/0= -1   |   R= -.03 
|--------------------------------------------| 
|     0 |     87  91 |    53.76 | Diabetes   | No Diagnosis 
|     1 |      9   9 |    51.77 |  1/0= -2   |   R= -.06 
+--------------------------------------------+ 
 


