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A Note from the Editor of MLRV  
 

T. Mark Beasley 
University of Alabama at Birmingham 

 would like to thank the members of the Multiple Linear Regression – General Linear Model Special 
Interest Group (MLR/GLM SIG) for affording me this opportunity to be the Editor of Multiple 
Linear Regression Viewpoints (MLRV).  It is a great honor to have my name follow the likes of 
Isadore Newman, John Pohlmann, Keith McNeil, and Randall Schumacker.  I am please to name 

Robin K. Henson of the University of North Texas as my Associate Editor.  I believe he will be a great 
help. 
 Many changes have come along with this editorship.  Namely, since being elected Editor of MLRV, I 
have taken a faculty position in the Department of Biostatistics at the University of Alabama at 
Birmingham (UAB).  After eight years as an Assistant/Associate Professor teaching service courses in 
Statistics and Research Methods at St. John’s University in New York, I felt it was time for a change and 
a new challenge.  UAB presented me great prospects for research along with the opportunity to be closer 
to my family in my home state of Tennessee.  I believe that the opportunities at UAB will help me 
advance my career as a statistician, but I also feel that the resources at UAB should help me to advance 
MLRV as a publication.   
 Several years ago, the members of the SIG officially changed the name to the Multiple Linear 
Regression – General Linear Model SIG.  The impetus for this change was to incorporate a wider variety 
of topics for (a) proposals to the SIG for the American Educational Research Association (AERA) 
convention and (b) submissions to MLRV.  In the 1990’s, the SIG and MLRV recognized the linear model 
basis of Hierarchical Linear Models (HLMs) and Structural Equation Models (SEMs) and started 
including them as acceptable subject matter.  To this extent, I propose further expansion to include 
Generalized Linear Models.  Outside of the fact that it does not even require a change in acronym and we 
can still use the same monogrammed towels at the AERA convention, Generalized Linear Models 
subsume all the topics currently covered in MLRV.   
 For those of you who are not familiar with the topic, Generalized Linear Models are a broad class of 
models that include regression models for continuous dependent variables, alternative models for 
continuous dependent variables that do not assume normality or homoscedasticity of the residuals, and 
also models for discrete dependent variables (e.g., dichotomies, counts).  Therefore, the multiple 
regression and ANOVA models typically covered in MLRV are special cases of Generalized Linear 
Models.   
 There are three basic components to Generalized Linear Models: 
  1.  The systematic component specifies the explanatory variables used as the predictors, X.  This 
is no different than the more familiar General Linear Models.  The systematic component may include 
fixed effects, random effects, or may involve a mixed model as is common in longitudinal data and nested 
data structures (e.g., HLMs). 
  2.  The random component identifies the dependent variable, Y, and specifies a probability 
distribution for the residuals.  The normal distribution is but one of many known probability distributions 
that can be specified. 
  3.  The link function specifies a function of the expected value of Y, E(Y) or Ŷ , to be predicted by 
the X variables.  This component links the systematic and random components by specifying the 
connection between the X predictor variables and the predicted value of Y.  That is, it specifies the 
predicted value of Y as a function of the X variables through an equation of linear form: 

        f( Ŷ ) = β0 + β1 X1 + β1 X1 + . . . + βk Xk  .                        
 
 
 For the familiar Ordinary Least Squares (OLS) linear regression model with a continuous Y, there is 
an identity link function (i.e., the predicted values are not transformed in any way) and the random error 

I 



Beasley 

Multiple Linear Regression Viewpoints, 2001, Vol. 27(2) 
 

2

component (i.e., residuals) is assumed to have a normal distribution.  However, in the closely related 
logistic regression model, Y is dichotomous and therefore has a binomial distribution.  Thus, logistic 
regression is a Generalized Linear Model that specifies a logit link function that transforms Ŷ  to be a 
linear function of the X variables, 

         f( Ŷ )  =  logit( Ŷ )  =  
ˆ

log ˆ1
Y

Y
 
 

− 
 ,  

and identifies a binomial distribution for the random error component.  
 For continuous dependent variables, it is possible to specify an error distribution other than the 
normal.  For example, when the residuals display fan-shaped heteroscedasticity, it is possible that the 
variance of the residuals increases as a systematic function of Ŷ .  One approach to this analytic problem 
is to transform the data in order to remove the heteroscedasticity.  This approach is problematic if the 
researcher is interested in prediction and the variable “loses its meaning” when transformed.  In an 
experimental design context, it is possible that a treatment may increase average level and reduce 
variability.  Instead of transforming this “nuisance” into submission, a Generalized Linear Model can 
parameterize and model this interesting phenomenon.  However, identifying the “correct” error 
distribution can be arduous, and therefore, nonparametric methods are still viable approaches. 
 Thus, the investigating the merits and statistical properties of these Generalized Linear Models 
relative to other procedures should provide a wealth of research opportunities for statisticians who 
conduct simulation studies.  For example, if the simulation researcher creates a situation where the 
random error distribution is radically skewed, (s)he could compare Generalized Linear Models, with a 
variety of specified random components, to OLS regression and nonparametric methods. For applied 
statisticians and data analysts, manuscripts elaborating (a) how Generalized Linear Models relate to more 
familiar data analytic techniques or (b) how Generalized Linear Models can be applied to answer 
educational research questions are welcomed.  
 To my recollection, there has been only one paper specifically concerning Generalized Linear Models 
presented in the MLR/GLM SIG at AERA.  I hope to see more and see such submissions to MLRV.  This 
does not preclude other submissions, I simply want to expand the horizon for MLRV.  This inclusion of 
Generalized Linear Models will not change the face of MLRV but hopefully enlarge the number of 
subscriptions and submissions. 
 
Again, I thank the MLR/GLM SIG members for this wonderful opportunity and hope that I serve the 
editorship well. 
 
Sincerely, 
 
 
 
T. Mark Beasley, Editor 
Multiple Linear Regression Viewpoints 
Department of Biostatistics 
University of Alabama at Birmingham 
343C Ryals Public Health Building 
1665 University Boulevard 
Birmingham AL  35294 
mbeasley@uab.edu 
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An Empirical Investigation of Four Tests for Interaction 
in the Context of Factorial Analysis of Covariance 

 
Todd C. Headrick        George Vineyard 

Southern Illinois University 
The Type I error and power properties of the parametric F test and three nonparametric competitors were compared 
in terms of a 3×4 factorial analysis of covariance layout. The focus of the study was on the test for interaction 
either in the presence and/or absence of main effects. A variety of conditional distributions, sample sizes, levels of 
variate and covariate correlation, and treatment effect sizes were investigated. The Puri and Sen (1969a) test had 
ultra-conservative Type I error rates and power losses when main effect(s) were present. The adjusted rank 
transform (Blair & Sawilowsky, 1990; Salter & Fawcett; 1993) had liberal Type I error rates when sampling was 
from moderate to extremely skewed distributions. The Hettmansperger (1984) chi-square test displayed acceptable 
Type I error rates for all distributions considered when sample sizes were ten or twenty. It is suggested that the 
Hettmansperger (1984) test be considered as an alternative to the parametric F test provided sample sizes are 
relatively equal and at least as large as ten.   
 

he rank transform (RT) procedure was recommended as an alternative to the parametric 
procedure in multiple regression (Iman & Conover, 1979) and factorial analysis of covariance 
(Conover & Iman, 1981, 1982) when the assumption of population normality was violated. The 
steps for hypotheses testing using the RT consists of (a) replacing the raw scores with their 

respective rank order, (b) conducting the classical normal theory tests on the ranks, and (c) referring to the 
usual tables of percentage points. 
 Unfortunately, the parametric F test is not invariant with respect to monotone transformations (such 
as the RT). More specifically, the nonlinear nature of the RT may add (remove) interactions when such 
interactions were absent (present) in the original raw scores. For example, and contrary to the suggestions 
above, it has been demonstrated that the RT fails as a viable alternative to the parametric procedure with 
respect to tests for (a) interaction in factorial ANOVA (Blair, Sawilowsky, & Higgins, 1987; Thompson, 
1991; 1993), (b) parallelism and interaction in factorial ANCOVA (Headrick, 1997; Headrick & 
Sawilowsky, 2000), and (c) additive and nonadditive models in multiple regression (Headrick & Rotou, 
2000). 

However, nonparametric tests can be substantially more powerful than the parametric t or F tests 
when the assumption of normality is violated. For example, the Mann-Whitney U-test has an impressive 
asymptotic relative efficiency of 3 relative to the two independent samples t-test when the population 
sampled from is exponential (Conover, 1999). Thus, nonparametric or distribution free tests should be 
considered when these tests demonstrate both (a) robustness with respect to Type I error and (b) a power 
advantage relative to the parametric test. 
 Sawilowsky (1990) reviewed ten competing tests for interaction in the context of factorial ANOVA 
and ANCOVA. On the basis of Type I error and power properties, three potential competitors to the 
parametric F test remain. These alternative nonparametric tests are: the adjusted RT procedure (Blair & 
Sawilowsky, 1990; Salter & Fawcett, 1993); the Hettmansperger (1984) procedure; and the Puri and Sen 
(1969a) procedure. It should be noted that the Hettmansperger (1984) and Puri and Sen (1969a) 
procedures consider only the total group regression slope. As such, it is assumed that the within group 
regression slopes are equal for these tests. 
 

Purpose of the Study 
 The purpose of the study is to compare and contrast the relative Type I error and power properties of 
the parametric F test and the three aforementioned nonparametric procedures in the context of factorial 
ANCOVA using Monte Carlo techniques. From the results of the Monte Carlo study, a statement will be 
made with respect to the conditions under which any of the nonparametric tests are useful alternatives to 
the parametric F test. Because good nonparametric tests exist for main effects, the focus of this study is 
concerned with the test for interaction in the presence and/or absence of main effects. 

T 
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Methodology 

 A completely randomized balanced design with fixed effects and one covariate was used. The 
structural model representing the design was: 

ijkijjiijkijk XXY εατταβµ ++++−+= )()( ,     (1) 

( i = 1,..., I;  j = 1,..., J; and k = 1,..., n), where I = 3, J = 4, and n = 5, 10, and 20. 
The levels of variate (Yijk ) and covariate ( Xijk ) correlation were ρ = 0, .3, .6, and .9. Note that the 

regression slope coefficient in (1), β , remained constant across groups.  
 The treatment effect patterns modeled in (1) were as follows: 
1. The main effect τ  nonnull, the main effect α  null, and the interaction ( )ατ null: 
 1(a). τ 1  = d ; 
 1(b). d== 21 ττ ; and d−== 43 ττ . 
2. The main effects τ  and α  nonnull, and the interaction ( )ατ  null: 
 2(a). d== 12 ατ ; and d−== 23 ατ ; and 
 2(b). d== 13 ατ ; and d−==== 3421 ατττ . 
3. The ( )ατ interaction nonnull, and the main effects τ and α  null: 
 3(a). d== 3311 )()( ατατ ; and d−== 3113 )()( ατατ ; 
 3(b). d==== 33321411 )()()()( ατατατατ ; and 

d−==== 34311312 )()()()( ατατατατ . 
4. The main effect τ  and the ( )ατ  interaction nonnull, and the main effect α  null: 
 4(a). d=11)(ατ ; and d−=14)(ατ ; 
 4(b). d==== 32311211 )()()()( ατατατατ ; and 

d−==== 34331413 )()()()( ατατατατ . 
5. The main effects τ , α , and ( )ατ  interaction are nonnull: 
 5(a). d== 2421 )()( ατατ ; 
 5(b). d===== 3433321211 )()()()()( ατατατατατ ; and 

d−=== 143113 )()()( ατατατ . 
The treatment effect sizes (d) ranged from d= 0.10σ  to d= 2.00σ, where σ  is the standard deviation of 
the population from which samples were drawn, in increments of 0.10σ. The null case was represented 
when d= 0.00 for all effects. 
 The parametric F statistic was calculated using the OLS sums of squares approach given in Winer, 
Brown, and Michels (1991) for factorial ANCOVA. The F statistic for interaction was then compared to 
the critical value from the usual F tables of percentage points. 
 The adjusted RT (adjRT) statistic was computed as follows: (a) the residuals were obtained from 
conducting a two-way ANOVA on the reduced model that included only the grouping variables; (b) the 
residuals and the covariate were then ranked without respect to group membership; and (c) the usual 
parametric ANCOVA procedure was conducted on the ranked residuals and ranked covariate to obtain the 
test statistic for interaction. This statistic was then compared to same critical F value as the parametric 
test. 
 The Hettmansperger (H) (1984) chi-square statistic was computed as follows: (a) the residuals (RES) 
were obtained from the regression of the variate on the reduced model that included the covariate and the 
grouping variables; (b) the residuals were then ranked (denoted as RRES) without respect to group 
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membership; (c) the standardized ranked residuals (SRRES) were obtained according to the following 

equation: 













 −

+
=

2
1

1
12

N
RRESSRRES ;  

(d) the SRRES were then submitted to a two-way ANOVA; (e) the sums of squares for interaction term 
obtained from the ANOVA was then compared to the critical value from a chi-square distribution with 

)1)(1( −− JI degrees of freedom (Hettmansperger, 1984). 
The Puri and Sen (PS) (1969a) chi-square statistic was computed as follows: (a) the variate and 

covariate were ranked irrespective to group membership; (b) the cell means ( YijR , XijR ), column means 

( jYR . , jXR . ), row means ( .YiR , .YiR ), and overall grand means ( ..YR , ..XR ) were then obtained from the 
ranks of the variate and covariate scores; (c) the ij-th difference score was then obtained as follows:  

)()()()( ........ YYiYjYYYijYij RRRRRRRDIFF −−−−−= , and 

)()()()( ........ XXiXjXXXijXij RRRRRRRDIFF −−−−−= ; 
(d) the ij-th residual scores were obtained from subtracting the predicted differences from the observed 
differences as follows: )()( ) XijYXYijij RDIFFRDIFFRES ρ−= , where YXρ  is the total group rank 

correlation coefficient between the variate and covariate; (e) the nL  statistic (Puri & Sen, 1969a) was 

then formulated as: ∑∑=
i j

ijn nRESL 2
11V , where 11V  is the first element on the principal diagonal of 

the inverted variance-covariance matrix ( V ); and (f) the computed value of nL  was subsequently 
compared to the critical value from a chi-square distribution with )1)(1( −− JI degrees of freedom (Puri 
& Sen, 1969a). 
 Nine conditional distributions were simulated with zero means ( 0=µ ), unit variances ( 12 =σ ), and 
varying degrees of γ 1 , γ 2 , 3γ , and 4γ . The distributions approximated in the simulation were: 
1= normal (γ 1 = 0, γ 2 = 0, 3γ = 0, and 4γ = 0), 2=  uniform (γ 1 = 0, γ 2 = 56− , 3γ = 0, and 

4γ = 748 ); 3=Cauchy (γ 1 = 0, γ 2 = 25 , 3γ = 0, and 4γ = 4000 ); 4= double exponential (γ 1 = 0, 
γ 2 = 3 , 3γ = 0, and 4γ = 30 ); 5= logistic (γ 1 = 0, γ 2 = 56 , 3γ = 0, and 4γ = 748 ); 6= chi-square 

8df (γ 1 = 1, γ 2 = 23 , 3γ = 3, and 4γ = 215 ), 7= chi-square 4df (γ 1 = 2 , γ 2 = 4, 3γ = 26 , and 

4γ = 30), 8= chi-square 2df  (γ 1 = 2, γ 2 = 6, 3γ = 24, and 4γ = 120), and 9= chi-square 1 df (γ 1 = 8 , 

γ 2 = 12, 3γ = 248 , and 4γ = 480). The preceding values of γ 1  (coefficient of skew), γ 2  (coefficient 
of kurtosis), 3γ , and 4γ  are the third, fourth, fifth, and sixth standardized cumulants from their associated 
probability density functions with the exception of the Cauchy distribution. Because the moments of a 
Cauchy pdf are infinite, the above values of γ 1 , γ 2 , 3γ , and 4γ  associated with this density were 
selected to yield a symmetric distribution with heavy tail-weight.  
 The steps employed for data generation follow the model developed by Headrick (2000). The 
Headrick (2000) procedure is an extension of the Headrick and Sawilowsky (1999, 2000) procedure for 
simulating multivariate nonnormal distributions. The Headrick (2000) procedure generated the Yijk  and 
Xijk  for the ij-th group in (1) from the use of the following equations: 

dYcYcYcYcYccY ijijkijkijkijkijkijk δ++++++= ∗∗∗∗∗ 5432

543210  , and         (2) 
5432

543210  ∗∗∗∗∗ +++++= ijkijkijkijkijkijk XcXcXcXcXccX , where ∗
ijkY , ∗

ijkX ~ iid N(0,1).  (3) 
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 The resulting Yijk  and Xijk  were distributed with group means of dijδ  and zero (respectively), unit 

variances, the desired values of γ 1 , γ 2 , 3γ , 4γ , and the desired within group correlation (ρ ). In all 
experimental situations, Yijk  and Xijk  followed the same distribution. The value of dijδ  was the shift 

parameter added to the ij-th group for the treatment effect pattern considered. The coefficients 0c , 1c , 

2c , 3c , 4c , and 5c  were determined by simultaneously solving equations 37, 38, 39, 40, 41, and 42 from 

Headrick (2000) for the desired values of γ 1 , γ 2 , 3γ , and 4γ . The values of Yijk
∗  and Xijk

∗  in (2) and (3) 
were generated using the following algorithms:   

        
21     ∗∗∗ −+= ρρ ijkijkijk VZY , and         (4) 

        
21  ∗∗∗ −+= ρρ ijkijkijk WZX ,          (5) 

where the Zijk , Vijk , and Wijk  ~ iid N(0,1). The resulting ∗
ijkY  and ∗

ijkX  were normally distributed with 

zero means, unit variances, and correlated at the intermediate value 
2∗

∗∗
ijkijk XYρ . The intermediate correlation, 

which is different from the desired post-correlation (
ijkijk XYρ ) except under conditional normality, was 

determined by solving equation 26 from Headrick (2000) for the bivariate case for ∗
∗∗XY

ρ . When both 
variables follow the same distribution, equation 26 from Headrick (2000) can be expressed as follows: 

  

)4(6)21(12024600

12067222590

3096)3(29

441086

664222

222

442
2
2

2
5

2
4

2
5

2
5

53
2
3

2
4

2
55351

2
331

2
1420

2
4

2
0

∗∗∗∗∗

∗∗∗∗∗∗

∗∗∗

∗∗∗∗∗∗∗∗∗∗

∗∗∗∗∗∗∗∗∗∗∗∗

∗∗∗∗∗∗

+++++++

+++++

×+++++++=

ijkijkijkijkijkijkijkijkijkijk

ijkijkijkijkijkijkijkijkijkijkijkijk

ijkijkijkijkijkijkijkijk

XYXYXYXYXY

XYXYXYXYXYXY

XYXYXYXY

cccccccc

ccccccccc

ccccccccc

ρρρρρ

ρρρρρρ

ρρρρ

   (6) 

Values of 0c ,…, 5c , and ∗
∗∗
ijkijk XYρ  were solved for (6) using Mathematica (Version 4.0, 1999). The solution 

values of 0c ,…, 5c , the intermediate correlations (
2∗

∗∗
ijkijk XYρ ), and post-correlations (

ijkijk XYρ ) for the 

conditional distributions considered are compiled in Table 1.  
 The computer used to carry out the Monte Carlo was a Pentium III-based personal computer. All 
programming was done using Lahey Fortran 77 version 3.0 (1994), supplemented with various 
subroutines from RANGEN (Blair 1986). Using the chi-square and F tables of percentage points, the 
proportions of hypotheses rejected were recorded for the four different procedures. The nominal alpha 
level selected was .05. Twenty five thousand repetitions were simulated for each of the 9(type of 
distribution)×4(level of correlation)×21(effect size) ×10(treatment effect pattern) experiments. 
 

Results 
Adequacy of the Monte Carlo 
For each repetition, separate values of ρij  and γ 1ij

, γ 2ij
, 

ij3γ , and 
ij4γ  for the variate and covariate for 

each of the IJ groups were computed. Average values of ρij ( ρ.. ), γ 1ij
(γ 1..), γ 2ij

(γ 2..), ij3γ ( ..3γ ), and 

ij4γ ( ..4γ ) were obtained by averaging the ρij , γ 1ij
, γ 2ij

, 
ij3γ , and 

ij4γ  across the IJ groups. The values 

of ρ.. , γ 1.. , γ 2.. , ..3γ , and ..4γ  were subsequently averaged across 25,000 (replications) × 21 (effect 
size) situations in the first treatment effect pattern for each conditional distribution. The average values of 
γ 1.. , γ 2.. , ..3γ , and ..4γ  were then further averaged across the four levels of correlation. The overall  



Factorial ANCOVA 

Multiple Linear Regression Viewpoints, 2001, Vol. 27(2) 
 

7

Table 1. Values of constants ( 0c ,…, 5c ) used in equation (3), population correlations (
ijkijk XYρ ), and 

intermediate correlations (
2∗

∗∗XY
ρ ) to simulate and correlate the desired conditional distributions (Dist).  

Dist        0c  1c  2c  3c  4c  5c  
ijkijk XYρ  2∗

∗∗XY
ρ  

   1 0.000000 1.000000 0.000000 0.000000 0.000000 0.000000 .00 .000000 
       .30 .300000 
       .60 .700000 
       .90 .900000 

   2 0.000000 1.347438 0.000000 -0.140177 0.000000 0.001808 .00 .000000 
       .30 .326197 
       .60 .634118 
       .90 .913613 

   3 0.000000 0.306093 0.000000 0.184686 0.000000 0.001132 .00 .000000 
       .30 .374236 
       .60 .683980 
       .90 .929263 

   4 0.000000 0.727709 0.000000 0.096303 0.000000 -0.002232 .00 .000000 
       .30 .309371 
       .60 .612882 
       .90 .905531 

   5 0.000000 0.879467 0.000000 0.040845 0.000000 -0.000405 .00 .000000 
       .30 .302233 
       .60 .603260 
       .90 .901368 

   6 -0.163968 0.950794 0.165391 0.007345 -0.000474 0.000014 .00 .000000 
       .30 .311431 
       .60 .612677 
       .90 .904625 

   7 -0.227508 0.900716 0.231610 0.015466 -0.001367 0.000055 .00 .000000 
       .30 .322263 
       .60 .624030 
       .90 .908552 

   8 -0.307740 0.800560 0.318764 0.033500 -0.003675 0.000159 .00 .000000 
       .30 .341958 
       .60 .643339 
       .90 .914879 

   9 -0.397725 0.621071 0.416907 0.068431 -0.006394 0.000044 .00 .000000 
       .30 .376853 
       .60 .673908 
       .90 .924127 

averages of γ 1 , γ 2 , 3γ , 4γ , and ρ  are listed in Table 2 and Table 3, respectively. Inspection of Tables 
2 and 3 indicate that the Headrick (2000) procedure produced excellent agreement between γ 1 , γ 2 , 3γ , 

4γ , and ρ  and the population parameters considered. 
 The Type I error and power analyses are compiled in Tables 4 through 13. The column entries from 
left to right denote (a) the test statistic, (b) the standardized treatment effect size “d”, and (c) the 
proportion of rejections for the four different tests of interaction under the various levels of variate and 
covariate correlation and the other parameters considered. 
 
Type I Error 
 Normal Distribution: The Type I error rates for the competing procedures are compiled in Tables 4, 6, 
and 8, for n=5, 10, 20, and treatment pattern 2(b). This particular effect pattern is reported because the 
commonly used rank transform test statistic (Conover & Iman, 1981) under these circumstances is not  



Headrick & Vineyard 

Multiple Linear Regression Viewpoints, 2001, Vol. 27(2) 
 

8

Table 2. Average values of 1γ ( 1γ ), 2γ ( 2γ ), 3γ ( 3γ ), and 4γ ( 4γ ) simulated by the Headrick (2000) 
procedure. The average values ( 1γ , 2γ , 3γ , 4γ ) listed below were based on a sample size is n=20. 
Distribution Population parameter ( 1γ , 2γ , 3γ , 4γ ) 

1 1γ = 0 2γ = 0 3γ = 0 4γ = 0 
Variate (Y) 1γ = 0.000124 2γ = -0.000284 3γ = 0.001073 4γ = -0.001339 
Covariate (X) 1γ = -0.000084 2γ = 0.000452 3γ = 0.000795 4γ = 0.002845 

2 1γ = 0 2γ = 56−  3γ = 0 4γ = 748  
Variate (Y) 1γ = 0.000005 2γ = -1.200004 3γ = 0.0000238 4γ = 6.857894 
Covariate (X) 1γ = 0.000039 2γ = -1.200163 3γ = 0.0001685 4γ = 6.853492 

3 1γ = 0 2γ = 25 3γ = 0 4γ = 4000 
Variate (Y) 1γ = -0.001318 2γ = 24.975520 3γ = -.3386690 4γ = 3958.22114 
Covariate (X) 1γ = 0.000290 2γ = 24.941770 3γ = -0.799517 4γ = 3988.30400 

4 1γ = 0 2γ = 3 3γ = 0 4γ = 30 
Variate (Y) 1γ = 0.000342 2γ = 2.999848 3γ = 0.014447 4γ = 30.010830 
Covariate (X) 1γ = 0.000032 2γ = 3.000327 3γ = 0.004328 4γ = 30.006732 

5 1γ = 0 2γ = 56  3γ = 0 4γ = 748  
Variate (Y) 1γ = 0.000224 2γ = 1.199900 3γ = .004258 4γ = 6.846827 
Covariate (X) 1γ = 0.000034 2γ = 1.200087 3γ = .001478 4γ = 6.858595 

6 1γ = 1 2γ = 23  3γ = 3 4γ = 215  
Variate (Y) 1γ = 1.000071 2γ = 1.500197 3γ = 3.001597 4γ = 7.496629 
Covariate (X) 1γ = 0.999992 2γ = 1.500053 3γ = 3.005218 4γ = 7.538564 

7 
1γ = 2  2γ = 3 

3γ = 26  4γ = 30 
Variate (Y) 1γ = 1.414330 2γ = 3.000764 3γ = 8.489000 4γ = 29.978800 
Covariate (X) 1γ = 1.413904 2γ = 3.001067 3γ = 8.484897 4γ = 30.004765 

8 1γ = 2 2γ = 6 3γ = 24 4γ = 120 
Variate (Y) 1γ = 2.000254 2γ = 6.002129 3γ = 24.008980 4γ = 119.868700 
Covariate (X) 1γ = 1.999989 2γ = 6.000573 3γ = 24.010045 4γ = 120.158647 

9 
1γ = 8  2γ = 12 

3γ = 248  4γ = 480 
Variate (Y) 1γ = 2.828878 2γ = 12.003800 3γ = 67.884840 4γ = 479.035600 
Covariate (X) 1γ = 2.827901 2γ = 12.000050 3γ = 67.885672 4γ = 480.001874 
 
asymptotically chi-squared (Thompson, 1991, 1993) and is liberal for even small samples (Headrick, 
1997; Headrick & Sawilowsky, 2000). 
As expected, the parametric F test maintained Type I error rates close to nominal alpha and were within 
the closed interval of 25000/)1(96.1 ααα −± . This occurred across all treatment conditions, sample 
sizes, and levels of variate/covariate correlation. 
 The adjRT also generated acceptable Type I error rates. Inspection of Tables 4, 6, and 8 indicates that 
the Type I error rates were similar to the parametric F test.  With respect to the H test, inspection of 
Tables 6 and 8 indicates that this test maintained appropriate Type I error rates for sample sizes of n=10 
and n=20. However, for n=5, inspection of Table 4 indicates that the H test generated liberal Type I 
error rates. For example, with an effect size of d=0.80, the Type I error rates were approximately .060 
across all levels of variate/covariate correlation. 
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Table 3. Average values of variate and covariate correlation (ρ ) simulated by the Headrick (2000) 
procedure. The value ρ  denotes the population correlation. The average values ( ρ ) listed below were 
based on a sample size is n=20. 

  Distribution 
n ρ  1 2 3 4 5 6 7 8 9 

20 .00 .000 .000 -.001 .000 .000 .000 .001 .000 -.000 
 .30 .300 .299 .300 .301 .300 .299 .300 .300 .301 
 .60 .600 .601 .602 .599 .600 .598 .600 .599 .600 
 .90 .900 .899 .901 .900 .900 .901 .899 .900 .900 

 
 The PS test became conservative when either one or both main effects were present. Ceteris paribus, 
the stronger the nonnull main effect(s) the more conservative the Type I error rates became. These 
conservative Type I error rates occurred across all levels of variate and covariate correlation. For 
example, with an effect size of d=0.80, inspection of Table 4 indicates that the Type I error rates were 
.001, .000, and .000 across the three levels of variate/covariate correlation. The PS procedure maintained 
Type I error rates close to nominal alpha only when both main effects were null. 
 
 Nonnormal Distributions: Type I error rates are compiled in Tables 10 and 12 for some of the 
nonnormal distributions considered. The approximate distributions reported in these tables are the chi-
square 1df and Cauchy. These distributions are reported because previous empirical investigations 
demonstrated that Type I error inflations associated with the rank transform test statistic (Conover & 
Iman, 1981) were most severe under extreme departures from normality (Headrick, 1997; Headrick & 
Sawilowsky, 2000).  
 The parametric F test was slightly conservative under the nonnormal conditional distributions 
reported. For example, with an effect size of d=1.30, variate/covariate correlation of r= .30, an 
inspection of Table 12 indicates that the Type I error rate was .040 when the conditional distribution was 
approximate Cauchy. 
 The adjRT generated inflated Type I error rates when the conditional distribution considered was 
skewed (e.g., chi-square 1df or 2df). For example, with an effect size of d=0.80, a variate/covariate 
correlation of r= .90, inspection of Table 10 indicates that the Type 1 error rate for the adjRT was .076. In 
general, increases in skew i.e., chi-square 4df, chi-square 2df, chi-square 1df were associated with 
increases in Type I error inflation for the adjRT. 
 The H test maintained appropriate Type I error rates for all nonnormal conditional distributions 
considered when sample sizes were n=10 and n=20. When samples were n=5, the H test generated 
liberal Type I error rates. The inflated Type I error rates were similar to those error rates generated under 
conditional normality. 
 As with the standard normal case, the PS test generated ultra-conservative Type I error rates when 
main effects were present. For example, with an effect size d=0.80 and a variate/covariate correlation of 
r= .60, inspection of Table 12 indicates that the Type I error rate was .000. This occurred for all 
nonnormal distributions considered in this study. 
 
Power Analysis 
 Normal Distribution: Power analyses for the competing procedures are compiled in Tables 5, 7, and 
9, for n=5, 10, 20, and treatment pattern 5(a). This effect pattern is reported because under these 
conditions the usual rank transform statistic has been demonstrated to display severe power losses 
(Headrick, 1997; Headrick & Sawilowsky, 2000). 
As expected, the F test displayed a power advantage over the three nonparametric competitors when the 
conditional distribution was standard normal. Specifically, the F test was substantially more powerful 
than the PS test when both main effects became increasingly nonnull. Although the F test was more 
powerful than the H test when sample sizes were n=10 and n=20, the H test held a slight power 
advantage over the adjRT. When sample sizes were n=5, inspection of Table 5 indicates that the H test  
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Table 4. Type I error results for the test of interaction. The sampling distribution was standard normal. 
The sample size was n=5. Both main effects were nonnull. The Type I error rates were based on 25,000 
repetitions and a nominal alpha level of 05.=α . 
  Level of Correlation 
Test Effect Size (d) 0.3 0.6 0.9 
F 0.30 .051 .052 .050 
adjRT  .052 .053 .051 
H  .057 .060 .060 
PS  .023 .020 .004 
F 0.80 .050 .051 .050 
adjRT  .052 .053 .049 
H  .059 .056 .058 
PS  .001 .000 .000 
F 1.30 .052 .047 .052 
adjRT  .052 .050 .051 
H  .059 .060 .061 
PS  .000 .000 .000 

 
Table 5. Power analysis for the test of interaction when sampling was from a standard normal 
distribution. The sample size was n= 5. Both main effects were nonnull. The rejection rates were based on 
25,000 repetitions and a nominal alpha level of 05.=α . 
  Level of Correlation 
Test Effect Size (d) 0.3 0.6 0.9 
F 0.30 .062 .067 .110 
adjRT  .062 .066 .100 
H  .069 .077 .121 
PS  .055 .056 .081 
F 0.80 .145 .202 .622 
adjRT  .143 .187 .531 
H  .159 .217 .632 
PS  .106 .132 .315 
F 1.30 .359 .507 .983 
adjRT  .349 .473 .954 
H  .372 .517 .983 
PS  .211 .272 .272 

 
was rejecting at a higher rate than F test. For example, with an effect size of d= 0.80, a variate/covariate 
correlation of r= .30, inspection of Table 5 indicates that the H test had a rejection rate of .16 while the F 
test was rejecting at a rate of .145. This higher rejection rate is attributed to the liberal nature of the Type I 
error rates that were associated with the H test when n= 5. 
 Nonnormal Distributions: In general, when departures from normality were small (e.g., approximate 
logistic) to moderate (e.g., approximate chi-square 8df) the F test rejected at rates slightly less than the 
Hettmansperger and adjRT procedures. The power advantages in favor of either the H or adjRT tests were 
contingent on the conditional distribution considered and the other parameters being simulated. It should 
be noted that the power advantages in favor either the H test or adjRT test were marginal. On the other 
hand, when the conditional distribution was approximate uniform the parametric F test held a slight 
advantage over the nonparametric procedures. 
When the conditional distributions were extremely skewed and/or heavy tailed, both the adjRT and H 
tests held large power advantages over the F test. Further, when the adjRT test generated reasonable Type 
I error rates, the adjRT displayed some power advantages over the other competing nonparametric 
procedures. For example, inspection of Table 13 indicates that when the conditional distribution was 
approximate Cauchy, an effect size of d= 0.80, and a variate/covariate correlation of r= .60, the adjRT  
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Table 6. Type I error results for the test of interaction. The sampling distribution was standard normal. 
The sample size was n= 10. Both main effects were nonnull. The Type I error rates were based on 25,000 
repetitions and a nominal alpha level of 05.=α . 
  Level of Correlation 
Test Effect Size (d) 0.3 0.6 0.9 
F 0.30 .053 .052 .049 
adjRT  .054 .051 .049 
H  .052 .055 .053 
PS  .027 .019 .003 
F 0.80 .050 .050 .050 
adjRT  .051 .049 .051 
H  .053 .052 .053 
PS  .006 .001 .000 
F 1.30 .050 .048 .050 
adjRT  .051 .048 .051 
H  .054 .051 .054 
PS  .000 .000 .000 

 
Table 7. Power analysis for the test of interaction when sampling was from a standard normal 
distribution. The sample size was n= 10. Both main effects were nonnull. The rejection rates were based 
on 25,000 repetitions and a nominal alpha level of 05.=α . 
  Level of Correlation 
Test Effect Size (d) 0.3 0.6 0.9 
F 0.30 .078 .088 .208 
adjRT  .077 .087 .179 
H  .076 .089 .201 
PS  .069 .077 .155 
F 0.80 .294 .418 .951 
adjRT  .284 .386 .911 
H  .288 .402 .943 
PS  .232 .306 .779 
F 1.30 .715 .879 1.000 
adjRT  .693 .848 .999 
H  .697 .863 1.000 
PS  .531 .683 .987 

 
was rejecting at a rate of .942 whereas the H test was rejecting at a rate of .844. Power comparisons 
between these two tests were not considered where the adjRT generated liberal Type error rates (e.g., 
approximate chi-square 2df or chi-square 1df). When the conditional distributions were approximately 
chi-square 2df or chi-square 1df, the H test was a much more powerful than the parametric F. For 
example, when sampling was from an approximate chi-square distribution 1df, d= 0.80, a 
variate/covariate correlation of r= .30, inspection of Table 11 indicates that the H test was rejecting at a 
rate of .731 while the F test was rejecting at a rate of only .326. 
 The PS procedure held a power advantage over the H and adjRT tests only when both main effects 
were either weak or null. Otherwise, the PS test statistic had the problem of power loss when juxtaposed 
to either the H or the adjRT tests as the magnitude of the main effect(s) increased. For example, when 
sampling was from an approximate chi-square distribution 1df, d= 0.30, a variate/covariate correlation of 
r= .30, inspection of Table 11 indicates that the PS test was rejecting at a rate of .182 while the H test was 
rejecting at a rate of .148. However, when the effect size increased from d= .30 to d= 0.80, the H test was 
rejecting at a rate of .731 while the PS was rejecting at a rate of only .524. This pattern of power loss 
associated with the PS test was consistent across all nonnormal distributions considered in this study. 
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Table 8. Type I error results for the test of interaction. The sampling distribution was standard normal. 
The sample size was n= 20. Both main effects were nonnull. The Type I error rates were based on 25,000 
repetitions and a nominal alpha level of 05.=α . 
  Level of Correlation 
Test Effect Size (d) 0.3 0.6 0.9 
F 0.30 .050 .050 .049 
adjRT  .050 .050 .050 
H  .051 .052 .050 
PS  .028 .019 .003 
F 0.80 .051 .049 .052 
adjRT  .052 .052 .051 
H  .052 .052 .052 
PS  .001 .000 .000 
F 1.30 .050 .050 .050 
adjRT  .050 .049 .048 
H  .052 .051 .052 
PS  .000 .000 .000 

 
Table 9. Power analysis for the test of interaction when sampling was from a standard normal 
distribution. The sample size was n= 20. Both main effects were nonnull. The rejection rates were based 
on 25,000 repetitions and a nominal alpha level of 05.=α . 
  Level of Correlation 
Test Effect Size (d) 0.3 0.6 0.9 
F 0.30 .109 .133 .410 
adjRT  .105 .127 .360 
H  .105 .131 .393 
PS  .099 .119 .328 
F 0.80 .596 .775 1.000 
adjRT  .569 .734 1.000 
H  .573 .754 1.000 
PS  .505 .661 .994 
F 1.30 .976 .998 1.000 
adjRT  .968 .996 1.000 
H  .969 .997 1.000 
PS  .920 .978 1.000 

 
Discussion 

 The PS test is computationally arduous. Further, the results of this study indicate that this test had the 
problems of ultra-conservative Type I error rates and power loss when main effects were nonnull. 
Toothaker and Newman (1994) found similar results with respect to the PS test in the context of factorial 
ANOVA. Thus, it is recommended that this procedure not be considered as a viable alternative to the 
parametric F test in factorial ANCOVA. 
 It is possible to base the PS statistic on normal or expected normal scores instead of the ranks (Puri & 
Sen, 1969a). And, this might correct the problem of ultra-conservative Type I error rates. However, 
additional nonlinear transformations present the problem with respect to the correct interpretation of the 
statistical results in terms of the original metric. 

The adjRT is arguably the simplest of the three nonparametric procedures to compute. However, 
because the adjRT has the problem of liberal Type I error rates when the distributions possess moderate to 
extreme skewness, it is also recommended that the adjRT procedure not be used in place of the parametric 
F test. 
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Table 10. Type I error results for the test of interaction. The sampling distribution was an approximate 
chi-square distribution with 1degree of freedom. The sample size was n= 10. Both main effects were 
nonnull. The Type I error rates were based on 25,000 repetitions and a nominal alpha level of 05.=α . 
  Level of Correlation 
Test Effect Size (d) 0.3 0.6 0.9 
F 0.30 .046 .043 .045 
adjRT  .069 .068 .075 
H  .053 .048 .048 
PS  .010 .006 .001 
F 0.80 .044 .047 .047 
adjRT  .067 .072 .076 
H  .051 .050 .049 
PS  .004 .001 .000 
F 1.30 .045 .046 .046 
adjRT  .070 .070 .073 
H  .052 .049 .049 
PS  .000 .000 .000 

 
 
Table 11. Power analysis for the test of interaction when sampling was from was an approximate chi-
square distribution with 1degree of freedom. The sample size was n= 10. Both main effects were nonnull. 
The rejection rates were based on 25,000 repetitions and a nominal alpha level of 05.=α . 
  Level of Correlation 
Test Effect Size (d) 0.3 0.6 0.9 
F 0.30 .075 .086 .221 
adjRT  .197 .262 .679 
H  .148 .182 .522 
PS  .182 .243 .597 
F 0.80 .326 .462 .947 
adjRT  .815 .926 .999 
H  .731 .838 .999 
PS  .524 .672 .973 
F 1.30 .739 .881 .999 
adjRT  .991 .999 1.000 
H  .981 .995 1.000 
PS  .762 .885 .998 

 
 
 The H chi-square test maintained appropriate Type I error rates for all conditional distributions 
considered in this study when sample sizes were at least as large as n= 10. Thus, the H test could be 
considered as an alternative to the parametric F test for interaction provided the within group sample sizes 
are relatively equal and at least as large as n= 10. This recommendation is made in view of the large 
power advantage that the H test had over the F test when the conditional distributions were contaminated 
with outliers and/or possessed extreme skewness.  
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Table 12. Type I error results for the test of interaction. The sampling distribution was an approximate 
Cauchy distribution. The sample size was n= 10. Both main effects were nonnull. The Type I error rates 
were based on 25,000 repetitions and a nominal alpha level of 05.=α . 
  Level of Correlation 
Test Effect Size (d) 0.3 0.6 0.9 
F 0.30 .043 .045 .044 
adjRT  .054 .053 .058 
H  .046 .050 .050 
PS  .008 .005 .001 
F 0.80 .044 .044 .046 
adjRT  .053 .055 .056 
H  .045 .048 .048 
PS  .000 .000 .000 
F 1.30 .040 .044 .045 
adjRT  .053 .052 .056 
H  .045 .047 .048 
PS  .000 .000 .000 

 
Table 13. Power analysis for the test of interaction when sampling was from was an approximate Cauchy 
distribution. The sample size was n= 10. Both main effects were nonnull. The rejection rates were based 
on 25,000 repetitions and a nominal alpha level of 05.=α . 
  Level of Correlation 
Test Effect Size (d) 0.3 0.6 0.9 
F 0.30 .075 .096 .244 
adjRT  .163 .235 .699 
H  .130 .173 .495 
PS  .155 .220 .632 
F 0.80 .346 .489 .946 
adjRT  .801 .942 1.00 
H  .712 .844 .999 
PS  .563 .754 .993 
F 1.30 .750 .884 .999 
adjRT  .993 .999 1.00 
H  .981 .996 1.00 
PS  .804 .934 .999 
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Commonality Analysis: Understanding Variance Contributions 
to Overall Canonical Correlation Effects of Attitude Toward 

Mathematics on Geometry Achievement 
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Canonical correlation analysis is the most general linear model subsuming all other univariate and multivariate cases 
(Kerlinger & Pedhazur, 1973; Thompson, 1985, 1991). Because “reality” is a complex place, a multivariate analysis 
such as canonical correlation analysis is demanded to match the research design. It is the purpose of this paper to 
increase the awareness and use of canonical correlation analysis and, specifically to demonstrate the value of the 
related procedure of commonality analysis. Commonality analysis provides the researcher with information 
regarding the variance explained by each of the measured variables and the common contribution from one or more 
of the other variables in a canonical analysis (Beaton, 1973; Frederick, 1999).  This paper identifies confidence as 
contributing the most unique variance to the model, being more important than either intrinsic value or worry to 
geometry content knowledge and spatial visualization.   
 

n developing the concept of commonality analysis (CA) one must be familiar with canonical 
correlation analysis (CCA), a multivariate technique. Most educational research settings demand an 
analysis that accounts for reality so a multivariate analysis should be used to match the research 
design as closely as possible. Canonical correlation analysis (CCA) is the most general case of the 

general liner model (GLM) (Baggaley, 1981). All univariate and multivariate cases can be treated as 
special cases of CCA (Thompson, 1984, 1991). As Henson (2000) noted, “CCA is superior to ANOVA 
and MANOVA when the independent variables are intervally scaled, thus eliminating the need to discard 
variance” otherwise one should refrain from using canonical correlation for these purposes.  
 There are several rational reasons for selecting CCA. Regarding OVA methods, the first is that CCA 
honors the relationship among variables because CCA does not require the variables to be converted from 
their original scale into arbitrary predictor categories (Frederick, 1999). Second, the method honors the 
reality to which the researcher is often trying to generalize (Henson, 2000; Tatsuoka, 1971; Thompson, 
1984,1991). Third, reality has multiple outcomes with multiple causes; thus, it follows that most causes 
have multiple effects necessitating a multivariate approach (Thompson, 1991). Therefore, any analytic 
model that does not account for reality in which research is conducted distorts interpretations and 
potentially provides unreliable results (Tatsuoka, 1971). Historicalyr, research studies rarely used CCA. 
Prohibitive calculations, difficulty in trying to interpret canonical results and general unfamiliarity with 
the method contributed to CCA's absence from the literature (Baggaley, 1981; DeVito, 1976; Fan, 1996; 
Thompson, 1984). 
 Using CCA in real-life research situations increases the reliability of the results by limiting the 
inflation of Type I "experimentwise" error rates by reducing the number of analyses in a given study 
(Shavelson, 1988; Thompson, 1991). As Thompson (1991) stated CCA's limitation of "experimentwise" 
error, reduces the probability of making a Type I error anywhere within the investigation. Commonly, 
Type I error refers to "testwise" error rates, the probability of making an error in regards to a specified 
hypothesis test.  
 Thompson (1984) stated that some research almost demands CCA in which “ . . . it is the simplest 
model that can do justice to the difficult problem of scientific generalization” (p. 8). Furthermore, the use 
of CCA leads to the use of commonality analysis (Thompson, 1984). Although the voluminous output 
from CCA can be difficult to interpret (Tatsuoka, 1971; Thompson, 1984, 1990), however, once complete 
and noteworthy results emerge, one is obliged to consider the use of commonality analysis.  
 
Commonality Analysis 
 Commonality analysis, also known as elements analysis and components analysis was developed for 
multiple regression analysis in the late 1960's (Newton & Spurell, 1967; Thompson, Miller, & James, 
1985).  Commonality analysis provides the researcher with information regarding the variance explained 
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by each of the measured variables and the common contribution from one or more of the other variables 
(Beaton, 1973; Frederick, 1999). Partitioning of the variables takes two distinct forms. The first is in the 
form of explanatory ability that is in common with other variable(s). The second explanatory power can 
be attributed to unique contributions of a variable. This information should not be confused with 
interaction effects of regression. Interaction effects cannot be considered as indicating a unique 
contribution to the criterion set. Each variable in the predictor set simply adds predictive ability or 
increased variance to the first one (variable) entered. Commonality analysis, however, determines the 
variance explained that two or more predictor variables share that is useful in predicting relationships 
with the criterion variable set. Essentially, Beaton (1973) stated that CA partitions the common and 
unique variance of the several possible predictor variables on the set of criterion variables. 
 Commonalities can be either positive or negative. Beaton (1973) explained that negative 
commonalities are rare in educational research but more common in physical science research. While both 
positive and negative commonalities are useful, negative commonalities indicate that one variable 
confounds the variance explained by another. When referring to the power of CA, power is synonymous 
with variance explained. Negative commonalities may actually indicate improved power when both 
variables are used to make predictions (Beaton, 1973).  The following example illustrates the relationship: 
An Olympic track athlete must be fast and strong, therefore, a strong-fast athlete would be correlated with 
success at running track. However, one would believe the two variables (fast and strong) would be 
moderately negatively correlated, that is as muscle strength and mass increase, speed would decrease. The 
negative commonality between speed and strength would indicate a confounded variable. In this case, by 
knowing both the speed and strength one would expect to make better predictions of successful track 
running. Imagine just knowing the speed or strength of the athlete. A fast athlete may perform well in a 
short sprint but be severely impaired in a distance event. Conversely, a strong athlete may excel in 
endurance and persevere for distance, but lack the speed to win. The negative commonality in this case 
indicates that the power of both variables is greater when the other variable is also used.  
 
Conducting a Commonality Analysis 
  The complexity of conducting a CA ranges from the unsophisticated to the sublime. Frederick (1999) 
suggested the use of no more than four (predictor) measured variables because as the number of 
predictors increases so does the difficulty of interpretation. Frederick continued, explaining that the 
commonality calculations increase in difficulty exponentially as the number of predictors increases. 
Pedhazur (1982) and Frederick (1999) recommend that to avoid some of the complexities one should 
group similar variables or do some preliminary analyses to distinguish the most powerful predictors 
before conducting the CA such as a canonical correlation analysis. 
 The full model CCA is run with the following SPSS syntax: 
   MANOVA 
    spacerel gcksum with int.val worry confid 
    /print=signif (multiv eigen dimenr) 
    /discrim=(stan estim cor alpha(.999))/design. 
 The criterion variables are space relations (spacerel) and geometry content knowledge 
(gcksum). The predictor variables are confidence solving mathematics problems (confid), worry 
(worry), and finally mathematics intrinsic value (int.val).  Possible relationships among variables 
are illustrated by Figure 1.  
 The Venn diagram illustrating commonality analysis in Figure 1 serves as a model for the comparison 
of data examined in the present paper. The data was collected in a southeastern state and represents 287 
sixth grade students' scores on three measures, the Space Relations portion of the Differential Aptitude 
Test (Bennett, Seashore, & Wesman, 1973), the Geometry Content Knowledge test (Carroll, 1998), and 
the Mathematics Attitude Scale (Gierl & Bisanz, 1997).  
 The first step in running a CA begins with the findings of the CCA (the syntax provided earlier; also 
see the Appendix for the complete SPSS syntax). The next step involves running a descriptive analysis for 
the purposes of obtaining the standard deviation and means of each variable in order to calculate z-scores.  
The z-scores are computed for the observed variables by the following SPSS syntax: 
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   COMPUTE zspace = (spacerel- mean)/standard deviation. 
    COMPUTE zgck = (gcksum- mean)/standard deviation. 
 
To create the synthetic canonical variate scores, multiply the z-scores by the standardized canonical 
function coefficients (found in the original CCA), and then sum the scores for the function. The following 
SPSS syntax will yield the two sets of criterion variable composite scores (called crit1 and crit2) for both 
canonical functions.  
 
   COMPUTE crit1=(standardized canonical function coefficient I*zspace)  
         +(standardized canonical function coefficient I*zgck). 
   COMPUTE crit2=(standardized canonical function coefficient II*zspace)  
         +(standardized canonical function coefficient II*zgck). 
 
 Next, the CA requires running several multiple regression analyses for each criterion composite i.e., 
crit1 and crit2 using all possible combinations of predictor variables. Refer to Table 1 for the 
combinations for 2 or 3 predictor variables. 
 
 
 

 

 
 

 
Figure 1. Illustrating Commonality Analysis. 
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Table 1.  Methods of Computing Unique and Common Variance. 
Two Predictor Variables 
U(1)=R2

12-R2
2, U(2)=R2

12-R2
1, C(12)=R2

2+R2
1 -R2

12  
Three Predictor Variables 
U(1)=R2

123-R2
23, U(2)=R2

123-R2
13, U(3)=R2

123-R2
12, C(12)= R2

13-R2
3+R2

23 -R2
123, C(13)= R2

12-R2
2 + 

R2
23-R2

123, C(23)= R2
12-R2

1 + R2
13-R2

123, C(123)= R2
12-R2

2 + R2
3 -R2

12-R2
13-R2

23+R2
123 

Note: U= unique variance, C= common variance, C13 = Common to variables 1 & 3 
R2=squared multiple correlation from the respective regression analysis. 
 
Table 2. Commonality Table. 
Variance Function I Function II 
Partition Intrinsic Worry Confidence Composite Intrinsic Worry Confidence Composite
U Intrinsic 0.001 0.001 0.019  0.019
U Worry 0.009  0.009 0 0  
U Confidence 0.188  0.188 .003 .003 
C IW 0.002 0.002 0.002  0.002
C IC 0.049 0.049 0.049 0.049 -0.003  -0.003
C WC 0.004  0.004 0.004 0   
C IWC -0.011 -0.011 -0.011 -0.011 0 0 0 0 
R2 with Crit 0.041 0.004 0.230 0.242 0.018 0.002 0 0.021
 
Table 3. Comparisons of Multivariate CCA and Univariate Multiple Regression with All Predictors. 

 Function 
Statistic I II 
Multiple Regression (R2)  .242 .021 
Canonical Correlation (Rc2) .242 .021 

  
 Finally, add or subtract relevant effects to calculate the unique and common variance components for 
each predictor variable on each composite. Do this either by hand or by spreadsheet. The number of 
components in an analysis will equal (2k-1), where k= number of predictor variables in the set. So, four 
predictors produce, 15 components, four-first order (unique), six-second order (common to two 
variables), four-third order (common to three variables), and one- fourth order (common to all).  
 The analysis of the present data consisted of two criterion variables, space relations and geometry 
content knowledge, and three predictor variables from the subscales of the Mathematics Attitude Scales, 
confidence, worry, and intrinsic value. One would expect, that through the application of (2k-1), to have 
seven composites, three-first order (unique), three-second order (common to two) and one-third order 
(common to all). Results are displayed in Table 2.  
 Recall that both a full CCA and multiple linear regression with all predictors were conducted. The 
results displayed in Table 3 confirm that both procedures yielded the same results. Note that the R2 and 
Rc2 for Functions I and II are the same for both the multiple regression and CCA. The R2 from the 
multiple linear regression reflect the additive effects of all the predictor combinations. These numbers will 
be confirmed again when summing all of the separate composites for each function (Table 2). 
 
Analyzing Results 
 One must return to the Venn diagram (Figure 1) and then reconstruct it using the actual data from 
Table 2. This graphic helps one to visualize the relationships of the partitioned variance. If one only 
requires the variance explained from the entire CCA then there is no need to conduct a CA. However, the  
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Figure 2. Venn Diagram Showing Commonalities for Function I. 
 
power to partition the variance and observe which variable contributes what variance is invaluable when 
determining parsimony. In analyzing the data from Function I, one notices that confidence explains 
18.8% of the variance alone while intrinsic value and confidence contribute 4.9 % in common. The three 
predictors when taken together explained 24.2% of the first function. Worry and intrinsic value explain 
very little of the variance from Function I, either uniquely (0.9% or 0.1%) or in common (0.1% to 0.4%) 
with other measured predictor variables.  
 Frederick (1999) stated that negative commonalities should be interpreted as zero. While Beaton 
(1973) believed that negative commonalities were actually confounding, increasing the predictive ability.  
Caution needs to be taken when interpreting the negative commonality in the common to all variables 
(Figure 2). As stated before in the analogy to the athlete, a negative commonality on one variable may 
improve the overall prediction power. However, in this case it is more appropriate to interpret the 
negative commonality as zero. Think of the situation this way, the variance explained by all three 
variables inversely predicts the variance explained when all the variables are taken separately. This 
scenario makes little sense and implies that the variables as a whole indicate an inverse relationship to the 
criterion variables where they imply a direct relationship when considered individually. 
 In Function I, summing the variance explained from each of the unique variables and each of the 
common contributions yields 0.242. The 0.242 is the variance explained in the multiple regression (R2) 
and the canonical correlation Rc2. Because CA yields the partitioned values, one would expect that the 
sum of the values would equal the total variance explained by either the univariate or the multivariate 
approach. This also illustrates that CCA subsumes the univariate case. 
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 Figure 3. Venn Diagram Showing Commonalities for Function II. 
 
 In Function II the total variance explained is a paltry 2.1% This is hardly worthy of discussion except 
for the relatively large sample size to variable ratio and effect size originally indicated in the CCA. The 
effect size of 0.38, considered large in regards to educational research stands out in this case as well. The 
practical importance can not be neglected either. In review of other research on this topic, the effect size 
of 0.38 is large by comparison. The variance explained was partitioned into unique and common 
contributions and a few interesting observations are noticed. 
 On Function II (Figure 3) the results appear a little more interesting. Intrinsic value contributes the 
most variance explained 1.9% alone and confidence contributes 0.3% alone. When considering the 
common variance between confidence and intrinsic a -0.3% variance explained exists. This confounding 
seems to indicate that as the scores on confidence decreases (indicating less confidence) success on the 
criterion variables increase. In this case scale may influence the negative commonality. This interpretation 
defies logic and again implores the interpretation offered by Frederick (1999) that it should be interpreted 
as zero. Again, in Function II (Figure 3) worry, traditionally attributed as a major cause of poor 
performance in mathematics, was found to have virtually no influence.  
 
Summary 
 After performing the CCA, sufficient evidence existed (i.e., an interpretable Rc2) to continue and 
determine the unique and common contributions of the predictor variables. Particularly, the full model 
effect size of 0.38 aided the researcher in deciding to continue with further analysis. The CA yielded 
results on two functions. On Function I, the unique variance accounted for largely resides with the 
confidence variable (18.8%). This represents the overwhelming portion of the total variance 24.2% 
accounted for by all three of the variables - confidence, worry, and intrinsic value. This leads to an 
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interesting supposition. First, contrary to contemporary findings this study seems to indicate that worry, 
contributing less than 1% of the variance, also referred to as math anxiety, is not a powerful predictor of 
mathematics achievement. Perhaps more time spent working on confidence and building "mathematics 
self-esteem" will improve mathematics achievement. Second, the results of Function II indicate that all 
three variables account for slightly more than 2.0% of the variance in the criterion set. This result is not 
very promising. However, of the variance accounted for intrinsic value accounts for 1.9 %, confidence 
accounts for 0.3%, and worry accounts for 0.0% of the total variance. On function II intrinsic value 
appears to be more helpful in predicting geometry achievement than either of the other two subscales. A 
list of all the SPSS syntax used in this analysis is listed in the Appendix. 
 The value of CA resides in the fact that the procedure yields unique and common variance explained 
from each of the predictor variables. The variance explained is not summative nor is it a result of 
interaction effects. The variance explained from the full model can be understood and the contributions of 
each separate variable can be interpreted in relation to the full model for the results of the unique effects. 
This helps to determine the most parsimonious model and relevant data sources, particularly when using a 
test containing subscales. 
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Appendeix 

SPSS Syntax for Conducting CA 
Opens the file containing the data for the analyis 
GET FILE 
 "C:\WINDOWS\DESKTOP\Dissertation Data\Modified Dissertation Data File.sav" 
 EXECUTE 
Runs the descriptives that will be necessary for creating CRIT1 and CRIT2 
 DESCRIPTIVES 
   VARIABLES=spacerel gcksum 
   /STATISTICS=MEAN STDDEV MIN MAX . 
The full CCA syntax supplies the Rc2 and the structure & function coefficients  
Manova 
 spacerel gcksum with int.val worry confid 
 /print=signif(multiv eigen dimenr) 
 /discrim(stan estim cor)alpha(.999))/design. 
The syntax to create CRIT1 and CRIT2 
COMPUTE crit1 = (.482*zspace)+(.645*zgck) . 
 EXECUTE . 
 COMPUTE crit2 = (-1.113*zspace)+(1.027*zgck) . 
 EXECUTE . 
All the syntax to run all possible combinations multiple regressions for the 3 
predictor variables. 
regression variables=crit1 crit2 int.val worry confid/ 
 dependent=crit1/enter int.val worry confid. 
 regression variables=crit1 crit2 int.val worry confid/ 
 dependent=crit2/enter int.val worry confid. 
regression variables=crit1 crit2 int.val worry confid/ 
 dependent=crit1/enter int.val confid. 
regression variables=crit1 crit2 int.val worry confid/ 
 dependent=crit2/enter int.val confid. 
regression variables=crit1 crit2 int.val worry confid/ 
 dependent=crit1/enter int.val worry. 
regression variables=crit1 crit2 int.val worry confid/ 
 dependent=crit2/enter int.val worry. 
regression variables=crit1 crit2 int.val worry confid/ 
 dependent=crit1/enter confid worry. 
regression variables=crit1 crit2 int.val worry confid/ 
 dependent=crit2/enter confid worry. 
regression variables=crit1 crit2 int.val worry confid/ 
 dependent=crit1/enter int.val. 
regression variables=crit1 crit2 int.val worry confid/ 
 dependent=crit2/enter int.val. 
 regression variables=crit1 crit2 int.val worry confid/ 
 dependent=crit1/enter confid. 
regression variables=crit1 crit2 int.val worry confid/ 
 dependent=crit2/enter confid. 
regression variables=crit1 crit2 int.val worry confid/ 
 dependent=crit1/enter worry. 
 regression variables=crit1 crit2 int.val worry confid/ 
 dependent=crit2/enter worry 
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Bigger is Not Better:  Seeking Parsimony in Canonical 
Correlation Analysis via Variable Deletion Strategies  

 
  Mary Margaret Capraro         Robert Capraro 

Texas A & M University 
This paper illustrates the value of applying the law of parsimony to canonical correlation analysis (CCA) solutions. 
The primary purpose of parsimony is that the more parsimonious the solution, the more replicable the model will be. 
The ultimate goal is to estimate an equal or reasonable amount of variance with the smallest variable set possible. A 
real-world data set is used that is composed of 287 sixth-grade students who were administered a geometry content 
knowledge test with three levels and a spatial visualization test as criterion variables, and a mathematics attitude 
survey with six subscales as predictor variables. Three different deletion methods are delineated in the paper that 
will assist the researcher in deleting predictor or criterion variables to obtain a more parsimonious canonical 
solution.   
 

n research contents, the law of parsimony states that the fewer variables used to explain a situation, 
the more probable that the explanation will be closer to reality.  In a canonical correlation analysis 
(CCA), Thorndike (1978) stated that “as the number of variables increase, the probable effect of 
these sources of error variation on the canonical correlation increases” (p. 188). This is because one 

source of sampling error comes from the number of measured variables. Therefore, as variable sets 
become more parsimonious there are greater probabilities that the results of the analysis will be replicable 
(Cantrell, 1999).  
 Rim (1972) suggested that models that are more parsimonious are not only more stable and replicable 
but also more generalizable. According to Thompson (1989), reducing the number of variables lessen 
Type II error probability since degrees of freedom model are also lessened. In an analysis with three 
criterion variables and six predictor variables, the 18 degrees of freedom would be reduced by nine if 
three predictor variables were deleted from the final model. Thompson (1984a) also suggested that 
dropping of variables in CCA would be synonymous with “backward elimination”  stepwise procedures 
in multiple regression. Also purported was that this connection helped to reinforce the concept that all 
parametric techniques are subsumed under CCA as the classical form of the general linear model 
(Henson, 2000; Knapp, 1976). Therefore, the goal of a variable deletion strategy is to estimate as much 
variance with the smallest variable set possible. This paper will show that “bigger is not better”, at least in 
reference to the number of variables, when using canonical correlation analysis.  
 Since Knapp (1978) demonstrated that canonical correlation analysis was the most general form of 
the general linear model, CCA has gained more in popularity. Thompson (1991) showed that CCA  
subsumes all other parametric methods including t-tests, point bisereal, ANOVA, regression, discriminant 
analysis, and MANOVA. CCA has been hibernating since Hotelling first developed the logic of CCA in 
1936 more than 63 years ago. Besides Knapp’s demonstration, computer statistical packages have made 
its use more easily accessible to researchers. As Pedhazur (1997) has noted, canonical correlation matrix 
computation can become  “prohibitive” and “complex”. Modern statistical packages almost eliminate the 
need to create these matrixes.  
 Because reality involves multiple effects and multiple effects have multiple causes, canonical analysis 
can more accurately represents this reality by explaining multiple relationships (Clark, 1975; Thompson, 
1984a). Canonical correlation analysis appropriately examines the relationship between two sets of 
measured variables. An example would be comparing subtests of the WISC-R and the Woodcock Johnson 
that measure different intellectual abilities (Eastbrook, 1984). Multiple regression analysis could do the 
job f there were only one dependent varaible; however, canonical analysis goes a step farther by allowing 
multiple dependent variables. Furthermore, CCA maximizes a set of multiplicative weights all variables 
in the dependent and independent variable sets (Henson, 2000). Although it is not obvious, even in 
multiple regression a weight is developed for the dependent variable. However, since the dependent 
variable is not transformed to maximize some criterion, the weight is inescapably one (1).  

I 
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Table 1. Initial Solution with Canonical Communality Coefficients Deletion Strategy #I 
Function 1 Function 2 Function 3  Variable  

Statistic Func. rs rs
2 Func. rs rs

2 Func. rs rs
2 h2 

spacerel. -0.5 -0.845 71.40% 0.556 0.162 2.62% 0.956 0.509 25.91% 99.94% 
level0 -0.179 -0.604 36.48% 1.008 0.510 26.01% -0.617 -0.613 37.58% 100.07% 
gcksum -0.521 -0.901 81.18% -1.197 -0.331 10.96% -0.843 -0.279 7.78% 99.92% 
Adequacy   63.02% 13.20% 23.76%  
Rd   16.13% 0.49% 0.45%  
Rc2   25.60% 3.70% 1.9%  
Rd   6.86% 0.68% 0.20%  
Adequacy   26.80% 18.35% 10.71%  
Useful 0.157 0.581 33.76% 0.153 -0.076 0.58% -0.565 -0.463 21.44% 55.77% 
Intrinsi -0.096 0.426 18.15% -0.579 -0.63 39.69% -0.862 -0.571 32.60% 90.44% 
Worry -0.187 -0.081 0.66% -0.829 -0.805 64.80% 0.531 0.292 8.53% 73.99% 
Confid 0.932 0.972 94.48% -0.023 -0.207 4.28% 0.787 0.083 0.69% 99.45% 
Percep 0.046 0.244 5.95% 0.2 -0.061 0.37% 0.145 0.033 0.11% 6.43% 
Success 0.061 0.279 7.78% 0.229 -0.061 0.37% -0.222 -0.096 0.92% 9.08% 
 
 This present paper will illustrate three variable deletion strategies in CCA to yield the most 
parsimonious variable set. Parsimony will be sought for the predictor variable set, students’ attitude 
toward mathematics, as opposed to the criterion variables, students’ geometric and spatial visualization 
abilities. However, the same procedures could be applied to the criterion variable set.  
The current data set comes from a study of 287 sixth-grade students from a south central state who were 
administered three tests. The Mathematics Attitude Survey (MATS) (Gierl & Bisanz, 1997), a Likert–type 
instrument, consisted of the six subscales of usefulness, intrinsic value, worry, confidence, perceptions, 
and attitude toward success. The six subscales served as the predictor set. The Space Relations Portion of 
the Differential Aptitude Test (Bennett, Seashore, & Wesman, 1973) assessed students’ spatial sense 
focusing on visualization. The Geometry Content Knowledge Test (Carroll, 1998) was used to assess 
geometric content knowledge and to assign van Hiele (1984) geometry levels ranging from level 0 to 
level 2. The preceding two mathematics tests along with level 0 of the geometry content knowledge test 
served as the three criterion variables (spacerel, level 0, gcksum) in the study. The six subscales of the 
attitude survey (useful, intrinsi, worry, confid, percep, and success) served as the predictor set. The 
Statistical Package for the Social Sciences (SPSS) command syntax for running the CCA analysis was: 
     MANOVA 
     SPACEREL LEVEL0 GCKSUM WITH  
     USEFUL INTRINSI WORRY CONFID PERCEP SUCCESS 
     /PRINT=SIGNIF (MULTIV EIGEN DIMENR) 
     /DISCRIM (STAN ESTIM COR) ALPHA (.999)) / DESIGN. 
 
 The results of the analysis are compiled in Table 1, which is the suggested format for reporting 
canonical results.  
 According to Humphries-Wadsworth (1998), canonical correlation analysis is a “rich tool for 
examining the multiple dimensions of the synthetic variable relationships” (p. 6). In addition to the 
standardized function coefficients and structure coefficients, three other coefficients are often examined 
and can facilitate interpretation: canonical communality coefficients, canonical adequacy coefficients, and 
canonical redundancy coefficients (however, see Robert [1999] for discussion of the inadequacies of 
redundancy coefficients.  
 The researcher will now attempt to develop a clear process for completing the table.  The “Func” 
(canonical function coefficient), the “ rs” (canonical structure coefficient) along with the Rc2 (squared 
canonical correlation coefficient) for each function was obtained directly from the SPSS printout. The rs

2  

(squared canonical structure coefficient) was calculated by squaring the canonical structure coefficients 
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for each variable and converting them into percentage format. The h2 (communality coefficient) for each 
variable was obtained by summing all the rs

2s. The adequacy coefficient, ”how will a canonical variate 
represents the variance of the original variables in a domain” (Thompson. 1980, p.10), was an average of 
all the squared structure coefficients for the variables in one set with respect to one function. The 
adequacy coefficient for the criterion variable set was calculated by adding all the structure coefficients in 
the criterion set and dividing by the number of variables in the set and converting it into percentage 
format. The adequacy coefficient for the predictor set was determined by the same method. The 
redundancy coefficient, the redundancy of C (criterion variable set) given P (predictor variable set), was 
calculated by multiplying the adequacy coefficient by the Rc2 for each function (Roberts, 1999).  
 After examining the full canonical analysis, the law of parsimony (Thorndike, 1978) can be invoked 
through a process called variable deletion. Various researchers (Cantrell, 1999; Rim, 1972; Stephens, 
1996; & Thompson, 1984b) discussed approaches to achieve the most parsimonious variable set. This 
researcher will attempt to make the deletion process as understandable as possible. Three different 
strategies will be examined. 
 
Variable Deletion 
During the deletion process three coefficients will be consulted:  
 rs

2  - squared canonical structure coefficient  - how much variance a variable linearly shares with a 
canonical variate (Thompson, 1980). 
 h2 – canonical communality coefficients  - sum of all rs

2; how much of the variance in a given 
observed variable is reproduced by the complete canonical solution (Thompson, 1991). 
 Rc2 - squared canonical coefficient– how much each function is contributing to the overall canonical 
solution (Thompson, 1991). 
 
Variable Deletion Strategy #1 
Deletion Strategy #1 looked at the h2s only. The process involved the following steps: 
  1. Look at all the h2s  
  2. Find the lowest h2 and delete the corresponding variable  
  3. Rerun the CCA and recalculate the h2s 
  4. Check the change to the Rc2 for each function 
  5. If there is little change to Rc2 find the next lowest h2 
  6. Delete the variable with the corresponding lowest h2 and repeat the process until 
   the Rc2 change is too great by researcher judgment. 
 Looking at Table 1, the predictor variables with the lowest h2s were perceptions (6.34%) and success 
(9.08%). Both of these variables were quite a bit lower than the other four-predictor variables that ranged 
from 55.77 % to 99.45%. Through variable deletion strategy #1, the variable with the lowest h2, 
perceptions, was dropped first. Table 2 showed the canonical analysis after perceptions was dropped. The 
Rc 2s were then examined for each function and there was only a very slight change. Function 1 did not 
change, Function 2 went from 3.7% to 3.6 %, and Function 3 remained the same. The Rc2 change was less 
than 0.2% for only one function.  
 The remaining canonical solution still contained success with a h2 of 9.0%. That variable was 
considerably lower than the other variables in Table 2, therefore, success was dropped and little change 
(less than 0.2%) was seen in the Rc2s of each function as shown in Table 3. Function 1 changed from 
25.6% to 25.5%, Function 2 changed from 3.6 % to 3.4%, and Function 3 changed from 1.9% to 1.8%. 
The limitations to this strategy involved the contributions that were not evaluated until after the variable 
was dropped. This could have caused keeping a large h2 that only happened on the last canonical function 
and had a small Rc2 effect size. Despite these limitations, the goal of parsimony was achieved by 
removing the two variables and only a very small change was noted in either the communality 
coefficients or the squared canonical coefficients of each function.  
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Table 2. Canonical Solution After Dropping Perceptions Based on Canonical Communality Coefficients 
 Deletion Strategy #I, Iteration #2 

Function 1 Function 2 Function 3  Variable  
Statistic Func. rs rs

2 Func. rs rs
2 Func. rs rs

2 h2 
spacerel. -0.503 -0.846 71.57% 0.522 0.142 2.02% 0.974 0.513 26.32% 99.90% 
level0 -0.181 -0.605 36.60% 1.028 0.528 27.88% -0.583 -0.596 35.52% 100.00% 
gcksum -0.516 -0.9 81.00% -1.181 -0.324 10.50% -0.524 -0.292 8.53% 100.02% 
Adequacy   63.06% 13.46% 23.45%  
Rd   16.14% 0.48% 0.45%  
Rc2   25.60% 3.6% 1.9%  
Rd   6.62%  0.67 % 0.21%  
Adequacy   25.85% 18.60% 11.04%  
Useful 0.167 0.581 33.76% 0.211 -0.061 0.37% -0.53 -0.467 21.81% 55.94% 
Intrinsi -0.093 0.427 18.23% -0.56 -0.622 38.69% -0.891 -0.603 36.36% 93.28% 
Worry -0.177 -0.08 0.64% -0.817 -0.825 68.06% 0.525 0.255 6.50% 75.21% 
Confid 0.934 0.973 94.67% -0.03 -0.204 4.16% 0.802 0.079 0.62% 99.46% 
Percep 0 0 0.00% 0 0 0.00% 0 0 0.00% 0.00% 
Success 0.072 0.279 7.78% 0.286 -0.057 0.32% -0.176 -0.098 0.96% 9.07% 
 
Table 3. Final Canonical Solution After Dropping Perceptions and Success Based on Communality 
Coefficients Deletion Strategy #I, Iteration #3 

Function 1 Function 2 Function 3  Variable  
Statistic Func. rs rs

2 Func. rs rs
2 Func. rs rs

2 h2 
spacerel. -0.504 -0.846 71.57% 0.583 0.171 2.92% 0.938 0.505 25.50% 100.00% 
level0 -0.190 -0.610 37.21% 0.984 0.482 23.23% -0.651 -0.628 39.44% 99.88% 
gcksum -0.509 -0.898 80.64% -1.218 -0.349 12.18% -0.441 -0.266 7.08% 99.90% 
Adequacy   63.14% 12.78% 24.01%  
Rd   16.10% 0.43% 0.43%  
Rc2   25.50% 3.40% 1.80%  
Rd   6.29% 0.67% 0.20%  
Adequacy   24.67% 19.78% 10.97%  
Useful 0.175 0.582 33.87% 0.229 -0.075 0.56% -0.584 -0.475 22.56% 57.00% 
Intrinsi -0.093 0.43 18.49% -0.629 -0.664 44.09% -0.845 -0.557 31.02% 93.60% 
Worry -0.153 -0.078 0.61% -0.732 -0.840 70.56% 0.549 0.339 11.49% 82.66% 
Confid 0.950 0.975 95.06% 0.082 -0.187 3.50% 0.764 0.087 0.76% 99.32% 
Percep 0 0 0.00% 0 0 0.00% 0 0 0.00% 0.00% 
Success 0 0 0.00% 0 0 0.00% 0 0 0.00% 0.00% 
 
Variable  Deletion  #2 
 Deletion Strategy #2 looks at the contribution of each function the total canonical solution. The steps 
in the process are as follows: 
  1. Run a full CCA and look at the Rc2 for each function. 
  2. Omit the function with the smallest Rc2 
  3. Compute the subset of h2s  
  4. Now find variable that has the lowest h2; drop it from the original solution 
  5. Repeat the process until the remaining variables are reasonably close in their subset h2 values.  
   This will be a matter of researcher judgment.  
 The researcher employed strategy #2 in order to consider the value of each function to the whole 
canonical solution. Looking at Table 1, the lowest squared canonical coefficient (Rc2) was found in 
Function 3 (1.9%), thus the entire function was dropped (Table 4). Note that the h2 still showed that the  
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Table 4. InitialCanonical Solution After Dropping Function 3 with Subset  
Canonical Communality Coefficients Deletion Strategy #2, Iteration #1 

Function 1 Function 2 Variable  
Statistic Func. rs rs

2 Func. rs rs
2 h2 

spacerel. -0.5 -0.845 71.40% 0.556 0.162 2.62% 74.03%
level0 -0.179 -0.604 36.48% 1.008 0.510 26.01% 62.49%
gcksum -0.521 -0.901 81.18% -1.197 -0.331 10.96% 92.14%
Adequacy   63.02% 13.20%
Rd   16.13% 0.49%
Rc2   25.60% 3.70%
Rd   6.86% 0.68%
Adequacy   26.80% 18.35%
Useful 0.157 0.581 33.76% 0.153 -0.076 0.58% 34.33%
Intrinsi -0.096 0.426 18.15% -0.579 -0.63 39.69% 57.84%
Worry -0.187 -0.081 0.66% -0.829 -0.805 64.80% 65.46%
Confid 0.932 0.972 94.48% -0.023 -0.207 4.28% 98.76%
Percep 0.046 0.244 5.95% 0.2 -0.061 0.37% 6.33%
Success 0.061 0.279 7.78% 0.229 -0.061 0.37% 8.16%
 
Table 5. Canonical Solution After Dropping Perceptions Based on Subset  
Canonical Communality Coefficients Deletion Strategy #2, Iteration #2 

Function 1 Function 2 Variable  
Statistic Func. rs rs

2 Func. rs rs
2 h2 

spacerel. -0.503 -0.846 71.57% 0.522 0.142 2.02% 73.59%
level0 -0.181 -0.605 36.60% 1.028 0.528 27.88% 64.48%
gcksum -0.516 -0.9 81.00% -1.181 -0.324 10.50% 91.50%
Adequacy   63.06% 13.46%
Rd   16.14% 0.48%
Rc2   25.60% 3.60%
Rd   6.62% 0.67%
Adequacy   25.85% 18.60%
Useful 0.167 0.581 33.76% 0.211 -0.061 0.37% 34.13%
Intrinsi -0.093 0.427 18.23% -0.56 -0.622 38.69% 56.92%
Worry -0.177 -0.08 0.64% -0.817 -0.825 68.06% 68.70%
Confid 0.934 0.973 94.67% -0.03 -0.204 4.16% 98.83%
Percep 0 0 0.00% 0 0 0.00% 0.00%
Success 0.072 0.279 7.78% -0.286 -0.057 0.32% 8.11%
 
Function 3 (1.9%), thus the entire function was dropped (Table 4). Note that the h2 still showed that the 
variables of perception and success had the lowest h2s, 6.33% and 8.16% respectively. Perceptions was 
first variable deleted and the results of the canonical solution was displayed in Table 5. Table 6 indicated 
an even more parsimonious solution after dropping success. Since a subset with a close grouped h2 subset 
was sought, this researcher also dropped useful (34.43%). Table 7 showed the smallest set of variables 
with a relatively close range of communality coefficients. The h2s were intrinsic (69.1%), worry 
(67.28%), and confidence (99.79%). Based on the literature and researcher judgment, the iteration process 
was ended. Of the three remaining variables, worry had a squared structure coefficient of .53% on 
Function1 but a 66.75% on Function 2. Reverse effects were seen for confidence that had a rs

2 of 97.42% 
on Function1 but 2.37% on Function 2.One limitation of strategy #2 was that it did not consider functions 
with small Rc2 values. In addition, the variations as to where h2 values came from as shown in worry and 
confidence were not considered. 
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Table 6. Canonical Solution After Dropping Perceptions and Success Based on Subset  
Canonical Communality Coefficients Deletion Strategy #2, Iteration #3 

Function 1 Function 2 Variable  
Statistic Func. rs rs

2 Func. rs rs
2 h2 

spacerel. -0.504 -0.846 71.57% 0.583 0.171 2.92% 74.50%
level0 -0.190 -0.610 37.21% 0.984 0.482 23.23% 60.44%
gcksum -0.509 -0.898 80.64% -1.218 -0.349 12.18% 92.82%
Adequacy   63.14% 12.78%
Rd   16.10% 0.43%
Rc2   25.50% 3.40%
Rd   6.29% 0.67%
Adequacy   24.67% 19.78%
Useful 0.175 0.582 33.87% 0.229 -0.075 0.56% 34.43%
Intrinsi -0.093 0.430 18.49% -0.629 -0.664 44.09% 62.58%
Worry -0.153 -0.078 0.61% -0.732 -0.840 70.56% 71.17%
Confid 0.950 0.975 95.06% 0.082 -0.187 3.50% 98.56%
Percep 0 0 0.00% 0 0 0.00% 0.00%
Success 0 0 0.00% 0 0 0.00% 0.00%
 
Table 7. Final Canonical Solution After Dropping Perceptions, Success  and  
Useful Based on Canonical Communality Coefficients Deletion Strategy #2, Iteration #4 

Function 1 Function 2 Variable  
Statistic Func. rs rs

2 Func. rs rs
2 h2 

spacerel. -0.491 -0.837 70.06% 0.692 0.225 5.06% 75.12%
level0 -0.216 -0.629 39.56% 0.892 0.393 15.44% 55.01%
gcksum -0.503 -0.9 81.00% -1.268 -0.389 15.13% 96.13%
Adequacy   63.54% 11.88%
Rd   16.20% 0.40%
Rc2   25.50% 3.40%
Rd   4.96% 0.68%
Adequacy   19.46% 19.90%
Useful 0 0 0.00% 0 0 0.00% 0.00%
Intrinsi -0.065 0.434 18.84% -0.682 -0.709 50.27% 69.10%
Worry -0.139 -0.073 0.53% -0.68 -0.817 66.75% 67.28%
Confid 1.031 0.987 97.42% 0.249 -0.154 2.37% 99.79%
Percep 0 0 0.00% 0 0 0.00% 0.00%
Success 0 0 0.00% 0 0 0.00% 0.00%
 
Variable Deletion  #3 
 Deletion Strategy # 3 considered weighted h2. This strategy looked at the variables’ contribution to 
the complete canonical solution. The steps were as follows: 
  1. Multiply Rc2 by each rs

2 and add the products together for each function to obtain the  
   weighted h2 for each variable. 
  2. Drop the lowest weighted h2, repeat the previous step. 
  3. Look at the change in Rc2; if there is little change, drop the variable with the next lowest h2.  
  4. Take out as many variables as possible without compromising the Rc2. 
 In order to consider the limitations of variable deletion #2, the weighted communality coefficients 
helped the researcher obtain a more realistic view of how much each predictor variable contributes to the 
total canonical analysis. Using the above algorithm in step 1, the weighted communality coefficients  
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Table 8. Initial Canonical Solution with Weighted Canonical Communality Coefficients 
 Deletion Strategy #3, Iteration #1 

Function 1 Function 2 Function 3 Weighted Variable  
Statistic Func. rs rs

2 Func. rs rs
2 Func. rs rs

2 h2 
spacerel. -0.500 -0.845 71.40% 0.556 0.162 2.62% 0.956 0.509 25.91% 18.87% 
level0 -0.179 -0.604 36.48% 1.008 0.510 26.01% -0.617 -0.613 37.58% 11.02% 
gcksum -0.521 -0.901 81.18% -1.197 -0.331 10.96% -0.843 -0.279 7.78% 21.34% 
Adequacy   63.02% 13.20% 23.76%  
Rd   16.13% 0.49% 0.45 %  
Rc2   25.60% 3.70% 1.9%  
Rd   6.86% 0.68% 0.20%  
Adequacy   26.80% 18.35% 10.71%  
Useful 0.157 0.581 33.76% 0.153 -0.076 0.58% -0.565 -0.463 21.44% 9.07% 
Intrinsi -0.096 0.426 18.15% -0.579 -0.63 39.69% -0.862 -0.571 32.60% 6.73% 
Worry -0.187 -0.081 0.66% -0.829 -0.805 64.80% 0.531 0.292 8.53% 2.73% 
Confid 0.932 0.972 94.48% -0.023 -0.207 4.28% 0.787 0.083 0.69% 24.36% 
Percep 0.046 0.244 5.95% 0.2 -0.061 0.37% 0.145 0.033 0.11% 1.54% 
Success 0.061 0.279 7.78% 0.229 -0.061 0.37% -0.222 -0.096 0.92% 2.02% 
 
Table 9. Canonical Solution with Canonical Weighted Communality Coefficients After Dropping 
Perceptions Deletion Strategy #3, Iteration 2 

Function 1 Function 2 Function 3 Weighted Variable  
Statistic Func. rs rs

2 Func. rs rs
2 Func. rs rs

2 h2 
spacerel. -0.503 -0.846 71.57% 0.522 0.142 2.02% 0.974 0.513 26.32% 18.89% 
level0 -0.181 -0.605 36.60% 1.028 0.528 27.88% -0.583 -0.596 35.52% 11.05% 
gcksum -0.516 -0.900 81.00% -1.181 -0.324 10.50% -0.524 -0.292 8.53% 21.28% 
Adequacy   63.06% 13.46% 23.45%  
Rd   16.14% 0.48% 0.45%  
Rc2   25.60% 3.60% 1.90%  
Rd   6.62% 0.67% 0.21%  
Adequacy   25.85% 18.60% 11.04%  
Useful 0.167 0.581 33.76% 0.211 -0.061 0.37% -0.530 -0.467 21.81% 9.07% 
Intrinsi -0.093 0.427 18.23% -0.560 -0.622 38.69% -0.891 -0.603 36.36% 6.75% 
Worry -0.177 -0.080 0.64% -0.817 -0.825 68.06% 0.525 0.255 6.50% 2.74% 
Confid 0.934 0.973 94.67% -0.030 -0.204 4.16% 0.802 0.079 0.62% 24.40% 
Percep 0 0 0.00% 0 0 0.00% 0 0 0.00% 0.00% 
Success 0.072 0.279 7.78% 0.286 -0.057 0.32% -0.176 -0.098 0.96% 2.02% 
 
were obtained and examined. Table 8 illustrated the entire canonical solution showing weighted 
communality coefficients. Since the variable perceptions had the lowest weighted h2 (1.54%), it was first 
dropped resulting in Table 9. The next lowest, success (2.02%), was then deleted resulting in Table 10. 
The next smallest weighted h2 came from worry (2.91%), which was then deleted.  The results are 
displayed in Table 11. After these three deletions from the canonical solution, the Rc2 changes were 
small, 0.7% in Function 1, 1.3% in Function 2, and 1.4% in Function 3.  
 Since none of the variables remaining had their highest squared structure coefficient (rs

2) in Function 
3, which also had the lowest Rc2 (0.5%), Function 3 was now dropped and the most parsimonious solution 
set resulted in two functions with three predictors displayed in Table 12. The researcher considered this 
the best combination of the deletion strategies since both the functions and the weighted h2s were 
considered. The results indicated that when students consider mathematics useful and most importantly 
are confident in mathematics, they perform better on tests that measure their geometric content knowledge 
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Table 10. Initial Solution with Canonical Weighted Communality Coefficients After Dropping 
Perceptions and Success Deletion Strategy #3, Iteration  

Function 1 Function 2 Function 3 Weighted Variable  
Statistic Func. rs rs

2 Func. rs rs
2 Func. rs rs

2 h2 
spacerel. -0.504 -0.846 71.57% 0.583 0.171 2.92% 0.938 0.505 25.50% 18.91% 
level0 -0.190 -0.610 37.21% 0.984 0.482 23.23% -0.651 -0.628 39.44% 11.11% 
gcksum -0.509 -0.898 80.64% -1.218 -0.349 12.18% -0.441 -0.266 7.08% 21.22% 
Adequacy   63.14% 12.78% 24.01%  
Rd   16.16% 0.46% 0.46%  
Rc2   25.60% 3.60% 1.90%  
Rd   6.32% 0.71% 0.21%  
Adequacy   24.67% 19.78% 10.97%  
Useful 0.175 0.582 33.87% 0.229 -0.075 0.56% -0.584 -0.475 22.56% 9.12% 
Intrinsi -0.093 0.43 18.49% -0.629 -0.664 44.09% -0.845 -0.557 31.02% 6.91% 
Worry -0.153 -0.078 0.61% -0.732 -0.840 70.56% 0.549 0.339 11.49% 2.91% 
Confid 0.950 0.975 95.06% 0.082 -0.187 3.50% 0.764 0.087 0.76% 24.48% 
Percep 0 0 0.00% 0 0 0.00% 0 0 0.00% 0.00% 
Success 0 0 0.00% 0 0 0.00% 0 0 0.00% 0.00% 
 
Table 11. Final Canonical Solution After Dropping Perceptions, Success, and Worry with Weighted 
Canonical Communality Coefficients Deletion Strategy 3, Iteration 4 

Function 1 Function 2 Function 3 Weighted Variable  
Statistic Func. rs rs

2 Func. rs rs
2 Func. rs rs

2 h2 
spacerel. -0.508 -0.841 70.73% -1.038 0.439 19.27% 0.371 0.316 9.99% 18.12% 
level0 -0.244 -0.643 41.34% 0.338 -0.041 0.17% -1.12 -0.765 58.52% 10.59% 
gcksum -0.468 -0.889 79.03% -1.228 -0.455 20.70% 0.459 0.056 0.31% 20.18% 
Adequacy   63.70% 13.38% 22.94%  
Rd   15.86% 0.32% 0.11%  
Rc2   24.90% 2.40% 0.50%  
Rd   6.27% 0.35% 0.05%  
Adequacy   25.19% 14.50% 10.27%  
Useful 0.159 0.586 34.34% -0.129 -0.294 8.64% -1.15 -0.755 57.00% 9.04% 
Intrinsi -0.124 0.44 19.36% -1.131 -0.883 77.97% 0.345 0.16 2.56% 6.70% 
Worry 0 0 0.00% 0 0.000 0.00% 0 0 0.00% 0.00% 
Confid 0.973 0.987 97.42% 0.581 -0.064 0.41% 0.529 0.144 2.07% 24.28% 
Percep 0 0 0.00% 0 0 0.00% 0 0 0.00% 0.00% 
Success 0 0 0.00% 0 0 0.00% 0 0 0.00% 0.00% 
 
 
and spatial visualization. Also, students who receive extrinsic rewards perform better than those students 
who rely on intrinsic motivation.  
 The goal of all these deletion strategies was a more parsimonious solution. Therefore, choosing the 
smaller variable set when the same amount of variance can be accounted for was achieved. Just remember 
“bigger is not better!” in canonical correlation analysis. 
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Table 12. Final  Canonical Solution with Combination of Variable Deletion  
Strategies With Weighted Canonical Communality Coefficients 

Function 1 Function 2 WeightedVariable  
Statistic Func. rs rs

2 Func. rs rs
2 h2 

spacerel. -0.508 -0.841 70.73% -1.038 0.439 19.27% 18.07%
level0 -0.244 -0.643 41.34% 0.338 -0.041 0.17% 10.30%
gcksum -0.468 -0.889 79.03% -1.228 -0.455 20.70% 20.18%
Adequacy   63.70% 13.38%
Rd   15.86% 0.32%
Rc2   24.90% 2.40%
Rd   6.27% 0.35%
Adequacy   25.19% 14.50%
Useful 0.159 0.586 34.34% -0.129 -0.294 8.64% 8.76%
Intrinsi -0.124 0.44 19.36% -1.131 -0.883 77.97% 6.69%
Worry 0 0 0.00% 0 0.000 0.00% 0.00%
Confid 0.973 0.987 97.42% 0.581 -0.064 0.41% 24.27%
Percep 0 0 0.00% 0 0 0.00% 0.00%
Success 0 0 0.00% 0 0 0.00% 0.00%
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A Longitudinal Study of Familial Influences on Marijuana Use 
by Mexican American Middle School Students 
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The purposes of this longitudinal parent-child investigation were to: (a) investigate the influence of familial factors 
(marital status of the husband and wife, family transience, adult cigarette smokers in the home, and parent-child 
communication style) on the use of marijuana among Mexican American middle school youth, and (b) use a growth 
curve model to estimate and examine the effect of time on the pattern and change rate of marijuana use among 
Mexican American school-age youth over a three year period.  Methodologically, this was accomplished by 
applying a random-effects model in which student characteristics were construed as fixed effects at the micro-level 
and familial factors were treated as random effects at the macro-level in their relation to students' use of marijuana 
over a three year period.  Results indicated that marijuana use increased across time among the students.  Also, the 
quality of parent-child communication differentiated marijuana users from non-users.  Gender of students, adults 
smoking cigarettes in the home, family transience, and divorce were all significantly related to substance use in the 
population studied.    
 

ver the past several decades studies of adolescent substance use have focused on the prevalence, 
distribution, and use of illicit and licit substances among American children and youth 
(Johntson, O'Malley, & Bachman, 1996; U. S. Department of Health and Human Services, 
1992).  For instance, in 1997-1998 school year, 31% of 10th graders reported the use of 

marijuana while 9.7% of 8th graders also used it at least one time (The 1998 Monitoring the Future). 
Overall, 21% of 8th graders and 31% of 10th graders have used at least one illicit drug during that same 
period. Researchers have investigated a wide variety of individual psychological attributes, behaviors, 
demographic characteristics, genetic factors, and environmental influences on adolescents that they have 
classified as either risk or protective factors for involvement in the use of alcohol and other substances 
(Bry, McKeon & Pandina, 1982; Hawkins & Catalano, 1989; Jesser & Jesser, 1977; Kandel, 1978, 
Kandel & Foust, 1975; Newcomb & Bentler, 1988;  Newcomb, Maddahian, & Bentler, 1986; Vega, 
Zimmerman, Warheit, Apospori, & Gil, 1992).   
 For example, in the area of demographic characteristics the vast majority of national and state surveys 
find that males engage in illicit substance use at an earlier age and more frequently when compared to 
their female counterparts (Gilbert & Cervantes, 1986; Murray, Perry, O'Connell, & Schmid, 1987; 
Newcomb, Maddahian, Skager, & Bentler, 1987; United States Department of Health and Human 
Services, 1992).  Studies have also found that divorce within the family acts as a risk factor for substance 
use for female, as well as male children (Cadoret, Troughton, O'Gorman, Heywood, 1986).  In other 
studies, school related problems, psychological problems, and the inter- and intrapersonal stress that 
accompanies residential transience, or frequency of family mobility have emerged as risk factors for 
youth who engage in alcohol and other substance use (Humke & Schaefer, 1995; Puskar & Martsolf, 
1994).       
 Much of the research in this area specifically examines parental and familial influences on 
adolescents' substance use by soliciting youngsters perceptions of their parents' beliefs and/or behaviors 
on issues related to substance use, specific parental style in which they were reared, and other family 
variables.  For instance, studies have found that youngsters who were heavy users of substances felt more 
rejected by their parents, experienced less emotional warmth from their parents, and rated their parents' 
rearing behavior as more overprotective than non-user control subjects (Emmelkamp & Heeres, 1988).  
Other researchers have found parental and familial variables that influence the substance using behaviors 
of adolescents to include cigarette smoking and other substance use among one or both parents (Brook, 
Whiteman, Gordon, & Brook, 1985; Kandel, 1990; McDermott, 1984), disciplinary problems in the 
home, an overly restrictive discipline style and maternal rejection (Vicary & Lerner, 1986). 

O 
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 In a retrospective case study approach Low and Sibley (1991) asked 17 adults identified as problem 
drinkers details about their past home life and parent interactions and relationships as adolescents.  
Results indicated that extreme modes of control, such as highly strict rules and discipline enforcement or 
households with no clear rules at all, were significant influences to their problem drinking.  Cooper and 
Olson (1977) surveyed adolescents and found low perceived parental support was associated with 
substance use.  A number of other studies (Coombs, Paulson, & Richardson, 1991; Elliot, Huizinga, & 
Ageton, 1982; Halebsky, 1987; Hawkins, Lishner, & Catalano, 1985;  Jurich, Polson, Jurich, & Bates, 
1985; Jurich & Polson, 1984; Prendergast, 1974; Vicary & Lerner, 1986; Wills, Vaccaro, & McNamara, 
1992 ) found positive relationships, including the multifaceted aspects of positive parent-child 
interactions and general parental communicative style (verbal and non-verbal) with children works as a 
protective, or resilience factor against youthful involvement in substance use. 
 Unfortunately, fewer studies have actually involved parents as direct sources of obtaining information 
on parental and familial influences as they relate to adolescent substance use (Brook, Whiteman, Cohen, 
Shapiro, & Balka, 1995; Shedler & Block, 1990).  Studies using this approach have found that high levels 
of parental support, as well as positive adolescent-parent communication, are key elements in the 
prevention of alcohol and drug use and other deviant behaviors.  Parental nurturance emerges from all of 
these studies as a key factor in preventing problem drinking and problem behaviors among adolescents 
(Barnes & Farrell, 1992; Barnes, 1984; Barnes, Farrell, & Banerjee, 1994).   Kandel (1973) interviewed 
parents and youngsters and found that peer and parent influences on the use of substances is synergistic.  
The highest rates of marijuana use were observed among adolescents whose parents and friends used 
marijuana or other substances, leading to the notion that parental and peer modeling play a role in 
substance use. 
 Shedler and Block (1990) interviewed parents and their children and determined, among other things, 
that compared to mothers of substance experimenters, the mothers of frequent users could be described as 
hostile, not spontaneous with their children, not responsive or sensitive to their children's needs, critical of 
their children and rejecting of their ideas and suggestions, not supportive and encouraging of their 
children, cold, unresponsive, and unprotective.  They appear to give their children little encouragement, 
while, conjointly, they were pressuring and overly interested in their children's "performance".  All of 
these modes of interaction and communication were conducive to the adolescent substance use. 
 Prendergast and Thum (1973) and Prendergast (1977) found that alcohol use (in the first study) and 
marijuana use (in the second study) in adolescents was significantly correlated with the child's perceived 
style of communication with their father, particularly psychological tension. Wills, Vaccaro and 
McNamara (1992) and Barnes (1982) both found family support, including poor communication with 
parents was associated with adolescent use of licit and illicit substances.  Gantman (1978) compared 
family interaction patterns within a number of families and found well-adjusted families (as opposed to 
families with emotionally disturbed and drug-abusing adolescents) displayed clearer communication 
among family members.  This was also true in a study conducted by Lowe and Sibley (1991) in which it 
was found that "connected" patterns of family interactions which were characterized as a pattern of 
interaction suggesting good communication among family members had lower levels of adolescent 
substance use. 
 A limited number of studies have investigated the influence of family factors on the initiation and 
continued use of substances within the context of an intraethnic, all Latino population. Watts and Wright 
(1991) found that lack of family support, parental supervision, and/or parental drug use is significantly 
related to substance use among Latino youth.  In another study (Gfroerer & De La Rosa, 1993) Latino 
youth and one parent were interviewed about family variables and their relationship to youngsters' 
substance use.  The researchers found that substance use by mothers (particularly cigarette smoking) was 
highly correlated with substance use by their children. 
 Smith, Joe, and Simpson (1991) investigated parental influences on illicit substance use by Mexican 
American youth by interviewing both youth and their mothers on vital information pertaining to 
characteristics of parents of users, together with indicators of home environment and psychological status, 
in relation to their child's behavioral and emotional adjustment.  Children of married mothers used fewer 
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illicit substances in the first year after completing a Drug Prevention Program as opposed to children from 
divorced families, who evidenced continued substance use difficulties. 
 A research focus on parental communication style and other issues pertaining to family seems 
appropriate given the literature on Latinos in general and Mexican Americans in particular (Vasquez, 
1998).  Mexican American family members (including extended family) by tradition provide warmth and 
security for one another throughout their life (Griswold & del Castillo, 1984). This "familism" is one of 
the most important characteristic of "la familia" of  Mexican Americans (Sena-Rivera, 1979; Ramirez & 
Arce, 1981) and has been described as a strong feeling of identification, dependence, loyalty, reciprocity, 
and solidarity among members of the family (Marin & Marin, 1991).   This characteristic has been found 
to a greater extent among U.S. born Mexican Americans than among other ethnic and racial groups in the 
U.S. (See Ramirez & Arce, 1981 for a review).  Strong familial support and positive communication 
(between children and parents, and extended family members) has been identified as a protective factor in 
stress resistant or resilient children (Garmezy, 1985; Kumpfer & Alvarado, 1995; Masten & Garmezy, 
1985; Ramirez, 1980). 
 The purposes of this longitudinal parent-child investigation were to: (a) investigate the influence of 
familial factors (marital status of the husband and wife, family transience, adult cigarette smokers in the 
home, and parent-child communication style) on the use of marijuana among Mexican American youth, 
and (b) use a growth curve model to estimate and examine the effect of time on the pattern and change 
rate of marijuana use among Mexican American school-age youth over a three year period.  
Methodologically, this was accomplished by applying a random-effects model in which students' 
characteristics were construed as fixed effects at micro-level and familial factors were treated as random 
effects at macro-level in their relation to students' substance use over a period of three years. 
 

Method 
Subjects and Data Construction 
 Data used for this investigation was extracted from a longitudinal study in South Central Texas.  
Students in middle school, grade 6, 7, and 8 were surveyed regarding their use of substances, as well as 
on a set of psychological and social measures during three consecutive years. During the second year of 
the study, 720 students were randomly selected to have their parents participate in an interview protocol.  
These families were contacted by trained university students using telephone numbers provided by the 
school district.  Three hundred and ninety-three families were successfully contacted and subsequently 
participated in the family interviews.  Forty-one interviews were completed improperly (unmatchable 
cases and incomplete surveys) and were not usable for data analysis.  The remainder of the families did 
not participated in the study due to difficulty contacting the parents (disconnected phone service, 
incorrect phone numbers, incorrect addresses or difficulty arranging an interview due to both parents 
working).  Only a small portion of the families contacted refused to participate in the study.  Therefore, 
the overall successful rate of parental interviews was 49%.  A moderate completion rate was expected 
given the transient nature of residents of the community. 
Inclusion of subjects in this study was based on the two criteria.  First, a student's family must have been 
interviewed at year two of the study, and secondly, each student must have participated in at least two of 
the three yearly in-school surveys.  Procedure and justification for dealing with incomplete cases will be 
discussed later in this article.  
 
Procedure 
 Parental consent for students' participation in the school-based longitudinal survey study was 
established by both mailing a consent card with return postage to each student's family address and 
sending home a consent card.  Student's parents or guardians were told about the nature of survey and 
were requested to indicate their willingness to have their child participate in the study.  Prior to the survey 
administration, students were informed that their participation was voluntary and they could terminate 
their participation at any point during the survey. The overall consent rate of parents was 95%.  The 
survey was administered to the students in school within intact classes by trained university students.  
Each question and choice on the survey was read aloud in English to control for readability of the survey.   
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The student survey dealt with questions pertaining to ethnicity, gender, and a Substance Use Inventory in 
which information was sought from each student as to their use of marijuana over the past year.  The 
students were paid $1.00 after the survey for  their participation. 
 The family interview was conducted by trained bilingual (English-Spanish) university students over a 
period of three months.  Following a standardized protocol, interview staff first made at least three 
attempts to contact a family via telephone (86% of the interviews were conducted by way of telephone 
and 14% of the interviews were conducted in the home of the parents in face-to-face interviews; 74% of 
the interviews were conducted in English, 20% were conducted in Spanish, and 6% were conducted in 
both English and Spanish).  During the last month of the interview, all families not contacted by 
telephone were visited by a pair of  interviewers using addresses provided in school records.  After the 
families agreed to participate in the study, the interview staff administered a closed-ended questionnaire 
in the language that the parents felt most comfortable with at their home.  Interviews were conducted with 
the female head of the household (the mother in the majority of cases) without the presence of the student 
or any adult in the room.   
 
Measures 
 Variables used in the present study were collected through both student and parent interviews.  They 
are described below: 
 Self-reported use of marijuana. Student were asked to indicate how many times he or she had smoked 
marijuana in the last year. The response scale consisted of none, 1-2 times, 3 or more times.  Marijuana 
use was coded as "no" if a student reported no use in last year and as "yes" if he or she reported at least 1-
2 times of use2 . 
 Student's gender. Students reported their gender. Responses were coded as "F" for female and "M" 
for male. 
 Parental marital status. Parental marital status was coded as either "married" or "not married" 
(divorced or separated).  This information was collected during the family interview. 
 Family residential transience.  Parents reported the number of times the family moved residences in 
last three years was gathered during family interviews.  Family transience was coded as "stable" if they 
had not moved and as "unstable" if it had moved residences at least once in the last three years. 
 Parent-child communication.  Parents reported information for The Open Communication subscale of 
the "Parental Support Scale" detailing the level (quality and quantity) of information exchange between 
parents and child (Barnes & Olson, 1982).  Adult respondents were asked about the communication 
process in the family. Respondent's score were divided into two groups (free communication and 
problems in communication) using a median split. 
 
Data Analysis 
 Logistic regression was first applied to examine the cross-sectional relationships between marijuana 
use by students and its covariates at each time point.  This would help to uncover the complicated 
relationships among the covariate variables.  Conditional odd ratios (ORs) and 95% confidence intervals 
(CIs) were calculated for the covariate variables. 
 A multivariate hierarchical linear model (HLM) was used to study the growth curve of marijuana use 
in this longitudinal data set.  HLM estimates individual parameters that describe how particular 
individuals change over time.  Individual changes are estimated based on data from a previous timepoint 
which lead to more common overall population trends.  HLM is more advantageous compared to the 
traditional regression approach (see Bryke & Ruadenbush, 1987; Hedeker & Gibbons, 1996; Goldstein, 
1995 for a more detailed description of HLM). 
 First, error terms can be flexibly specified and treated as fixed, randomly varying, and non-randomly 
varying at each level of the estimation equations in HLM.  Second, HLM avoids weaknesses in the 
repeated measure design in traditional longitudinal studies that only focus the final data point alone and 
ignore changes in covariates between initial and final timepoints.  
 Third, HLM does not require subjects to be measured at the same number of timepoints and therefore 
allows subjects with incomplete data across timepoints to be included in the analysis.  The analysis is 
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based on the available repeated observations on which subjects have data.  Therefore, the analysis is more 
powerful and avoids selection biases because it includes all available subjects.  Furthermore, HLM 
permits the use of different types of covariates to model the change in dependent variable due to both 
stable/invariant characteristics (e.g., their gender and their parents' level of acculturation), and 
unstable/time-varying characteristics (e.g., self-esteem and association with deviant peers).  Finally, in 
contrast to the traditional approaches to longitudinal studies, HLM can estimate average change (across 
time) in a population as well as individual change for each subject.  It provides a more realistic 
description of behavior change by considering different trends of each individual. 
 The growth curve of marijuana use was modeled by estimating linear and acceleration rates of 
substance use at level 1 as well as estimating randomly-varying effects of familial factors at level 2.  
Conceptually, the level 1 model represented the traditional regression models in which linear and 
quadratic trends of changes in dependent variable across three time points were assessed with the 
exception that the error term was refined as a combination of  independent errors and random effects 
associated with the cluster (i.e. individual) effect.  At level 2, the model was constructed to identify 
specific contributions of contextual variables (i.e. familial factors) and random effects due to cluster effect 
on level 1 parameter estimates.  Since this was a two-level model, the error term at level 2 model was 
treated as a fixed term. 
 Specification of parameter estimates for the present study are as the following: 
 Level 1 Model 
       Y it = π0i + π1i αit + π2i α2it + εit   εit  ~ N(0, σ2) ,    
whereY it is the marijuana use index for student i at year t, t = 1, ..., 3; i = 1, ..., 295; αit = year of survey - 
1 so that αit = 0 at year 1 of the survey; α2it = year of survey * year of survey so that α2it represents the 
quadratic term to measure the acceleration rate π0i is therefore the expected level of marijuana use at year 
1 of the survey for student i; π1i is therefore the expected rate of change of marijuana use per year of the 
survey for student I; π2i is therefore the expected acceleration of change rate of marijuana use per year of 
the survey for student i; εit is a random error  
 Level 2 Model 
       p0i = b00 + X0k + m0i 
       p1i = b10 + m1i 
       p2i = b20 + m1i  ,   
where b00 is the population mean of marijuana use index at year 1 of the survey; X0k is the random-
varying covariate, k= 1,..., 5 (parental marital status, parental-child communication, student's gender, 
family transience, gender and marital status interaction); b0k is the fixed effect of random-varying 
covariate X0k; b10 is the population mean rate of change of marijuana use index; b20 is the population 
acceleration rate of change of marijuana use index; m0j, m1j, m2j, are random effects associated with 
student i and assumed N(0, τ2). 
 

Results 
Multivariate Logistic Analysis of Familial Variables 
 Table 1 and Table 2 show the univariate statistics and results of logistic regression on marijuana use 
at each time point.  For year 1, males, poor parent-child communication, a cigarette smoking adult in the 
home, and females in a divorced household seemed to be related to more reported use of marijuana by the 
adolescents, while at year 2 students who were male, had poor parent-child communication, had a 
cigarette smoking adult in the home, and were female living in a divorced home reported more marijuana  
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Table 1.  Descriptive statistics of dependent and level-2 measures  
  Used Marijuana 

in Year 1 
Used Marijuana 
in Year 2 

Used Marijuana 
in Year 3 

Parental 
Marriage Status 
 

Married 
Not Married 

47 (27.0%) 
13 (36.1%) 
 

82 (39.0%) 
25 (48.1%) 

71 (43.6%) 
16 (51.6%) 

 
Gender 

Male 
Female 

40 (36.7%) 
20 (19.8%) 
 

65 (50.4%) 
42 (31.6%) 

52 (56.5%) 
35 (34.3%) 

Parental-child 
Communication 
 

Open 
Closed 

27 (29.0%) 
33 (28.2%) 
 

40 (34.8%) 
67 (45.6%) 

37 (44.0%) 
50 (45.5%) 

Smokers living 
in smoking 
 

None 
Yes 

32 (23.5%) 
28 (37.8%) 
 

66 (37.9%) 
41 (46.6%) 

54 (41.9%) 
33 (50.8%) 

Moved in the last 
three years 
 

No 
Yes 

49 (28.0%) 
11 (31.4%) 
 

89 (41.8%) 
18 (36.7%) 

70 (43.8%) 
17 (50.0%) 

 
Table 2. Logistic regression on marijuana use at each time point. 
 Marijuana Use at Year 1. Marijuana Use at Year 2. Marijuana Use at Year 3. 

Variable        B       SE      OR        B       SE      OR        B       SE        OR 
MAR1_95(1) .0370 .5271  1.0377 -.0983 .4398    .9064 .1894 .5788  1.2086 
GENDER(1)      -1.1015 .3718    .3324 b -1.0034 .2961    .3666 a -1.0393 .3328    .3537 d 
COMMU2(1)     -.0964 .3227    .9081 .4598 .2662  1.5838 a .0435 .3044  1.0445 
SMOKER(1)      .6850 .3254  1.9838 b .4013 .2760  1.4938 .4310 .3222  1.5388 
MOVING(1)      .2233 .4278  1.2502 -.2499 .3447    .7788 .4026 .4067  1.4957 
INT_1          1.1206 .8021   3.0666 1.0057 .6409  2.7338 .3069 .8117  1.3592 
Constant       -.7908 .3213  -.3150 .2657  .0290 .3001  

Note: a < .10; b < .05; c < .01; d < .001 
 
use.  For year 3, males, a cigarette smoking adult in the home, and transience in terms of the family 
residence changing more than one time in the last three years tended to be associated with students who 
reported more marijuana use.  However, results of multivariate logistic regression revealed that more 
marijuana use was only significantly related to males and a cigarette smoking adult in the home at year 1; 
significantly to males and marginally significant to poor parent-child communication at year 2; and 
significantly to males. 
 Logistic regression based on level 2 variables provided strong support for the notion that familial 
variables can act as risk or protective factors for marijuana use in adolescents.  These findings lend 
support to efforts to explore the effects of familial variables on the change rate of marijuana use in this 
population. 
 
Growth Curve Model 
 A series of nested growth curve models were estimated to examine the change rate of marijuana use 
over the three years and the effects of familial factors on change rates of marijuana use (see Table 3).  
Overall, there was a consistent random effect associated with the mean rate of marijuana use at each time 
point suggesting that the pattern of use or non-use of marijuana was different among all students across 
three years.  
 Model 1 revealed a significant individual effect across three time points.  The fully unconditional 
model suggested significantly different individual patterns of marijuana use change (intraclass correlation 
= .19).  This effect prompted further modeling of the individual effect with the average rate of  
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Table 3.  Random-Effects Regression on Marijuana Use 
 Model 1 Model 2 Model 3 Model 4 Model 5 
Fixed Effects MLE SE MLE SE MLE SE MLE SE MLE SE 
Constant,      G00 -

0.482*** 
0.106 -

0.859*** 
0.154 -

0.942*** 
0.171 -1.344** 0.415 -0.825 0.525 

Parental marital  
   status,    G01 

       0.446 0.284  0.019 0.389 

Student gender,  
 G02 

      -
0.849*** 

0.223 -1.945** 0.707 

Child-parent 
communication,  

G03 

       0.224 0.224  0.210 0.225 

Smoking adult  
   at home,   G04 

       0.489* 0.232  0.502* 0.233 

Moving   
  residence,   G05 

       0.099 0.291  0.045 0.294 

Gender x 
Marital status,   

                 G06 

         0.919 0.564 

Year (mean  
change rate), G10 

   0.380*** 0.106   0.760* 0.351  0.419*** 0.109  0.420*** 0.110 

Year squared  
   (acceleration  

rate),        G20 

 1.280*** 1.132     -0.189 0.166   

Random effect           
Constant,       U0    1.450*** 1.204  1.461*** 1.209 1.398*** 1.182 1.405*** 1.186 
Note:  * p < .05; ** p < .01; *** p < .001 
 
change of marijuana use in Model 2.  It was found there was a significant, positive time effect on change 
of marijuana use (i.e., marijuana use increased across time among the students).  Model 3 tested quadratic 
time effect on the change rate of marijuana use.  However, its effect was not significant.  Model 4 
included level 2 covariates and consisted of poor parent-child communication, transience of the family, 
divorce of parents, a cigarette smoking adult in the home, and student's gender.  Being male and having a 
cigarette smoking adult in the home significantly predicted use of marijuana at year 1.  Student's gender 
and parental marriage status interaction terms also marginally related to marijuana use at year 1. 
 

Discussion 
 Findings of the present investigation were based on a longitudinal study of Mexican American 
students and their parents over a three-year period.  It provided important developmental understanding of 
marijuana use in this adolescent group.  Overall there was a positive linear trend of increasing marijuana 
use across the three time points over the years.  This is a trend seen with national studies in which the 
prevalence of substance use increases proportionately to the age/grade level of pre-adolescent and 
adolescent subjects (see for example, Johntson, O'Malley, & Bachman, 1996).  However, different 
patterns of use or non-use of marijuana among all students across the three years was an important finding 
which may imply the emerging negative quadratic trend of marijuana use although it was not significant 
in Model 4.  This may be related to the experimental use of marijuana during adolescence.   
 Both cross-sectional logistic regression and growth curve models consistently found students’ gender 
an important predictor of marijuana use even after controlling for familial factors.  In the present study 
males reported more marijuana use than females. The majority of national and state surveys of adolescent 
substance use find that males engage in illicit substance use at an earlier age and more often compared to 
their female counterparts (Gilbert & Cervantes, 1986; Murray, Perry, O'Connell, & Schmid, 1987; 
Newcomb, Maddahian, Skager, & Bentler, 1987; United States Department of Health and Human 
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Services, 1992).  Based on this and other literature (Newcomb & Bentler, 1989; Stein et al, 1987), among 
males there are a myriad of risk factors that are associated with substance use including peer pressure, 
social deviance, emotional problems, and issues with self esteem, all of which tend to play a role 
particularly for males' relatively high substance use when compared to females.  However, smoking 
among females is increasing at least in part because advertisers have targeted them as a highly lucrative 
market.  Many of the studies cited note that females are catching up to, and in some cases becoming more 
frequent users of cigarettes when compared to males.  
 In one study conducted by Gfrorer and De La Rosa (1993), Latino female adolescents were found to 
engage in more illicit substance use than male adolescents.  The researchers found that these females were 
more likely to report using illicit substances, including marijuana, as compared to males.  This use of 
marijuana by Latino females is supported by the findings of the National Institute on Drug Abuse (U. S. 
Department of Health and Human Services, 1990; 1991) in which a trend over the last several years 
shows slightly higher rates of lifetime marijuana use among Latino females age 11-17 than among Latino 
males of the same age.      
 Having a cigarette smoking adult in the home was also shown to be a reliable predictor of the 
prevalence of marijuana use across the three years in the present study.  This is consonant with the 
findings of the study by Gfroerer and De La Rosa (1993) in which 223 parent-child pairs were 
interviewed pertaining to family variables and children's' use of substances.  An important finding of this 
study is that frequency of marijuana use by Latino youth was strongly related to the use of cigarettes by 
their mother.  As Gfroerer and De La Rosa (1993) report, their data are supportive of the importance of 
children's modeling of parents' drug use behavior found in studies conducted with white and non-Latino 
families and their children (Brook, Whiteman, Gordon, Nomura, & Brook, 1968; Brooks, Whiteman, 
Nomura, Gordon, & Corton, 1988; Gfroerer, 1987).  This study seems to support other research in that the 
impact of a cigarette smoking adult in the home has a tremendous influence on Latino children's behavior.        
 Transience, or relatively high rates of family residential mobility was found to be associated with 
higher rates of marijuana use by the Mexican American adolescents in the present study.  Transience of 
the family in terms of the number of moves from one residence to another has been associated with a 
range of school related, psychological, and substance use issues (Humke & Schaefer, 1995).  Studies 
found that family transience leads to depression, anxiety, and impacts overall life satisfaction for 
adolescents (Puskar & Ladely, 1992). Researchers theorize that family mobility impacts interpersonal 
relationships, overall adjustment, social and educational situations, and academic achievement to such an 
extent that transience must now be considered a constellation risk factor for substance use within this 
population.   Perhaps multiple residential moves is associated with instability, uncertainty and a higher 
level of overall anxiety for Mexican American adolescents whether or not the move is precipitated by 
pleasant or not so pleasant circumstances.  What we do know is that this is an issue that needs further 
study in this population in relation to substance use.  
 The impact of separation and divorce on adolescent development is influenced by a variety of factors, 
including when the divorce occurs, the nature and length of the family conflicts that lead up to and follow 
the divorce, the quality of the child's relationship with both the absent parent and the parent who have 
primary physical custody, and the economic circumstances of the family after the divorce.  It is difficult 
to predict with great accuracy who will be severely affected by divorce.  As a rule, boys appear to be 
more negatively influenced by divorce than are girls (Emery, Hetherington, & DiLalla, 1984).  Girls who 
are affected often exhibit behaviors associated with anxiety and withdrawal. 
 Several studies have found that adolescents from intact homes (i.e., two natural parents reside in the 
home) are less likely to use marijuana and tend to use less frequently than adolescents from non-intact 
homes (e.g., single parent or stepparent homes; Hoffman, 1994; Wallace & Bachman, 1991; Wells & 
Rankin, 1991; Needle, Su, & Doherty, 1990; Flewelling & Bauman, 1990; Selnow, 1987; Smith & 
Paternoster, 1987) where parent monitoring and bi-gender role models exist.  For example, Mednick, 
Baker, and Carothers (1990) found that parental divorce during adolescents leads to a significant increase 
in the probability of delinquency and adult criminality, as well as substance use.  In the present study 
females were more negatively impacted than males by divorce in the home as evidenced by their use of 
marijuana.  Perhaps the lack of a consistent male role model in the home, compounded with the intricacies 
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and dynamics of interactions between daughters and their divorced mothers within the Mexican American 
culture increases the daughters' risk of substance use.  Susceptibility  to peer influence, vulnerability to 
poor personal decisions, and a strong desire to be accepted, or just  "fit-in" with a substance using group 
may play significant roles in this finding.   
 Finally, problems in communication between parents and their children were found to have a 
significant impact on the use of marijuana for the subjects in this study. Parents whose communication 
style could be described as open in terms of the quality and quantity of verbal and non-verbal exchange 
(Barnes & Olson, 1982) had children who reported significantly less use of marijuana over the course of 
this study. Communication is generally viewed as one of the most crucial facets of interpersonal 
relationships.  Further evidence of the belief that good communication skills are crucial to satisfaction 
with family relationships is offered by a large number of researchers (See Barnes & Olson, 1982 for a 
review).  Barnes, Farrell, and Banerjee (1994, p. 197) concluded ". . . the quality of parenting [specifically 
in terms of communication] is critically important for adolescent outcome regardless of race or other 
sociodemographic characteristics"  Positive adolescent-parent communication is a key element in the 
prevention of alcohol abuse and other deviant behaviors.   
 The impact of  parental interactions via communication style becomes even more influential (as a risk 
or protective factor for substance use) in the context of "la familia" and the children within the Mexican 
American cultural traditions (Vasquez, 1998).  Mexican American children in the present study who 
experience their parents' communication style as open, positive and supportive seem to mediate this 
relationship as a buffer or cushion against other environmental and familial risk factors for substance use. 
 

Conclusion 
 Given the importance of familial factors in the Mexican American culture, it seems plausible to 
assume that substance use research efforts directed toward  Mexican American adolescents would benefit 
from incorporating family and parents in the investigation.  In the area of prevention (Kaufman, 1986; 
Kaufman & Borders, 1988; Faufman & Kaufmann, Stanton & Todd, 1982) researchers have strongly 
recommended family focused prevention interventions for drug abuse based on the effectiveness of 
controlled studies.  A few programs have been developed for Latino families and researched (see 
Szapocznik, et al, 1989; Cervantes, 1993 for details).  Barrett, Simpson, and Lehman (1988) found that a 
reduction in drug and alcohol use was related to family support among Mexican American youth in their 
first 3 months in drug intervention programs. However, there continues to be a dearth of substance use 
research in the area of family factors and Mexican American youth. 
 Whatever prevention and/or intervention orientation is espoused in the schools and community as a 
working model for Mexican American youth, the following components might well be considered for 
integration in programs as effective practices:   
 Focus on the family.  Prevention/intervention efforts should focus on the importance of parent-child 
communication styles.  An abundance of literature suggests that many Latino students are distinguished 
by a sense of loyalty to the family.  Children from Latino homes are brought up with the notion that to 
bear the family name is a very important responsibility, and that their behavior reflects on the honor of the 
family.  This cultural value stands in stark contrast to the "rugged individualism" that characterizes 
mainstream American values (Vasquez, 1998). 
 Parents and extended family members might benefit from intensive and extensive intervention efforts 
based within local schools but community led, focusing on modeling, and discussing more effective styles 
of communication compared to less effective styles of communication.   An example of a culturally 
relevant, systems oriented approach to intervention efforts among Latino families is the Family 
Effectiveness Training for Latino Families (FET) (Szapocznik et al, 1986). In addition, parents must be 
made to understand the impact of their behavior upon their childrens' behavior (i.e., cigarette smoking), 
and the impact of divorce and transience upon individual children. 
 Focus on the student.  Prevention/intervention efforts have traditionally focused exclusively on the 
student and tended to be adult centered.  Contemporary models might consider the impact of social 
influences on adolescent alcohol and drug use.  For example, Project SMART, a peer-led social influence 
prevention program, has been shown to be effective in delaying the onset of tobacco, alcohol, and 
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marijuana use in a cohort of adolescents (Perry, 1996).  Intensive and extensive substance use 
intervention training for school children, over multiple years is called for due to the growth curve effect 
discussed previously in this article.   
 In addition, Guthrie, Caldwell, and Hunter (1997) believe that health-promotion interventions in the 
next millennium must consider how gender socialization mediates the interaction of social class, 
ethnicity, and environment with self-efficacy, which in turn influences behavioral outcomes related to 
physical and mental health.  Gender socialization is the process by which children learn how to think and 
act as boys or girls in a variety of situations.  This process may be facilitated by environmental factors 
that provide reinforcement of specific gendered behaviors.  An extension of this idea may mean the need 
for some gender segregation in our prevention/intervention efforts given the fact that females tend to 
respond differentially in the area of marijuana use compared to males when divorce of the parents occurs.   
 Focus on the teacher.  Prevention/intervention efforts have not sufficiently sensitized and educated 
mainstream teachers to the intricacies of the Mexican American culture.  For example, Vasquez (1998, p. 
2) illustrates this point with the following, "Our attempts to reinforce youth must be based on values the 
student holds, and these often differ depending on the ethnic and social class background of the student.  
It is for this reason that teachers who comment that they 'treat all students the same' are not showing their 
democratic disposition, but rather that they are not yet prepared to teach in the pluralistic classrooms of 
American schools.  Already more that one in every four students is an ethnic minority."  All teachers, but 
particularly those that will implement intervention programs need to be specifically educated in the area 
of Distinctive Traits for Latino Students (see the Prevention Researcher, 1998). 
Until comprehensive and multilevel prevention intervention efforts are constructed that address at least 
some of the concepts detailed in this article, movement toward a more substance-free, younger Latino 
generation may be further in the future than we would hope.  Our effects need to be redoubled in the 
coming years in order to prevent the loss of an important ethnic generation for our nation. 
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Endnote 

 Two additional analysis was conducted by coding marijuana use as none for those reporting no 
use or 1-2 times of use and as marijuana use for those reporting 3 or more times of use in last year. The 
purpose of this exercise was to explore the impact of "experimental marijuana use". Results of analysis 
were however similar to those reported in this paper. 
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